WO2017154927A1 - Gold composite material, method for manufacturing same, and gold nanocatalyst - Google Patents

Gold composite material, method for manufacturing same, and gold nanocatalyst Download PDF

Info

Publication number
WO2017154927A1
WO2017154927A1 PCT/JP2017/009072 JP2017009072W WO2017154927A1 WO 2017154927 A1 WO2017154927 A1 WO 2017154927A1 JP 2017009072 W JP2017009072 W JP 2017009072W WO 2017154927 A1 WO2017154927 A1 WO 2017154927A1
Authority
WO
WIPO (PCT)
Prior art keywords
gold
composite material
metal oxide
solid metal
gold composite
Prior art date
Application number
PCT/JP2017/009072
Other languages
French (fr)
Japanese (ja)
Inventor
春田 正毅
徹 村山
吉田 拓也
Original Assignee
公立大学法人首都大学東京
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人首都大学東京 filed Critical 公立大学法人首都大学東京
Priority to JP2018504527A priority Critical patent/JP7043072B2/en
Publication of WO2017154927A1 publication Critical patent/WO2017154927A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Definitions

  • the present invention relates to a novel gold composite material having a higher catalytic activity than conventional gold nanoparticle catalysts, a method for producing the same, and a gold nanocatalyst using the same.
  • Gold is known to exhibit high catalytic ability when supported on a carrier as nanoparticles, and various gold nanoparticle catalysts have been proposed.
  • the base metal oxide is at least one selected from the group consisting of MoO 3 and CuO, or a composite containing at least one of them.
  • a gold nanocatalyst that can selectively produce acetaldehyde from ethanol in the gas phase by selecting an oxide has been proposed.
  • Patent Document 2 discloses that a surface gold-immobilized catalyst in which gold nanoparticles are immobilized on the surface of a carrier is used as a catalyst used in the production of a pyridine compound. Disclosure of using apatite (HAP), titania (TiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ), ceria (CeO 2 ), activated carbon (C), etc. as a carrier. Yes.
  • HAP apatite
  • TiO 2 titania
  • Al 2 O 3 alumina
  • MgO magnesia
  • SiO 2 silica
  • CeO 2 ceria
  • activated carbon (C) etc.
  • an object of the present invention is to provide a novel gold composite material having a higher catalytic activity than conventional gold nanoparticle catalysts, a method for producing the same, and a gold nanocatalyst using the same.
  • the present inventors expect that if the support is an acidic substance, a behavior different from that of the conventional catalyst can be obtained, and the above problems can be solved.
  • a colloidal solution of gold fine particles is prepared in advance to create an acidic solution. The inventors have found that a gold composite material in which gold fine particles are supported on an acidic carrier can be obtained by a method of reacting with a metal oxide, and the present invention has been completed.
  • a gold composite material comprising a carrier and gold fine particles supported on the carrier, Gold composite material wherein the carrier is an acidic solid metal oxide 2.
  • the solid metal oxide is 2.
  • the gold composite material according to 1, wherein the gold composite material is at least one selected from the group consisting of niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide.
  • 3. The gold composite material according to 1, wherein the gold fine particles supported have a particle size of 5 nm or less. 4).
  • the gold composite material according to 1, wherein the solid metal oxide has a specific surface area of 20 m 2 / g or more. 5. 5.
  • the solid metal oxide is a crystal structure formed by a crystal lattice constituting the solid metal oxide, and is formed by one crystal lattice or a lattice point formed by collecting a plurality of crystal lattices. And a void formed around the lattice point, the void having a normal void having the same size as each lattice point or the crystal lattice, and a large void larger than each lattice point. 2.
  • a gold nanocatalyst comprising the gold composite material according to any one of 8.1 to 7 and used for oxidation of a component derived from biomass.
  • a method for producing a gold composite material according to 9.1 Comprising a supporting step of supporting fine gold particles using an acidic solid metal oxide and a colloidal gold solution; In the carrying step, As said solid metal oxide, the thing with a high specific surface area whose specific surface area is 20 m ⁇ 2 > / g or more is used, A method for producing a gold composite material, wherein a gold colloid solution containing gold particles having a particle size of 5 nm or less is used as the gold colloid solution.
  • the gold composite material of the present invention is a novel composite material and has a higher catalytic activity as a catalyst than conventional gold nanoparticle catalysts.
  • the method for producing a gold composite material of the present invention enables simple and simple production of the gold composite material of the present invention, which has been considered difficult to produce.
  • the gold nanocatalyst of the present invention has a high catalytic activity.
  • FIG. 1 is a surface photograph (drawing substitute photograph) of the gold composite material obtained in Example 1 by TEM.
  • FIG. 2 is a chart showing the CO oxidation reaction result of the gold composite material obtained in Example 1.
  • FIG. 3 is a chart showing the CO oxidation reaction result of the gold composite material obtained in Example 2.
  • FIG. 4 is a chart showing the relationship between the specific surface area of the carrier and the catalyst activity in Example 4.
  • FIG. 5 is a chart showing the relationship between gold density and catalyst activity in Example 4.
  • the gold composite material of the present invention is a gold composite material composed of a carrier and gold fine particles supported on the carrier, and the carrier is an acidic solid metal oxide.
  • the carrier used in the present invention is an acidic solid metal oxide.
  • “acidic” means that the pH of the isoelectric point is 5 or less in the present specification.
  • Specific examples of the acidic solid metal oxide include the following compounds.
  • Niobium oxide, polyoxometalate specifically, for example, silicotungstic acid, silicomolybdic acid, phosphotungstic acid, phosphomolybdic acid, ammonium molybdate, ammonium tungstate
  • tungsten oxide, tantalum oxide, molybdenum oxide, vanadium oxide, etc. one or more selected from the group consisting of niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide are particularly preferably used.
  • the shape of the carrier is not particularly limited, but preferably has a complicated three-dimensional structure.
  • niobium oxide polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide
  • niobium oxide obtained by a hydrothermal reaction is particularly preferable because of its high catalytic activity.
  • the support preferably has a specific surface area of 20 to 500 m 2 / g, more preferably a specific surface area of 100 to 300 m 2 / g, and a specific surface area of 150 to 300 m 2 / g. Is most preferred.
  • the average particle size of the carrier is preferably 5 to 1000 nm, and more preferably 5 to 500 nm.
  • the specific surface area and average particle diameter of the carrier are measured as follows.
  • the specific surface area of the specific surface area carrier was measured using a high-accuracy gas adsorption amount measuring device manufactured by Microtrack Bell. 0.2 g of support was set in the reactor, and the pretreatment temperature was 300 ° C. for 2 hours. The nitrogen adsorption isotherm was measured at the liquid nitrogen temperature and calculated by the BET method. -The gold carrying sample was measured with an average particle size transmission electron microscope (manufactured by JEOL Ltd.). Specifically, the sample was prepared by ultrasonically dispersing the sample in ethanol and dropping it on a microgrid. The average particle diameter of gold was calculated by calculating the diameter of 200 or more gold particles and obtaining the average value thereof.
  • the solid metal oxide is a crystal structure formed by a crystal lattice constituting the solid metal oxide, and is formed by one crystal lattice or a lattice point formed by collecting a plurality of crystal lattices. And a void formed around the lattice point, the void having a normal void having the same size as each lattice point or the crystal lattice, and a large void larger than each lattice point.
  • the crystal lattice means each atom or molecule constituting the solid metal oxide
  • the lattice point usually means a connection point of each atom or molecule in an aggregate of these atoms or molecules.
  • the large void volume is preferably 0.1 cm 3 / g or more, More preferably, it is 0.2 to 0.7 cm 3 / g.
  • the mesopore volume is determined by the BJH method (EP Barrett, LG Joyner, PH Halenda: J. Am.), Where the pore diameter is determined from the desorption isotherm, which is the relationship between the relative pressure when the adsorbate desorbs and the amount of adsorption. Chem. Soc., 73, 373 (1951)).
  • the gold fine particles in the present invention are so-called gold nanoparticles or gold cluster particles supported on the carrier, and the particle size is preferably 5 nm or less, more preferably 0.1 to 2 nm.
  • the above particle size does not mean that all of the supported gold fine particles have the above-mentioned particle size, but means that the gold fine particles having a particle size in the above preferred range may be supported.
  • the particle size of the gold fine particles is an average particle size, and the particle size of each of the gold fine particles supported on the carrier is compared with the reference length by visually checking the particle size of the gold fine particles confirmed by the TEM. It is obtained by calculating and calculating an average value according to a conventional method.
  • the content of the gold fine particles in the gold composite material of the present invention is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, and more preferably 0.1 to 2% by weight based on the total gold composite material. % Is most preferred.
  • the density of the gold particles is preferably 2 [mu] mol ⁇ m -2 or less, more preferably 0.1 ⁇ 0.15 ⁇ mol ⁇ m -2. This density is particularly effective when the specific surface area of the carrier is within the above-mentioned preferable range, and is particularly effective in that the activity increases even with a small gold density. In addition, the said density is calculated
  • required as follows. Density of gold fine particles Amount of gold supported (wt%) / 100/197 (molecular weight of gold, g / mol) / specific surface area of carrier (m 2 / g)
  • the gold fine particles are supported on the surface of the carrier.
  • a cavity may be formed inside the carrier.
  • the gold fine particles may be supported on the surface of the carrier in the cavity.
  • the gold composite material of the present invention described above can be manufactured by performing the following steps. That is, it can be obtained by carrying out a carrying step of carrying gold fine particles using an acidic solid metal oxide and a gold colloid solution (hereinafter, this production method is referred to as a colloid method).
  • this production method is referred to as a colloid method.
  • the colloidal method will be mainly described below. Obtained by methods such as precipitation reduction method (DP method), precipitation precipitation method (DR method), DP urea method, solid phase mixing method (SG method), and coprecipitation method (One-pot method), which are described in detail in the examples.
  • the gold colloid solution a gold colloid solution containing gold particles having a particle size of 5 nm or less, preferably 0.5 to 3 nm is used.
  • the specific surface area is outside the above range and when the particle size of the gold particles exceeds 5 nm, the gold fine particles are not supported.
  • a suspension preferably 0.01 to 20 parts by weight, more preferably 0.1 to 5 parts by weight of gold is added to the gold colloid solution with respect to 100 parts by weight of the solid metal oxide, and stirred to obtain a suspension.
  • the suspension is stirred and mixed for 30 minutes to 2 hours while adjusting the pH of the suspension to 8 to 11 using sodium hydroxide or the like.
  • 50 to 200 parts by weight of sodium borohydride is added to 100 parts by weight of gold in the suspension, the suspension is suction filtered, washed and dried at 60 to 100 ° C. It is possible to obtain a gold composite material in which gold fine particles are supported on the surface of a solid metal oxide by firing in air at ⁇ 500 ° C. for 2 to 10 hours.
  • the said solid metal oxide and the said gold colloid solution can be manufactured as follows.
  • Manufacturing process of solid metal oxide For example, in the case of obtaining niobium oxide, NH 4 ⁇ NbO (C 2 O 4 ) 2 (H 2 O) ⁇ ⁇ nH 2 O (Nb: 6 mmol) is dissolved in water and 10 to 10 at 150 to 300 ° C. Hydrothermal synthesis is performed for 30 hours, and the obtained solid is suction filtered, dried at 50 to 100 ° C., and heat-treated at 350 to 500 ° C. for 1 to 4 hours.
  • the gold colloid solution can be formed by dissolving a compound that forms a colloid in water.
  • tetrachloroauric acid As a compound that can be used at this time, tetrachloroauric acid, HAuCl 4, Au (en) 2 Cl 3 or the like (en: ethylenediamine group) can be used, and usually a toluene solution of tetrachloroauric acid and tetraoctyl are used. It can be obtained by putting a toluene solution of ammonium bromide into water in the presence of sodium borohydride. When HAuCl 4 is used, it can be obtained by adding a toluene solution of tetraoctyl ammonium bromide together with HAuCl 4 into water in the presence of sodium borohydride.
  • Au (en) 2 Cl 3 can be obtained by putting it in water as it is. It is to be noted that sodium borohydride can be added at the time of supporting as described above, and the colloidal gold solution can be prepared without particular addition in colloidation.
  • the concentration of the gold particles in the colloidal gold solution is preferably 0.1 to 20% by weight, and more preferably 0.5 to 5% by weight.
  • the gold nanocatalyst of the present invention is composed of the above-described gold composite material of the present invention, and functions as a catalyst for an oxidation reaction of an organic compound.
  • the gold nanocatalyst of the present invention can be used without particular limitation as long as it is an oxidation reaction of an organic compound, but can be preferably applied particularly to the following reaction system.
  • Example 1 NH 4 ⁇ NbO (C 2 O 4 ) 2 (H 2 O) ⁇ ⁇ nH 2 O (Nb: 6 mmol) was dissolved in 40 mL of water, and hydrothermal synthesis was performed at 175 ° C. for 24 hours. The obtained solid was subjected to suction filtration, dried at 80 ° C., and heat-treated at 400 ° C. for 2 hours to obtain niobium oxide having a higher order structure (hereinafter referred to as “NbOx-HT”).
  • NbOx-HT niobium oxide having a higher order structure
  • the obtained NbOx-HT had a BET specific surface area (according to the measurement method described above) of 208 m 2 / g and a mesopore volume (according to the measurement method described above) of 0.563 cm 3 / g.
  • Au (en) 2 Cl 3 (0.0507 mmol) was dissolved in 51 mL of water so that the amount of gold charged was 1% by weight, and niobium oxide (1 g) prepared by hydrothermal synthesis was added and suspended. The liquid was adjusted. The resulting suspension was stirred for 1 hour while adjusting the pH to 9 with NaOH, and NaBH 4 was added. Thereafter, the suspension was washed by suction filtration, dried at 80 ° C., and then air baked at 300 ° C.
  • amorphous fine niobium Nb 2 O 5 .nH 2 O, purchased from Soekawa Chemical
  • Nb 2 O 5 amorphous niobium oxide
  • Wako Pure Chemical Industries Wako Pure Chemical Industries
  • Cs-POM [Example 2] H 4 [ ⁇ -SiW 12 O 40 ] ⁇ nH 2 O and Cs 4 [ ⁇ -SiW 12 O 40 ] ⁇ nH 2 O (Cs-POM) were synthesized according to a conventional method.
  • the obtained Cs-POM had a BET specific surface area (according to the measurement method described above) of 175 m 2 / g and a mesopore volume (according to the measurement method described above) of 0.128 cm 3 / g.
  • the gold supporting step was performed using the following colloid mixing method (Sol Immobilization, SI) and solid phase mixing method (Solid Grinding, SG) to obtain a gold composite material.
  • the amount of gold charged was 1 part by weight with respect to 100 parts by weight of the carrier.
  • SI method Gold colloid protected with dodecanethiol was prepared according to a conventional method. This colloidal gold was dissolved in 40 mL of hexane and added dropwise to Cs-POM separately dispersed in 50 mL of hexane. After stirring for 1 hour, it was collected, dried in vacuum overnight, and calcined in air at 300 ° C. for 2 hours.
  • SG method 1.0 g of Cs-POM and 16.6 mg of [AuMe 2 (acac)] were mixed in an agate mortar for 20 minutes and baked in air at 300 ° C. for 4 hours.
  • a CO oxidation reaction was performed using the obtained gold composite material.
  • the CO oxidation reaction was carried out using a fixed bed flow type catalytic reactor under the conditions of a catalyst amount of 150 mg, 1 vol% CO in air 50 mL min ⁇ 1 (SV 20,000 mL H ⁇ 1 g cat ⁇ 1 ). Quantification was performed by GC (TCD).
  • the gold composite material obtained by either the SI method or the SG method showed a low temperature and high activity for the CO oxidation reaction, indicating that it was useful as a gold nanocatalyst.
  • the temperatures (T 1/2 ) at which the reaction rate reached 50% were ⁇ 67 ° C. and ⁇ 36 ° C., respectively.
  • the results obtained by the SI method show a very high CO oxidation activity as compared with 1 wt% Au / MO x reported so far, and the gold of the present invention using an acidic solid metal oxide as a support. You can see the superiority of composite materials. Further, when TEM observation was performed on the obtained gold composite material, mainly 3-4 nm gold particles were observed, and large particles of about 10 nm were also observed. It is known that the activity is comparatively low and does not match the result of the oxidation reaction, so that it is considered that a gold cluster that is too small to be observed by TEM is supported.
  • the metal composite material of the present invention in which gold fine particles are supported on an acidic solid metal oxide is useful as a gold nanocatalyst.
  • the solid metal oxide used as a support in the present invention is obtained by a hydrothermal reaction, it is a compound having a higher order structure and has a complicated three-dimensional structure. It has been found that excellent catalytic activity is exhibited by supporting gold fine particles on a molecular compound.
  • Example 3 Solid metal oxide NbO x -HT obtained in Example 1 was prepared. Separately, the following solid metal oxides were prepared. ⁇ Nb 2 O 5 ⁇ nH 2 O Purchased from Soekawa Riken, calcined at 400 ° C. BET specific surface area (according to the measurement method described above) 19 m 2 / g, mesopore volume (according to the measurement method described above) 0.002 cm 3 / g. ⁇ Nb 2 O 5 Purchased from Wako Pure Chemical Co., Ltd. Baked at 400 ° C.
  • BET specific surface area (according to the measurement method described above) 6 m 2 / g, mesopore volume (according to the measurement method described above) 0.001 cm 3 / g. ⁇ ANO NH 4 ⁇ NbO (C 2 O 4 ) 2 (H 2 O) ⁇ ⁇ nH 2 O purchased from Aldrich was obtained by firing at 400 ° C.
  • BET specific surface area (according to the measurement method described above) 2.3 m 2 / g, mesopore volume (according to the measurement method described above) 0.000 cm 3 / g.
  • Gold support A gold composite material carrying gold fine particles was obtained by the following methods.
  • the gold composite material obtained by this method is expressed as DP. Further, in the case of the precipitation reduction method (hereinafter, the composite material obtained by this method is expressed as DR), HAuCl 4 (0.2478M, 0.0507 mmol) or Au (en) 2 Cl 3 (0.0507 mmol). ) was dissolved in 51 mL of water and NbO x -HT (1 g) was added. After stirring for 1 hour while adjusting to pH 7, 9, or 10 with aqueous NaOH, NaBH 4 was added. Thereafter, the suspension was washed by suction filtration, dried at 80 ° C., and then air baked at 300 ° C. for 4 hours to obtain a gold composite material (amount of gold supported: 1% by weight).
  • Example 2 After drying, heat treatment was performed at 400 ° C. for 2 hours in air to obtain a gold composite material.
  • Colloid mixing method The gold composite material of the present invention in Example 2 was used.
  • a colloidal gold colloid (AuSH-R) protected with dodecanethiol was prepared according to a conventional method. The colloidal gold was dissolved in 40 mL of hexane and added dropwise to NbO x -HT separately dispersed in 50 mL of hexane. The mixture was collected after stirring for 1 hour, dried in vacuum overnight, and calcined at 300 ° C. for 2 hours in air or in vacuum. About each obtained composite material, it carried out similarly to Example 1, and performed CO oxidation reaction. The results are shown in Table 1.
  • Example 4 As shown in the table below, a gold composite material was prepared in the same manner as in the colloidal mixing method of Example 3 except that the type of support and the specific surface area were variously changed and the density of supported gold was also changed. . The obtained gold composite material was subjected to CO oxidation reaction in the same manner as in Example 1 to confirm its activity as an oxidation catalyst.
  • FIG. 4 shows the relationship between the specific surface area of the support and the catalytic activity
  • FIG. 5 shows the relationship between the gold density and the catalytic activity.
  • the catalyst is 1% by weight Au / Nb 2 O 5 (Niobium oxide is hydrothermally synthesized specific surface area 208 m 2 / g), the catalyst amount is 0.15 g, the substrate gas is 1 volume% CO / air, 50 mL / min.
  • TOF represents the CO reaction rate (mol (CO) mol (Au) ⁇ 1 s ⁇ 1 ) per gold atom per unit time at 20 ° C.
  • the particle diameter of gold is calculated by TEM.
  • Table 2 shows the physical properties and catalytic activity of the obtained gold composite material.
  • NbO x -HT is the same as that in Example 3, and shows one prepared by hydrothermal synthesis.
  • TT-Nb 2 O 5 (pseudohexagonal) mesopore volume is 0.228 cm 3 / g
  • T-Nb 2 O 5 (orthogonal crystal) mesopore volume is 0.359 cm 3 / g.
  • Nb 2 O 5 —P is pyrochlore niobium oxide produced according to the report
  • Nb 2 O 5 .nH 2 O and Nb 2 O 5 are the same as those in Example 3. Synthesis of TT-Nb 2 O 5 (pseudo hexagonal crystal).
  • Nb 2 O 5 .nH 2 O (Nb: 0.25 mmol) was dissolved in 45 mL of water, and hydrothermal synthesis was performed at 175 ° C. for 24 hours to obtain a solid. The obtained solid was subjected to suction filtration and then dried at 80 ° C. to obtain an oxide composed of niobium oxide. Subsequently, heat treatment was performed in air at 400 ° C. for 2 hours to obtain an acidic solid metal oxide (hereinafter referred to as TT—Nb 2 O 5 ). Synthesis of T-Nb 2 O 5 (orthorhombic). NbO x —HT was obtained by air calcination at 650 ° C.
  • Nb 2 O 5 —P (pyrochlore type). Nb 2 O 5 ⁇ nH 2 O (Nb: 4 mmol) was dissolved in 45 mL of water, and hydrothermal synthesis was performed at 175 ° C. for 24 hours to obtain a solid. The obtained solid was subjected to suction filtration and then dried at 80 ° C. to obtain an oxide composed of niobium oxide. Subsequently, heat treatment was performed in air at 400 ° C. for 2 hours to obtain an acidic solid metal oxide (hereinafter referred to as Nb 2 O 5 —P). As is clear from the results shown in FIGS. 4 and 5, the higher the specific surface area, the higher the catalytic activity. When the specific surface area is high, the catalytic activity is particularly high when the gold density is 2 or less, particularly 1 or 5 or less. I understand that it is expensive.
  • Example 5 As shown in Table 3 below, a gold composite material was prepared in the same manner as in the colloidal mixing method of Example 3 except that various types of carriers were used.
  • the support include NbO x -HT of Example 3, T-Nb 2 O 5 of Example 4, JRC-NbO-1 (manufactured by CBMM, reference catalyst of the Japan Society for Catalysis), JRC-NbO-2 (manufactured by CBMM, The catalyst is a reference catalyst of the Japan Society for Catalysis), and SiO 2 (Q-10, manufactured by Fuji Silysia) is used for comparison, and the resulting gold composite material is subjected to CO oxidation reaction in the same manner as in Example 1 to confirm its activity as an oxidation catalyst. did.
  • the oxidation reaction of the furfural was performed using the obtained gold composite material (gold nano catalyst).
  • the reaction was carried out for 1.5 hours.
  • the reaction rate was measured by GC.
  • the BET specific surface area of JRC-NbO-1 was 116 m 2 / g (according to the measurement method described above), and the mesopore volume (according to the measurement method described above) of 0.128 cm 3 / g.
  • the BET specific surface area of JRC-NbO-2 was 4 m 2 / g (according to the measurement method described above) and the mesopore volume (according to the measurement method described above) of 0.000 cm 3 / g.

Abstract

[Problem] To provide a novel gold composite material having higher catalytic activity than conventional gold nanoparticle catalysts, a method for manufacturing the gold composite material, and a gold nanocatalyst in which the gold composite material is used. [Solution] A gold composite material comprising a carrier and gold microparticles carried on the carrier, the gold composite material being characterized in that the carrier is an acidic solid metal oxide. A method for manufacturing a gold composite material, wherein the method for manufacturing a gold composite material is characterized in being provided with a carrying step for carrying gold microparticles using the acidic solid metal oxide and a gold colloid solution, and in the carrying step, a solid metal oxide having a high specific surface area of at least 20 m2/g is used as the solid metal oxide, and a gold colloid solution containing gold particles having a particle diameter of 5 nm or less is used as the gold colloid solution.

Description

金複合材料、その製造方法及び金ナノ触媒Gold composite material, production method thereof and gold nanocatalyst
 本発明は、従来の金ナノ粒子触媒よりも触媒活性が高く、新規な金複合材料、その製造方法及びそれを用いた金ナノ触媒に関する。 The present invention relates to a novel gold composite material having a higher catalytic activity than conventional gold nanoparticle catalysts, a method for producing the same, and a gold nanocatalyst using the same.
金はナノ粒子として担体に担持すると高い触媒能を示すことが知られており、種々の金ナノ粒子触媒が提案されている。 Gold is known to exhibit high catalytic ability when supported on a carrier as nanoparticles, and various gold nanoparticle catalysts have been proposed.
 例えば特許文献1には、金ナノ粒子を担持する担体の卑金属酸化物として、卑金属酸化物はMoO3及びCuOからなる群より選択される1種以上であるか、あるいはそれらを1種類以上含む複合酸化物を選択することにより、エタノールからアセトアルデヒドを気相で選択的に製造することができる、金ナノ触媒が提案されている。 For example, in Patent Document 1, as a base metal oxide of a carrier supporting gold nanoparticles, the base metal oxide is at least one selected from the group consisting of MoO 3 and CuO, or a composite containing at least one of them. A gold nanocatalyst that can selectively produce acetaldehyde from ethanol in the gas phase by selecting an oxide has been proposed.
 また、特許文献2には、ピリジン化合物の製造において用いる触媒として、担体表面に金ナノ粒子を固定化した表面金固定化触媒を用いることが開示されており、この表面金固定化触媒として、ハイドロキシアパタイト(HAP)、チタニア(TiO2)、アルミナ(Al23)、マグネシア(MgO)、シリカ(SiO2)、セリア(CeO2)、活性炭(C)等を担体として用いることを開示している。 Patent Document 2 discloses that a surface gold-immobilized catalyst in which gold nanoparticles are immobilized on the surface of a carrier is used as a catalyst used in the production of a pyridine compound. Disclosure of using apatite (HAP), titania (TiO 2 ), alumina (Al 2 O 3 ), magnesia (MgO), silica (SiO 2 ), ceria (CeO 2 ), activated carbon (C), etc. as a carrier. Yes.
特開2015-178525号公報JP-A-2015-178525 特開2012-121844号公報JP 2012-121844 A
 しかしながら、上述の提案にかかる金ナノ粒子が担持された粒子では、活性が不十分な場合や適用できる反応系が少ないなど、未だに十分な触媒活性を得られているとは言えない場合があった。
 したがって本発明の目的は、従来の金ナノ粒子触媒よりも触媒活性が高く、新規な金複合材料、その製造方法及びそれを用いた金ナノ触媒を提供することにある。
However, there are cases where the catalyst supporting the gold nanoparticles according to the above-mentioned proposal has not yet obtained sufficient catalytic activity, for example, when the activity is insufficient or there are few applicable reaction systems. .
Accordingly, an object of the present invention is to provide a novel gold composite material having a higher catalytic activity than conventional gold nanoparticle catalysts, a method for producing the same, and a gold nanocatalyst using the same.
 本発明者らは、上記課題を解消すべく鋭意検討した結果、担体が酸性の物質であれば今までの触媒とは異なる挙動が得られ、上記の課題を解消できると期待し、これまでは製造できないとされていた酸性の担体に金微粒子を担持させてなる金複合材料の製造方法について種々検討を重ねた結果、数ある製造方法のうち、あらかじめ金微粒子のコロイド溶液を作成して酸性の金属酸化物と反応させる方法により、酸性の担体に金微粒子を担持させてなる金複合材料が得られることを知見し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors expect that if the support is an acidic substance, a behavior different from that of the conventional catalyst can be obtained, and the above problems can be solved. As a result of various studies on a method for producing a gold composite material in which gold fine particles are supported on an acidic carrier that has been considered to be unmanufacturable, among others, a colloidal solution of gold fine particles is prepared in advance to create an acidic solution. The inventors have found that a gold composite material in which gold fine particles are supported on an acidic carrier can be obtained by a method of reacting with a metal oxide, and the present invention has been completed.
 すなわち、本発明は、上記知見に基づいてなされたものであり、以下のとおりである。
1. 担体と該担体上に担持された金微粒子とからなる金複合材料であって、
上記担体が、酸性の固体金属酸化物であることを特徴とする金複合材料
 
2.上記固体金属酸化物が、
酸化ニオブ、ポリオキソメタレート、酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウムからなる群より選択される一種以上であることを特徴とする1記載の金複合材料。
3.担持されている上記金微粒子の粒径が、5nm以下であることを特徴とする1記載の金複合材料。
4.上記固体金属酸化物の比表面積が20m/g以上であることを特徴とする1記載の金複合材料。
5.上記担体上に担持された上記金微粒子の密度が2μmol・m-2以下であることを特徴とする請求項4記載の金複合材料。
6.上記固体金属酸化物は、該固体金属酸化物を構成する結晶格子により形成された結晶構造体であり、一つの結晶格子により形成されるか又は複数の結晶格子が集合して形成される格子点と該格子点の周囲に形成される空隙とを有し、該空隙は各格子点又は該結晶格子と同様の大きさを有する通常空隙と、各格子点よりも大きい大空隙とを有する
ことを特徴とする1記載の金複合材料。
7.上記大空隙の容量(メソ孔容量)が0.1cm3/g以上であることを特徴とする6記載の金複合材料。
8.1~7のいずれかに記載の金複合材料からなり、バイオマス由来の成分の酸化に用いられる金ナノ触媒。
9.1記載の金複合材料の製造方法であって、
酸性の固体金属酸化物と金コロイド溶液とを用いて金微粒子の担持を行う担持工程を具備し、
上記担持工程においては、
上記固体金属酸化物として、比表面積が20m/g以上の高比表面積のものを用い、
上記金コロイド溶液として、粒径5nm以下の金粒子を含有する金コロイド溶液を用いることを特徴とする金複合材料の製造方法。
10.1記載の金複合材料からなる、有機化合物の酸化反応用の金ナノ触媒。
That is, the present invention has been made based on the above findings and is as follows.
1. A gold composite material comprising a carrier and gold fine particles supported on the carrier,
Gold composite material wherein the carrier is an acidic solid metal oxide
2. The solid metal oxide is
2. The gold composite material according to 1, wherein the gold composite material is at least one selected from the group consisting of niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide.
3. 2. The gold composite material according to 1, wherein the gold fine particles supported have a particle size of 5 nm or less.
4). 2. The gold composite material according to 1, wherein the solid metal oxide has a specific surface area of 20 m 2 / g or more.
5. 5. The gold composite material according to claim 4, wherein the density of the gold fine particles supported on the carrier is 2 μmol · m −2 or less.
6). The solid metal oxide is a crystal structure formed by a crystal lattice constituting the solid metal oxide, and is formed by one crystal lattice or a lattice point formed by collecting a plurality of crystal lattices. And a void formed around the lattice point, the void having a normal void having the same size as each lattice point or the crystal lattice, and a large void larger than each lattice point. 2. The gold composite material according to 1,
7). 6. The gold composite material according to 6, wherein the large void volume (mesopore volume) is 0.1 cm 3 / g or more.
A gold nanocatalyst comprising the gold composite material according to any one of 8.1 to 7 and used for oxidation of a component derived from biomass.
A method for producing a gold composite material according to 9.1,
Comprising a supporting step of supporting fine gold particles using an acidic solid metal oxide and a colloidal gold solution;
In the carrying step,
As said solid metal oxide, the thing with a high specific surface area whose specific surface area is 20 m < 2 > / g or more is used,
A method for producing a gold composite material, wherein a gold colloid solution containing gold particles having a particle size of 5 nm or less is used as the gold colloid solution.
A gold nanocatalyst for an oxidation reaction of an organic compound, comprising the gold composite material according to 10.1.
 本発明の金複合材料は、新規な複合材料であり、触媒として従来の金ナノ粒子触媒よりも触媒活性が高いものである。
また、本発明の金複合材料の製造方法は、従来製造が困難だとされていた本発明の金複合材料を簡易且つ簡便に製造できるものである。
また、本発明の金ナノ触媒は高い触媒活性を有するものである。
The gold composite material of the present invention is a novel composite material and has a higher catalytic activity as a catalyst than conventional gold nanoparticle catalysts.
In addition, the method for producing a gold composite material of the present invention enables simple and simple production of the gold composite material of the present invention, which has been considered difficult to produce.
The gold nanocatalyst of the present invention has a high catalytic activity.
図1は、図1は、実施例1で得られた金複合材料のTEMによる表面写真(図面代用写真)である。FIG. 1 is a surface photograph (drawing substitute photograph) of the gold composite material obtained in Example 1 by TEM. 図2は、実施例1で得られた金複合材料のCO酸化反応結果を示すチャートである。FIG. 2 is a chart showing the CO oxidation reaction result of the gold composite material obtained in Example 1. 図3は、実施例2で得られた金複合材料のCO酸化反応結果を示すチャートである。FIG. 3 is a chart showing the CO oxidation reaction result of the gold composite material obtained in Example 2. 図4は、実施例4における担体の比表面積と触媒活性との関係を示すチャートである。FIG. 4 is a chart showing the relationship between the specific surface area of the carrier and the catalyst activity in Example 4. 図5は、実施例4における金密度と触媒活性との関係を示すチャートである。FIG. 5 is a chart showing the relationship between gold density and catalyst activity in Example 4.
 以下、本発明について詳細に説明するが、本発明はこれらに何ら制限されるものではない。
本発明の金複合材料は、担体と該担体上に担持された金微粒子とからなる金複合材料であり、上記担体が、酸性の固体金属酸化物であることを特徴とする。
<担体>
本発明において用いられる上記担体は、酸性の固体金属酸化物である。
ここで、「酸性」であるとは、本明細書においては、等電点のpHが5以下であることを意味する。
上記の酸性の固体金属酸化物としては、具体的には以下の化合物を挙げることができる。
酸化ニオブ、ポリオキソメタレート(具体的にはたとえばケイタングステン酸,ケイモリブデン酸,リンタングステン酸,リンモリブデン酸,モリブデン酸アンモニウム,タングステン酸アンモニウム等)酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウム等。
中でも、酸化ニオブ、ポリオキソメタレート、酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウムからなる群より選択される一種以上が特に好ましく用いられるである。
 上記担体の形状は特に制限されないが、複雑な3次元構造を有しているのが好ましく、特に酸化ニオブ、ポリオキソメタレート、酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウム においては、MO4四面体、MO5正方錘、MO6六面体またはMO5三方両錘からなる基本単位において、脱水縮合反応により酸素原子が基本単位間を架橋し、頂点、稜または面を介して結合してなる3次元構造体であるのが好ましい。また、これらの中でも特に水熱反応により得られた酸化ニオブが、触媒活性が高く、好ましい。本発明においては、上記担体の比表面積が20~500m/gであるのが好ましく、比表面積が100~300m/gであるのがさらに好ましく、比表面積が150~300m/gであるのが最も好ましい。このように、好ましくは特定の比表面積を有し、更には複雑な3次元構造を有する場合に、上述の酸性の固体金属酸化物であっても金微粒子が担持されることを見出した点が本発明の完成に大きく寄与したものである。
 また、上記担体の粒径は、平均粒子径で5~1000nmであるのが好ましく、5~500nmであるのがさらに好ましい。
 ここで、担体の比表面積及び平均粒子径は、以下のようにして測定される。
・比表面積
担体の比表面積の測定は、マイクロトラックベル社製の高精度ガス吸着量測定装置を用いて行った。担体0.2gを反応器にセットし、前処理温度は300℃2時間とした。液体窒素温度にて窒素吸着等温線を測定し、BET 法により算出した。
・平均粒子径
透過型電子顕微鏡(日本電子社製)にて金担持サンプルを測定した。具体的には、サンプルをエタノールに超音波分散させ、マイクログリッド上に滴下することにより、調製を行った。金の平均粒子径の算出は、200個以上の金粒子の直径を算出し、これらの平均値を求めることで行った。
Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
The gold composite material of the present invention is a gold composite material composed of a carrier and gold fine particles supported on the carrier, and the carrier is an acidic solid metal oxide.
<Carrier>
The carrier used in the present invention is an acidic solid metal oxide.
Here, “acidic” means that the pH of the isoelectric point is 5 or less in the present specification.
Specific examples of the acidic solid metal oxide include the following compounds.
Niobium oxide, polyoxometalate (specifically, for example, silicotungstic acid, silicomolybdic acid, phosphotungstic acid, phosphomolybdic acid, ammonium molybdate, ammonium tungstate) tungsten oxide, tantalum oxide, molybdenum oxide, vanadium oxide, etc. .
Among these, one or more selected from the group consisting of niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide are particularly preferably used.
The shape of the carrier is not particularly limited, but preferably has a complicated three-dimensional structure. Particularly in niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide, MO 4 tetrahedral Three-dimensional structure in which oxygen atoms are bridged between basic units by a dehydration condensation reaction and bonded via vertices, ridges, or faces in a basic unit consisting of a body, MO 5 square pyramid, MO 6 hexahedron, or MO 5 trigonal bipyramid A structure is preferred. Of these, niobium oxide obtained by a hydrothermal reaction is particularly preferable because of its high catalytic activity. In the present invention, the support preferably has a specific surface area of 20 to 500 m 2 / g, more preferably a specific surface area of 100 to 300 m 2 / g, and a specific surface area of 150 to 300 m 2 / g. Is most preferred. Thus, it has been found that gold fine particles are supported even in the above-described acidic solid metal oxide, preferably having a specific specific surface area and further having a complicated three-dimensional structure. This greatly contributes to the completion of the present invention.
The average particle size of the carrier is preferably 5 to 1000 nm, and more preferably 5 to 500 nm.
Here, the specific surface area and average particle diameter of the carrier are measured as follows.
The specific surface area of the specific surface area carrier was measured using a high-accuracy gas adsorption amount measuring device manufactured by Microtrack Bell. 0.2 g of support was set in the reactor, and the pretreatment temperature was 300 ° C. for 2 hours. The nitrogen adsorption isotherm was measured at the liquid nitrogen temperature and calculated by the BET method.
-The gold carrying sample was measured with an average particle size transmission electron microscope (manufactured by JEOL Ltd.). Specifically, the sample was prepared by ultrasonically dispersing the sample in ethanol and dropping it on a microgrid. The average particle diameter of gold was calculated by calculating the diameter of 200 or more gold particles and obtaining the average value thereof.
 上記固体金属酸化物は、該固体金属酸化物を構成する結晶格子により形成された結晶構造体であり、一つの結晶格子により形成されるか又は複数の結晶格子が集合して形成される格子点と該格子点の周囲に形成される空隙とを有し、該空隙は各格子点又は該結晶格子と同様の大きさを有する通常空隙と、各格子点よりも大きい大空隙とを有するのが好ましい。
 ここで、上記結晶格子は上記固体金属酸化物を構成する各原子又は分子を意味し、格子点は通常これらの原子や分子の集合体において各原子や分子の連結点を意味する。
 上記大空隙の容量(メソ孔容積)は0.1 cm/g 以上であるのが好ましく、
 0.2~ 0.7cm/gであるのがさらに好ましい。
 ここで上記メソ孔容積は、吸着質が脱離するときの相対圧と吸着量の関 係である脱着等温線から細孔径を求める BJH 法(E. P. Barrett, L. G. Joyner, P. H. Halenda : J. Am. Chem. Soc., 73, 373 (1951))により算出した。
The solid metal oxide is a crystal structure formed by a crystal lattice constituting the solid metal oxide, and is formed by one crystal lattice or a lattice point formed by collecting a plurality of crystal lattices. And a void formed around the lattice point, the void having a normal void having the same size as each lattice point or the crystal lattice, and a large void larger than each lattice point. preferable.
Here, the crystal lattice means each atom or molecule constituting the solid metal oxide, and the lattice point usually means a connection point of each atom or molecule in an aggregate of these atoms or molecules.
The large void volume (mesopore volume) is preferably 0.1 cm 3 / g or more,
More preferably, it is 0.2 to 0.7 cm 3 / g.
Here, the mesopore volume is determined by the BJH method (EP Barrett, LG Joyner, PH Halenda: J. Am.), Where the pore diameter is determined from the desorption isotherm, which is the relationship between the relative pressure when the adsorbate desorbs and the amount of adsorption. Chem. Soc., 73, 373 (1951)).
<金微粒子>
 本発明における金微粒子は、上記担体上に担持されたいわゆる金ナノ粒子又は金クラスター粒子であり、その粒径が、5nm以下であるのが好ましく、0.1~2nmであるのがさらに好ましい。なお、上記の粒径は、担持される金微粒子の全てが上述の粒径を有するという意味ではなく、上記の好ましい範囲の粒径を有する金微粒子を担持していれば良いという意味である。
 ここで、金微粒子の粒径は、平均粒子径であって、担体に担持されている金微粒子個々の粒径を、TEMにより確認される金微粒子の粒径を目視により基準長さと照らし合わせて算出し、常法に従い平均値を算出することで求められる。
 本発明の金複合材料における上記金微粒子の含有量は、金複合材料全体中 0.01~10 重量%であるのが好ましく、0.05~5重量%がさらに好ましく、0.1 ~ 2重量%であるのが最も好ましい。
また、上記金微粒子の密度は、好ましくは2μmol・m-2以下、更に好ましくは0.1~0.15μmol・m-2である。この密度は、特に上記担体の比表面積が上述の好ましい範囲の場合に特に有効であり、少ない金密度でも活性が増大するという点で特に効果的である。
なお、上記密度は以下のようにして求められる。
金微粒子の密度=金担持量(重量%)/100/197(金の分子量,g/mol)/担体の比表面積(m/g)
<Gold fine particles>
The gold fine particles in the present invention are so-called gold nanoparticles or gold cluster particles supported on the carrier, and the particle size is preferably 5 nm or less, more preferably 0.1 to 2 nm. The above particle size does not mean that all of the supported gold fine particles have the above-mentioned particle size, but means that the gold fine particles having a particle size in the above preferred range may be supported.
Here, the particle size of the gold fine particles is an average particle size, and the particle size of each of the gold fine particles supported on the carrier is compared with the reference length by visually checking the particle size of the gold fine particles confirmed by the TEM. It is obtained by calculating and calculating an average value according to a conventional method.
The content of the gold fine particles in the gold composite material of the present invention is preferably 0.01 to 10% by weight, more preferably 0.05 to 5% by weight, and more preferably 0.1 to 2% by weight based on the total gold composite material. % Is most preferred.
The density of the gold particles is preferably 2 [mu] mol · m -2 or less, more preferably 0.1 ~ 0.15μmol · m -2. This density is particularly effective when the specific surface area of the carrier is within the above-mentioned preferable range, and is particularly effective in that the activity increases even with a small gold density.
In addition, the said density is calculated | required as follows.
Density of gold fine particles = Amount of gold supported (wt%) / 100/197 (molecular weight of gold, g / mol) / specific surface area of carrier (m 2 / g)
<構造>
本発明の金複合材料において、上記金微粒子は上記担体の表面に担持されているが、上述のように担体が3次元構造体である場合、担体内部に空洞が生じている場合もあり、その場合には金微粒子は当該空洞内の担体表面に担持されていてもよい。
<Structure>
In the gold composite material of the present invention, the gold fine particles are supported on the surface of the carrier. However, when the carrier is a three-dimensional structure as described above, a cavity may be formed inside the carrier. In some cases, the gold fine particles may be supported on the surface of the carrier in the cavity.
<製造方法>
 上述の本発明の金複合材料は、以下の工程を行うことにより製造することができる。
 すなわち、酸性の固体金属酸化物と金コロイド溶液とを用いて金微粒子の担持を行う担持工程を行う(以下、この製造方法をコロイド法という)ことにより得ることができる。なお、本発明の製造方法であり、上述の本発明の金複合材料の製造方法としては、特に好ましい方法であるので、以下コロイド法を主に説明するが、本発明の金複合材料は、実施例にて詳述する、析出還元法(DP法)、析出沈殿法(DR法)、DPウレア法、固相混合法(SG法)、共同沈殿法(One-pot法)等の方法で得ることもできる。
(担持工程)
上記担持工程においては、上記固体金属酸化物として、比表面積が好ましくは20m/g以上、更に好ましくは100m/g以上、より好ましくは150m/g以上の高比表面積のものを用い、上記金コロイド溶液として、粒径5nm以下、好ましくは0.5~3nmの金粒子を含有する金コロイド溶液を用いる。比表面積が上記範囲外の場合及び金粒子の粒径が5nmを超える場合には、金微粒子が担持されなくなる。
 そして、上記金コロイド溶液に上記固体金属酸化物100重量部に対して金を好ましくは0.01~20重量部、更に好ましくは0.1~5重量部添加し、撹拌して懸濁液とし、かかる懸濁液のpHを8~11に水酸化ナトリウムなどを用いて調整しつつ30分~2時間撹拌混合する。ついで、水素化ホウ素ナトリウムを懸濁液中の金100重量部に対して50~200重量部添加して懸濁液を吸引ろ過した後洗浄し、60~100℃にて乾燥させた後、200~500℃にて2~10時間空気中で焼成して、固体金属酸化物の表面に金微粒子が担持されてなる金複合材料を得ることができる。
また、上記固体金属酸化物や上記金コロイド溶液は以下の様にして製造することができる。
(固体金属酸化物の製造工程)
例えば、酸化ニオブを得る場合には、NH4{NbO(C242(H2O)}・nH2O(Nb:6mmol)を水に溶解し、150~300℃にて10~30時間水熱合成を行い、得られた固体を吸引ろ過した後、50~100℃にて乾燥し、350~500℃にて1~4時間熱処理することで得ることができる。
(金コロイド溶液の製造工程)
 上記金コロイド溶液は、水中でコロイドを形成する化合物を水中に溶解させることにより形成することができる。この際用いることができる化合物としてはテトラクロロ金酸、HAuCl4、Au(en)Cl等(en:エチレンジアミン基)を用いることができ、通常はこのテトラクロロ金酸のトルエン溶液とテトラオクチルアンモニウムブロミドのトルエン溶液とを水素化ホウ素ナトリウムの存在下に水中に投入することにより得ることができる。また、HAuClを用いる場合には、テトラオクチルアンモニウムブロミドのトルエン溶液をHAuClと共に水素化ホウ素防鼠ナトリウムの存在下に水中に投入することにより得ることができる。また、Au(en)Clについては、そのまま水中に投入することにより得ることができる。なお、水素化ホウ素ナトリウムは上述のように担持させる際に添加し、コロイド化においては特に添加しないで金コロイド溶液を調整することもできる。
上記金コロイド溶液における上記金粒子の濃度は、0.1~20重量%となるようにするのが好ましく、0.5~5重量%となるようにするのがさらに好ましい。
<Manufacturing method>
The gold composite material of the present invention described above can be manufactured by performing the following steps.
That is, it can be obtained by carrying out a carrying step of carrying gold fine particles using an acidic solid metal oxide and a gold colloid solution (hereinafter, this production method is referred to as a colloid method). In addition, since it is a manufacturing method of the present invention and is a particularly preferable method as a manufacturing method of the above-described gold composite material of the present invention, the colloidal method will be mainly described below. Obtained by methods such as precipitation reduction method (DP method), precipitation precipitation method (DR method), DP urea method, solid phase mixing method (SG method), and coprecipitation method (One-pot method), which are described in detail in the examples. You can also
(Supporting process)
In the supporting step, the solid metal oxide having a high specific surface area of preferably 20 m 2 / g or more, more preferably 100 m 2 / g or more, more preferably 150 m 2 / g or more, is used, As the gold colloid solution, a gold colloid solution containing gold particles having a particle size of 5 nm or less, preferably 0.5 to 3 nm is used. When the specific surface area is outside the above range and when the particle size of the gold particles exceeds 5 nm, the gold fine particles are not supported.
Then, preferably 0.01 to 20 parts by weight, more preferably 0.1 to 5 parts by weight of gold is added to the gold colloid solution with respect to 100 parts by weight of the solid metal oxide, and stirred to obtain a suspension. The suspension is stirred and mixed for 30 minutes to 2 hours while adjusting the pH of the suspension to 8 to 11 using sodium hydroxide or the like. Next, 50 to 200 parts by weight of sodium borohydride is added to 100 parts by weight of gold in the suspension, the suspension is suction filtered, washed and dried at 60 to 100 ° C. It is possible to obtain a gold composite material in which gold fine particles are supported on the surface of a solid metal oxide by firing in air at ˜500 ° C. for 2 to 10 hours.
Moreover, the said solid metal oxide and the said gold colloid solution can be manufactured as follows.
(Manufacturing process of solid metal oxide)
For example, in the case of obtaining niobium oxide, NH 4 {NbO (C 2 O 4 ) 2 (H 2 O)} · nH 2 O (Nb: 6 mmol) is dissolved in water and 10 to 10 at 150 to 300 ° C. Hydrothermal synthesis is performed for 30 hours, and the obtained solid is suction filtered, dried at 50 to 100 ° C., and heat-treated at 350 to 500 ° C. for 1 to 4 hours.
(Manufacturing process of colloidal gold solution)
The gold colloid solution can be formed by dissolving a compound that forms a colloid in water. As a compound that can be used at this time, tetrachloroauric acid, HAuCl 4, Au (en) 2 Cl 3 or the like (en: ethylenediamine group) can be used, and usually a toluene solution of tetrachloroauric acid and tetraoctyl are used. It can be obtained by putting a toluene solution of ammonium bromide into water in the presence of sodium borohydride. When HAuCl 4 is used, it can be obtained by adding a toluene solution of tetraoctyl ammonium bromide together with HAuCl 4 into water in the presence of sodium borohydride. Further, Au (en) 2 Cl 3 can be obtained by putting it in water as it is. It is to be noted that sodium borohydride can be added at the time of supporting as described above, and the colloidal gold solution can be prepared without particular addition in colloidation.
The concentration of the gold particles in the colloidal gold solution is preferably 0.1 to 20% by weight, and more preferably 0.5 to 5% by weight.
<金ナノ触媒>
本発明の金ナノ触媒は、上述の本発明の金複合材料からなり、有機化合物の酸化反応用の触媒として機能する。本発明の金ナノ触媒は、有機化合物の酸化反応であれば特に制限なく用いる事ができるが、特に下記の反応系に好ましく適用することができる。
(適用反応系)
・CO酸化反応
CO+1/2O→CO
・グルコース酸化
6126+1/2O2 → C6127
・グリセロールの酸化
383+1/2O2 → C363(グリセルアルデヒド)+H2
383+1/2O2 → C363(ジヒドロキシアセトン)+H2
・フルフラールの酸化
(C43O)CHO+1/2O2 →(C43O)COOH(2-フランカルボン酸)
・5-ヒドロキシメチルフルフラールの酸化
663+3/2O2 →C645 (2,5-フランジカルボン酸) +H2
(有効濃度)
 本発明の触媒は、反応の対象物質である上記有機化合物(COやグルコース等)に対して気相反応系又は液相反応系において使用することができ、その有効濃度は特に制限されず、反応の対象物質が触媒と十分に接触する量とすればよい。
<Gold nanocatalyst>
The gold nanocatalyst of the present invention is composed of the above-described gold composite material of the present invention, and functions as a catalyst for an oxidation reaction of an organic compound. The gold nanocatalyst of the present invention can be used without particular limitation as long as it is an oxidation reaction of an organic compound, but can be preferably applied particularly to the following reaction system.
(Applicable reaction system)
CO oxidation reaction CO + 1 / 2O 2 → CO 2
Glucose oxidation C 6 H 12 O 6 + 1 / 2O 2 → C 6 H 12 O 7
Oxidation of glycerol C 3 H 8 O 3 + 1 / 2O 2 → C 3 H 6 O 3 (glyceraldehyde) + H 2 O
C 3 H 8 O 3 + 1 / 2O 2 → C 3 H 6 O 3 (dihydroxyacetone) + H 2 O
Oxidation of furfural (C 4 H 3 O) CHO + 1 / 2O 2 → (C 4 H 3 O) COOH (2-furancarboxylic acid)
Oxidation of 5-hydroxymethylfurfural C 6 H 6 O 3 + 3 / 2O 2 → C 6 H 4 O 5 (2,5-furandicarboxylic acid) + H 2 O
(Effective concentration)
The catalyst of the present invention can be used in a gas phase reaction system or a liquid phase reaction system with respect to the organic compound (CO, glucose, etc.) that is a target substance of the reaction, and its effective concentration is not particularly limited, and the reaction The amount of the target substance is sufficient to contact the catalyst.
 以下、本発明について実施例及び比較例を示してさらに具体的に説明するが本発明はこれらに何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these.
〔実施例1〕
NH4{NbO(C242(H2O)}・nH2O(Nb: 6 mmol)を40 mLの水に溶解し、175℃にて24時間水熱合成を行った。
得られた固体を吸引ろ過した後、80℃にて乾燥し、400℃にて2時間熱処理し高次構造を有する酸化ニオブ(以下、「NbOx-HT」という)を得た。得られたNbOx-HTのBET比表面積(上述の測定方法による)は208m/g、メソ孔容積(上述の測定方法による)は 0.563cm/gであった。
金の仕込み量が1重量%となるように、Au(en)2Cl3(0.0507mmol)を51mLの水に溶解させ、水熱合成により調製した酸化ニオブ(1 g)を加え、懸濁液を調整した。
得られた懸濁液のpHを9にNaOHにて調節しながら1時間撹拌し、NaBH4を加えた。その後、懸濁液を吸引ろ過にて洗浄し、80℃にて乾燥した後に300℃にて4時間空気焼成を行い、金複合材料を得た。
 得られた金複合材料についてX線解析を行った。その結果、金属酸化物と金とからなる材料であることが判った。
 また、通常のTEM(透過型電子顕微鏡)により表面観察を行った。その結果を図1に示す。
 次いで、得られた金複合材料を用いて、CO酸化反応を行った。反応は、固定床流通装置にて行い、金複合材料を0.15gセットし、空気気流下250℃にて1時間前処理を行い、1%CO/airを50 mL/minにて流通させ反応を行った。
 また、同様にしてアモルファス含水ニオブ(Nb25・nH2O,添川化学より購入)、アモルファス酸化ニオブ(Nb25,和光純薬より購入)にも金微粒子を担持して金複合材料を得た。XRDパターンにおけるAu(111)の回折ピークから、シェラー式により金の粒子径を計算したところ各々4.9nm(Au/NbOx-HT、上述の本発明の金複合材料)、18.5nm(Au/Nb25・nH2O)、 43.7 nm (Au/Nb25)であった。TEMにてAu/NbOx-HTを観察したところ、図1に示すように5nm前後の金微粒子が担持されており、XRDにより確認された粒子径と一致した。
ついで、調製した金複合材料を用いてCO酸化反応を行った。その結果を図2に示す。NbOx-HTのみを用いたところ極めて低活性であり、250℃においてCOは転化しなかった。これに対して金を酸化ニオブに担持すると活性が大幅に向上していることが判る。COの転化率が50%を示すときの反応温度(T1/2)で比較すると、本発明の金複合材料はT1/2= 76℃(Au/NbOx-HT)であり、Au/Nb25・nH2Oは、T1/2= 194℃であった。また、Au/Nb25は250℃で29%の転化率であった。
[Example 1]
NH 4 {NbO (C 2 O 4 ) 2 (H 2 O)} · nH 2 O (Nb: 6 mmol) was dissolved in 40 mL of water, and hydrothermal synthesis was performed at 175 ° C. for 24 hours.
The obtained solid was subjected to suction filtration, dried at 80 ° C., and heat-treated at 400 ° C. for 2 hours to obtain niobium oxide having a higher order structure (hereinafter referred to as “NbOx-HT”). The obtained NbOx-HT had a BET specific surface area (according to the measurement method described above) of 208 m 2 / g and a mesopore volume (according to the measurement method described above) of 0.563 cm 3 / g.
Au (en) 2 Cl 3 (0.0507 mmol) was dissolved in 51 mL of water so that the amount of gold charged was 1% by weight, and niobium oxide (1 g) prepared by hydrothermal synthesis was added and suspended. The liquid was adjusted.
The resulting suspension was stirred for 1 hour while adjusting the pH to 9 with NaOH, and NaBH 4 was added. Thereafter, the suspension was washed by suction filtration, dried at 80 ° C., and then air baked at 300 ° C. for 4 hours to obtain a gold composite material.
X-ray analysis was performed on the obtained gold composite material. As a result, it was found that the material was composed of metal oxide and gold.
The surface was observed with a normal TEM (transmission electron microscope). The result is shown in FIG.
Subsequently, CO oxidation reaction was performed using the obtained gold composite material. The reaction is carried out in a fixed bed flow apparatus, 0.15 g of gold composite material is set, pretreatment is performed at 250 ° C. for 1 hour under an air stream, and 1% CO / air is flowed at 50 mL / min for reaction. Went.
Similarly, a gold composite material in which amorphous fine niobium (Nb 2 O 5 .nH 2 O, purchased from Soekawa Chemical) and amorphous niobium oxide (Nb 2 O 5 , purchased from Wako Pure Chemical Industries) carry gold fine particles. Got. From the diffraction peak of Au (111) in the XRD pattern, the particle size of gold was calculated according to the Scherrer equation, and was found to be 4.9 nm (Au / NbO x -HT, the above-described gold composite material of the present invention) and 18.5 nm (Au / Nb 2 O 5 · nH 2 O), 43.7 nm (Au / Nb 2 O 5 ). When Au / NbO x -HT was observed with a TEM, gold fine particles of around 5 nm were supported as shown in FIG. 1, which coincided with the particle diameter confirmed by XRD.
Subsequently, CO oxidation reaction was performed using the prepared gold composite material. The result is shown in FIG. When only NbO x -HT was used, the activity was very low, and CO was not converted at 250 ° C. On the other hand, it can be seen that the activity is greatly improved when gold is supported on niobium oxide. When compared with the reaction temperature (T 1/2 ) when the conversion rate of CO is 50%, the gold composite material of the present invention has T 1/2 = 76 ° C. (Au / NbO x -HT), and Au / N Nb 2 O 5 .nH 2 O was T 1/2 = 194 ° C. Au / Nb 2 O 5 had a conversion rate of 29% at 250 ° C.
〔実施例2〕
4[α-SiW1240]・nH2O、Cs4[α-SiW1240]・nH2O (Cs- POM)を常法に従いそれぞれ合成した。得られたCs- POMのBET比表面積(上述の測定方法による)が175m/g、メソ孔容積(上述の測定方法による)が0.128cm/gであった。金の担持工程を、下記のコロイド混合法(Sol Immobilization, SI)と固相混合法(Solid Grinding, SG)を用いて行い、金複合材料を得た。この際、金の仕込み量は担体100重量部に対して1重量部とした。
SI法:常法に従いドデカンチオールで保護された金コロイドを調製した。この金コロイドをヘキサン40 mLに溶解し、別途ヘキサン50 mLに分散したCs― POMに滴下した。1時間攪拌後に回収、一晩真空乾燥し、空気中300℃で2時間焼成した.
SG法:Cs―POM 1.0gと[AuMe2(acac)] 16.6mgをメノウ乳鉢で20分間混合し、空気中300 ℃で4時間焼成した。
得られた金複合材料を用いて、CO酸化反応を行った。CO酸化反応は、固定床流通式触媒反応装置を用い,触媒量150mg、1体積% CO in air50mLmin-1(SV 20,000 mL H-1 gcat -1)の条件で行った。定量はGC (TCD)で行った。
SI法とSG法のいずれで得られた金複合材料においても、CO酸化反応に対して低温高活性を示し、金ナノ触媒として有用であることを示した。反応率50%となる温度(T1/2)はそれぞれ-67、-36℃であった。特にSI法での結果は、これまでに報告されている1wt% Au/MOxと比較しても非常に高いCO酸化活性であり、酸性の固体金属酸化物を担体として用いた本発明の金複合材料の優位性がわかる。
また、得られた金複合材料についてTEM観察を行ったところ,主として3-4nmの金粒子が観察され、10nm程度の大きな粒子も観察されたが、このようなサイズの金はCO酸化反応に対して比較的活性が低いことが知られており、酸化反応の結果と合わないことから、TEMで観測できないほどに小さな金クラスターが担持されているものと考えられる。
[Example 2]
H 4 [α-SiW 12 O 40 ] · nH 2 O and Cs 4 [α-SiW 12 O 40 ] · nH 2 O (Cs-POM) were synthesized according to a conventional method. The obtained Cs-POM had a BET specific surface area (according to the measurement method described above) of 175 m 2 / g and a mesopore volume (according to the measurement method described above) of 0.128 cm 3 / g. The gold supporting step was performed using the following colloid mixing method (Sol Immobilization, SI) and solid phase mixing method (Solid Grinding, SG) to obtain a gold composite material. At this time, the amount of gold charged was 1 part by weight with respect to 100 parts by weight of the carrier.
SI method: Gold colloid protected with dodecanethiol was prepared according to a conventional method. This colloidal gold was dissolved in 40 mL of hexane and added dropwise to Cs-POM separately dispersed in 50 mL of hexane. After stirring for 1 hour, it was collected, dried in vacuum overnight, and calcined in air at 300 ° C. for 2 hours.
SG method: 1.0 g of Cs-POM and 16.6 mg of [AuMe 2 (acac)] were mixed in an agate mortar for 20 minutes and baked in air at 300 ° C. for 4 hours.
A CO oxidation reaction was performed using the obtained gold composite material. The CO oxidation reaction was carried out using a fixed bed flow type catalytic reactor under the conditions of a catalyst amount of 150 mg, 1 vol% CO in air 50 mL min −1 (SV 20,000 mL H −1 g cat −1 ). Quantification was performed by GC (TCD).
The gold composite material obtained by either the SI method or the SG method showed a low temperature and high activity for the CO oxidation reaction, indicating that it was useful as a gold nanocatalyst. The temperatures (T 1/2 ) at which the reaction rate reached 50% were −67 ° C. and −36 ° C., respectively. In particular, the results obtained by the SI method show a very high CO oxidation activity as compared with 1 wt% Au / MO x reported so far, and the gold of the present invention using an acidic solid metal oxide as a support. You can see the superiority of composite materials.
Further, when TEM observation was performed on the obtained gold composite material, mainly 3-4 nm gold particles were observed, and large particles of about 10 nm were also observed. It is known that the activity is comparatively low and does not match the result of the oxidation reaction, so that it is considered that a gold cluster that is too small to be observed by TEM is supported.
以上の結果から明らかなように、酸性の固体金属酸化物に金微粒子を担持してなる本発明の金属複合材料は、金ナノ触媒として有用であることが判った。
特に本発明において担体として用いられる固体金属酸化物が水熱反応により得られたものである場合は高次構造を有する化合物であり、複雑な3次元構造を有していることから、このような分子性化合物に金微粒子を担持させることにより優れた触媒活性を発揮することが判った。
As is clear from the above results, it was found that the metal composite material of the present invention in which gold fine particles are supported on an acidic solid metal oxide is useful as a gold nanocatalyst.
In particular, when the solid metal oxide used as a support in the present invention is obtained by a hydrothermal reaction, it is a compound having a higher order structure and has a complicated three-dimensional structure. It has been found that excellent catalytic activity is exhibited by supporting gold fine particles on a molecular compound.
〔実施例3〕
(固体金属酸化物)
 実施例1で得られたNbOx-HTを用意した。
 また、別に以下の固体金属酸化物を用意した。
・Nb25・nH2
添川理化学より購入 400℃にて焼成 BET比表面積(上述の測定方法による) 19 m2/g、メソ孔容積(上述の測定方法による)   0.002cm/g。
・Nb25
和光純薬より購入  400℃にて焼成 BET比表面積(上述の測定方法による)  6 m2/g、メソ孔容積(上述の測定方法による)0.001cm/g。
・ANO
アルドリッチより購入したNH4{NbO(C242(H2O)}・nH2O を400℃にて焼成して得た。BET比表面積(上述の測定方法による)  2.3m2/g、メソ孔容積(上述の測定方法による)0.000cm/g。
(金の担持)
 以下の各方法により金微粒子が担持された金複合材料を得た。
・DP(析出沈殿法)、DR(析出還元法)
HAuCl4(0.2478M,0.0507 mmol)またはAu(en)2Cl3(0.0507mmol)を51 mLの水に溶解させ、NbOx-HT (1 g)を加えた。pH9にNaOHまたはアンモニア水を用いて調節しながら1時間撹拌した。その後、懸濁液を吸引ろ過にて洗浄し、80℃にて乾燥もしくは真空乾燥(Vac)後に、300℃にて4時間空気焼成(air)もしくは水素(10%)流通下にて(H2)300℃にて4時間処理し、金複合材料を得た(金担持量:1重量%)。(この方法で得た金複合材料をDPと表記する)。また、析出還元法(以下、この方法で得た今複合材料をDRと表記する)の場合は、HAuCl4(0.2478M,0.0507 mmol)またはAu(en)2Cl3(0.0507mmol)を51 mLの水に溶解させ、NbOx-HT (1 g)を加えた。pH7,9,または10に,NaOH水を用いて調節しながら1時間撹拌した後にNaBH4を加えた。その後、懸濁液を吸引ろ過にて洗浄し、80℃にて乾燥した後に300℃にて4時間空気焼成を行い、金複合材料を得た(金担持量:1重量%)。
・SG(固相混合法)
Me2Au(acac)(0.0507 mmol)とNbOx-HT(1g)とを混合し、メノウ乳鉢上で20分間混練し、得られた混錬物を300℃にて焼成して、金複合材料を得た。
・DPウレア法
HAuCl4(0.2478M,0.0507 mmol)またはAu(en)2Cl3(0.0507mmol)を51 mLの水に溶解させ、尿素を3.75g添加し,NbOx-HT (1 g)を加えた。90℃にて4時間撹拌した。その後、懸濁液を吸引ろ過にて洗浄し、80℃にて乾燥後に、300℃にて4時間空気焼成(air)し、金複合材料を得た(金担持量:1重量%)。
・One-pot(共同沈殿法)
NH4{NbO(C242(H2O)}・nH2O(Nb:6mmol)およびHAuCl4またはAu(en)2Cl3を45 mLの水に溶解し、175℃にて24時間水熱合成を行い、固形物を得た。得られた固形物を吸引ろ過した後、80℃にて乾燥させ酸化物を得た。乾燥後、空気下、400℃にて2時間熱処理して金複合材料を得た。
・コロイド混合法
実施例2における本発明の金複合材料を用いた。常法に従いドデカンチオールで保護された金コロイド(AuSH-R)を調製した。この金コロイドをヘキサン40 mLに溶解し、別途ヘキサン50 mLに分散したNbOx-HTに滴下した。1時間攪拌後に回収、一晩真空乾燥し、空気中(air)または真空中(vac)にて300℃で2時間焼成した。
得られた各複合材料について、それぞれ実施例1と同様にしてCO酸化反応を行った。その結果を表1に示す。表1に示す結果から明らかなように、NbOx-HTのみを用いたところ極めて低活性であり、250℃においてCOは転化しなかった。これに対して金を酸化ニオブに担持すると活性が大幅に向上していることが判る。COの転化率が50%を示すときの反応温度(T1/2)で比較すると、本発明の金複合材料はT1/2= 76℃(No.8)であるのに対して、比較対象はT1/2= 194℃(No.11,Au/Nb・nHO)であった。また、Au/Nb25(No.12)は250℃で29%の転化率でであった。
Example 3
(Solid metal oxide)
NbO x -HT obtained in Example 1 was prepared.
Separately, the following solid metal oxides were prepared.
・ Nb 2 O 5・ nH 2 O
Purchased from Soekawa Riken, calcined at 400 ° C. BET specific surface area (according to the measurement method described above) 19 m 2 / g, mesopore volume (according to the measurement method described above) 0.002 cm 3 / g.
・ Nb 2 O 5
Purchased from Wako Pure Chemical Co., Ltd. Baked at 400 ° C. BET specific surface area (according to the measurement method described above) 6 m 2 / g, mesopore volume (according to the measurement method described above) 0.001 cm 3 / g.
・ ANO
NH 4 {NbO (C 2 O 4 ) 2 (H 2 O)} · nH 2 O purchased from Aldrich was obtained by firing at 400 ° C. BET specific surface area (according to the measurement method described above) 2.3 m 2 / g, mesopore volume (according to the measurement method described above) 0.000 cm 3 / g.
(Gold support)
A gold composite material carrying gold fine particles was obtained by the following methods.
・ DP (precipitation precipitation method), DR (precipitation reduction method)
HAuCl 4 (0.2478M, 0.0507 mmol) or Au (en) 2 Cl 3 (0.0507 mmol) was dissolved in 51 mL of water and NbO x -HT (1 g) was added. The mixture was stirred for 1 hour while adjusting to pH 9 with NaOH or aqueous ammonia. Thereafter, the suspension is washed by suction filtration, dried at 80 ° C. or vacuum dried (Vac), and then air baked (air) or hydrogen (10%) at 300 ° C. for 4 hours (H 2 ) It was treated at 300 ° C. for 4 hours to obtain a gold composite material (gold carrying amount: 1% by weight). (The gold composite material obtained by this method is expressed as DP). Further, in the case of the precipitation reduction method (hereinafter, the composite material obtained by this method is expressed as DR), HAuCl 4 (0.2478M, 0.0507 mmol) or Au (en) 2 Cl 3 (0.0507 mmol). ) Was dissolved in 51 mL of water and NbO x -HT (1 g) was added. After stirring for 1 hour while adjusting to pH 7, 9, or 10 with aqueous NaOH, NaBH 4 was added. Thereafter, the suspension was washed by suction filtration, dried at 80 ° C., and then air baked at 300 ° C. for 4 hours to obtain a gold composite material (amount of gold supported: 1% by weight).
・ SG (solid phase mixing method)
Me 2 Au (acac) (0.0507 mmol) and NbO x -HT (1 g) were mixed, kneaded in an agate mortar for 20 minutes, and the resulting kneaded product was calcined at 300 ° C. A composite material was obtained.
DP urea method HAuCl 4 (0.2478M, 0.0507 mmol) or Au (en) 2 Cl 3 (0.0507 mmol) was dissolved in 51 mL of water, 3.75 g of urea was added, and NbO x -HT (1 g) was added. Stir at 90 ° C. for 4 hours. Thereafter, the suspension was washed by suction filtration, dried at 80 ° C., and then air-fired at 300 ° C. for 4 hours to obtain a gold composite material (gold support amount: 1% by weight).
・ One-pot (joint precipitation method)
NH 4 {NbO (C 2 O 4 ) 2 (H 2 O)} · nH 2 O (Nb: 6 mmol) and HAuCl 4 or Au (en) 2 Cl 3 are dissolved in 45 mL of water at 175 ° C. Hydrothermal synthesis was performed for 24 hours to obtain a solid. The obtained solid was subjected to suction filtration and then dried at 80 ° C. to obtain an oxide. After drying, heat treatment was performed at 400 ° C. for 2 hours in air to obtain a gold composite material.
Colloid mixing method The gold composite material of the present invention in Example 2 was used. A colloidal gold colloid (AuSH-R) protected with dodecanethiol was prepared according to a conventional method. The colloidal gold was dissolved in 40 mL of hexane and added dropwise to NbO x -HT separately dispersed in 50 mL of hexane. The mixture was collected after stirring for 1 hour, dried in vacuum overnight, and calcined at 300 ° C. for 2 hours in air or in vacuum.
About each obtained composite material, it carried out similarly to Example 1, and performed CO oxidation reaction. The results are shown in Table 1. As is apparent from the results shown in Table 1, when only NbOx-HT was used, the activity was extremely low, and CO was not converted at 250 ° C. On the other hand, it can be seen that the activity is greatly improved when gold is supported on niobium oxide. When compared with the reaction temperature (T1 / 2) when the conversion rate of CO is 50%, the gold composite material of the present invention has T1 / 2 = 76 ° C. (No. 8), while the comparison object is T1 / 2 = 194 ° C. (No. 11, Au / Nb 2 O 5 .nH 2 O). Au / Nb 2 O 5 (No. 12) had a conversion rate of 29% at 250 ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1において各注記などは以下のとおりである。
*1~7:触媒(金複合材料、金含有量1重量%)0.15g、 流量割合(flow rate)50mLmin-1(1%CO/Air)、
粒径はシェラー式により計算した。
In Table 1, each note is as follows.
* 1-7: 0.15 g of catalyst (gold composite material, gold content 1 wt%), flow rate 50 mL min −1 (1% CO / Air),
The particle size was calculated by the Scherrer equation.
〔実施例4〕
下記表に示すように、担体(Support)の種類、比表面積を種々変更すると共に、担持される金の密度も変更した以外は実施例3のコロイド混合法と同様にして金複合材料を調製した。得られた金複合材料について実施例1と同様にしてCO酸化反応を行い、酸化触媒としての活性を確認した。
担体の比表面積と触媒活性との関係を図4に、金密度と触媒活性との関係を図5に示す。
尚、触媒としては、1重量% Au/Nb25(酸化ニオブは水熱合成したもの比表面積208m2/g)、触媒量は0.15gとし、基質ガス:1体積%CO/air、50mL/minとした。また、図中TOFは、20℃における単位時間での金の原子あたりのCO反応速度 (mol(CO)mol(Au)-1 s-1)を示す。また、金の粒子径はTEMで算出したものである。得られた金複合材料の物性及び触媒活性について表2に示す。また、表中、NbOx-HTは実施例3と同じであり、水熱合成により調製したものを示す。また、表2の TT- Nb(擬六方晶)のメソ孔容積は0.228cm/g、T-Nb(斜方晶)のメソ孔容積0.359cm/gであった。なお、Nb-Pは、既報に従って製造したパイロクロア酸化ニオブであり、Nb25・nH2O及びNb25は、それぞれ実施例3と同じである。
TT- Nb(擬六方晶)の合成。
Nb・nH2O(Nb:0.25mmol)を45mLの水に溶解し、175℃にて24時間水熱合成を行い、固形物を得た。得られた固形物を吸引ろ過した後、80℃にて乾燥させて、酸化ニオブからなる酸化物を得た。ついで、空気下、400℃にて2時間 熱処理して、酸性の固体金属酸化物を得た (以下、TT-Nbとする)。
T-Nb(斜方晶)の合成。
NbOx-HTを650℃にて4時間空気焼成することにより得た(以下、T-Nbとする)。
Nb-P(パイロクロア型)の合成。
Nb・nH2O(Nb:4mmol)を45mLの水に溶解し、175℃にて24時間水熱合成を行い、固形物を得た。得られた固形物を吸引ろ過した後、80℃にて乾燥させて、酸化ニオブからなる酸化物を得た。ついで、空気下、400℃にて2時間 熱処理して、酸性の固体金属酸化物を得た (以下、Nb-Pとする)。
 図4及び5に示す結果から明らかなように、比表面積が高いほど触媒活性が高く、また、比表面積が高い場合には特に金の密度2以下、特に1,5以下の場合に触媒活性が高いことがわかる。
Example 4
As shown in the table below, a gold composite material was prepared in the same manner as in the colloidal mixing method of Example 3 except that the type of support and the specific surface area were variously changed and the density of supported gold was also changed. . The obtained gold composite material was subjected to CO oxidation reaction in the same manner as in Example 1 to confirm its activity as an oxidation catalyst.
FIG. 4 shows the relationship between the specific surface area of the support and the catalytic activity, and FIG. 5 shows the relationship between the gold density and the catalytic activity.
The catalyst is 1% by weight Au / Nb 2 O 5 (Niobium oxide is hydrothermally synthesized specific surface area 208 m 2 / g), the catalyst amount is 0.15 g, the substrate gas is 1 volume% CO / air, 50 mL / min. In the figure, TOF represents the CO reaction rate (mol (CO) mol (Au) −1 s −1 ) per gold atom per unit time at 20 ° C. The particle diameter of gold is calculated by TEM. Table 2 shows the physical properties and catalytic activity of the obtained gold composite material. In the table, NbO x -HT is the same as that in Example 3, and shows one prepared by hydrothermal synthesis. In Table 2, the TT-Nb 2 O 5 (pseudohexagonal) mesopore volume is 0.228 cm 3 / g, and the T-Nb 2 O 5 (orthogonal crystal) mesopore volume is 0.359 cm 3 / g. there were. Nb 2 O 5 —P is pyrochlore niobium oxide produced according to the report, and Nb 2 O 5 .nH 2 O and Nb 2 O 5 are the same as those in Example 3.
Synthesis of TT-Nb 2 O 5 (pseudo hexagonal crystal).
Nb 2 O 5 .nH 2 O (Nb: 0.25 mmol) was dissolved in 45 mL of water, and hydrothermal synthesis was performed at 175 ° C. for 24 hours to obtain a solid. The obtained solid was subjected to suction filtration and then dried at 80 ° C. to obtain an oxide composed of niobium oxide. Subsequently, heat treatment was performed in air at 400 ° C. for 2 hours to obtain an acidic solid metal oxide (hereinafter referred to as TT—Nb 2 O 5 ).
Synthesis of T-Nb 2 O 5 (orthorhombic).
NbO x —HT was obtained by air calcination at 650 ° C. for 4 hours (hereinafter referred to as T—Nb 2 O 5 ).
Synthesis of Nb 2 O 5 —P (pyrochlore type).
Nb 2 O 5 · nH 2 O (Nb: 4 mmol) was dissolved in 45 mL of water, and hydrothermal synthesis was performed at 175 ° C. for 24 hours to obtain a solid. The obtained solid was subjected to suction filtration and then dried at 80 ° C. to obtain an oxide composed of niobium oxide. Subsequently, heat treatment was performed in air at 400 ° C. for 2 hours to obtain an acidic solid metal oxide (hereinafter referred to as Nb 2 O 5 —P).
As is clear from the results shown in FIGS. 4 and 5, the higher the specific surface area, the higher the catalytic activity. When the specific surface area is high, the catalytic activity is particularly high when the gold density is 2 or less, particularly 1 or 5 or less. I understand that it is expensive.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔実施例5〕
下記表3に示すように、担体の種類を種々変更した以外は実施例3のコロイド混合法と同様にして金複合材料を調製した。担体には実施例3のNbOx-HT、実施例4のT-Nb、JRC-NbO-1(CBMM社製,日本触媒学会参照触媒)、JRC-NbO-2(CBMM社製、日本触媒学会参照触媒)、比較としてSiO2(Q-10,富士シリシア製)を用い、得られた金複合材料について実施例1と同様にしてCO酸化反応を行い、酸化触媒としての活性を確認した。また,得られた金複合材料(金ナノ触媒)を用いて、フルフラールの酸化反応を行った。フルフラールの酸化反応は、フルフラール(1 mmol)、水(10 mL)、NaOH(1 mmol)、得られた金複合材料(金ナノ触媒)(50 mg)、PO2= 5 bar、反応温度40℃にて、1.5時間反応を行った。また、反応率はGCにより測定した。
JRC-NbO-1のBET比表面積は,(上述の測定方法による)  116 m2/g、メソ孔容積(上述の測定方法による)0.128cm/g。
JRC-NbO-2のBET比表面積は,(上述の測定方法による)  4 m2/g、メソ孔容積(上述の測定方法による)0.000cm/g。
Example 5
As shown in Table 3 below, a gold composite material was prepared in the same manner as in the colloidal mixing method of Example 3 except that various types of carriers were used. Examples of the support include NbO x -HT of Example 3, T-Nb 2 O 5 of Example 4, JRC-NbO-1 (manufactured by CBMM, reference catalyst of the Japan Society for Catalysis), JRC-NbO-2 (manufactured by CBMM, The catalyst is a reference catalyst of the Japan Society for Catalysis), and SiO 2 (Q-10, manufactured by Fuji Silysia) is used for comparison, and the resulting gold composite material is subjected to CO oxidation reaction in the same manner as in Example 1 to confirm its activity as an oxidation catalyst. did. Moreover, the oxidation reaction of the furfural was performed using the obtained gold composite material (gold nano catalyst). The oxidation reaction of furfural was furfural (1 mmol), water (10 mL), NaOH (1 mmol), the resulting gold composite (gold nanocatalyst) (50 mg), PO 2 = 5 bar, reaction temperature 40 ° C. The reaction was carried out for 1.5 hours. The reaction rate was measured by GC.
The BET specific surface area of JRC-NbO-1 was 116 m 2 / g (according to the measurement method described above), and the mesopore volume (according to the measurement method described above) of 0.128 cm 3 / g.
The BET specific surface area of JRC-NbO-2 was 4 m 2 / g (according to the measurement method described above) and the mesopore volume (according to the measurement method described above) of 0.000 cm 3 / g.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 

Claims (10)

  1. 担体と該担体上に担持された金微粒子とからなる金複合材料であって、
    上記担体が、酸性の固体金属酸化物であることを特徴とする金複合材料
     
    A gold composite material comprising a carrier and gold fine particles supported on the carrier,
    Gold composite material wherein the carrier is an acidic solid metal oxide
  2. 上記固体金属酸化物が、
    酸化ニオブ、ポリオキソメタレート、酸化タングステン、酸化タンタル、酸化モリブデン、酸化バナジウムからなる群より選択される一種以上であることを特徴とする請求項1記載の金複合材料。
     
    The solid metal oxide is
    2. The gold composite material according to claim 1, wherein the gold composite material is at least one selected from the group consisting of niobium oxide, polyoxometalate, tungsten oxide, tantalum oxide, molybdenum oxide, and vanadium oxide.
  3. 担持されている上記金微粒子の粒径が、5nm以下であることを特徴とする請求項1記載の金複合材料。
     
    2. The gold composite material according to claim 1, wherein the gold fine particles supported have a particle size of 5 nm or less.
  4. 上記固体金属酸化物の比表面積が20m/g以上であることを特徴とする請求項1記載の金複合材料。
     
    2. The gold composite material according to claim 1, wherein the specific surface area of the solid metal oxide is 20 m 2 / g or more.
  5. 上記担体上に担持された上記金微粒子の密度が2μmol・m-2以下であることを特徴とする請求項4記載の金複合材料。
     
    5. The gold composite material according to claim 4, wherein the density of the gold fine particles supported on the carrier is 2 μmol · m −2 or less.
  6. 上記固体金属酸化物は、該固体金属酸化物を構成する結晶格子により形成された結晶構造体であり、一つの結晶格子により形成されるか又は複数の結晶格子が集合して形成される格子点と該格子点の周囲に形成される空隙とを有し、該空隙は各格子点又は該結晶格子と同様の大きさを有する通常空隙と、各格子点よりも大きい大空隙とを有する
    ことを特徴とする請求項1記載の金複合材料。
     
    The solid metal oxide is a crystal structure formed by a crystal lattice constituting the solid metal oxide, and is formed by one crystal lattice or a lattice point formed by collecting a plurality of crystal lattices. And a void formed around the lattice point, the void having a normal void having the same size as each lattice point or the crystal lattice, and a large void larger than each lattice point. The gold composite material according to claim 1, wherein
  7. 上記大空隙の容量(メソ孔容量)が0.1cm3/g以上である
    ことを特徴とする請求項6記載の金複合材料。
     
    The gold composite material according to claim 6, wherein a capacity of the large void (mesopore capacity) is 0.1 cm 3 / g or more.
  8. 請求項1~7のいずれかに記載の金複合材料からなり、
    バイオマス由来の成分の酸化に用いられる
    金ナノ触媒。
     
    The gold composite material according to any one of claims 1 to 7,
    Gold nanocatalyst used for oxidation of biomass-derived components.
  9. 請求項1記載の金複合材料の製造方法であって、
    酸性の固体金属酸化物と金コロイド溶液とを用いて金微粒子の担持を行う担持工程を具備し、
    上記担持工程においては、
    上記固体金属酸化物として、比表面積が20m/g以上の高比表面積のものを用い、
    上記金コロイド溶液として、粒径5nm以下の金粒子を含有する金コロイド溶液を用いることを特徴とする金複合材料の製造方法。
     
    A method for producing a gold composite material according to claim 1,
    Comprising a supporting step of supporting fine gold particles using an acidic solid metal oxide and a colloidal gold solution;
    In the carrying step,
    As said solid metal oxide, the thing with a high specific surface area whose specific surface area is 20 m < 2 > / g or more is used,
    A method for producing a gold composite material, wherein a gold colloid solution containing gold particles having a particle size of 5 nm or less is used as the gold colloid solution.
  10. 請求項1記載の金複合材料からなる、有機化合物の酸化反応用の金ナノ触媒。

     
    A gold nanocatalyst for an oxidation reaction of an organic compound, comprising the gold composite material according to claim 1.

PCT/JP2017/009072 2016-03-09 2017-03-07 Gold composite material, method for manufacturing same, and gold nanocatalyst WO2017154927A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018504527A JP7043072B2 (en) 2016-03-09 2017-03-07 Gold composite material, its manufacturing method and gold nanocatalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-046360 2016-03-09
JP2016046360 2016-03-09
JP2016121460 2016-06-20
JP2016-121460 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017154927A1 true WO2017154927A1 (en) 2017-09-14

Family

ID=59790623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009072 WO2017154927A1 (en) 2016-03-09 2017-03-07 Gold composite material, method for manufacturing same, and gold nanocatalyst

Country Status (2)

Country Link
JP (1) JP7043072B2 (en)
WO (1) WO2017154927A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181462A (en) * 2018-03-30 2019-10-24 株式会社Nbcメッシュテック Catalyst filter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188243A (en) * 2002-12-06 2004-07-08 National Institute Of Advanced Industrial & Technology Catalyst composite for removing carbon monoxide and method for removing carbon monoxide using the same
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2006290680A (en) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology Spherical nanoparticle porous body and method for synthesizing the same
JP2007001826A (en) * 2005-06-24 2007-01-11 Hitachi Ltd Metal oxide material, its producing method and its application
JP2013116440A (en) * 2011-12-02 2013-06-13 Tokyo Metropolitan Univ Oxidation catalyst
WO2014038504A1 (en) * 2012-09-04 2014-03-13 独立行政法人産業技術総合研究所 Catalyst supporting body loaded with gold nanoparticles and method for producing same
JP2015178525A (en) * 2010-03-23 2015-10-08 公立大学法人首都大学東京 Gold catalyst for ethanol oxidation and method of producing acetaldehyde and acetic acid using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004188243A (en) * 2002-12-06 2004-07-08 National Institute Of Advanced Industrial & Technology Catalyst composite for removing carbon monoxide and method for removing carbon monoxide using the same
WO2005120686A1 (en) * 2004-06-08 2005-12-22 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst
JP2006290680A (en) * 2005-04-11 2006-10-26 National Institute Of Advanced Industrial & Technology Spherical nanoparticle porous body and method for synthesizing the same
JP2007001826A (en) * 2005-06-24 2007-01-11 Hitachi Ltd Metal oxide material, its producing method and its application
JP2015178525A (en) * 2010-03-23 2015-10-08 公立大学法人首都大学東京 Gold catalyst for ethanol oxidation and method of producing acetaldehyde and acetic acid using the same
JP2013116440A (en) * 2011-12-02 2013-06-13 Tokyo Metropolitan Univ Oxidation catalyst
WO2014038504A1 (en) * 2012-09-04 2014-03-13 独立行政法人産業技術総合研究所 Catalyst supporting body loaded with gold nanoparticles and method for producing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NORIHIKO IGUCHI ET AL.: "Hikinzoku Sankabutsu Tanji Kin Shokubai ni yoru Kiso Ethanol Sanka", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 105, 24 March 2010 (2010-03-24), pages 117 *
TAKUYA YOSHIDA ET AL.: "Polyoxometalate ni Tanji shita Kin Cluster Shokubai -Kin no Size Koka to Polyoxometalate no Tai Cation Koka", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 118, 14 September 2016 (2016-09-14), pages 223 *
TORU MURAYAMA ET AL.: "Preparation of gold nanoparticles supported on Nb205 by deposition precipitation and deposition reduction methods and their catalytic activity for CO oxidation", CHINESE JOURNAL OF CATALYSIS, vol. 37, no. 10, October 2016 (2016-10-01), pages 1694 - 1701, XP029799481 *
TORU MURAYAMA ET AL.: "Sansei Sankabustu(Nb205) eno Kin Nano Ryushi Tanji", SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 118, 14 September 2016 (2016-09-14), pages 254 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181462A (en) * 2018-03-30 2019-10-24 株式会社Nbcメッシュテック Catalyst filter
JP7311288B2 (en) 2018-03-30 2023-07-19 株式会社Nbcメッシュテック catalytic filter

Also Published As

Publication number Publication date
JPWO2017154927A1 (en) 2019-01-10
JP7043072B2 (en) 2022-03-29

Similar Documents

Publication Publication Date Title
JP6505181B2 (en) Catalyst for purifying automobile exhaust gas and method for producing the same
Liu et al. Size-confined growth of atom-precise nanoclusters in metal–organic frameworks and their catalytic applications
Wang et al. Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports
JP6824250B2 (en) Powdered titanium oxide, its manufacturing method and usage method
KR20090057262A (en) Nanocomposite particle and process of preparing the same
JP5715726B2 (en) Ruthenium fine particles having substantially face-centered cubic structure and method for producing the same
Nemanashi et al. Dendrimer derived titania-supported Au nanoparticles as potential catalysts in styrene oxidation
JP2012516377A5 (en) Catalyst supported on silica clad alumina support
Tian et al. Effects of textural parameters and noble metal loading on the catalytic activity of cryptomelane-type manganese oxides for formaldehyde oxidation
EP2247369B1 (en) Titanium dioxide catalyst structure for processes up to 1000 °c and the manufacturing thereof
WO2014070116A1 (en) Encapsulated Nanoparticles
Huang et al. Hydrothermal growth and characterization of length tunable porous iron vanadate one-dimensional nanostructures
JP4473450B2 (en) Nickel catalyst
JP4698343B2 (en) Catalyst for producing hydrocarbons from synthesis gas, method for producing the catalyst, and method for producing hydrocarbons from synthesis gas using the catalyst
Ran et al. Spatially confined tuning the interfacial synergistic catalysis in mesochannels toward selective catalytic reduction
JP5905593B2 (en) Method for producing homogeneous supported catalyst for carbon nanotube
JP6292159B2 (en) Exhaust gas purification catalyst
Kong et al. Preparation, characterization and catalytic performance of rod-like Ni–Nb–O catalysts for the oxidative dehydrogenation of ethane at low temperature
Wu et al. One-dimensional TiO2 nanomaterials: preparation and catalytic applications
WO2017068350A1 (en) Methods of making metal oxide catalysts
JP7043072B2 (en) Gold composite material, its manufacturing method and gold nanocatalyst
Zhang et al. Morphology-controlled fabrication of biomorphic alumina-based hierarchical LDH compounds for propane dehydrogenation reaction
KR20140109224A (en) catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same
Li et al. Thermally stable gold/alumina aerogel catalysts prepared by a simultaneous synthesis process for solvent-free aerobic benzyl alcohol oxidation
JP4773116B2 (en) Method for producing catalyst for producing hydrocarbons from synthesis gas, and method for producing hydrocarbons from synthesis gas using the catalyst

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504527

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763267

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763267

Country of ref document: EP

Kind code of ref document: A1