JP4119974B2 - Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same - Google Patents

Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same Download PDF

Info

Publication number
JP4119974B2
JP4119974B2 JP2002355792A JP2002355792A JP4119974B2 JP 4119974 B2 JP4119974 B2 JP 4119974B2 JP 2002355792 A JP2002355792 A JP 2002355792A JP 2002355792 A JP2002355792 A JP 2002355792A JP 4119974 B2 JP4119974 B2 JP 4119974B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
gold nanoparticle
gold
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002355792A
Other languages
Japanese (ja)
Other versions
JP2004188243A (en
Inventor
宏昭 桜井
年 坪田
正毅 春田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002355792A priority Critical patent/JP4119974B2/en
Priority to AU2003302884A priority patent/AU2003302884A1/en
Priority to PCT/JP2003/015135 priority patent/WO2004052536A1/en
Publication of JP2004188243A publication Critical patent/JP2004188243A/en
Application granted granted Critical
Publication of JP4119974B2 publication Critical patent/JP4119974B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一酸化炭素の除去用触媒複合体及び除去方法に関する。具体的には、生活環境において問題となる不完全燃焼、喫煙、自動車排ガス等に由来する気体中の一酸化炭素を除去する触媒複合体、及びそれを用いた一酸化炭素除去方法に関する。
【0002】
【従来の技術】
一酸化炭素は非常に中毒性の強いガスであり、生活環境の空気中に共存すると人体に深刻な影響を及ぼすため、効果的な除去技術が望まれている。高濃度かつ大量の一酸化炭素が空気中に放散される可能性は、主に非常時であり、火災、ガス漏れ、不完全燃焼などの原因によるものである。これらに対応する除去技術としては防毒マスクであり、一酸化炭素除去のための吸収缶にはホプカライトが用いられている。ホプカライトは触媒とも吸収剤とも表現され、以下の欠点が知られている。
1) 高濃度の一酸化炭素に対してのみ有効である。
2) 寿命が短いため防毒マスクとしては一回しか使用できない。
3) 湿気により活性が失われるため、開封直後にしか使用できない(このため防毒マスクには吸湿剤と組み合わせて用いられている)。
【0003】
近年、平常時に生活空間において発生する一酸化炭素を除去するニーズがクローズアップされてきている。この場合の一酸化炭素の発生源としては喫煙および自動車排ガスを挙げることができ、これらに由来する一酸化炭素が室内および自動車車内等の閉鎖空間に拡散(あるいは侵入)した場合に問題となる。いずれも発生源における濃度はパーセントオーダーの高濃度であるが、換気により空気中に拡散した場合には低濃度になり、最終的には作業環境基準である50ppm以下に保持する必要がある。換気が難しい場所や発生源の近傍においては機器による一酸化炭素の除去が必要になるが、従来の空気清浄機においては一酸化炭素の除去効果が非常に低いことが報告されている。これは従来技術において、低濃度から高濃度の広い濃度範囲にわたり一酸化炭素の除去に有効な触媒および吸着剤が存在しなかったためである。
【0004】
ホプカライトは酸化物のみから構成され高濃度の一酸化炭素には有効であるが、低濃度の一酸化炭素には有効でない。一方、白金等の貴金属触媒を常温付近で使用した場合には、低濃度では触媒活性を有するが高濃度になると貴金属表面への一酸化炭素の強吸着による自己被毒のため直ちに失活してしまう。
【0005】
一方、金ナノ粒子を酸化物表面に担持した触媒(以後、簡単のために「金ナノ粒子触媒」と呼ぶ)は、バブリングによる加湿(水蒸気濃度4.2%)を行なったボンベガス(CO+O2+N2)を用いた室温(30℃)の実験室条件において、一酸化炭素を20〜10000ppmの広い濃度範囲で酸化除去できることが報告されている(非特許文献1を参照)。バブリングを行い加湿した場合には、乾燥ボンベガスを用いた場合と比較して反応が大きく加速されることも同時に報告されている。しかしながら、一酸化炭素の濃度が低く、二酸化炭素と水蒸気の両者の濃度が一酸化炭素濃度に対し相対的に高い場合(CO:50ppm, CO2:7000ppm, H2O:1.3%)には、金ナノ粒子触媒の活性も反応中に著しく劣化することが報告された(非特許文献2を参照)。同報告によると、劣化の程度は担体酸化物の種類により異なり、劣化の原因は反応中に生ずるカルボキシレートあるいはカルボネート種の触媒表面への蓄積による被毒によるものと推測できる。
【0006】
また、特許文献1には、金ナノ粒子触媒に光照射することによって、非照射時に比べて一酸化炭素の酸化反応を促進できることが記載されている。そして、特許文献2には、空気中に存在する汚染物質により活性低下した金ナノ粒子触媒に光照射することにより該触媒の再生を行なうことができることが記載されている。
【0007】
【特許文献1】
特開2001−334153公報
【0008】
【特許文献2】
特開2001−334155公報
【0009】
【非特許文献1】
春田正毅(M.Haruta)ら著、「キャタリティック サイエンス アンド テクノロジー(Catalytic Science and Technology)」、講談社、1991年、Vol.1, pp.331-334
【0010】
【非特許文献2】
G.スリニバス(G. Slinivas)ら、「スタディーズ イン サーフェス サイエンス アンド キャタリシス(Studies in Surface Science and Catalysis)」、オランダ、エルゼビア・サイエンス社、1996年、Vol.101, pp. 427-433
【0011】
【発明が解決しようとする課題】
本発明者らは、前記のような生活環境ニーズにおける金ナノ粒子触媒の適用可能性を検討するため、ボンベガスの合成空気ではない実空気中の一酸化炭素の酸化除去について実験を行なったところ、広い濃度範囲にわたり金ナノ粒子触媒が有効に働くことを確認すると共に、該触媒の劣化に関する次ぎの2つの問題点を見出した。すなわち、
1)従来報告されているように、反応中における活性低下が認められる。2)従来の報告にはなかった点であるが、金ナノ粒子触媒をサンプル瓶中に密栓保管した状態では安定であり開封直後は高い活性を示すのに対し、開封後長時間にわたり空気に晒すだけで、反応前にも活性低下が認められる。
【0012】
実験室における触媒活性テストに際しては、触媒は熱処理等による再活性化後に使用されるのが通常であり、上記のケースにおいても活性劣化後のサンプルが熱処理により活性が回復できることを確認している。
【0013】
しかしながら、特に生活環境の浄化における触媒の使用を考えた場合には、省エネルギー的観点のみならず装置の価格、大きさの観点からも熱処理部を設けることは望ましくない。このため、反応中のみならず前処理においても加熱を行なうことなく、常温で高活性を長期にわたり維持できる触媒技術の開発が強く望まれる。
【0014】
すなわち、本発明の目的は、低濃度から高濃度まで広範囲の濃度における一酸化炭素の除去が可能であり、常温で長期にわたり高活性を維持することができる、気体中の一酸化炭素除去用触媒複合体、及びそれを用いた一酸化炭素除去方法を提供することにある。
【0015】
【課題を解決するための手段】
【0016】
【発明の実施の形態】
本発明者は、上記した如き従来技術の問題点及び発明者らが見出した問題点に鑑みて鋭意検討を重ねた結果、気体(特に、実空気)中の一酸化炭素の酸化的除去において、ナノサイズの金粒子を金属酸化物に担持した触媒(以下「金ナノ粒子触媒」と表記する)にアルカリ性多孔質体粉末を共存させることにより、共存させない場合に比べて反応前及び反応中の活性劣化を抑制することができることを見出し、本発明を完成するに至った。
【0017】
即ち、本発明は以下の技術を提供する。
項1 平均粒子径が25nm以下の金粒子が金属酸化物に担持された金ナノ粒子触媒とアルカリ性多孔質体とを含有する一酸化炭素除去用触媒複合体。
項2 金ナノ粒子触媒とアルカリ性多孔質体とを混合してなる項1に記載の触媒複合体。
項3 金ナノ粒子触媒が、アルカリ性多孔質体に担持されてなる項1に記載の触媒複合体。
項4 一酸化炭素含有気体が一旦アルカリ性多孔質体を通過した後に金ナノ粒子触媒に接触するように、金ナノ粒子触媒の手前、又は手前と後の両方にアルカリ性多孔質体を配置した項1に記載の触媒複合体。
項5 アルカリ性多孔質体が、アルカリ成分が多孔質体の表面に担持されたものである項1〜4のいずれかに記載の触媒複合体。
項6 多孔質体が、窒素吸着法(BET法)により測定した比表面積が10m2/g程度以上の、活性炭、カーボンブラック、ゼオライト、シリカ、アルミナ、酸化鉄、及び酸化チタンからなる群から選ばれる少なくとも1つである項5に記載の触媒複合体。
項7 多孔質体が、窒素吸着法(BET法)により測定した比表面積が10m2/g程度以上の活性炭である項6に記載の触媒複合体。
項8 アルカリ成分が、周期律表のアルカリ金属類又はアルカリ土類金属類の酸化物、水酸化物、及び炭酸塩からなる群から選ばれる少なくとも1つである項5に記載の触媒複合体。
項9 ハニカム状、ビーズ状、又は繊維状のいずれかの形態を有する項1〜8のいずれかに記載の触媒複合体からなる空気浄化フィルター。
項10 項9に記載の空気浄化フィルターを備えた一酸化炭素除去装置。
項11 項1〜8のいずれかに記載の触媒複合体を、−70℃から350℃の温度域で用いることを特徴とする気体中の一酸化炭素の除去方法。
項12 項1〜8のいずれかに記載の触媒複合体を、−70℃から350℃の温度域で、光照射条件下で用いることを特徴とする気体中の一酸化炭素の除去方法。
【0018】
【発明の実施の形態】
アルカリ性多孔質体
本発明で用いられるアルカリ性多孔質体とは、アルカリ成分を担持した多孔質体であっても、それ自身アルカリ性を呈する多孔質体であっても良い。
【0019】
アルカリ性多孔質体がアルカリ成分を担持した多孔質体の場合、その担体である多孔質体(porous materials)は、窒素吸着法(BET法)により測定した比表面積が10m2/g程度以上、好ましくは30m2/g程度以上であるものが用いられる。この定義に当てはまる多孔質体であれば、外見上の形態(マクロ構造)は問わず、粉末状、繊維状、スポンジ状、ハニカム状などいずれの形態でも良い。多孔質体として具体的には、活性炭、カーボンブラック、ゼオライト、シリカ、アルミナ、酸化鉄、酸化チタン等が例示される。
【0020】
担持されるアルカリ成分としては、周期律表のアルカリ金属類又はアルカリ土類金属類の酸化物、水酸化物、炭酸塩等が挙げられ、これらからなる群から選ばれる少なくとも一つを含むものが挙げられる。アルカリ成分として具体的には、MgO、CaO、Mg(OH)2、Ca(OH)2、Na2CO3、K2CO3等が例示される。そのうち、湿分の存在下におけるCO2吸着性の点から、Na2CO3、K2CO3等が好ましい。
【0021】
上記のアルカリ成分を多孔質体の表面に担持したアルカリ性多孔質体は、例えば、文献(H. Hayashi et al, Ind. Eng. Chem. Res., 1998, 37, 185-191)に準じて製造することができる。すなわち、2〜20%程度のアルカリ成分の水溶液30ml程度に、多孔質体10g程度を加えた後、水分を蒸発させて乾固する。必要であれば、再度水を加えて撹拌後、水分を蒸発させて乾固する。その後、不活性気体(例えば、ヘリウム、窒素)中で、100〜200℃程度で1〜24時間程度乾燥する。これにより、アルカリ成分を5〜50重量%程度含有する多孔質体が製造される。
【0022】
また、アルカリ性多孔質体がそれ自身アルカリ性を呈する多孔質体である場合、窒素吸着法(BET法)により測定した比表面積が10m2/g程度以上、好ましくは30m2/g程度以上のものが用いられる。その具体例としては、高純度超微粉末マグネシア(宇部マテリアルズ(株)製)が例示される。
【0023】
アルカリ性多孔質体の形態は、その使用目的に応じて適宜選択可能であるが、粉末、顆粒、ペレット、ハニカム状等のものが挙げられるが、後述のように金ナノ粒子触媒と混合して使用する場合は均一な混合のしやすさの点から粉末のものが好ましい。形状が粉末の場合その平均粒径は、0.05〜1mm程度、好ましくは0.05〜0.2mm程度である。
【0024】
なお、アルカリ性多孔質体が、アルカリ成分を含む多孔質体として商業的に入手できる場合にはそのまま用いればよい。例えば、アルカリ添着活性炭(酸性ガス吸着用)等がある。具体的には、粒状白鷺活性炭GHxUG(武田薬品工業製;「白鷺」は武田薬品工業の商標である。以下同じ)等が例示される。このアルカリ性多孔質体は、上記のアルカリ性多孔質体と混合して用いても良い。
金ナノ粒子触媒
上述のように本発明で用いる金ナノ粒子触媒とは、金粒子が金属酸化物担体に担持された構造を持つ触媒である。具体的には、ナノサイズの金粒子が金属酸化物担体の表面に均一に担持された構造を持つ触媒である。金粒子の平均粒子径としては、金原子のサイズ以上から25nm程度以下であればよく、好ましくは1〜10nm程度である。金粒子の平均粒子径は、透過型電子顕微鏡法による測定値である。
【0025】
金粒子を担持する金属酸化物としては、例えば、酸化亜鉛、酸化鉄、酸化銅、酸化ランタン、酸化チタン、酸化コバルト、酸化ジルコニウム、酸化マグネシウム、酸化ベリリウム、酸化ニッケル、酸化クロム、酸化スカンジウム、酸化カドミウム、酸化インジウム、酸化スズ、酸化マンガン、酸化バナジウム、酸化セリウム、酸化アルミニウム、及び酸化ケイ素からなる群から選ばれる単一金属の金属酸化物;亜鉛、鉄、銅、ランタン、チタン、コバルト、ジルコニウム、マグネシウム、ベリリウム、ニッケル、クロム、スカンジウム、カドミウム、インジウム、スズ、マンガン、バナジウム、セリウム、アルミニウム、及びケイ素からなる群から選ばれる2種以上の金属の複合酸化物等を用いることができる。上記した単一金属の金属酸化物及び複合酸化物は、必要に応じて混合して用いることも可能である。
【0026】
金ナノ粒子触媒における金の含有量は、金ナノ粒子触媒の全量に対して、0.1〜30重量%程度であればよく、金の使用量当たりの活性の点から、0.1〜10重量%程度とするのが好ましい。
【0027】
金ナノ粒子触媒の形態としては、その使用目的に応じて適宜選択可能であるが、例えば、粉末状、顆粒状、ペレット状、ハニカム状等が挙げられる。そのうち、アルカリ性多孔質体と混合して使用する場合は均一な混合のしやすさの点から、粉末状のものが好ましい。形状が粉末の場合その平均粒径は、0.05〜1mm程度、好ましくは0.05〜0.2mm程度である。
【0028】
金ナノ粒子触媒の比表面積は、BET法による測定値として、通常1〜800m2/g程度、好ましくは5〜300m2/g程度である。
【0029】
金属酸化物上に金をナノサイズの粒子として担持する方法としては、以下の公知の方法を採用することができる。
・共沈法(特開昭60-238148号公報等)
・析出沈殿法(特開平3-97623号公報等)
・コロイド混合法(Tsubota S. et al., Catal. Lett., 56 (1998) 131)
・気相グラフティング法(特開平9-122478号公報)
・液相グラフティング法(Okumura M. et al., Chem. Lett., (2000) 396)
出発材料として次の様な化合物が挙げられる。金の前駆体としては、例えば、金の水溶性化合物(例えば、塩化金酸)、アセチルアセトナト錯体(例えば、金アセチルアセトナト錯体等)等の加熱により気化する化合物が挙げられる。
【0030】
金属酸化物の原料としては、例えば、各種金属の硝酸塩、硫酸塩、酢酸塩、塩化物等が挙げられる。具体的には、硝酸セリウム、硝酸ジルコニウム等の硝酸塩、硫酸チタン等の硫酸塩、塩化セリウム、三塩化チタン、四塩化チタン等の塩化物等が挙げられる。
【0031】
上記に挙げた公知の方法により、沈澱を析出させた後、沈殿物を水洗し乾燥する。金を最終的に金属の状態にするためには、沈殿物を酸素雰囲気中または還元性ガス中で熱処理すればよい。酸素雰囲気下とは、空気下、あるいは酸素を窒素、ヘリウム、アルゴン等で希釈した混合気体下をいう。還元性ガスとしては、例えば、窒素ガスで希釈した1〜10vol%程度の水素ガス、一酸化炭素ガス等を用いることができる。熱処理温度は、公知の還元条件の範囲から適宜選択すればよく、通常室温〜600℃程度が好ましい。安定かつ微細な金粒子を得るためには、200〜400℃程度がより好ましい。熱処理時間は、例えば、1〜12時間程度が好ましい。
一酸化炭素除去用触媒複合体及びそれを用いた一酸化炭素除去方法
本発明の触媒複合体は、上記の金ナノ粒子触媒(金ナノ粒子/金属酸化物)とアルカリ性多孔質体を含有する。具体的には、金ナノ粒子触媒とアルカリ性多孔質体とを混合してなる触媒複合体、金ナノ粒子触媒がアルカリ性多孔質体に担持されてなる触媒複合体等が挙げられる。
【0032】
金ナノ粒子触媒とアルカリ性多孔質体とを混合してなる触媒複合体の場合、例えば、粉末状の金ナノ粒子触媒と粉末状のアルカリ性多孔質体を、公知の方法により混合して製造することができる。例えば、乳鉢、ミキサー等を用いて撹拌、混合すればよい。
【0033】
金ナノ粒子触媒がアルカリ性多孔質体に担持されてなる触媒複合体の場合、前述の各種金ナノ粒子触媒調製法に準じて次のような手順で調製することができる。
【0034】
A.共沈法を用いる場合
(A1)上記多孔質体の共存下で共沈法を用いて、多孔質体を含む金ナノ粒子触媒を調製する。
(A2)(A1)で得られたものに、含浸法等を用いてアルカリ成分を担持させる。
【0035】
なお、多孔質体がアルカリ性であって、洗浄後もアルカリ性を保持する場合には(A2)の手順を省略できる。
【0036】
B.析出沈殿法、コロイド混合法、気相グラフティング法、液相グラフティング法を用いる場合
(B1)多孔質体表面へ金ナノ粒子触媒の金属酸化物成分を含浸法等により担持する。
(B2)(B1)で得られたものに、析出沈殿法、コロイド混合法、気相グラフティング法、液相グラフティング法等を用いて金成分を担持させる。
(B3)(B2)で得られたものに、含浸法等を用いてアルカリ成分を担持させる。
【0037】
多孔質体がアルカリ性であって、(B1)、(B2)の操作後もアルカリ性を保持する場合には(B3)の手順を省略できる。
【0038】
多孔質体が活性炭等の炭素系である場合に特に注意を要するのは、調製途中において、金の溶液と炭素系多孔質体(例えば、活性炭、カーボンブラック等)が接触すると、炭素の還元作用により金が粗大粒子になってしまう。このため、例えば炭素系多孔質体の表面に金属酸化物を担持し、析出沈殿法により更に金を担持しようとした場合には、露出した炭素粉体表面と金溶液の接触により、金をナノ粒子化することが困難となる。よって、このような場合の触媒調製法としては、イオン状態での金溶液を用いないコロイド混合法、気相グラフティング法の何れかを採用するのが好ましい。
【0039】
本発明の触媒複合体は、上記以外にも、一酸化炭素含有空気が一旦アルカリ性多孔質体を通過した後に金ナノ粒子触媒に接触するように、金ナノ粒子触媒の手前、又は手前と後の両方にアルカリ性多孔質体を配置したものが挙げられる。具体的には、一酸化炭素含有空気が通過する流路に、アルカリ性多孔質体を含む層及び金ナノ粒子触媒を含む層を順に設けたもの、或いは、アルカリ性多孔質体を含む層、金ナノ粒子触媒を含む層及びアルカリ性多孔質体を含む層を順に設けた触媒複合体が挙げられる。
【0040】
本発明の触媒複合体における金ナノ粒子触媒とアルカリ性多孔質体の使用比率は任意で良いが、明確な一酸化炭素除去効果を得るためには、金ナノ粒子触媒と等量以上のアルカリ性多孔質体を用いることが好ましい。具体的には、金ナノ粒子触媒:アルカリ性多孔質体の重量比が、1:1〜1:100程度であればよい。
【0041】
本発明の触媒複合体は、その使用目的に応じ何れの形態でも用いることができる。例えば、粉末状、スポンジ状、ビーズ状、ハニカム状、繊維状等何れの形態でも良い。特に、空気浄化フィルター等の処理が必要な空気を透過させるフィルターとして用いる場合は、粉末よりも空気流通時の抵抗の少ないビーズ状、ハニカム状、又は繊維状のいずれかの形態を用いることが好ましい。
【0042】
これらの形態を有する本発明の触媒複合体を形成するためには、公知の方法を用いればよい。例えば、金ナノ粒子触媒とアルカリ多孔質体の混合粉末をバインダー等を用いて各種ビーズ、ハニカム、又は不織布の表面に固定することによってビーズ状、ハニカム状、又は繊維状の形態とすることができるる。また、例えば、金ナノ粒子触媒がアルカリ性多孔質体に担持されてなる触媒複合体である場合には、触媒複合体調製の際にあらかじめビーズ状、ハニカム状、又は繊維状の多孔質体を用い、上記A、Bの調製手順を適用することで、上記の形態とすることができる。
【0043】
本発明の触媒複合体を用いた一酸化炭素の除去は、一酸化炭素の除去が必要な空気を触媒複合体に接触させることにより実施される。すなわち、空気中の一酸化炭素を空気中の酸素と反応させて二酸化炭素に変換し、一酸化炭素を除去するものである。
【0044】
処理される空気中の一酸化炭素の濃度は、空気中の酸素濃度(通常空気では20%)に対して化学反応等量(20%の酸素に対しては40%)以下であれば何れの濃度でも適用できる。本発明の触媒複合体を用いれば、数ppmの低濃度の一酸化炭素を含有する気体(特に、空気)に対しても高効率で一酸化炭素を除去できる。
【0045】
本発明の触媒複合体の使用温度は、−70℃以上の金ナノ粒子触媒作動温度であれば特に制限はない。一般的に使用温度の高い方が一酸化炭素の酸化反応速度が向上するが、金ナノ粒子の凝集を抑えるためには350℃以下であることが好ましい。加熱を要しない省エネルギー的な使用の観点からは、室温〜100℃程度の温度範囲での使用が望まれる。
【0046】
本発明の触媒複合体を用いた一酸化炭素の除去は、上記の温度範囲で、金ナノ粒子触媒を「熱」触媒(光触媒でないという意味)として用い実施されるが、下記のように光照射条件下で実施してもよい。
【0047】
本発明で用いる金ナノ粒子触媒は光照射することによって、非照射時に比べて一酸化炭素の酸化反応を促進することができる。また、空気中に存在する汚染物質により活性低下した金ナノ粒子触媒は光照射することにより触媒の再生を行なうこともできる。よって、金ナノ粒子触媒が一酸化炭素ガスに触れる間には酸化反応促進効果が期待でき、そうでない間にも光照射による触媒再生効果が発揮される。そのため、金ナノ粒子触媒とアルカリ多孔質体とを含む本発明の触媒複合体に対して光照射した場合は、一酸化炭素が触媒表面に間欠的に或いは連続的に接触するいずれのケースでも、光照射しない場合より長期間に渡り高い一酸化炭素除去効果を維持できる。
【0048】
照射する光の波長は、主に一酸化炭素酸化反応の促進効果を期待するか、触媒の再生効果を期待するかにより適宜設定すればよい。通常、1〜1000nm程度、より好ましくは200〜700nm程度の波長域の光を用いることにより、金ナノ粒子触媒の反応促進と再生の両効果を得ることができる。
【0049】
光照射する場合にも、前記した何れの組成の金属酸化物を含む金ナノ粒子触媒を用いることができる。特に、上記の光反応促進効果を得る場合には、金ナノ粒子触媒の金属酸化物成分の金属として、チタニア、アルミナ、シリカ、ジルコニア、酸化亜鉛、セリア、酸化マンガン、マグネシアなどが好ましく、チタニア、アルミナ、シリカなどが特に好ましい。
【0050】
本発明はまた、上記の空気浄化フィルターを備えた一酸化炭素除去装置をも提供する。該一酸化炭素除去装置は、上記の空気浄化フィルター、必要であれば光照射に必要な光源を備えている。光源としては、上記の一酸化炭素の酸化反応を促進しうる光波長を有するものであれば良く、例えば、自然光、高圧水銀灯、低圧水銀灯、ブラックライト、エキシマレーザ、重水素ランプ、キセノンランプ等を採用することができる。
【0051】
なお、金ナノ粒子触媒の活性劣化のメカニズムについては現在のところ完全に解明されていないが、文献(N. M. Gupta, et al., Gold Bulletin, 34, pp.120-128 (2001))の記載に基づき、次のようなメカニズムが考えられる。1) 金属酸化物担体の表面と空気中の水が反応し表面に水酸基が形成され、高活性状態となる。
【0052】
Fe-O-Fe + H2O → 2Fe-OH
2) 表面水酸基はCO2とゆっくりと反応し、バイカーボネート種(不活性)が生じて劣化する。
【0053】
Fe-OH + CO2 → Fe-O-(C=O)-OH
即ち、空気中では湿分と二酸化炭素の両者が関与して劣化すると考えられる。
【0054】
本発明の触媒複合体では、金ナノ粒子触媒と共に存在するアルカリ性多孔質体が二酸化炭素と湿分を適度に吸着するため、金ナノ粒子触媒の活性劣化が抑制されると考えられる。
【0055】
また、室内等の空気中には各種の微量有機物(VOC)やイオウ成分(H2S等)などが存在し、これらも金ナノ粒子触媒の劣化の原因になること考えられる。しかし、アルカリ多孔質体に活性炭を含む場合においては、該活性炭が上記金ナノ粒子触媒劣化の原因成分の吸着除去効果も有するため、金ナノ粒子触媒劣化の抑制効果がより高められる。
【0056】
本発明の触媒複合体は、広く一酸化炭素の除去用途に供される。例えば、室内や自動車車内における空調装置(空気清浄機、エアコン、分煙機等)の空気浄化フィルター;火災防毒マスクのフィルター;化学工場等で用いられる原料ガスからのCO除去フィルター;自動車、バイク等の排ガスからのCO除去フィルター;燃料電池の燃料改質による水素製造プロセスにおけるCO除去フィルター等に好適に用いられる。
【0057】
【実施例】
次に、実施例をあげて本説明をさらに説明する。但し、本発明は、その要旨を逸脱しない限り以下の実施例に限定されるものではない。
【0058】
[実施例1]
本実施例では金/酸化鉄触媒をK2CO3担持活性炭と混合して用いた例について示す。
(1)金ナノ粒子触媒(金/酸化鉄触媒)の調製
塩化金酸[HAuCl4 ・4H2 O]2.7ミリモル及び硝酸鉄[Fe(NO33・9H2O]125ミリモルを320mlの蒸留水に溶解させ、70℃に加熱した(A液)。ついで、炭酸ナトリウム[Na2CO3]230ミリモルを180mlの蒸留水に溶解させ、70℃に加熱した(B液)。次に、B液の中にA液を滴下し、70℃で1時間撹拌した。その後、室温に冷却し得られた共沈物を充分に水洗した後、乾燥した。最終的に、空気中400℃で4時間焼成することにより、金/酸化鉄触媒[Au/Fe23,金属担持量5wt%]を得た。得られた金ナノ粒子触媒はスクリュー瓶に密栓保存した。
(2)アルカリ性多孔質体(K2CO3担持活性炭)の調製
K2CO3担持活性炭の調製は、文献(H. Hayashi et al, Ind. Eng. Chem. Res., 1998, 37, 185-191) の記載に準じて以下のようにして行なった。まず、フラスコに3.0gのK2CO3粉末と水30mlを入れて溶かし、更に活性炭10gを加えた。ロータリーエバポレーターにて水分を蒸発させ、乾固した。再び水を15ml加えて軽く混ぜ、余分な水分を捨てることにより、活性炭の細孔を塞ぐ原因となる過剰のK2CO3を除去した。ロータリーエバポレーターにて水分を蒸発させ、乾固した後、ヘリウム気流中150℃で乾燥した。文献によると、この条件で調製した場合は15wt%のK2CO3を含んでいる。
(3)金ナノ粒子触媒とアルカリ性多孔質体の混合
活性テストの直前にスクリュー瓶から触媒を取り出し、金ナノ粒子触媒を0.1gをK2CO3担持活性炭1.0gと乳鉢を用いて均一になるまで良く混合した。続いて、得られた混合粉末を用いて、一酸化炭素酸化反応に対する活性を以下の方法で調べた。
(4)活性測定方法
上記の混合粉体を時計皿上に広げ、内容積約3000ml(デシケータ内の設置物体積を除いた容積)のガラス製デシケータの底に設置した。デシケータの蓋を閉め、蓋の上部のセプタム付き注入口より、一酸化炭素ガス0.3mlをガスタイトシリンジを用いて注入した。注入時の一酸化炭素初期濃度は100ppmである。デシケータ内にはファンモータを設置し空気が充分に循環するようにしてあるため、一酸化炭素を含んだ空気が触媒に触れて反応が起こると一酸化炭素が二酸化炭素に変換される。注入直後からの一酸化炭素及び二酸化炭素の濃度変化を測定して触媒反応を追跡した。デシケータ内の一酸化炭素をデシケータ内に設置した定電位電解方式一酸化炭素ガスセンサで測定し、二酸化炭素濃度は外部循環の形式で非分散赤外式二酸化炭素ガスセンサにより測定した。
(5)初期活性の測定
触媒反応による一酸化炭素濃度の時間変化を図1に示す。一酸化炭素は注入直後より触媒反応により時間(t)と共に減少し、20分以内に完全にゼロになった。触媒反応活性を比較するため、一定時間経過後(例えば10分後、t=10)の一酸化炭素除去率(Ct=10)を以下の式で定める。
【0059】
Ct=10 (%) = ([CO]t=0 - [CO]t=10 ) / [CO]t=0 × 100
ここで、[CO]t=0 は注入直後、[CO]t=10は注入10分後の一酸化炭素濃度である。図1の場合は10分後のCO濃度は2ppmであるので、Ct=10 = 98% である(表1)。
(6)空気中放置後の活性測定
初期活性テストの後、金ナノ粒子触媒とK2CO3担持活性炭の混合粉体を乗せた時計皿をデシケータから取り出し、空気中に放置した。3日後に再び活性テストを行なったところ、Ct=10 = 64% であった(表1)。
【0060】
[実施例2]
アルカリ性多孔質体としてアルカリ添着活性炭(粒状白鷺活性炭GHxUG;武田薬品工業製)0.1gを用い、金/酸化鉄0.1gと混合した。混合直後の活性テストを行なわずに、6日放置後の活性を測定した以外は実施例1と同様に行った。結果は表1に示すように、6日後でCt=10 = 69% と、実施例1の場合よりも高い活性が得られた。
【0061】
[比較例1]
実施例1と同一時に調製した金/酸化鉄触媒に対してアルカリ性多孔質体を混合せずに、金/酸化鉄触媒0.1gのみを用いて実施例1と同一条件で活性テストを行なったところ、サンプル瓶からの取り出し直後にはCt=10 = 100%であったものが、3日放置後にはCt=10 = 26%まで劣化した(表1)。また、放置日数に対する劣化の様子を実施例1,2の結果と比較して図2に示す。これらの結果からアルカリ性多孔質体を混合した場合よりも劣化の度合いが大きいことが認められる。
【0062】
[比較例2]
多孔質体でないアルカリ粉末としてK2CO3粉末0.15gをそのまま用い、金/酸化鉄触媒0.1gと混合した以外は実施例1と同様に行なった。結果は表1に示す。実施例1で用いたK2CO3担持活性炭1gは(文献より15wt%のK2CO3担持量の条件で調製)等量のK2CO3を含むと考えられるが、それと比較して多孔質体を含まないアルカリ粉末の単独使用の場合には劣化の抑制効果が認められない。
【0063】
[比較例3]
混合物にシリカゲル0.1gを用いた以外は実施例1と同様に行なった。結果を表1に示す。混合物が多孔質体であってもアルカリ性を有さない場合は劣化の抑制効果が認められない。
【0064】
[実施例3]
本実施例では金/酸化チタン触媒をアルカリ添着活性炭と混合して用いた例について示す。
【0065】
塩化金酸[HAuCl4 ・4H2 O]473ミリモルを750mlの蒸留水に溶解させ、70℃に加熱しNaOH水溶液を滴下してpHを7に調節した。ここに、酸化チタン粉末3.0gを加え、70℃で1時間撹拌した。この後、室温に冷却し沈降物を蒸留水で充分に洗浄した後、乾燥し、空気中400℃で4時間焼成することにより、金/酸化チタン触媒[Au/TiO2 ,金担持量3wt%]を得た。得られた金ナノ粒子触媒は使用する直前までスクリュー瓶に密栓保存した。
【0066】
得られた金/酸化チタン触媒0.1gとアルカリ添着活性炭(粒状白鷺活性炭GHxUG;武田薬品工業製)0.1gを実施例1と同様の方法で混合して、実施例1と同様に活性テストを行った。結果を表1に示す。
【0067】
[比較例4]
金/酸化チタン触媒0.1gに混合物を加えない以外は実施例3と同様に行なった。結果を表1に示す。金/酸化チタン触媒の場合はそのまま用いても金/酸化鉄より活性劣化が少ないが、アルカリ添着活性炭を加えた場合に比べて明らかに劣化の度合いが大きい。
【0068】
【表1】

Figure 0004119974
【0069】
[実施例4]
実施例3と同様の方法で金/酸化チタン触媒0.1gとアルカリ添着活性炭0.1gの混合物を得た。実施例1と同様の方法でデシケータ内100ppmの一酸化炭素を含む空気に対する初期活性テスト(1回目)を一酸化炭素濃度がゼロになるまで行なった。1回目の活性測定後、デシケータの蓋を開けてファンにより5分間換気し、蓋を閉め再び100ppm分の一酸化炭素を注入して活性テスト(2回目)を行なった。このようにして、4回目まで活性テストを繰り返し、4回目終了後に触媒を一旦取り出して2時間空気に触れさせた後、触媒をデシケータ内に戻して5回目の活性テストを行なった。以上のような反応繰り返しテストで得られた金ナノ粒子触媒の活性の変化を表2及び図3に示す。1回目にCt=10 = 97%であった初期活性は、5回目にはCt=10 = 95%であり、後述の比較例に比して活性の劣化が少ない。
【0070】
[比較例5]
実施例3と同様の方法で得た金/酸化チタン触媒0.1gのみを用い、実施例4と同様の方法で反応繰り返しテストを行なった。結果は表2及び図3に示したように、実施例4の場合よりも活性の劣化が大きい。
【0071】
【表2】
Figure 0004119974
【0072】
【発明の効果】
本発明の一酸化炭素除去用触媒複合体は、一酸化炭素除去の活性が高くしかも空気中でも長期間活性を維持し劣化が少ない。そして、本発明の触媒複合体は、一酸化炭素除去の活性が長期に持続するため再加熱による触媒の賦活化処理が必ずしも必要でなく、一酸化炭素の除去装置が安価かつ小型化できる。そのため、本発明の触媒複合体は、一酸化炭素除去の広範な用途に用いることができる。
【0073】
さらに、本発明の触媒複合体を光照射条件下で用いることにより、より長期間にわたり高い一酸化炭素除去効果を維持することができる。
【図面の簡単な説明】
【図1】実施例1の触媒における一酸化炭素濃度の経時変化を示すグラフである。
【図2】実施例1,2及び比較例1の触媒における空気中放置時間と一酸化炭素除去率の経時変化を示すグラフである。
【図3】実施例4及び比較例5の触媒での反応繰り返しテストにおける第1回目の反応開始からの経過時間と一酸化炭素除去率の経時変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst complex for removing carbon monoxide and a removal method. Specifically, the present invention relates to a catalyst complex that removes carbon monoxide in a gas derived from incomplete combustion, smoking, automobile exhaust gas, or the like, which is a problem in the living environment, and a carbon monoxide removal method using the same.
[0002]
[Prior art]
Carbon monoxide is a very toxic gas, and if it coexists in the air of a living environment, it has a serious effect on the human body, so an effective removal technique is desired. The possibility of high concentrations and large amounts of carbon monoxide being released into the air is primarily an emergency and is due to causes such as fires, gas leaks, and incomplete combustion. A removal technique corresponding to these is a gas mask, and hopcalite is used in an absorption can for removing carbon monoxide. Hopcalite is expressed as a catalyst and an absorbent, and the following drawbacks are known.
1) Effective only for high concentrations of carbon monoxide.
2) Because it has a short life, it can only be used once as a gas mask.
3) Because it loses its activity due to moisture, it can only be used immediately after opening (for this reason, it is used in combination with a hygroscopic agent in a gas mask).
[0003]
In recent years, the need to remove carbon monoxide generated in the living space during normal times has been highlighted. In this case, carbon monoxide can be generated from smoking and automobile exhaust gas. This causes a problem when carbon monoxide derived from these diffuses (or enters) into a closed space such as indoors and in automobiles. In both cases, the concentration in the source is high on the order of percent, but when it diffuses into the air by ventilation, it becomes low, and it is necessary to keep it at 50 ppm or less, which is the work environment standard. Although it is necessary to remove carbon monoxide by equipment in places where ventilation is difficult and in the vicinity of the source, it has been reported that the conventional air purifier has a very low carbon monoxide removal effect. This is because in the prior art, there was no catalyst and adsorbent effective for removing carbon monoxide over a wide concentration range from low concentration to high concentration.
[0004]
Hopcalite is composed only of oxides and is effective for high concentrations of carbon monoxide, but is not effective for low concentrations of carbon monoxide. On the other hand, when a precious metal catalyst such as platinum is used near room temperature, it has catalytic activity at low concentrations, but at high concentrations it is immediately deactivated due to self-poisoning due to strong adsorption of carbon monoxide on the precious metal surface. End up.
[0005]
On the other hand, a catalyst in which gold nanoparticles are supported on an oxide surface (hereinafter referred to as “gold nanoparticle catalyst” for simplicity) is a cylinder gas (CO + O) that is humidified by bubbling (water vapor concentration 4.2%).2+ N2It has been reported that carbon monoxide can be oxidized and removed in a wide concentration range of 20 to 10,000 ppm in a laboratory condition at room temperature (30 ° C.) using a non-patent document 1). It has also been reported that when bubbling and humidifying, the reaction is greatly accelerated compared to when dry cylinder gas is used. However, when the concentration of carbon monoxide is low and the concentrations of both carbon dioxide and water vapor are relatively high relative to the carbon monoxide concentration (CO: 50 ppm, CO2: 7000ppm, H2O: 1.3%) reported that the activity of the gold nanoparticle catalyst was also significantly deteriorated during the reaction (see Non-Patent Document 2). According to the report, the degree of deterioration varies depending on the type of support oxide, and it can be assumed that the cause of deterioration is due to poisoning caused by accumulation of carboxylate or carbonate species generated during the reaction on the catalyst surface.
[0006]
Patent Document 1 describes that by irradiating a gold nanoparticle catalyst with light, the oxidation reaction of carbon monoxide can be promoted as compared with the case of non-irradiation. Patent Document 2 describes that the catalyst can be regenerated by irradiating light onto a gold nanoparticle catalyst whose activity has been reduced by a contaminant present in the air.
[0007]
[Patent Document 1]
JP 2001-334153 A
[0008]
[Patent Document 2]
JP 2001-334155 A
[0009]
[Non-Patent Document 1]
M. Haruta et al., “Catalytic Science and Technology”, Kodansha, 1991, Vol. 1, pp.331-334
[0010]
[Non-Patent Document 2]
G. G. Slinivas et al., “Studies in Surface Science and Catalysis”, Elsevier Science, Netherlands, 1996, Vol. 101, pp. 427-433.
[0011]
[Problems to be solved by the invention]
In order to examine the applicability of the gold nanoparticle catalyst in the living environment needs as described above, the present inventors conducted an experiment on the oxidative removal of carbon monoxide in real air that is not cylinder gas synthetic air. In addition to confirming that the gold nanoparticle catalyst works effectively over a wide concentration range, the inventors have found the following two problems relating to the deterioration of the catalyst. That is,
1) As reported previously, there is a decrease in activity during the reaction. 2) Although not reported in the past, the gold nanoparticle catalyst is stable when stored tightly in a sample bottle and shows high activity immediately after opening, whereas it is exposed to air for a long time after opening. As a result, a decrease in activity is observed before the reaction.
[0012]
In the catalyst activity test in the laboratory, the catalyst is usually used after reactivation by heat treatment or the like, and it has been confirmed that the sample after activity deterioration can recover the activity by heat treatment even in the above case.
[0013]
However, especially when considering the use of a catalyst in the purification of living environment, it is not desirable to provide a heat treatment part not only from the viewpoint of energy saving but also from the viewpoint of the price and size of the apparatus. For this reason, it is strongly desired to develop a catalyst technology that can maintain high activity over a long period of time at room temperature without heating not only during the reaction but also in the pretreatment.
[0014]
That is, an object of the present invention is to remove carbon monoxide in a wide range of concentrations from a low concentration to a high concentration, and to maintain high activity for a long time at room temperature, and a catalyst for removing carbon monoxide in a gas. An object of the present invention is to provide a composite and a method for removing carbon monoxide using the composite.
[0015]
[Means for Solving the Problems]
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies in view of the problems of the prior art as described above and the problems found by the inventors, in the oxidative removal of carbon monoxide in gas (particularly, real air), The activity before and during the reaction compared to the case of not coexisting the alkaline porous powder by coexisting the catalyst with nano-sized gold particles supported on metal oxide (hereinafter referred to as “gold nanoparticle catalyst”) The present inventors have found that deterioration can be suppressed and have completed the present invention.
[0017]
That is, the present invention provides the following techniques.
Item 1. A carbon monoxide removal catalyst composite comprising a gold nanoparticle catalyst in which gold particles having an average particle diameter of 25 nm or less are supported on a metal oxide and an alkaline porous material.
Item 2. The catalyst composite according to Item 1, wherein the gold nanoparticle catalyst and an alkaline porous material are mixed.
Item 3. The catalyst composite according to Item 1, wherein the gold nanoparticle catalyst is supported on an alkaline porous material.
Item 4 The alkaline porous body is arranged before or after the gold nanoparticle catalyst so that the carbon monoxide-containing gas once contacts the gold nanoparticle catalyst after passing through the alkaline porous body. The catalyst composite according to 1.
Item 5. The catalyst composite according to any one of Items 1 to 4, wherein the alkaline porous body is one in which an alkali component is supported on the surface of the porous body.
Item 6 The specific surface area of the porous material measured by the nitrogen adsorption method (BET method) is 10 m.2Item 6. The catalyst composite according to Item 5, which is at least one selected from the group consisting of activated carbon, carbon black, zeolite, silica, alumina, iron oxide, and titanium oxide in an amount of about / g or more.
Item 7 The specific surface area of the porous material measured by the nitrogen adsorption method (BET method) is 10 m.2Item 7. The catalyst complex according to Item 6, which is activated carbon of about / g or more.
Item 8 The catalyst composite according to Item 5, wherein the alkali component is at least one selected from the group consisting of oxides, hydroxides, and carbonates of alkali metals or alkaline earth metals in the periodic table.
Item 9 An air purification filter comprising the catalyst composite according to any one of Items 1 to 8, which has any one of a honeycomb shape, a bead shape, and a fiber shape.
Item 10. A carbon monoxide removing device comprising the air purification filter according to Item 9.
Item 11 A method for removing carbon monoxide in a gas, wherein the catalyst composite according to any one of Items 1 to 8 is used in a temperature range of -70 ° C to 350 ° C.
Item 12. A method for removing carbon monoxide in a gas, wherein the catalyst composite according to any one of Items 1 to 8 is used in a temperature range of -70 ° C to 350 ° C under light irradiation conditions.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Alkaline porous material
The alkaline porous body used in the present invention may be a porous body carrying an alkali component or a porous body that exhibits alkalinity.
[0019]
In the case where the alkaline porous body is a porous body carrying an alkali component, the porous material that is the carrier has a specific surface area of 10 m as measured by the nitrogen adsorption method (BET method).2/ g or more, preferably 30m2What is about / g or more is used. As long as the porous body satisfies this definition, any form such as powder, fiber, sponge, and honeycomb may be used regardless of the appearance (macro structure). Specific examples of the porous body include activated carbon, carbon black, zeolite, silica, alumina, iron oxide, and titanium oxide.
[0020]
Examples of the alkali components to be supported include oxides, hydroxides, carbonates and the like of alkali metals or alkaline earth metals in the periodic table, and those containing at least one selected from the group consisting of these. Can be mentioned. Specific examples of alkali components include MgO, CaO, Mg (OH)2, Ca (OH)2, Na2COThree, K2COThreeEtc. are exemplified. Of which, CO in the presence of moisture2From the adsorptive point, Na2COThree, K2COThreeEtc. are preferred.
[0021]
The above-mentioned alkaline porous material carrying the alkali component on the surface of the porous material can be produced according to, for example, literature (H. Hayashi et al, Ind. Eng. Chem. Res., 1998, 37, 185-191). can do. That is, about 10 g of a porous material is added to about 30 ml of an aqueous solution of about 2 to 20% alkali component, and then water is evaporated to dryness. If necessary, add water again and stir, then evaporate the water to dryness. Thereafter, it is dried in an inert gas (for example, helium or nitrogen) at about 100 to 200 ° C. for about 1 to 24 hours. Thereby, the porous body containing about 5 to 50% by weight of the alkali component is produced.
[0022]
Further, when the alkaline porous body is itself a porous body exhibiting alkalinity, the specific surface area measured by the nitrogen adsorption method (BET method) is 10 m.2/ g or more, preferably 30m2A thing of about / g or more is used. Specific examples thereof include high-purity ultrafine powder magnesia (manufactured by Ube Materials Co., Ltd.).
[0023]
The form of the alkaline porous body can be appropriately selected according to the purpose of use, and examples thereof include powders, granules, pellets, honeycombs, etc., but are used by mixing with gold nanoparticle catalyst as described later. In that case, a powder is preferable from the viewpoint of easy mixing. When the shape is powder, the average particle size is about 0.05 to 1 mm, preferably about 0.05 to 0.2 mm.
[0024]
In addition, what is necessary is just to use as it is, when an alkaline porous body is commercially available as a porous body containing an alkali component. For example, there is alkali-impregnated activated carbon (for acid gas adsorption). Specifically, granular white activated carbon GHxUG (manufactured by Takeda Pharmaceutical; “Shirakaba” is a trademark of Takeda Pharmaceutical, the same shall apply hereinafter) and the like. This alkaline porous body may be used by mixing with the above alkaline porous body.
Gold nanoparticle catalyst
As described above, the gold nanoparticle catalyst used in the present invention is a catalyst having a structure in which gold particles are supported on a metal oxide support. Specifically, the catalyst has a structure in which nano-sized gold particles are uniformly supported on the surface of a metal oxide support. The average particle diameter of the gold particles may be not less than the size of gold atoms and not more than about 25 nm, and preferably about 1 to 10 nm. The average particle diameter of the gold particles is a value measured by transmission electron microscopy.
[0025]
Examples of metal oxides supporting gold particles include zinc oxide, iron oxide, copper oxide, lanthanum oxide, titanium oxide, cobalt oxide, zirconium oxide, magnesium oxide, beryllium oxide, nickel oxide, chromium oxide, scandium oxide, and oxide. Single metal metal oxide selected from the group consisting of cadmium, indium oxide, tin oxide, manganese oxide, vanadium oxide, cerium oxide, aluminum oxide, and silicon oxide; zinc, iron, copper, lanthanum, titanium, cobalt, zirconium A composite oxide of two or more metals selected from the group consisting of magnesium, beryllium, nickel, chromium, scandium, cadmium, indium, tin, manganese, vanadium, cerium, aluminum, and silicon can be used. The above-mentioned single metal metal oxide and composite oxide can be mixed and used as necessary.
[0026]
The gold content in the gold nanoparticle catalyst may be about 0.1 to 30% by weight with respect to the total amount of the gold nanoparticle catalyst. It is preferable to set the weight percentage.
[0027]
The form of the gold nanoparticle catalyst can be appropriately selected depending on the purpose of use, and examples thereof include powder, granules, pellets, and honeycombs. Among these, when used by mixing with an alkaline porous body, a powdery one is preferable from the viewpoint of easy uniform mixing. When the shape is powder, the average particle diameter is about 0.05 to 1 mm, preferably about 0.05 to 0.2 mm.
[0028]
The specific surface area of the gold nanoparticle catalyst is usually 1 to 800 m as measured by the BET method.2/ g, preferably 5 to 300m2It is about / g.
[0029]
As a method for supporting gold as nano-sized particles on the metal oxide, the following known methods can be employed.
・ Coprecipitation method (JP-A-60-238148, etc.)
・ Precipitation precipitation method (JP-A-3-97623, etc.)
・ Colloid mixing method (Tsubota S. et al., Catal. Lett., 56 (1998) 131)
-Gas phase grafting method (Japanese Patent Laid-Open No. 9-122478)
・ Liquid phase grafting (Okumura M. et al., Chem. Lett., (2000) 396)
Examples of the starting material include the following compounds. Examples of the gold precursor include a compound that vaporizes by heating, such as a water-soluble gold compound (for example, chloroauric acid), an acetylacetonate complex (for example, a gold acetylacetonate complex), and the like.
[0030]
Examples of the metal oxide raw material include nitrates, sulfates, acetates, and chlorides of various metals. Specific examples include nitrates such as cerium nitrate and zirconium nitrate, sulfates such as titanium sulfate, chlorides such as cerium chloride, titanium trichloride, and titanium tetrachloride.
[0031]
After the precipitate is deposited by the known methods listed above, the precipitate is washed with water and dried. In order to finally bring the gold into a metal state, the precipitate may be heat-treated in an oxygen atmosphere or a reducing gas. The oxygen atmosphere refers to air or a mixed gas obtained by diluting oxygen with nitrogen, helium, argon, or the like. As the reducing gas, for example, hydrogen gas or carbon monoxide gas of about 1 to 10 vol% diluted with nitrogen gas can be used. What is necessary is just to select the heat processing temperature suitably from the range of well-known reduction conditions, and about room temperature-600 degreeC is preferable normally. In order to obtain stable and fine gold particles, about 200 to 400 ° C. is more preferable. The heat treatment time is preferably about 1 to 12 hours, for example.
Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
The catalyst composite of the present invention contains the above gold nanoparticle catalyst (gold nanoparticle / metal oxide) and an alkaline porous body. Specific examples include a catalyst composite formed by mixing a gold nanoparticle catalyst and an alkaline porous body, and a catalyst composite formed by supporting a gold nanoparticle catalyst on an alkaline porous body.
[0032]
In the case of a catalyst composite formed by mixing a gold nanoparticle catalyst and an alkaline porous material, for example, a powdered gold nanoparticle catalyst and a powdered alkaline porous material are mixed and manufactured by a known method. Can do. For example, stirring and mixing may be performed using a mortar, a mixer, or the like.
[0033]
In the case of a catalyst composite in which a gold nanoparticle catalyst is supported on an alkaline porous body, it can be prepared by the following procedure according to the above-mentioned various gold nanoparticle catalyst preparation methods.
[0034]
A. When using the coprecipitation method
(A1) A gold nanoparticle catalyst containing a porous material is prepared using a coprecipitation method in the presence of the porous material.
(A2) An alkali component is supported on the product obtained in (A1) using an impregnation method or the like.
[0035]
In the case where the porous body is alkaline and remains alkaline after washing, the procedure (A2) can be omitted.
[0036]
B. When using precipitation-precipitation method, colloid mixing method, gas phase grafting method, or liquid phase grafting method
(B1) The metal oxide component of the gold nanoparticle catalyst is supported on the surface of the porous body by an impregnation method or the like.
(B2) The gold component is supported on the product obtained in (B1) using a precipitation method, a colloid mixing method, a gas phase grafting method, a liquid phase grafting method, or the like.
(B3) An alkali component is supported on the product obtained in (B2) using an impregnation method or the like.
[0037]
If the porous body is alkaline and retains alkalinity after the operations (B1) and (B2), the procedure (B3) can be omitted.
[0038]
When the porous material is a carbon-based material such as activated carbon, special attention must be paid when the gold solution comes into contact with the carbon-based porous material (for example, activated carbon or carbon black) during the preparation. As a result, gold becomes coarse particles. For this reason, for example, when a metal oxide is supported on the surface of a carbon-based porous body and further gold is to be supported by a precipitation method, the gold is nano-sized by contact between the exposed carbon powder surface and the gold solution. It becomes difficult to form particles. Therefore, as a catalyst preparation method in such a case, it is preferable to employ either a colloid mixing method without using a gold solution in an ionic state or a gas phase grafting method.
[0039]
In addition to the above, the catalyst composite of the present invention may be used before or after the gold nanoparticle catalyst so that the carbon monoxide-containing air once passes through the alkaline porous body and then contacts the gold nanoparticle catalyst. The thing which has arrange | positioned the alkaline porous body to both is mentioned. Specifically, a layer containing an alkaline porous body and a layer containing a gold nanoparticle catalyst are sequentially provided in a flow path through which carbon monoxide-containing air passes, or a layer containing an alkaline porous body, gold nano Examples include a catalyst composite in which a layer containing a particle catalyst and a layer containing an alkaline porous material are provided in this order.
[0040]
The use ratio of the gold nanoparticle catalyst and the alkaline porous body in the catalyst composite of the present invention may be arbitrary, but in order to obtain a clear carbon monoxide removal effect, an equivalent amount of alkaline porous material to the gold nanoparticle catalyst or more. It is preferable to use a body. Specifically, the weight ratio of gold nanoparticle catalyst: alkaline porous body may be about 1: 1 to 1: 100.
[0041]
The catalyst composite of the present invention can be used in any form depending on the purpose of use. For example, any form such as powder, sponge, bead, honeycomb, and fiber may be used. In particular, when used as a filter that transmits air that requires treatment, such as an air purification filter, it is preferable to use a bead-like, honeycomb-like, or fiber-like form that has less resistance during air circulation than powder. .
[0042]
In order to form the catalyst composite of the present invention having these forms, a known method may be used. For example, a mixed powder of a gold nanoparticle catalyst and an alkaline porous material can be made into a bead-like, honeycomb-like, or fiber-like form by fixing it to the surface of various beads, honeycombs, or nonwoven fabrics using a binder or the like. The In addition, for example, when the gold nanoparticle catalyst is a catalyst composite supported on an alkaline porous body, a bead-like, honeycomb-like, or fibrous porous body is used in advance when preparing the catalyst composite. By applying the preparation procedures of A and B, the above-described form can be obtained.
[0043]
Removal of carbon monoxide using the catalyst composite of the present invention is carried out by bringing the catalyst composite into contact with air that requires removal of carbon monoxide. That is, carbon monoxide in the air is reacted with oxygen in the air to convert it into carbon dioxide, thereby removing the carbon monoxide.
[0044]
The concentration of carbon monoxide in the air to be treated can be any chemical reaction equivalent (40% for 20% oxygen) or less with respect to the oxygen concentration in air (usually 20% for air). It can also be applied in concentration. By using the catalyst composite of the present invention, carbon monoxide can be removed with high efficiency even for a gas (particularly air) containing carbon monoxide having a low concentration of several ppm.
[0045]
The use temperature of the catalyst composite of the present invention is not particularly limited as long as it is a gold nanoparticle catalyst operating temperature of −70 ° C. or higher. In general, the higher the use temperature, the better the oxidation reaction rate of carbon monoxide, but it is preferably 350 ° C. or lower in order to suppress the aggregation of gold nanoparticles. From the viewpoint of energy-saving use that does not require heating, use in a temperature range of room temperature to about 100 ° C. is desired.
[0046]
The removal of carbon monoxide using the catalyst composite of the present invention is carried out in the above temperature range using a gold nanoparticle catalyst as a “thermal” catalyst (meaning not a photocatalyst). It may be carried out under conditions.
[0047]
By irradiating the gold nanoparticle catalyst used in the present invention with light, the oxidation reaction of carbon monoxide can be promoted as compared with the case of non-irradiation. In addition, the gold nanoparticle catalyst whose activity has been reduced by the contaminants present in the air can be regenerated by irradiating it with light. Therefore, the oxidation reaction promoting effect can be expected while the gold nanoparticle catalyst is in contact with the carbon monoxide gas, and the catalyst regeneration effect by light irradiation is exhibited even when it is not. Therefore, when light irradiation is performed on the catalyst composite of the present invention containing a gold nanoparticle catalyst and an alkali porous body, in any case where carbon monoxide contacts the catalyst surface intermittently or continuously, A higher carbon monoxide removal effect can be maintained over a longer period than when no light is irradiated.
[0048]
What is necessary is just to set the wavelength of the light to irradiate suitably by mainly expecting the promotion effect of a carbon monoxide oxidation reaction, or the reproduction | regeneration effect of a catalyst. Usually, by using light in a wavelength range of about 1 to 1000 nm, more preferably about 200 to 700 nm, both the reaction promotion and regeneration effects of the gold nanoparticle catalyst can be obtained.
[0049]
Also in the case of light irradiation, a gold nanoparticle catalyst containing a metal oxide having any composition described above can be used. In particular, when obtaining the above-mentioned photoreaction promoting effect, the metal oxide component metal of the gold nanoparticle catalyst is preferably titania, alumina, silica, zirconia, zinc oxide, ceria, manganese oxide, magnesia, etc., titania, Alumina, silica and the like are particularly preferable.
[0050]
The present invention also provides a carbon monoxide removing device including the air purification filter. The carbon monoxide removing apparatus includes the above-described air purification filter and, if necessary, a light source necessary for light irradiation. Any light source may be used as long as it has a light wavelength capable of promoting the oxidation reaction of carbon monoxide. For example, natural light, high pressure mercury lamp, low pressure mercury lamp, black light, excimer laser, deuterium lamp, xenon lamp, etc. Can be adopted.
[0051]
The mechanism of the activity degradation of gold nanoparticle catalysts has not been fully elucidated at present, but it is described in the literature (NM Gupta, et al., Gold Bulletin, 34, pp.120-128 (2001)). Based on this, the following mechanism can be considered. 1) The surface of the metal oxide support and water in the air react to form hydroxyl groups on the surface, resulting in a highly active state.
[0052]
Fe-O-Fe + H2O → 2Fe-OH
2) Surface hydroxyl group is CO2It reacts slowly to produce bicarbonate species (inert) and deteriorate.
[0053]
Fe-OH + CO2  → Fe-O- (C = O) -OH
That is, it is considered that both moisture and carbon dioxide are involved in the air and deteriorate.
[0054]
In the catalyst composite of the present invention, it is considered that the alkaline porous body present together with the gold nanoparticle catalyst adsorbs carbon dioxide and moisture appropriately, so that the activity degradation of the gold nanoparticle catalyst is suppressed.
[0055]
In addition, various trace organic substances (VOC) and sulfur components (H2S) and the like, which are considered to cause deterioration of the gold nanoparticle catalyst. However, when the alkaline porous body includes activated carbon, the activated carbon also has an effect of removing the above-described components causing the degradation of the gold nanoparticle catalyst, so that the effect of suppressing the degradation of the gold nanoparticle catalyst is further enhanced.
[0056]
The catalyst composite of the present invention is widely used for removing carbon monoxide. For example, air purification filters for air conditioners (air purifiers, air conditioners, smoke separators, etc.) indoors and in automobiles; filters for fire gas masks; filters for removing CO from source gases used in chemical factories; automobiles, motorcycles, etc. It is suitably used for a CO removal filter from the exhaust gas of NO .; a CO removal filter in a hydrogen production process by fuel reforming of a fuel cell.
[0057]
【Example】
Next, this description will be further described with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.
[0058]
[Example 1]
In this example, the gold / iron oxide catalyst is changed to K.2COThreeAn example in which it is mixed with supported activated carbon will be described.
(1) Preparation of gold nanoparticle catalyst (gold / iron oxide catalyst)
Chloroauric acid [HAuClFour ・ 4H22.7 mmol of O] and iron nitrate [Fe (NOThree)Three・ 9H2125 mmol of O] was dissolved in 320 ml of distilled water and heated to 70 ° C. (solution A). Next, sodium carbonate [Na2COThree230 mmol was dissolved in 180 ml of distilled water and heated to 70 ° C. (solution B). Next, A liquid was dripped in B liquid, and it stirred at 70 degreeC for 1 hour. Thereafter, the coprecipitate obtained by cooling to room temperature was sufficiently washed with water and then dried. Finally, a gold / iron oxide catalyst [Au / Fe] is baked at 400 ° C. in air for 4 hours.2OThree, Metal loading 5 wt%]. The obtained gold nanoparticle catalyst was sealed in a screw bottle.
(2) Alkaline porous material (K2COThreeOf supported activated carbon)
K2COThreeThe supported activated carbon was prepared as follows according to the description in the literature (H. Hayashi et al, Ind. Eng. Chem. Res., 1998, 37, 185-191). First, add 3.0g K to the flask2COThreePowder and 30 ml of water were added and dissolved, and 10 g of activated carbon was further added. The water was evaporated by a rotary evaporator and dried. Add 15 ml of water again, mix lightly, and throw away excess water, which causes excess K to block the pores of the activated carbon.2COThreeWas removed. The water was evaporated by a rotary evaporator and dried, and then dried at 150 ° C. in a helium stream. According to the literature, 15 wt% K when prepared under these conditions2COThreeIs included.
(3) Mixing of gold nanoparticle catalyst and alkaline porous material
Take out the catalyst from the screw bottle just before the activity test, 0.1g of gold nanoparticle catalyst2COThreeThe mixture was thoroughly mixed with 1.0 g of supported activated carbon and a mortar until uniform. Subsequently, using the obtained mixed powder, the activity for carbon monoxide oxidation reaction was examined by the following method.
(4) Activity measurement method
The above-mentioned mixed powder was spread on a watch glass and placed on the bottom of a glass desiccator having an internal volume of about 3000 ml (a volume excluding the volume of installed objects in the desiccator). The lid of the desiccator was closed, and 0.3 ml of carbon monoxide gas was injected from the inlet with a septum at the top of the lid using a gas tight syringe. The initial carbon monoxide concentration at the time of injection is 100 ppm. Since a fan motor is installed in the desiccator so that air is sufficiently circulated, carbon monoxide is converted into carbon dioxide when air containing carbon monoxide contacts the catalyst and a reaction occurs. The catalytic reaction was followed by measuring the concentration change of carbon monoxide and carbon dioxide immediately after injection. Carbon monoxide in the desiccator was measured with a constant potential electrolytic carbon monoxide gas sensor installed in the desiccator, and the carbon dioxide concentration was measured with a non-dispersive infrared carbon dioxide gas sensor in the form of external circulation.
(5) Measurement of initial activity
The time change of the carbon monoxide concentration due to the catalytic reaction is shown in FIG. Carbon monoxide decreased with time (t) due to catalytic reaction immediately after injection, and became completely zero within 20 minutes. In order to compare the catalytic reaction activity, the carbon monoxide removal rate (Ct = 10) Is defined by the following formula.
[0059]
Ct = 10 (%) = ([CO]t = 0 -[CO]t = 10 ) / [CO]t = 0 × 100
Where [CO]t = 0 [CO] immediately after injectiont = 10Is the carbon monoxide concentration 10 minutes after injection. In the case of Figure 1, the CO concentration after 10 minutes is 2 ppm, so Ct = 10 = 98% (Table 1).
(6) Activity measurement after standing in air
After initial activity test, gold nanoparticle catalyst and K2COThreeThe watch glass with the mixed powder of supported activated carbon was taken out of the desiccator and left in the air. After 3 days, the activity test was performed again.t = 10 = 64% (Table 1).
[0060]
[Example 2]
Alkaline-impregnated activated carbon (granular white birch activated carbon GHxUG; manufactured by Takeda Pharmaceutical Co., Ltd.) (0.1 g) was used as the alkaline porous body and mixed with gold / iron oxide (0.1 g). The test was performed in the same manner as in Example 1 except that the activity after standing for 6 days was measured without performing the activity test immediately after mixing. The results are shown in Table 1, after 6 days Ct = 10 As a result, activity higher than that in Example 1 was obtained.
[0061]
[Comparative Example 1]
An activity test was performed under the same conditions as in Example 1 using only 0.1 g of the gold / iron oxide catalyst without mixing the alkaline porous material with the gold / iron oxide catalyst prepared at the same time as in Example 1. C immediately after removal from the sample bottlet = 10 = 100% is C after 3 dayst = 10 = Degraded to 26% (Table 1). Moreover, the state of deterioration with respect to the number of days left is shown in FIG. 2 in comparison with the results of Examples 1 and 2. From these results, it is recognized that the degree of deterioration is larger than when the alkaline porous body is mixed.
[0062]
[Comparative Example 2]
K as non-porous alkaline powder2COThreeThe same procedure as in Example 1 was performed except that 0.15 g of the powder was used as it was and mixed with 0.1 g of a gold / iron oxide catalyst. The results are shown in Table 1. K used in Example 12COThree1g of supported activated carbon (from literature, 15wt% K2COThreePrepared under conditions of loading amount)2COThreeHowever, in the case of using an alkali powder alone that does not contain a porous material, the effect of suppressing deterioration is not recognized.
[0063]
[Comparative Example 3]
The same procedure as in Example 1 was performed except that 0.1 g of silica gel was used for the mixture. The results are shown in Table 1. Even if the mixture is a porous body, if it has no alkalinity, the effect of suppressing deterioration is not recognized.
[0064]
[Example 3]
In this example, an example in which a gold / titanium oxide catalyst is mixed with an alkali-impregnated activated carbon is shown.
[0065]
Chloroauric acid [HAuClFour ・ 4H2473 mmol of O] was dissolved in 750 ml of distilled water, heated to 70 ° C., and an aqueous NaOH solution was added dropwise to adjust the pH to 7. To this, 3.0 g of titanium oxide powder was added and stirred at 70 ° C. for 1 hour. Then, after cooling to room temperature and thoroughly washing the precipitate with distilled water, the precipitate is dried and calcined in air at 400 ° C. for 4 hours to obtain a gold / titanium oxide catalyst [Au / TiO 3.2 , Gold loading 3 wt%]. The obtained gold nanoparticle catalyst was sealed in a screw bottle until just before use.
[0066]
The resulting gold / titanium oxide catalyst (0.1 g) and alkali-impregnated activated carbon (granular white birch activated carbon GHxUG; manufactured by Takeda Pharmaceutical Co., Ltd.) (0.1 g) were mixed in the same manner as in Example 1, and the activity test was performed as in Example 1. Went. The results are shown in Table 1.
[0067]
[Comparative Example 4]
The same procedure as in Example 3 was performed except that the mixture was not added to 0.1 g of the gold / titanium oxide catalyst. The results are shown in Table 1. In the case of a gold / titanium oxide catalyst, the activity deterioration is less than that of gold / iron oxide even if it is used as it is, but the degree of deterioration is clearly greater than that in the case of adding alkali-added activated carbon.
[0068]
[Table 1]
Figure 0004119974
[0069]
[Example 4]
A mixture of 0.1 g of a gold / titanium oxide catalyst and 0.1 g of alkali-impregnated activated carbon was obtained in the same manner as in Example 3. In the same manner as in Example 1, an initial activity test (first time) for air containing 100 ppm of carbon monoxide in the desiccator was conducted until the carbon monoxide concentration became zero. After the first activity measurement, the lid of the desiccator was opened and ventilated with a fan for 5 minutes, the lid was closed, and 100 ppm of carbon monoxide was injected again to conduct an activity test (second time). In this way, the activity test was repeated up to the fourth time. After the fourth time, the catalyst was once taken out and exposed to air for 2 hours, and then the catalyst was returned to the desiccator to perform the fifth activity test. Table 2 and FIG. 3 show changes in the activity of the gold nanoparticle catalyst obtained by the reaction repetition test as described above. C for the first timet = 10 The initial activity, which was 97%, was C at the fifth time.t = 10 = 95%, and the deterioration of activity is less than that of Comparative Examples described later.
[0070]
[Comparative Example 5]
Using only 0.1 g of the gold / titanium oxide catalyst obtained in the same manner as in Example 3, a reaction repetition test was conducted in the same manner as in Example 4. As a result, as shown in Table 2 and FIG. 3, the deterioration of the activity is larger than that in the case of Example 4.
[0071]
[Table 2]
Figure 0004119974
[0072]
【The invention's effect】
The catalyst composite for removing carbon monoxide of the present invention has a high activity for removing carbon monoxide and also maintains its activity for a long time even in the air and has little deterioration. The catalyst composite of the present invention has a carbon monoxide removal activity that lasts for a long period of time, so that a catalyst activation process by reheating is not necessarily required, and the carbon monoxide removal apparatus can be made inexpensive and downsized. Therefore, the catalyst composite of the present invention can be used for a wide range of uses for removing carbon monoxide.
[0073]
Furthermore, by using the catalyst composite of the present invention under light irradiation conditions, a high carbon monoxide removal effect can be maintained over a longer period.
[Brief description of the drawings]
1 is a graph showing the change with time of the carbon monoxide concentration in the catalyst of Example 1. FIG.
FIG. 2 is a graph showing time-dependent changes in the air standing time and carbon monoxide removal rate in the catalysts of Examples 1 and 2 and Comparative Example 1;
FIG. 3 is a graph showing changes over time in the elapsed time from the start of the first reaction and carbon monoxide removal rate in the reaction repetition test with the catalysts of Example 4 and Comparative Example 5.

Claims (9)

平均粒子径が25nm以下の金粒子が金属酸化物に担持された金ナノ粒子触媒とアルカリ性多孔質体とを含有する一酸化炭素除去用触媒複合体であって、該アルカリ性多孔質体が、アルカリ成分が多孔質体の表面に担持されたものであり、該多孔質体が、窒素吸着法(BET法)により測定した比表面積が10m/g以上の活性炭である一酸化炭素除去用触媒複合体A catalyst composite for removing carbon monoxide containing a gold nanoparticle catalyst in which gold particles having an average particle size of 25 nm or less are supported on a metal oxide and an alkaline porous material, wherein the alkaline porous material is an alkali A catalyst composite for removing carbon monoxide in which the component is supported on the surface of a porous body, and the porous body is activated carbon having a specific surface area measured by a nitrogen adsorption method (BET method) of 10 m 2 / g or more. The body . 金ナノ粒子触媒とアルカリ性多孔質体とを混合してなる請求項1に記載の触媒複合体。The catalyst composite according to claim 1, wherein the gold nanoparticle catalyst and an alkaline porous material are mixed. 金ナノ粒子触媒が、アルカリ性多孔質体に担持されてなる請求項1に記載の触媒複合体。The catalyst composite according to claim 1, wherein the gold nanoparticle catalyst is supported on an alkaline porous body. 一酸化炭素含有気体が一旦アルカリ性多孔質体を通過した後に金ナノ粒子触媒に接触するように、金ナノ粒子触媒の手前、又は手前と後の両方にアルカリ性多孔質体を配置した請求項1に記載の触媒複合体。The alkaline porous body is disposed before or after the gold nanoparticle catalyst so that the carbon monoxide-containing gas once contacts the gold nanoparticle catalyst after passing through the alkaline porous body. The catalyst composite as described. アルカリ成分が、周期律表のアルカリ金属類又はアルカリ土類金属類の酸化物、水酸化物、及び炭酸塩からなる群から選ばれる少なくとも1つである請求項1〜4のいずれかに記載の触媒複合体。The alkali component is at least one selected from the group consisting of oxides, hydroxides, and carbonates of alkali metals or alkaline earth metals in the periodic table. Catalyst complex. ハニカム状、ビーズ状、又は繊維状のいずれかの形態を有する請求項1〜5のいずれかに記載の触媒複合体からなる空気浄化フィルター。An air purification filter comprising the catalyst composite according to any one of claims 1 to 5, wherein the air purification filter has any one of a honeycomb shape, a bead shape, and a fiber shape. 請求項6に記載の空気浄化フィルターを備えた一酸化炭素除去装置。The carbon monoxide removal apparatus provided with the air purification filter of Claim 6. 請求項1〜5のいずれかに記載の触媒複合体を、−70℃から350℃の温度域で用いることを特徴とする気体中の一酸化炭素の除去方法。A method for removing carbon monoxide in a gas, wherein the catalyst composite according to any one of claims 1 to 5 is used in a temperature range of -70 ° C to 350 ° C. 請求項1〜5のいずれかに記載の触媒複合体を、−70℃から350℃の温度域で、光照射条件下で用いることを特徴とする気体中の一酸化炭素の除去方法。A method for removing carbon monoxide in a gas, wherein the catalyst composite according to any one of claims 1 to 5 is used in a temperature range of -70 ° C to 350 ° C under light irradiation conditions.
JP2002355792A 2002-12-06 2002-12-06 Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same Expired - Lifetime JP4119974B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002355792A JP4119974B2 (en) 2002-12-06 2002-12-06 Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
AU2003302884A AU2003302884A1 (en) 2002-12-06 2003-11-27 Composite catalyst for removing carbon monoxide and method for removing carbon monoxide using the same
PCT/JP2003/015135 WO2004052536A1 (en) 2002-12-06 2003-11-27 Composite catalyst for removing carbon monoxide and method for removing carbon monoxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355792A JP4119974B2 (en) 2002-12-06 2002-12-06 Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same

Publications (2)

Publication Number Publication Date
JP2004188243A JP2004188243A (en) 2004-07-08
JP4119974B2 true JP4119974B2 (en) 2008-07-16

Family

ID=32500798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355792A Expired - Lifetime JP4119974B2 (en) 2002-12-06 2002-12-06 Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same

Country Status (3)

Country Link
JP (1) JP4119974B2 (en)
AU (1) AU2003302884A1 (en)
WO (1) WO2004052536A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729640A (en) * 1993-07-16 1995-01-31 Nec Corp Connector with function of preventing wrong insertion

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927567B2 (en) 2004-12-20 2011-04-19 Sharp Kabushiki Kaisha Adsorbent, porous filter, air cleaning device, method of cleaning air, and method of manufacturing porous filter
US8058202B2 (en) 2005-01-04 2011-11-15 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
KR101320387B1 (en) 2005-01-25 2013-10-22 삼성에스디아이 주식회사 Catalytic system for the removal of carbon monoxide and fuel processor using the same
JP4784727B2 (en) * 2005-03-10 2011-10-05 独立行政法人産業技術総合研究所 Porous composite carrying ultrafine metal particles
JP2007222863A (en) * 2005-03-31 2007-09-06 Daikin Ind Ltd Material, apparatus and member for removing carbon monoxide, and method of manufacturing member for removing carbon monoxide
US7829035B2 (en) 2006-01-19 2010-11-09 Massachusetts Institute Of Technology Oxidation catalyst
US7955570B2 (en) * 2006-02-28 2011-06-07 3M Innovative Properties Company Low pressure drop, highly active catalyst systems using catalytically active gold
JP2008081814A (en) * 2006-09-28 2008-04-10 Mitsuboshi Belting Ltd Method for producing metal particulate
JP5596910B2 (en) * 2008-06-27 2014-09-24 株式会社Nbcメッシュテック Composite oxidation catalyst carrier and method for producing the same
DE202008009047U1 (en) * 2008-07-04 2008-09-25 Kba-Metalprint Gmbh Nanoparticle-coated honeycomb body
JP5912273B2 (en) * 2010-03-19 2016-04-27 株式会社Nbcメッシュテック Antiviral agent and method for producing the same
JP2014100638A (en) * 2012-11-19 2014-06-05 Dainippon Printing Co Ltd Method for manufacturing carbon monoxide purging filter, carbon monoxide purging filter, and carbon monoxide purging apparatus
WO2017154927A1 (en) * 2016-03-09 2017-09-14 公立大学法人首都大学東京 Gold composite material, method for manufacturing same, and gold nanocatalyst
US20170298284A1 (en) * 2016-04-19 2017-10-19 Saudi Arabian Oil Company Vanadium corrosion inhibitors in gas turbine applications
US11565245B2 (en) * 2016-09-28 2023-01-31 Korea Advanced Institute Of Science And Technology Gold nanoparticle superlattice embedded in porous silica and method for manufacturing same
JPWO2019054151A1 (en) * 2017-09-14 2020-08-27 住友化学株式会社 Method for oxidizing carbon monoxide, carbon monoxide oxidizing device, air cleaner, and gas mask
US10974197B2 (en) * 2017-11-14 2021-04-13 Hamilton Sundstrand Corporation Closed-environment air purification system
KR20240029623A (en) * 2022-08-25 2024-03-06 주식회사 퀀텀캣 Composite particles of core-shell structure and a manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330291A (en) * 1997-05-28 1998-12-15 Agency Of Ind Science & Technol Production of hetero element-containing oxide compound
JP4456229B2 (en) * 2000-05-29 2010-04-28 独立行政法人産業技術総合研究所 Reaction promotion method in noble metal supported metal oxide catalytic reaction by light irradiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729640A (en) * 1993-07-16 1995-01-31 Nec Corp Connector with function of preventing wrong insertion

Also Published As

Publication number Publication date
AU2003302884A1 (en) 2004-06-30
WO2004052536A1 (en) 2004-06-24
JP2004188243A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4119974B2 (en) Catalyst composite for removing carbon monoxide and carbon monoxide removing method using the same
JP4431700B2 (en) Catalyst for removing carbon monoxide and method for removing carbon monoxide using the catalyst
US4956330A (en) Catalyst composition for the oxidation of carbon monoxide
US6492298B1 (en) Ordinary-temperature purifying catalyst
US7560410B2 (en) Gold-ceria catalyst for oxidation of carbon monoxide
JP3924322B2 (en) Hazardous gas removal agent
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
JP2017100923A (en) Metal composite carbon nitride for deodorization and method for producing the same
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
CN110711579B (en) Silver-manganese catalyst for decomposing ozone, preparation method and application thereof
JP2004074069A (en) Formaldehyde oxidation removal method
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP2002355558A (en) Method for oxidation removal of formaldehyde
JP4656353B2 (en) Room temperature catalyst
US6099695A (en) ZnO-Pd composite catalyst and production method thereof
JP5503155B2 (en) Carbon monoxide removal filter
JP3689754B2 (en) Photocatalyst material and air purification film
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP4656352B2 (en) Room temperature catalyst
JP4780490B2 (en) Activated carbon filter
JP5706476B2 (en) Carbon monoxide oxidation catalyst and production method thereof
CN110841700A (en) Mercerized molecular sieve catalyst and preparation method and application thereof
JPH04371228A (en) Gold catalyst for removal of malodorous substance
JPH08332384A (en) Catalyst for decomposition of exhaust gas containing noxious organic compound, and exhaust gas treatment
JP2017148764A (en) Aldehyde removing catalyst composition, manufacturing method therefor and a removing method of aldehyde gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

R150 Certificate of patent or registration of utility model

Ref document number: 4119974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term