KR20090057262A - Nanocomposite particle and process of preparing the same - Google Patents

Nanocomposite particle and process of preparing the same Download PDF

Info

Publication number
KR20090057262A
KR20090057262A KR1020097005705A KR20097005705A KR20090057262A KR 20090057262 A KR20090057262 A KR 20090057262A KR 1020097005705 A KR1020097005705 A KR 1020097005705A KR 20097005705 A KR20097005705 A KR 20097005705A KR 20090057262 A KR20090057262 A KR 20090057262A
Authority
KR
South Korea
Prior art keywords
metal oxide
nanoparticles
titanium dioxide
nanocomposite particles
nanocomposite
Prior art date
Application number
KR1020097005705A
Other languages
Korean (ko)
Other versions
KR101166432B1 (en
Inventor
규오이 후
스티븐 엠. 어거스틴
Original Assignee
밀레니엄 인오가닉 케미칼, 인코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 밀레니엄 인오가닉 케미칼, 인코퍼레이션 filed Critical 밀레니엄 인오가닉 케미칼, 인코퍼레이션
Publication of KR20090057262A publication Critical patent/KR20090057262A/en
Application granted granted Critical
Publication of KR101166432B1 publication Critical patent/KR101166432B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • B01J35/23
    • B01J35/30
    • B01J35/40
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • C09C1/0084Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound containing titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1026Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20784Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2094Tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Abstract

A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.

Description

나노복합입자 및 그것의 제조방법{NANOCOMPOSITE PARTICLE AND PROCESS OF PREPARING THE SAME}NANOCOMPOSITE PARTICLE AND PROCESS OF PREPARING THE SAME

본 발명은 나노복합입자 및 그것의 제조방법에 관한 것이다. 나노복합입자는 촉매 및/또는 촉매 지지체로서 유용하다.The present invention relates to a nanocomposite particle and a method for producing the same. Nanocomposite particles are useful as catalysts and / or catalyst supports.

이산화티타튬은 산화 화학(oxidation chemistry), 수처리(hydrotreating), Claus 반응, 광촉매작용, 휘발성 유기화합물의 전산화 및 DeNOx 반응을 포함하는 많은 응용분야에서 촉매 및/또는 촉매 지지체로서 광범위하게 사용된다. 예를 들면, NOx의 선택적 촉매 환원을 위한 촉매 지지체로서 이산화 티타늄의 사용은 미국등록특허 제4929586호 및 제5137855호에 기재되어 있다. 비록 이산화티타늄(anatase, rutile, alc brookite)의 임의의 결정체 형상이 촉매 작용을 위해 유용할지라도, 전형적으로 아나타제(anatase)가 미국등록특허 제5330953호 및 제6576589호에서 기재한 것처럼 바람직할 수 있다. Titanium dioxide is widely used as a catalyst and / or catalyst support in many applications, including oxidation chemistry, hydrotreating, Claus reactions, photocatalysis, oxidization of volatile organic compounds and DeNOx reactions. For example, the use of titanium dioxide as a catalyst support for the selective catalytic reduction of NOx is described in US Pat. Nos. 4,958,586 and 5137855. Although any crystalline shape of titanium dioxide (anatase, rutile, alc brookite) is useful for catalysis, typically anatase may be preferred as described in US Pat. Nos. 5,309,353 and 6576589. .

불행하게도, 이산화티타늄은 DeNOx 같은 고온의 환경에서 사용될 때 열적으로 불안정하다. 고온에서, 이산화티타늄 나노입자는 유착되어 그것의 표면적과 공극률을 감소시키는 경향이 있다. 더욱이, 고온에서 아나타제(anatase)는 부분적으로 루틸(rutile) 형태로 변환될 수 있다.Unfortunately, titanium dioxide is thermally unstable when used in high temperature environments such as DeNOx. At high temperatures, titanium dioxide nanoparticles tend to coalesce to reduce their surface area and porosity. Moreover, at high temperatures, anatase can be partially converted to rutile form.

수 많은 대응책이 상술한 문제점을 해결하기 위해 사용된다. 하나의 대응책은 제 2 금속산화물을 첨가하는 것이다. 예를 들면, 미국등록특허 제5021392호는 이산화 지지체를 생산하기 위해 숙성된 히드로졸을 형성하는 티타늄과 지르코늄의 염의 공침으로부터 형성되는 이산화 지지체를 개시한다. 미국등록특허 제5021392호는 티타늄과 알루미나의 알콕사이드 혼합물의 공가수분해에 의해 혼합 산화물을 만드는 방법을 개시한다. 미국공개특허 제2003/0103889호는 실리카 졸과 이산화 티타늄을 결합시킴에 의해 마련되는 티타늄 이산화물-규토 복합체를 만들기 위한 방법을 기술한다. 제 2 금속산화물이 동질 단독 혼합 산화물을 형성하기 위해 이산화 티타늄 격자에 병합될 때, 이산화티타튬의 결정 격자와 촉매 특성은 영향을 받는다.Numerous countermeasures are used to solve the above-mentioned problems. One countermeasure is to add a second metal oxide. For example, US Pat. No. 5,139,322 discloses a dioxide support formed from the coprecipitation of a salt of titanium and zirconium to form a matured hydrosol to produce a dioxide support. U.S. Patent No. 50,139,22 discloses a process for making mixed oxides by cohydrolysis of an alkoxide mixture of titanium and alumina. U.S. Patent Publication No. 2003/0103889 describes a method for making a titanium dioxide-silicon composite prepared by combining a silica sol and titanium dioxide. When the second metal oxide is incorporated into the titanium dioxide lattice to form a homogeneous mixed oxide, the crystal lattice and catalytic properties of the titanium dioxide are affected.

열 불안정 문제를 해결하기 위한 또다른 접근은 이산화 티타늄에 코팅을 수행하는 것이다. 예를 들면, 미국등록특허 제5330953호는 알루미늄, 실리콘, 지르코늄, 란탄 및 제2인산염 피막으로 이루어진 제1코팅을 포함하는 이산화 티타늄 입자에 제2코팅을 형성하는 구성을 개시한다. 게다가, 미국등록특허 제5652192호는 이산화티타늄 나노 입자를 염으로 코팅하는 방법을 개시한다. 본 발명은 결정 형태에서 설페이트(sulfate)로 코팅된 이산화 티타늄 나노입자를 만들기 위해 이산화 티타늄과 설페이트의 전구체 혼합물에 대한 열수처리방법을 사용한다. 이 방법의 한가지 문제점은 코팅이 이산화 티타튬의 촉매 특성에 영향을 줄 수 있다는 것이다.Another approach to solving the thermal instability problem is to coat titanium dioxide. For example, U. S. Patent No. 5330953 discloses a configuration for forming a second coating on titanium dioxide particles comprising a first coating consisting of aluminum, silicon, zirconium, lanthanum and diphosphate coatings. In addition, US Pat. No. 5,921,92 discloses a method of coating titanium dioxide nanoparticles with a salt. The present invention uses a hydrothermal treatment process for precursor mixtures of titanium dioxide and sulfate to make titanium dioxide nanoparticles coated with sulfate in crystalline form. One problem with this method is that the coating can affect the catalytic properties of titanium dioxide.

종합적으로, 새로운 이산화 티타늄 나노복합입자 및 그것의 제조방법은 요구된다. 특히, 나노복합입자는 촉매 적용에 대해 열 안정성을 개선시킬 수 있다.Overall, new titanium dioxide nanocomposite particles and methods for their preparation are required. In particular, nanocomposite particles can improve thermal stability for catalyst applications.

본 발명은 나노복합입자 및 그것의 제조방법에 관한 것이다. 나노복합입자는 이산화티타늄 나노입자, 산화 금속 나노입자 및 표면 안정화제를 포함한다. 산화 금속 나노입자는 지르코늄 이산화물, 세륨 이산화물, 산화 하프늄, 산화 주석, 니오븀 산화물 및/또는 산화 탄탈이다. 표면 안정화제는 이산화 실리콘, 알루니늄 옥사이드, 인 펜톡사이드, 알루미늄 실리케이트 및/또는 알루미늄 포스페이트이다. 산화 금속 나노입자는 이산화티타늄 나노입자의 존재 하에 비정질 수화 금속 산화물을 열수 처리함에 의해 형성된다.The present invention relates to a nanocomposite particle and a method for producing the same. Nanocomposite particles include titanium dioxide nanoparticles, metal oxide nanoparticles, and surface stabilizers. Metal oxide nanoparticles are zirconium dioxide, cerium dioxide, hafnium oxide, tin oxide, niobium oxide and / or tantalum oxide. Surface stabilizers are silicon dioxide, aluminum oxide, phosphorous pentoxide, aluminum silicate and / or aluminum phosphate. Metal oxide nanoparticles are formed by hydrothermal treatment of an amorphous hydrated metal oxide in the presence of titanium dioxide nanoparticles.

나노복합입자는 이산화티타늄 나노입자, 가용성 금속 산화물 전구체 및 용매를 포함하는 슬러리(slurry)를 처음에 준비하고, 이산화티타늄 나노입자, 비정질 수화 금속 산화물 및 용매를 포함하는 슬러리를 형성하기 위해 가용성 금속 산화물 전구체를 침전시킨다. 슬러리는 비정질 수화 금속 산화물을 산화 금속 나노입자로 전환시키기 위해 열수 처리되고, 산화티타늄 나노입자와 산화 금속 나노입자를 포함하는 나노복합입자를 생산한다. 표면안정제는 열수처리 전 또는 열수처리 바로 후에 첨가된다.The nanocomposite particles initially prepare a slurry comprising titanium dioxide nanoparticles, soluble metal oxide precursors and a solvent, and form a soluble metal oxide to form a slurry comprising titanium dioxide nanoparticles, amorphous hydrated metal oxide and a solvent. Precipitate the precursor. The slurry is hydrothermally treated to convert the amorphous hydrated metal oxide into metal oxide nanoparticles, producing nanocomposite particles comprising titanium oxide nanoparticles and metal oxide nanoparticles. Surface stabilizers are added before or just after hydrothermal treatment.

대단하게도, 나노복합입자는 강화된 열 안정성을 나타내고 DeNOx 과정에 대한 유효한 촉매 지지체이다.Amazingly, nanocomposites exhibit enhanced thermal stability and are effective catalyst supports for the DeNOx process.

본 발명의 나노복합입자는 이산화 티타늄 나노입자, 적어도 하나 이상의 산 화 금속 나노 입자 및 표면 안정화제를 포함한다.Nanocomposite particles of the present invention include titanium dioxide nanoparticles, at least one metal oxide nanoparticles and a surface stabilizer.

본 발명의 이산화 티타늄 나노입자는 200nm 이하, 바람직하게는 1~100nm, 더욱 바람직하게는 2~20nm로 평균적인 결정 크기를 가진다. 이산화 티타늄 나노입자는 부르카이트(brookite), 아나타제(anatase) 또는 루틸 상(rutile phase)일 수 있다. 그러나, 이산화 티타늄 나노입자는 X-ray 회절 패턴에 의해 결정된 것처럼, 아나타제가 우세한 것이 바람직하다. 아나타제가 우세함에 의해, 그것은 나노입자가 적어도 95% 아나타제, 더욱 바람직하게는 98% 이상 아나타제인 것이 바람직하다는 것을 의미한다. 일반적으로 이산화 티타늄 나노입자의 특정 표면 영역은 약 10~300m2/g, 더욱 바람직하게는 약 20~200m2/g이다.The titanium dioxide nanoparticles of the present invention have an average crystal size of 200 nm or less, preferably 1 to 100 nm, more preferably 2 to 20 nm. Titanium dioxide nanoparticles can be brookite, anatase or rutile phase. However, it is preferable that the titanium dioxide nanoparticles predominate over anatase, as determined by the X-ray diffraction pattern. By the prevailing anatase, it means that the nanoparticles are preferably at least 95% anatase, more preferably at least 98% anatase. Generally, the specific surface area of the titanium dioxide nanoparticles is about 10-300 m 2 / g, more preferably about 20-200 m 2 / g.

적절한 이산화 티타늄 나노입자는 Millenium Chemicals(TIONA®G1) 또는 Kerr McGee(Tronox®Hydrate Paste)에서 구매할 수 있다. 또한, 이산화 티타늄 나노입자는 종래기술에 알려진 임의의 과정에 의해 제조될 수 있다. 이산화 티타늄 나노입자를 제조하는 과정은 종래기술에 잘 알려져 있다. 예를 들면, 미국등록특허 제4012338호에 상세히 설명되어 있다.Suitable titanium dioxide nanoparticles can be purchased from Millenium Chemicals (TIONA®G1) or Kerr McGee (Tronox®Hydrate Paste). In addition, titanium dioxide nanoparticles can be prepared by any process known in the art. Processes for producing titanium dioxide nanoparticles are well known in the art. For example, it is described in detail in US Patent No. 4012338.

나노복합입자는 적어도 하나 이상의 산화 금속 나노입자를 포함한다. 산화 금속 나노입자는 이산화 티타늄 나노입자의 열적 안정성을 개선시키는 것을 돕는다. 적당한 산화 금속 나노입자는 상승온도에서 낮은 열 팽창 계수, 개선된 기계적 강도 및 열적 안정성을 갖는다. 본 발명의 산화 금속 나노입자는 이산화 지르코늄 (zirconium dioxide), 이산화 세륨(cerium dioxide), 산화 하프늄(hafnuim oxide), 산화 주석(tin oxide), 산화 니오븀(niobium oxide), 산화 탄탈(tantalum oxide) 및 그것들의 혼합물의 나노입자를 포함한다. 바람직한 산화 금속 나노입자는 이산화 지르코늄 및 이산화 세륨이며, 가장 바람직하게는 이산화 지르코늄 나노입자이다. 본 발명의 산화 금속 나노입자는 200nm이하, 바람직하게는 1~50nm, 가장 바람직하게는 2~10nm인 평균 결정 크기를 가진다.Nanocomposite particles include at least one metal oxide nanoparticle. Metal oxide nanoparticles help to improve the thermal stability of the titanium dioxide nanoparticles. Suitable metal oxide nanoparticles have a low coefficient of thermal expansion, improved mechanical strength and thermal stability at elevated temperatures. The metal oxide nanoparticles of the present invention are zirconium dioxide, cerium dioxide, hafnuim oxide, tin oxide, niobium oxide, tantalum oxide and Nanoparticles of mixtures thereof. Preferred metal oxide nanoparticles are zirconium dioxide and cerium dioxide, most preferably zirconium dioxide nanoparticles. The metal oxide nanoparticles of the present invention have an average crystal size of 200 nm or less, preferably 1 to 50 nm, most preferably 2 to 10 nm.

또한, 나노복합입자는 표면 안정화제를 포함한다. 본 발명의 표면 안정화제는 이산화 실리콘, 산화 알루미늄, 오산화 인, 규산 알루미늄 및 인산 알루미늄을 포함한다. 더욱 바람직하게는, 표면 안정화제는 이산화 실리콘 또는 산화 알루미늄이다.In addition, the nanocomposite particles include a surface stabilizer. Surface stabilizers of the invention include silicon dioxide, aluminum oxide, phosphorus pentoxide, aluminum silicate and aluminum phosphate. More preferably, the surface stabilizer is silicon dioxide or aluminum oxide.

나노복합입자는 이산화티타늄 50~95중량%, 산화 금속 2~48중량% 및 표면 안정화제 2~20중량%를 포함하는 것이 바람직하다. 더욱 바람직하게는, 나노복합입자는 이산화티타늄 60~90중량%, 산화 금속 4~40중량% 및 표면 안정화제 4~15중량%를 포함한다.The nanocomposite particles preferably contain 50 to 95% by weight of titanium dioxide, 2 to 48% by weight of metal oxide, and 2 to 20% by weight of a surface stabilizer. More preferably, the nanocomposite particles comprise 60 to 90% by weight titanium dioxide, 4 to 40% by weight metal oxide and 4 to 15% by weight surface stabilizer.

본 발명의 나노복합입자는 개선된 열 안정성을 보여준다. 바람직하게는, 나노복합입자는 6시간 동안 800℃에서 타서 생석회가 된 후에 60m2/g보다 큰 표면적을 갖는다.The nanocomposite particles of the present invention show improved thermal stability. Preferably, the nanocomposite particles have a surface area of greater than 60 m 2 / g after burning at 800 ° C. for 6 hours to form quicklime.

나노복합입자의 산화 금속 나노입자는 이산화 티타늄 나노입자의 존재 하에 비정질 수화 산화 금속을 수열적으로 처리함에 의해 생성된다.Metal Oxides of Nanocomposite Particles Nanoparticles are produced by hydrothermal treatment of amorphous hydrated metal oxides in the presence of titanium dioxide nanoparticles.

나노복합입자를 제조하는 과정은 이산화 티타늄 나노입자, 적어도 하나 이상 의 가용성 산화 금속 전구체 및 용매를 포함하는 슬러리(slurry)를 형성하는 것으로 시작된다. 슬러리에 개별적인 성분을 첨가하는 순서는 결정된 것이 아니다. 예를 들면, 처음에 이산화 티타늄 나노입자가 용매에 첨가되고, 뒤따라 적어도 하나 이상의 가용성 산화 금속 전구체를 첨가할 수 있다. 선택적으로, 가용성 산화 금속 전구체를 용매에 첨가하고, 뒤따라 이산화 티타늄 나노입자를 첨가하거나, 또는 산화 금속 전구체 및 이산화 티타늄 나노입자를 동시에 용매에 첨가하거나, 또는 용매가 다른 두 성분에 첨가될 수 있다. 형성된 슬러리는 용매안에 용해된 산화 금속 전구체 및 고체 이산화 티타늄 나노입자를 포함한다. 바람직하게는, 슬러리는 동질이고 금속 산화 전구체는 완전히 용해되었다는 것을 확식하게 하기 위해 완전히 혼합될 것이다.The process of preparing nanocomposite particles begins with the formation of a slurry comprising titanium dioxide nanoparticles, at least one soluble metal oxide precursor and a solvent. The order of adding the individual components to the slurry is not determined. For example, titanium dioxide nanoparticles may be initially added to the solvent followed by addition of at least one soluble metal oxide precursor. Optionally, a soluble metal oxide precursor is added to the solvent followed by the addition of titanium dioxide nanoparticles, or the metal oxide precursor and titanium dioxide nanoparticles are added to the solvent simultaneously, or the solvent can be added to the other two components. The slurry formed contains a metal oxide precursor and solid titanium dioxide nanoparticles dissolved in a solvent. Preferably, the slurry is homogeneous and will be mixed thoroughly to ensure that the metal oxide precursor is completely dissolved.

바람직하게는, 슬러리는 슬러리의 전체 중량을 기반으로 이산화 티타늄 나노입자 3~30중량%, 더욱 바람직하게는 5~15중량%를 포함한다.Preferably, the slurry comprises 3-30% by weight of titanium dioxide nanoparticles, more preferably 5-15% by weight, based on the total weight of the slurry.

슬러리는 적어도 하나 이상의 이산화 지르코늄, 이산화 세륨, 산화 하프늄, 산화 주석, 산화 니오븀 또는 산화탄탈의 산화 금속 전구체를 포함하고, 산화 금속 전구체는 용매로부터 침전될 때 산화 금속을 형성하는 금속-함유 성분(지르코늄, 세륨, 알루미늄,하프늄,주석 및/또는 니오븀)이다. 비록 본 발명의 과정이 특정한 산화 금속 전구체의 선택에 의해 제한되는 것이 아닐지라도, 본 발명에 유용한 적합한 금속 성분은 지르코늄, 세륨, 하프늄, 주석, 니오븀 및 탄탈의 할라이드 금속, 금속 옥시할라이드, 금속 알록사이트(metal alkoxides), 아세테이드 금속(metal acetates) 및 아세틸 아세톤화 금속을 포함하지만 여기에 한정되는 것은 아니다. 예를 들면, 테트라클로라이드(tetrachloride) 지르코늄, 옥시트리클로라이드(oxitrichloride) 탄탈, 아세트산(acetate) 세륨, 아세틸아세토네이트(acetylacetonate) 니오븀 및 테트라에톡시드(tetraethoxide) 주석이 사용될 수 있다.The slurry comprises at least one metal oxide precursor of zirconium dioxide, cerium dioxide, hafnium oxide, tin oxide, niobium oxide or tantalum oxide, the metal oxide precursor (zirconium) forming a metal oxide when precipitated from a solvent , Cerium, aluminum, hafnium, tin and / or niobium). Although the process of the present invention is not limited by the choice of a particular metal oxide precursor, suitable metal components useful in the present invention include halide metals, metal oxyhalides, metal alkoxides of zirconium, cerium, hafnium, tin, niobium and tantalum. metal alkoxides, metal acetates, and acetyl acetonated metals, but are not limited thereto. For example, tetrachloride zirconium, oxitrichloride tantalum, acetic cerium acetate, acetylacetonate niobium and tetraethoxide tin can be used.

용매는 산화 금속 전구체를 용해시킬 수 있는 임의의 액체이다. 바람직하게는, 용매는 물이다. 그러나, 고유전율을 가진 비수성 양자성 용매(nonaqueous protic solvents) 또는 적절하다. 바라직한 비수성 양자성 용매는 알콜이다. 바람직한 알콜은 메탄올, 에탄올,이소프로판올, 터트-부탄올(tert-butanol), 및 그것의 혼합물과 같은 낮은 지방성의 C1-C4알콜을 포함한다. 물과 하나 또는 그 이상의 비수성 양자성 용매의 혼합물 또한 사용될 수 있다.The solvent is any liquid capable of dissolving the metal oxide precursor. Preferably, the solvent is water. However, nonaqueous protic solvents with high dielectric constant or are suitable. The preferred non-aqueous protic solvent is an alcohol. Preferred alcohols include low aliphatic C 1 -C 4 alcohols such as methanol, ethanol, isopropanol, tert-butanol, and mixtures thereof. Mixtures of water and one or more non-aqueous protic solvents may also be used.

슬러리가 형성된 후에, 가용성 산화 금속 전구체는 비정질 수화 금속 산화물을 형성하기 위해 슬러리로부터 침전된다. 용액으로부터 비정질 수화 금속 산화물을 침전시키는 임의의 적절한 방법은 본 발명의 과정에 사용될 수 있다. 예를 들면, PH 이동, 용매 이동, 불용해성 염류 또는 수산화물을 형성하기 위한 이온 교환, 응축 반응, 및 열 가수분해 기술은 사용될 수 있다. 바람직하게는, 슬러리의 PH는 슬러리로부터 금속 산화물을 침전시킬 수 있는 산 또는 염기를 첨가함에 의해 PH7~ PH10까지 조절된다. PH조절 물질은 나노복합입자의 하소 처리에 의한 후 처리 동안 분해되는 염기 또는 산이다. 적절한 염기는 9.0 또는 그 이상의 pKa를 가진 아민, 암모니아 및 임의의 유기적인 염기를 포함한다. 암모니아가 가장 바람직하다. 또한, 임의의 무기산 또는 유기산이 사용될 수 있다. 바람직한 산은 질산 사, 황산 및 염산을 포함한다. 질산이 가장 바람직하다.After the slurry is formed, the soluble metal oxide precursor is precipitated from the slurry to form an amorphous hydrated metal oxide. Any suitable method of precipitating amorphous hydrated metal oxide from solution may be used in the process of the present invention. For example, ion exchange, condensation reactions, and thermal hydrolysis techniques to form PH transfer, solvent transfer, insoluble salts or hydroxides can be used. Preferably, the pH of the slurry is adjusted from PH7 to PH10 by adding an acid or base capable of precipitating metal oxides from the slurry. PH modulators are bases or acids that degrade during post-treatment by calcination of the nanocomposite particles. Suitable bases include amines having a pK a of 9.0 or more, ammonia and any organic base. Most preferred is ammonia. In addition, any inorganic or organic acid may be used. Preferred acids include nitric acid sand, sulfuric acid and hydrochloric acid. Nitric acid is most preferred.

침전 이후에, 슬러리는 이산화 티타늄 나노입자,비정질 수화 금속 산화물 및 용매를 포함한다. 비정질 수화 금속 산화물은 이산화 티타늄 나노입자, 슬러리에 있는 프리-플로팅(free-floating) 또는 양자의 혼합물의 표면에 침전될 수 있다.After precipitation, the slurry contains titanium dioxide nanoparticles, amorphous hydrated metal oxide and a solvent. Amorphous hydrated metal oxide may precipitate on the surface of titanium dioxide nanoparticles, free-floating in a slurry or a mixture of both.

침전 단계 이후에, 슬러리는 비정질 수화 금속 산화물을 산화 금속 나노입자로 변환하고, 산화 티타늄 나노입자 및 산화 금속 나노입자를 나노복합입자를 생산하기 위해서 열수 처리된다. 열수 처리는 고온, 바람직하게는 높은 압력에서 슬러리를 가열시키는 것이다. 바람직하게는, 슬러리는 60℃~250℃의 온도와 20~500 psig 압력에서 가열된다. 더욱 바람직하게는, 슬러리는 80℃~130℃의 온도와 20~200 psig 압력에서 가열된다.After the precipitation step, the slurry is hydrothermally treated to convert the amorphous hydrated metal oxide to metal oxide nanoparticles, and to produce the titanium oxide nanoparticles and the metal oxide nanoparticles to nanocomposite particles. Hydrothermal treatment is the heating of a slurry at high temperatures, preferably at high pressures. Preferably, the slurry is heated at a temperature of 60 ° C.-250 ° C. and 20-500 psig pressure. More preferably, the slurry is heated at a temperature of 80 ° C-130 ° C and a pressure of 20-200 psig.

바람직하게는, 슬러리는 3~24시간의 시간 주기로 열수 처리되지만, 시간은 결정된 것이 아니다. 온도, 압력 및 열수 처리 시간은 산화 금속 나노입자의 결정핵 생성 및 성장을 위해 충분하여야 한다. 열수 처리의 한 장점은 이산화 티타늄 나노입자의 표면 성질 및 결정 구조에 임의의 영향을 최소화하는 상대적으로 온화한 반응 조건 하에서 산화 금속 나노입자를 형성한다는 것이다.Preferably, the slurry is hydrothermally treated at a time period of 3 to 24 hours, but the time is not determined. Temperature, pressure and hydrothermal treatment time should be sufficient for nucleation and growth of metal oxide nanoparticles. One advantage of hydrothermal treatment is the formation of metal oxide nanoparticles under relatively mild reaction conditions that minimize any influence on the surface properties and crystal structure of the titanium dioxide nanoparticles.

표면 안정화제는 열수 처리 전 또는 바로 후에 첨가된다. 일 실시예로, 표면 안정화제는 열수 처리에 앞선 임의의 시점에 슬러리에 첨가될 수 있다. 예를 들면, 표면 안정화제는 비결정성 수화 산화 금속을 침전시키기 전 또는 비결정성 수화 산솨 금속을 침전시킨 후에 슬러리에 첨가될 수 있다. 슬러리는 상술한 방법에 의해 제조될 수 있다. 선택적으로, 표면 안정화제는 열수 처리 후에 바로 첨가될 수 있다. 즉, 용매에서 나노복합입자 생성물을 분리하기 전에 또는 선택적 하소 공정 전에 첨가될 수 있다. 바람직하게는, 표면 안정화제는 슬러리를 완전히 혼합한 후 첨가될 수 있다. 일반적으로, 슬러리는 표면 안정화제 첨가 전에 1분 내지 3시간 동안 혼합된다. 표면 안정화제의 적합한 성분은 이산화 실리콘 콜로이드, 할로젠화 또는 알콕사이드(alkoxides) 실리콘 및 알루미늄 및 인산 알루미늄을 포함하는 비정질 이산화 실리콘을 포함한다.Surface stabilizers are added before or immediately after hydrothermal treatment. In one embodiment, the surface stabilizer may be added to the slurry at any point prior to hydrothermal treatment. For example, the surface stabilizer may be added to the slurry prior to precipitating the amorphous hydrated metal oxide or after precipitating the amorphous hydrated metal oxide. The slurry can be prepared by the method described above. Optionally, the surface stabilizer can be added immediately after hydrothermal treatment. That is, prior to separation of the nanocomposite product from the solvent or prior to the selective calcination process. Preferably, the surface stabilizer may be added after thoroughly mixing the slurry. Generally, the slurry is mixed for 1 minute to 3 hours before the surface stabilizer is added. Suitable components of the surface stabilizer include silicon dioxide colloids, halogenated or alkoxides silicon and amorphous silicon dioxide including aluminum and aluminum phosphate.

열수 처리 후에, 나노복합입자 생성물은 임의의 수단(예를 들면, 필터, 디켄테이션, 원심분리 등)에 의해 용매로부터 분리되고, 물로 세정 처리되고, 건조되는 것이 바람직하다. 바람직하게는, 나노복합입자는 상승되는 온도에서 가열됨에 의해 하소 처리된다. 하소처리(calcination)는 질소, 아르곤, 네온, 헬륨 또는 그것들의 혼합물 같이 산소가 없는 비활성 가스 또는 산소(예를 들면, 공기)의 존재하에 수행될 수 있다. 선택적으로, 하소처리는 일산화탄소와 같은 환원 가스의 존재하에서도 수행될 수 있다. 하소처리는 적어도 250℃의 온도에서 수행되는 것이 바람직하다. 더욱 바람직하게는, 하소처리 온도는 300℃~1000℃인 것이 바람직하다. 일반적으로, 약 30분에서 24시간의 하소처리 시간은 충분할 것이다.After hydrothermal treatment, the nanocomposite product is preferably separated from the solvent by any means (eg, filter, decantation, centrifugation, etc.), washed with water and dried. Preferably, the nanocomposite particles are calcined by heating at elevated temperatures. Calcination can be carried out in the presence of oxygen-free inert gas or oxygen (eg air) such as nitrogen, argon, neon, helium or mixtures thereof. Alternatively, the calcination can be carried out in the presence of a reducing gas such as carbon monoxide. Calcination is preferably carried out at a temperature of at least 250 ° C. More preferably, the calcining treatment temperature is preferably 300 ° C to 1000 ° C. Generally, a calcination time of about 30 minutes to 24 hours will be sufficient.

본 발명은 나노복합입자를 포함하는 촉매를 포함한다. 촉매는 나노복합입자 및 적어도 하나 이상의 금속 성분을 포함한다. 금속 성분은 플라티늄, 금, 은, 팔라듐, 구리, 텅스텐, 몰리브덴, 바나듐, 철, 로듐, 니켈, 망간, 크롬, 카바이트 및 루테늄을 포함하는 하나 또 그 이상의 금속을 포함한다. 금속 성분은 금속을 포함 하는 금속 자체 또는 임의의 화합물일 수 있다. 바람직하게는, 금속성분은 산화금속이다.The present invention includes a catalyst comprising nanocomposite particles. The catalyst comprises nanocomposite particles and at least one metal component. Metallic components include one or more metals including platinum, gold, silver, palladium, copper, tungsten, molybdenum, vanadium, iron, rhodium, nickel, manganese, chromium, carbide and ruthenium. The metal component may be the metal itself or any compound comprising the metal. Preferably, the metal component is a metal oxide.

일반적으로, 촉매에 존재하는 금속의 양은 촉매의 총 무게를 기반으로 0.001~30중량%, 바람직하게는 0.005~20중량%, 특히 0.01~10중량%의 범위에 있을 것이다.In general, the amount of metal present in the catalyst will be in the range of 0.001-30% by weight, preferably 0.005-20% by weight, in particular 0.01-10% by weight, based on the total weight of the catalyst.

촉매는 어떤 적합한 방법에 의해 준비될 수 있다. 일 실시예로, 금속 성분은 나노복합입자 그 자체의 준비 동안 첨가된다. 예를 들면, 금속 성분은 열수 처리 전 또는 후에 슬러리에 첨가될 수 있고, 상술한 방식과 같은 방식으로 처리될 수 있다. 선택적으로, 금속 성분은 나노복합입자에 바로 침적될 수 있다. 예를 들면, 금속 성분은 포화 작용, 흡착 작용, 침전 작용 기타 등등에 의해 지지될 수 있다. 적합한 금속 성분은 텅스텐 에톡사이드 같은 금속 알콕사이드, 텅스텐 클로라이드 같은 금속 할라이드, 텅스텐 옥시클로라이드 같은 금속 옥시할라이드, 텅스텐 산과 같은 금속 산(metallic acids), 텅스텐 암모늄, 바나듐 펜톡사이드, 몰리프텐 옥사이드, 쿠퍼 모녹사이드 같은 산화 금속 외에 금속 그 자체를 포함한다.The catalyst can be prepared by any suitable method. In one embodiment, the metal component is added during the preparation of the nanocomposite particles themselves. For example, the metal component may be added to the slurry before or after the hydrothermal treatment and treated in the same manner as described above. Optionally, the metal component can be deposited directly on the nanocomposite particles. For example, the metal component may be supported by saturation, adsorption, precipitation, and the like. Suitable metal components include metal alkoxides such as tungsten ethoxide, metal halides such as tungsten chloride, metal oxyhalides such as tungsten oxychloride, metallic acids such as tungstic acid, tungsten ammonium, vanadium pentoxide, molybten oxide, cooper monoxide In addition to the same metal oxide, the metal itself is included.

바람직한 촉매는 삼산화 텅스텐 및/또는 오산화 바나듐을 포함한다. 바람직하게는, 촉매는 오산화 바나듐 0.1~10중량% 및 삼산화 텅스텐 4~20중량%, 더욱 바람직하게는 오산화 바나듐 0.2~7중량% 및 삼산화 텅스텐 4~16중량%, 더욱 바람직하게는 오산화 바나듐 0.2~5중량% 및 삼산화 텅스텐 5~12중량%을 포함한다.Preferred catalysts include tungsten trioxide and / or vanadium pentoxide. Preferably, the catalyst is 0.1 to 10% by weight vanadium pentoxide and 4 to 20% by weight tungsten trioxide, more preferably 0.2 to 7% by weight vanadium pentoxide and 4 to 16% by weight tungsten trioxide, more preferably 0.2 to vanadium pentoxide 5% by weight and 5-12% by weight of tungsten trioxide.

나노복합입자는 금속 성분의 첨가 전 또는 후에 하소처리될 수 있다. 나노복합입자가 하소처리되는 온도는 그것이 의도되는 최종 용도에 의존한다. 바람직하게 는, 하소처리는 400℃~900℃의 온도, 더욱 바람직하게는 650℃~750℃에서 수행된다.Nanocomposite particles may be calcined before or after addition of the metal component. The temperature at which the nanocomposite particles are calcined depends on the end use for which they are intended. Preferably, the calcination is carried out at a temperature of 400 ° C to 900 ° C, more preferably at 650 ° C to 750 ° C.

촉매는 DeNOx 적용에서 특히 유용하다. DeNOx 적용은 폐기물 스트림에서 산화질소의 양을 줄이기 위해 촉매를 가지고 산화질소를 포함하는 폐기물 스트림에 접촉하는 것을 포함한다. 그런 적용은 종래 기술에 잘 알려져 있다. 이러한 과정에서, 산화 질소는 질소를 가진 촉매의 존재하에서 암모니아(또는 폐기물 가스에 존재하는 미연 탄화수소와 같은 다른 환원제)에 의해 감소된다. 예를 들면, 미국등록특허 제3279884호 및 제4085193호를 보면 상술한 작용이 상세히 기재되어 있다.Catalysts are particularly useful in DeNOx applications. DeNOx applications include contacting a waste stream containing nitric oxide with a catalyst to reduce the amount of nitric oxide in the waste stream. Such applications are well known in the art. In this process, the nitrogen oxides are reduced by ammonia (or other reducing agent such as unburned hydrocarbons present in the waste gas) in the presence of a catalyst with nitrogen. For example, U.S. Patent Nos. 3279884 and 4085193 describe the above-described actions in detail.

후술할 실시예는 단지 본 발명을 예시하는 것이다. 당해 기술분야의 당업자는 청구항의 범위와 발명의 사상에 포함되는 다른 변형 실시예를 인식할 수 있다.The examples to be described below merely illustrate the invention. Those skilled in the art will recognize other modifications that fall within the scope of the claims and the spirit of the invention.

예 1 : 나노복합재료 준비Example 1: Nanocomposite Preparation

나노복합재료 1ANanocomposite 1A

이산화 티타늄 나노입자 제조: TiSO4용액(2000g,7.6wt%TiO2)는 3-L 리액터에 주입되고, 용매의 PH는 실온에 있는 일정 교반 하에 수산화 암모늄 용매(물 안에 29% NH3, 알르리치(Aldrich)의 제품)를 가지고 약 1로 조정한다. 요소(550g)는 용액에 용해되고, 온도는 3시간 동안 98℃로 상승한다. 냉각 후에, 이산화 티타늄 나노입자는 필터에 의해 분리되고, 물에 의해 세정처리된다. 여과된 티타늄 나노입자는 2-L 슬러리를 형성하기 위해 물에서 다시 흩어지게 한다.Preparation of Titanium Dioxide Nanoparticles: TiSO 4 solution (2000 g, 7.6 wt% TiO 2 ) is injected into a 3-L reactor and the pH of the solvent is ammonium hydroxide solvent (29% NH 3 in water, allrich (Aldrich) and adjust to about 1. Urea 550g is dissolved in solution and the temperature rises to 98 ° C. for 3 hours. After cooling, the titanium dioxide nanoparticles are separated by a filter and washed with water. The filtered titanium nanoparticles are dispersed again in water to form a 2-L slurry.

나노복합재료 제조 : 2-L 슬러리의 반은 2-L 비커에 넣어지고, Zr0Cl2·8H2O(50g)은 슬러리에 용해된다. 강한 교반하에, 수산화 암모늄 용매(물 안에 29% NH3)는 슬러리의 PH가 약 10이되고 ZrO2가 침전될 때까지 느리게 넣어준다. 그리고 훈증된 SiO2(5g)가 슬러리에 추가되고, 슬러리는 2-L 교반된 열수 리액터에 넣어지고, 12시간 동안 90℃로 열수 처리된다. 산출물은 냉각되고, 필터에 의해 여과되고 물에 의해 세정처리된다. 세정된 덩어리는 100℃로 12시간 동안 오븐에서 건조되고, 나노복합재료 1A를 생성하기 위해 6시간동안 800℃로 노(furnace)에서 하소 처리된다.Nanocomposite Preparation: Half of the 2-L slurry is placed in a 2-L beaker and Zr0Cl 2 · 8H 2 O (50 g) is dissolved in the slurry. Under vigorous stirring, the ammonium hydroxide solvent (29% NH 3 in water) is added slowly until the slurry has a pH of about 10 and ZrO 2 precipitates. And Fumed SiO 2 (5 g) is added to the slurry, and the slurry is placed in a 2-L stirred hydrothermal reactor and hydrothermally treated at 90 ° C. for 12 hours. The output is cooled, filtered by a filter and washed with water. The washed mass is dried in an oven at 100 ° C. for 12 hours and calcined in a furnace at 800 ° C. for 6 hours to produce nanocomposite 1A.

나보복합재료 1B-1H : 상술한 나노복합재료 1A의 나노복합입자 제조과정이 상업적인 TiO2 나노입자를 사용되는 것을 제외하고는 동일하게 진행된다. 입자 1B,1C, 및 1D, 1E 및 1F는 표면 안정화제로 훈증된 SiO2를 사용하고, 입자 1G는 표면 안정화제로서 SiO2졸을 사용하고, 입자 1H는 표면 안정화제로서 인산 알루미늄을 사용한다. TiO2 ZrO2 및 표면 안정화제의 양은 가변 합성물의 나노복합재료 1B, 1C, 1D, 1E, 1F, 1G를 제공하기 위해 변화한다. Nabo composite material 1B-1H : The nanocomposite particle manufacturing process of the nanocomposite material 1A described above is performed in the same manner except that commercial TiO 2 nanoparticles are used. Particles 1B, 1C, and 1D, 1E, and 1F use SiO 2 fumigation as the surface stabilizer, particle 1G uses SiO 2 sol as the surface stabilizer, and particle 1H uses aluminum phosphate as the surface stabilizer. The amount of TiO 2 ZrO 2 and surface stabilizer is varied to provide nanocomposites 1B, 1C, 1D, 1E, 1F, 1G of the variable composite.

비교 나노복합 재료 1I-1J : 나노복합 재료 1B의 나노복합입자 제조과정이 ZrO2가 나노복합재료 1I에 대한 사용이 생략되고, SiO2가 나노복합재료 1J에 대한 사용이 생략되는 것을 제외하고는 동일하게 진행된다. Comparative nanocomposite material 1I-1J : The process for preparing nanocomposite particles of nanocomposite material 1B is omitted except for the use of ZrO divalent nanocomposite 1I, and the use of SiO 2 for nanocomposite 1J is omitted. The same goes for.

최종적 나노복합재료(이어서 800℃에서 가수처리됨)는 성분, 표면적, 기공부피 및 TiO2 및 ZrO2 결정체 크기 측정을 위해 분석된다.The final nanocomposite (which is then hydrotreated at 800 ° C.) is analyzed for component, surface area, pore volume and TiO 2 and ZrO 2 crystal size measurements.

열수 처리를 따르는 산화 금속 나노입자의 형성은 X-레이 회절 테스팅에 의해 확인되었다. 열수 처리에 앞서, 이산화 티타늄 나노입자는 X-레이 회절에 의해 탐지되었고, 이어지는 열수 처리에서, 제2 결정 상은 산화 금속 나노입자에 상응하여 탐지된다.Formation of metal oxide nanoparticles following hydrothermal treatment was confirmed by X-ray diffraction testing. Prior to hydrothermal treatment, titanium dioxide nanoparticles were detected by X-ray diffraction, and in the subsequent hydrothermal treatment, the second crystalline phase was detected corresponding to the metal oxide nanoparticles.

예 2 : DeNOx 촉매 준비Example 2: DeNOx Catalyst Preparation

촉매는 미국출원번호 제10/968706호에 개시된 과정에 따라 준비된다. 나노복합재료(75g)는 탈이온수(175mL)에서 슬러리화되고, 진한 황산은 PH가 0이될 때가지 첨가된다. 암모늄 파라텅스테이트 용액(50℃에서 혼합에 의해 생성된 150mL의 탈이온수에서 9.38g AMT)은 나노복합 슬러리에 첨가되고, 1시간 동안 교반된다. 가루가 여과되고, 110℃에서 건조되고, 6시간 동안 500℃에서 하소처리된다. 가루(10g)는 산화 바나듐 용액(용해될 때까지 60℃에서 교반에 의해 형성된 20mL의 탈이온수에 0.185g MEA(monoethanolamine) 및 0.092g V2O5)에 첨가되고, 10분 동안 교반된다. 용매가 진공에서 증발되고 고체가 110℃에서 건조되고,그리고 6시간 동안 600℃에서 하소처리된다. 촉매는 대략 10wt% WO3 및 0.9wt% V2O5를 포함한다.The catalyst is prepared according to the procedure disclosed in US Pat. No. 10/968706. The nanocomposite (75 g) is slurried in deionized water (175 mL) and concentrated sulfuric acid is added until the pH is zero. Ammonium paratungstate solution (9.38 g AMT in 150 mL deionized water produced by mixing at 50 ° C.) is added to the nanocomposite slurry and stirred for 1 hour. The powder is filtered, dried at 110 ° C. and calcined at 500 ° C. for 6 hours. The powder (10 g) is added to 0.185 g MEA (monoethanolamine) and 0.092 g V 2 O 5 ) in 20 mL of deionized water formed by stirring at 60 ° C. until dissolved, and stirred for 10 minutes. The solvent is evaporated in vacuo and the solid is dried at 110 ° C. and calcined at 600 ° C. for 6 hours. The catalyst comprises approximately 10 wt% WO 3 and 0.9 wt% V 2 O 5 .

나노복합재료 1A, 1B, 1C,1D, 1E, 1F, 1G, 1H, 1I, 1J는 촉매 2A 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J를 형성하기 위해 사용된다.Nanocomposites 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J are used to form catalysts 2A 2B, 2C, 2D, 2E, 2F, 2G, 2H, 2I, 2J.

예 3 : DeNOx 테스트Example 3: DeNOx Test

촉매는 공간속도가 80000/hr인 300ppm NO, 360ppm NH3, 3%O2, 10%H2O 및 균형적인 N2로 이루어진 성분을 가진 종래의 플러그 유동 반응기 안에 놓여진다. NH3 촉매 환원은 270℃ 및 320℃에서 수행된다.The catalyst is placed in a conventional plug flow reactor with components consisting of 300 ppm NO, 360 ppm NH3, 3% O2, 10% H2O and balanced N2 with a space velocity of 80000 / hr. NH3 catalytic reduction is performed at 270 ° C and 320 ° C.

결과는 표 2에 도시된다. 결과는 NO 변환도(Conversion) 및 활성(Activity)로 기록된다. 활성도는 k*tau로서 표현되고 k*tau는 접촉 시간에 의해 곱셈처리된 활성도 상수를 나타낸다. 암모니아 선택적 촉매 환원은 NO에 관해서 1차이며, NH3에 관해서 0차로서, 활성은 변환도에서 k*tau = -ln(1-conversion)로 계산되며, 여기서 변환도는 몇분의 1로 나타난다.The results are shown in Table 2. The results are recorded as NO Conversion and Activity. Activity is expressed as k * tau and tau k * denotes a multiplication of processing activity by a constant contact time. The ammonia selective catalytic reduction is first order with respect to NO and zero order with respect to NH 3 , and the activity is calculated as k * tau = -ln (1-conversion) in the degree of conversion, where the degree of conversion is expressed as a few minutes.

표 1 : 나노복합입자에 TiO2, ZrO2 및 표면 안정화제의 양Table 1: Amount of TiO 2 , ZrO 2 and Surface Stabilizers in Nanocomposite Particles

Figure 112009016804024-PCT00001
Figure 112009016804024-PCT00001

표 2 :DeNOx 결과                                  Table 2: DeNOx Results

Figure 112009016804024-PCT00002
Figure 112009016804024-PCT00002

Claims (20)

(a) 이산화 티타늄 나노입자;(a) titanium dioxide nanoparticles; (b) 이산화 지르코늄, 이산화 세륨, 산화 하프늄, 산화 주석, 산화 니오븀 및 산화 탄탈로 이루어진 그룹으로부터 선택된 산화금속 나노입자; 및(b) metal oxide nanoparticles selected from the group consisting of zirconium dioxide, cerium dioxide, hafnium oxide, tin oxide, niobium oxide and tantalum oxide; And (c) 이산화 실리콘, 산화 알루미늄, 오산화 인, 알루미늄 실리케이트 및 알루미늄 인산염으로 이루어진 그룹으로부터 선택된 표면 안정화제;를 포함하며,(c) a surface stabilizer selected from the group consisting of silicon dioxide, aluminum oxide, phosphorus pentoxide, aluminum silicate and aluminum phosphate, 상기 산화금속 나노입자는 상기 이산화 티타늄 나노입자의 존재 하에 비결정성 수화 금속 산화물을 열수 처리함에 의해 형성되는 나노복합입자.The metal oxide nanoparticles are nanocomposite particles formed by hydrothermal treatment of an amorphous hydrated metal oxide in the presence of the titanium dioxide nanoparticles. 제 1 항에 있어서,The method of claim 1, 상기 이산화 티타늄 나노입자는 대부분 아나타제인 것인 나노복합입자,The titanium dioxide nanoparticles are nanocomposite particles, which are mostly anatase, 제 1 항에 있어서,The method of claim 1, 상기 산화 금속 나노입자는 이산화 지르코늄인 것인 나노복합입자.The metal oxide nanoparticles are zirconium dioxide nanocomposite particles. 제 1 항에 있어서,The method of claim 1, 50~95wt% 이산화 티타늄 나노입자, 2~48wt% 산화 금속 나노입자 및 2~20wt% 표면 안정화제를 포함하는 나노복합입자.A nanocomposite particle comprising 50-95 wt% titanium dioxide nanoparticles, 2-48 wt% metal oxide nanoparticles, and 2-20 wt% surface stabilizer. 제 1 항에 있어서,The method of claim 1, 6시간 동안 800℃에서 하소처리 된 후에 60m2/g 이상의 표면적을 가지는 나노복합입자.Nanocomposite particles having a surface area of 60 m 2 / g or more after calcination at 800 ° C. for 6 hours. 플래티늄, 금, 은, 팔라듐, 구리, 텅스텐, 몰리브덴, 바나듐, 철, 로듐, 니켈, 망간, 크롬, 코발트 및 루테늄으로 이루어진 그룹으로부터 선택된 금속을 포함하는 적어도 하나 이상의 금속 성분 및 제1항의 나노복합입자를 포함하는 촉매.The nanocomposite of claim 1 and at least one metal component comprising a metal selected from the group consisting of platinum, gold, silver, palladium, copper, tungsten, molybdenum, vanadium, iron, rhodium, nickel, manganese, chromium, cobalt and ruthenium Catalyst comprising a. 제 6 항에 있어서,The method of claim 6, 상기 금속 성분은 삼산화 텅스텐 및 오산화 바나듐으로 이루어진 그룹으로부터 선택되는 것인 촉매.Said metal component is selected from the group consisting of tungsten trioxide and vanadium pentoxide. 제 7 항에 있어서,The method of claim 7, wherein 상기 오산화 바나듐은 0.1~10wt%를 포함하며, 상기 삼산화 텅스텐은 4~20wt%를 포함하는 촉매.The vanadium pentoxide is 0.1 to 10wt%, the tungsten trioxide is a catalyst containing 4 to 20wt%. 폐기물 스트림에서 산화 질소의 양을 줄이기 위해 산화 질소를 포함하는 폐기물 스트림에 제7항의 촉매를 접촉시키는 것을 포함하는 방법.A method comprising contacting the catalyst of claim 7 to a waste stream comprising nitric oxide to reduce the amount of nitric oxide in the waste stream. (a) 이산화 티타늄 나노입자, 적어도 하나 이상의 가용성 금속 산화물 전구체 및 용매를 포함하는 슬러리를 형성하는 단계;(a) forming a slurry comprising titanium dioxide nanoparticles, at least one soluble metal oxide precursor and a solvent; (b) 이산화 티타늄 나노입자, 비결정성 수화 금속 산화물 및 용매를 포함하는 슬러리를 형성하기 위해 가용성 금속 산화물 전구체를 침전시키는 단계;(b) precipitating the soluble metal oxide precursor to form a slurry comprising titanium dioxide nanoparticles, amorphous hydrated metal oxide and a solvent; (c) 비결정성 수화 금속 산화물을 산화 금속 나노입자로 변환하기 위해 상기 (b)단계의 슬러리를 열수 처리하는 단계; 및(c) hydrothermally treating the slurry of step (b) to convert the amorphous hydrated metal oxide into metal oxide nanoparticles; And (d) 선택적으로, 나노복합입자를 하소 처리하는 단계;를 포함하며,(d) optionally, calcining the nanocomposite particles; 표면 안정화제는 열수 처리 전 또는 열수 처리 바로 후에 첨가되는 나노복합입자의 제조방법.Surface stabilizer is a method for producing nanocomposite particles added before or immediately after hydrothermal treatment. 제 10 항에 있어서,The method of claim 10, 상기 열수 처리는 온도 60~250℃, 압력 20~500 psig에서 수행되는 나노복합입자의 제조방법.The hydrothermal treatment is a method for producing nanocomposite particles carried out at a temperature of 60 ~ 250 ℃, pressure 20 ~ 500 psig. 제 10 항에 있어서,The method of claim 10, 상기 이산화 티타늄 나노입자는 대부분 아나타제인 것인 나노복합입자의 제조방법.The titanium dioxide nanoparticles are mostly anatase method for producing nanocomposite particles. 제 10 항에 있어서,The method of claim 10, 상기 가용성 금속 산화물 전구체는 지르코늄, 세륨, 알루미늄, 하프늄, 주석 및 니오늄으로 이루어진 그룹으로부터 선택되는 것인 나노복합입자의 제조방법.The soluble metal oxide precursor is selected from the group consisting of zirconium, cerium, aluminum, hafnium, tin and nionium. 제 10 항에 있어서,The method of claim 10, 상기 표면 안정화제는 비결정성 이산화 실리콘, 실리콘 및 알루미늄의 할라이드 또는 알콕사이드 및 인산 알루미늄으로 이루어진 그룹으로부터 선택되는 것인 나노복합입자의 제조방법.The surface stabilizer is selected from the group consisting of amorphous silicon dioxide, halides or alkoxides of silicon and aluminum and aluminum phosphate. 제 10 항에 있어서,The method of claim 10, 상기 나노복합입자는 이산화 티타늄 나노입자 50~95wt%, 산화 금속 나노입자 2~48wt% 및 표면 안정화제 2~20wt%를 포함하는 나노복합입자의 제조방법.The nanocomposite particles are 50 to 95wt% of titanium dioxide nanoparticles, 2 to 48wt% metal oxide nanoparticles and 2 to 20wt% surface stabilizer. 제 10 항에 있어서,The method of claim 10, 플라티늄, 금, 은, 팔라듐, 텅스텐, 바나듐, 몰리브덴 및 구리로 이루어진 그룹으로부터 선택된 금속을 포함하는 적어도 하나 이상의 금속 성분을 첨가하는 단계;를 더 포함하는 나노복합입자의 제조방법.Adding at least one metal component comprising a metal selected from the group consisting of platinum, gold, silver, palladium, tungsten, vanadium, molybdenum and copper. 제 16 항에 있어서,The method of claim 16, 상기 금속 성분은 알루미늄 파라텅스테이트 및 오산화 바나듐으로 이루어진 그룹으로부터 선택되는 것인 나노복합입자의 제조방법.And said metal component is selected from the group consisting of aluminum paratungstate and vanadium pentoxide. 제 17 항에 있어서,The method of claim 17, 상기 나노복합입자는 오산화 바나듐 0.1~10wt% 및 삼산화 텅스텐 4~20wt%를 포함하는 나노복합입자의 제조방법.The nanocomposite particles are 0.1 to 10wt% vanadium pentoxide and 4-20wt% of tungsten trioxide. 제 10 항에 있어서,The method of claim 10, 상기 나노복합입자는 6시간 동안 800℃에서 하소 처리된 후에 60m2/g 이상의 표면적을 가지는 나노복합입자의 제조방법.The nanocomposite particles are calcined at 800 ° C. for 6 hours and then have a surface area of 60 m 2 / g or more. 제 10 항에 있어서,The method of claim 10, 상기 용매는 물인 나노복합입자의 제조방법.The solvent is a method for producing nanocomposite particles of water.
KR1020097005705A 2006-08-24 2007-08-10 Nanocomposite particle and process of preparing the same KR101166432B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/509,339 2006-08-24
US11/509,339 US7820583B2 (en) 2006-08-24 2006-08-24 Nanocomposite particle and process of preparing the same
PCT/US2007/075661 WO2008024635A1 (en) 2006-08-24 2007-08-10 Nanocomposite particle and process of preparing the same

Publications (2)

Publication Number Publication Date
KR20090057262A true KR20090057262A (en) 2009-06-04
KR101166432B1 KR101166432B1 (en) 2012-07-23

Family

ID=39107128

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097005705A KR101166432B1 (en) 2006-08-24 2007-08-10 Nanocomposite particle and process of preparing the same

Country Status (12)

Country Link
US (4) US7820583B2 (en)
EP (1) EP2069439B1 (en)
KR (1) KR101166432B1 (en)
CN (2) CN105148887A (en)
AU (1) AU2007286908C1 (en)
CA (1) CA2663782C (en)
DK (1) DK2069439T3 (en)
ES (1) ES2532130T3 (en)
MX (1) MX2009002113A (en)
MY (1) MY151456A (en)
PT (1) PT2069439E (en)
WO (1) WO2008024635A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033000A (en) * 2011-02-07 2014-03-17 크리스탈 유에스에이 인코퍼레이션 Ce containing, v-free mobile denox catalyst
US8940240B2 (en) 2012-02-15 2015-01-27 Korea Institute Of Science And Technology Apparatus and method for manufacturing composite nano particles
KR20190039069A (en) * 2016-06-06 2019-04-10 베나토 저머니 게엠베하 Titanium dioxide sol, method for producing the same, and product obtained therefrom
WO2022203191A1 (en) * 2021-03-25 2022-09-29 서울대학교산학협력단 Method for producing niobium-containing titanium-ruthenium composite nanoparticles, niobium-containing titanium-ruthenium composite nanoparticles, and chlorine-generating electrode comprising same

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935604B2 (en) * 2006-11-27 2012-05-23 住友化学株式会社 Method for producing supported ruthenium oxide
US7811968B2 (en) * 2007-05-11 2010-10-12 Lyondell Chemical Technology, L.P. Preparation of palladium-gold catalysts
EP2172265B1 (en) * 2007-06-27 2016-06-15 Toyota Jidosha Kabushiki Kaisha Process for producing catalyst support for exhaust gas purification .
FR2928364B1 (en) * 2008-03-05 2011-10-14 Rhodia Operations COMPOSITION BASED ON A ZIRCONIUM OXIDE, A TITANIUM OXIDE OR A MIXED OXIDE OF ZIRCONIUM AND TITANIUM ON AN ALUMINUM SUPPORT, METHODS OF PREPARATION AND USE AS A CATALYST
US20100121100A1 (en) * 2008-11-12 2010-05-13 Daniel Travis Shay Supported palladium-gold catalysts and preparation of vinyl acetate therewith
EP2189217A1 (en) * 2008-11-17 2010-05-26 Technical University of Denmark Nanoparticular metal oxide/anatase catalysts.
US8545796B2 (en) 2009-07-31 2013-10-01 Cristal Usa Inc. Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
US8507720B2 (en) * 2010-01-29 2013-08-13 Lyondell Chemical Technology, L.P. Titania-alumina supported palladium catalyst
US8273682B2 (en) * 2009-12-16 2012-09-25 Lyondell Chemical Technology, L.P. Preparation of palladium-gold catalyst
US8329611B2 (en) * 2009-12-16 2012-12-11 Lyondell Chemical Technology, L,P. Titania-containing extrudate
US20110163046A1 (en) * 2010-01-06 2011-07-07 Neal Kenneth G Mobile UV Light Treatment Systems and Associated Methods
US20110166046A1 (en) * 2010-01-06 2011-07-07 Weaver Jimmie D UV Light Treatment Methods and System
CN102205418B (en) * 2010-03-31 2012-11-14 中国科学院化学研究所 Method for preparing nanometer particle with iron-doped nanometer titanium dioxide/silicon dioxide nuclear shell structure
DE102010003652A1 (en) * 2010-04-06 2011-10-06 Evonik Degussa Gmbh Silica and titanium dioxide containing granules
US20110250114A1 (en) * 2010-04-13 2011-10-13 Millennium Inorganic Chemicals, Inc. Vanadia-Based DeNOx Catalysts and Catalyst Supports
US8450236B2 (en) * 2010-04-13 2013-05-28 Cristal Usa Inc. Supported precious metal catalysts via hydrothermal deposition
EP2397222A1 (en) * 2010-06-17 2011-12-21 Sachtleben Chemie GmbH Titanium dioxide with an amount of ZrO2, method for its manufacture and use
WO2012059936A1 (en) 2010-11-03 2012-05-10 Padma Venkitachalam Devarajan Pharmaceutical compositions for colloidal drug delivery
CN102477020A (en) * 2010-11-29 2012-05-30 中国科学院大连化学物理研究所 Method for preparing 5-hydroxymethyl furfural by catalysis of carbohydrate
CN102205240B (en) * 2011-06-13 2015-10-21 华北电力大学 Based on TiO 2-SnO 2the SCR catalyst for denitrating flue gas of complex carrier and preparation method
KR101317517B1 (en) * 2011-10-28 2013-10-15 동국대학교 산학협력단 Method for Mn3O4 nanoparticles by solid-state decomposition of exfoliated MnO2 nanosheet
US9299504B2 (en) * 2012-03-07 2016-03-29 Korea Institute Of Industrial Technology Preparation method of low temperature sintering active electrode paste for dye sensitized solar cell
DE102012013288A1 (en) * 2012-07-05 2014-01-09 Man Truck & Bus Ag Catalyst, process for the preparation of the catalyst, use of the catalyst
US9038725B2 (en) 2012-07-10 2015-05-26 Halliburton Energy Services, Inc. Method and system for servicing a wellbore
CN102794201B (en) * 2012-07-18 2014-07-09 常州大学 Preparation method of catalyst for promoting conversion of ammonia nitrogen in coking wastewater
CN102794190B (en) * 2012-07-18 2014-08-27 常州大学 Preparation method of catalyst for promoting conversion of ammonia nitrogen in metallurgical wastewater
PL2888042T3 (en) * 2012-08-24 2020-11-02 Tronox Llc Catalyst support materials, catalysts, methods of making them and uses thereof
FR3003557B1 (en) * 2013-03-19 2015-05-01 Rhodia Operations COMPOSITION BASED ON ZIRCONIUM OXIDE, CERIUM, NIOBIUM AND TIN, PROCESS FOR PREPARATION AND USE IN CATALYSIS
US11223042B2 (en) 2014-03-31 2022-01-11 Tronox Llc Lithium-intercalated titanium dioxide, lithium titanate particles made therefrom, and related methods
WO2016036592A1 (en) * 2014-09-05 2016-03-10 Basf Corporation Titania-doped zirconia as platinum group metal support in catalysts for treatment of combustion engine exhausts streams
CN104437547A (en) * 2014-12-16 2015-03-25 北京市怦动泰科环保科技有限公司 Novel efficient multi-component photocatalyst material
WO2017009434A1 (en) * 2015-07-14 2017-01-19 Bp P.L.C. Extruded titania-based materials comprising one or more acids or prepared using one or more acids
US9764287B2 (en) 2015-11-06 2017-09-19 Paccar Inc Binary catalyst based selective catalytic reduction filter
US10058819B2 (en) 2015-11-06 2018-08-28 Paccar Inc Thermally integrated compact aftertreatment system
US9737877B2 (en) * 2015-11-06 2017-08-22 Paccar Inc Surface-modified catalyst precursors for diesel engine aftertreatment applications
US10188986B2 (en) 2015-11-06 2019-01-29 Paccar Inc Electrochemical reductant generation while dosing DEF
CN108463435A (en) * 2015-11-20 2018-08-28 克里斯特尔美国有限公司 Titanium dioxide composition is with it as the purposes for preventing pollutant
CN107213920A (en) * 2016-03-22 2017-09-29 重庆理工大学 A kind of Ag-Ti-Zr catalyst and preparation method for the NO that degrades
CN105944720B (en) * 2016-05-05 2018-06-26 同济大学 Ag nanometer sheets/SnO2The preparation method of nanometer rods nano material photochemical catalyst
US10717074B2 (en) 2016-06-21 2020-07-21 Haldor Topsoe A/S Method for preparation of a monolithic catalyst for the reduction of nitrogen oxides, VOC and carbon monoxide in an off-gas
CN106268769B (en) * 2016-08-26 2017-10-13 大唐南京环保科技有限责任公司 A kind of rare-earth-based Plate-type denitration catalyst and preparation method
US9975110B1 (en) * 2016-11-23 2018-05-22 Honda Motor Co., Ltd. Method for producing metal catalyst nanoparticles
US10195602B2 (en) 2016-12-01 2019-02-05 GM Global Technology Operations LLC Nucleation layers for enhancing photocatalytic activity of titanium dioxide (TiO2) coatings
US10675586B2 (en) 2017-06-02 2020-06-09 Paccar Inc Hybrid binary catalysts, methods and uses thereof
US10835866B2 (en) 2017-06-02 2020-11-17 Paccar Inc 4-way hybrid binary catalysts, methods and uses thereof
CN111093631A (en) * 2017-07-20 2020-05-01 文塞斯劳·戈麦斯-洛佩斯 Surface, material and personal cleansing formulations comprising nanostructured particles
WO2019016724A2 (en) * 2017-07-20 2019-01-24 GÓMEZ-LÓPEZ, Wenceslao Formulation comprising nanostructured, biocompatible and biocatalytic material for the treatment of wounds and infections
CN107376981B (en) * 2017-08-09 2020-04-21 南京大学 Catalyst for liquid phase reduction of bromate radical and preparation method and application thereof
KR102002482B1 (en) * 2017-10-12 2019-07-23 한국과학기술연구원 Immiscible composite catalyst for synthesis of hydrogen peroxide and methods for synthesizing of hydrogen peroxide using them
CN107986334A (en) * 2017-11-29 2018-05-04 河海大学 A kind of preparation method of Ti-Mo codopes tungsten trioxide photoelectrode
CN108545773B (en) * 2018-07-17 2020-07-17 河南科技大学 Preparation method of nano titanium dioxide/tungsten trioxide composite material powder
US11007514B2 (en) 2019-04-05 2021-05-18 Paccar Inc Ammonia facilitated cation loading of zeolite catalysts
US10906031B2 (en) 2019-04-05 2021-02-02 Paccar Inc Intra-crystalline binary catalysts and uses thereof
US10934918B1 (en) 2019-10-14 2021-03-02 Paccar Inc Combined urea hydrolysis and selective catalytic reduction for emissions control
DE102020114527B4 (en) * 2020-05-29 2023-11-30 Infineon Technologies Ag CHIP HOUSING AND METHOD FOR FORMING A CHIP HOUSING
CN111905709A (en) * 2020-07-31 2020-11-10 江南大学 Mesoporous cerium-titanium-based low-temperature denitration catalyst and preparation method thereof
CN112844424B (en) * 2020-12-30 2022-05-17 山东天璨环保科技有限公司 Low-temperature denitration catalyst and preparation method thereof
WO2023106193A1 (en) * 2021-12-06 2023-06-15 三井金属鉱業株式会社 Composite metal oxide compound

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3279884A (en) 1963-10-31 1966-10-18 Basf Ag Selective removal of oxides of nitrogen from gas mixtures containing oxygen
US4048112A (en) 1973-09-10 1977-09-13 Mitsubishi Chemical Industries Ltd. Catalyst for selective reduction of nitrogen oxides
US4085193A (en) 1973-12-12 1978-04-18 Mitsubishi Petrochemical Co. Ltd. Catalytic process for reducing nitrogen oxides to nitrogen
GB1489927A (en) 1974-08-10 1977-10-26 Tioxide Group Ltd Titanium dioxide carrier
US5021392A (en) 1987-09-18 1991-06-04 American Cyanamid Company High porosity titania-zirconia catalyst support prepared by a process
US5137855A (en) 1988-06-09 1992-08-11 W. R. Grace & Co.-Conn. Catalysts for selective catalytic reduction denox technology
US4929586A (en) * 1988-06-09 1990-05-29 W. R. Grace & Co.-Conn. Catalysts for selective catalytic reduction DeNOx technology
GB9213140D0 (en) 1992-06-20 1992-08-05 Tioxide Specialties Ltd Preparation of anatase titanium dioxide
US5652192A (en) 1992-07-10 1997-07-29 Battelle Memorial Institute Catalyst material and method of making
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US6832735B2 (en) * 2002-01-03 2004-12-21 Nanoproducts Corporation Post-processed nanoscale powders and method for such post-processing
JP3965711B2 (en) * 1996-10-25 2007-08-29 株式会社日立製作所 Nitrogen oxide purification catalyst and purification method
DE19649426A1 (en) 1996-11-28 1998-06-04 Consortium Elektrochem Ind Shell catalyst for the production of acetic acid by gas phase oxidation of unsaturated C¶4¶ hydrocarbons
US5922294A (en) 1997-03-10 1999-07-13 Ford Global Technologies, Inc. High surface area, thermally stabilized titania automotive catalyst support
WO2000000283A1 (en) * 1998-06-30 2000-01-06 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, process for producing the same, and method of purifying exhaust gas
DE19843845A1 (en) * 1998-09-24 2000-03-30 Degussa Pyrogenic mixed oxide molded body useful as a catalyst support in olefin hydration for preparation of ethanol and diethylether contains silicon, aluminum, zirconium, or titanium oxides
GB9919013D0 (en) * 1999-08-13 1999-10-13 Johnson Matthey Plc Reactor
EP1216092B1 (en) 1999-08-23 2005-03-30 Rotem Amfert Negev Ltd. Silicon-containing titanium dioxyde, method for preparing the same and catalytic compositions thereof
US6838004B1 (en) * 1999-09-07 2005-01-04 Industrial Science & Technology Network, Inc. Nanopore reactive adsorbents for the high-efficiency removal of waste species
KR100374478B1 (en) 1999-09-20 2003-03-03 엘지전자 주식회사 Method for Preparing an Anatase Typed-Titanium Dioxide Photocatalyst and Photocatalyst Produced by the same
WO2001054811A1 (en) * 2000-01-27 2001-08-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalyst
US6606856B1 (en) * 2000-03-03 2003-08-19 The Lubrizol Corporation Process for reducing pollutants from the exhaust of a diesel engine
CA2344780A1 (en) * 2000-04-20 2001-10-20 Kse Inc. Method, catalyst and photocatalyst for the destruction of phosgene
US6492297B1 (en) * 2000-09-15 2002-12-10 Engelhard Corporation Catalyst composition for purifying exhaust gas
WO2002028659A2 (en) * 2000-10-02 2002-04-11 Kimberly-Clark Worldwide, Inc. Recording medium with nanoparticles and methods of making the same
US6709643B1 (en) * 2000-11-10 2004-03-23 The Ohio State University Catalyst and method of use in the reduction of nitrogen oxides using lower hydrocarbons
US6699448B2 (en) * 2001-01-26 2004-03-02 Engelhard Corporation SOx tolerant NOx trap catalysts and methods of making and using the same
US20060248982A1 (en) * 2001-02-20 2006-11-09 Nanoproducts Corp. Nanomaterials manufacturing methods and products thereof
EP1254711A1 (en) * 2001-05-05 2002-11-06 OMG AG & Co. KG Supported noble metal catalyst and preparation process thereof
FR2824846B1 (en) * 2001-05-16 2004-04-02 Saint Gobain SUBSTRATE WITH PHOTOCATALYTIC COATING
ES2238582T5 (en) * 2001-07-03 2010-05-26 Facultes Universitaires Notre-Dame De La Paix CATALYZER SUPPORTS AND CARBON NANOTUBES PRODUCED ON SUCH SUPPORTS.
WO2003004412A1 (en) 2001-07-06 2003-01-16 The University Of Queensland Metal oxide nanoparticles in an exfoliated silicate framework
US7175822B2 (en) * 2001-07-30 2007-02-13 Valtion Teknillinen Tutkimuskeskus Method for catalytic reduction of nitrogen oxides
US6699457B2 (en) * 2001-11-29 2004-03-02 Wisconsin Alumni Research Foundation Low-temperature hydrogen production from oxygenated hydrocarbons
TWI276604B (en) * 2001-12-27 2007-03-21 Tokuyama Corp Silica composite oxide particles and method of producing the same
JP4317345B2 (en) * 2002-02-26 2009-08-19 株式会社日本触媒 Low concentration CO-containing exhaust gas treatment method
US6464951B1 (en) * 2002-04-20 2002-10-15 Kse, Inc. Method, catalyst, and photocatalyst for the destruction of phosgene
US6861036B2 (en) * 2002-08-30 2005-03-01 Washington University In St. Louis Charging and capture of particles in coronas irradiated by in-situ X-rays
US6946013B2 (en) 2002-10-28 2005-09-20 Geo2 Technologies, Inc. Ceramic exhaust filter
US20050129634A1 (en) * 2003-12-16 2005-06-16 Frerichs Scott R. Passivated nano-titanium dioxide particles and methods of making the same
DE102004004147A1 (en) * 2004-01-28 2005-08-18 Degussa Ag Surface-modified silica-sheathed metalloid / metal oxides
US7125536B2 (en) * 2004-02-06 2006-10-24 Millennium Inorganic Chemicals, Inc. Nano-structured particles with high thermal stability
US7081234B1 (en) * 2004-04-05 2006-07-25 Xerox Corporation Process of making hydrophobic metal oxide nanoparticles
EP1598110A1 (en) 2004-04-22 2005-11-23 Rohm and Haas Company Structured oxidation catalysts
US20090004277A1 (en) * 2004-05-18 2009-01-01 Franchini Miriam K Nanoparticle dispersion containing lactam compound
WO2005121025A1 (en) * 2004-06-11 2005-12-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal oxide nanoporous body, coating composition for obtaining same, methods for producing those
US20060025301A1 (en) * 2004-07-30 2006-02-02 Reddy Benjaram M Process for preparing nanosized, thermally stable, and high surface area multi-component metal oxides
US20060083694A1 (en) * 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
US7491676B2 (en) * 2004-10-19 2009-02-17 Millennium Inorganic Chemicals High activity titania supported metal oxide DeNOx catalysts
US7083767B2 (en) * 2004-12-23 2006-08-01 Chevron U.S. A. Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-70
US7357903B2 (en) * 2005-04-12 2008-04-15 Headwaters Heavy Oil, Llc Method for reducing NOx during combustion of coal in a burner
US7326399B2 (en) * 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
US8029891B2 (en) * 2005-05-31 2011-10-04 E.I. Du Pont De Nemours And Company Nanoparticulate solar control concentrates
US7712308B2 (en) * 2005-11-08 2010-05-11 Tenneco Automotive Operating Company Inc. Selective catalyst reduction of nitrogen oxides with hydrogen
US7901660B2 (en) * 2005-12-29 2011-03-08 The Board Of Trustees Of The University Of Illinois Quaternary oxides and catalysts containing quaternary oxides
CN103285868A (en) * 2013-05-16 2013-09-11 马玉山 Codoped nanometer titania photocatalyst and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140033000A (en) * 2011-02-07 2014-03-17 크리스탈 유에스에이 인코퍼레이션 Ce containing, v-free mobile denox catalyst
US8940240B2 (en) 2012-02-15 2015-01-27 Korea Institute Of Science And Technology Apparatus and method for manufacturing composite nano particles
KR20190039069A (en) * 2016-06-06 2019-04-10 베나토 저머니 게엠베하 Titanium dioxide sol, method for producing the same, and product obtained therefrom
WO2022203191A1 (en) * 2021-03-25 2022-09-29 서울대학교산학협력단 Method for producing niobium-containing titanium-ruthenium composite nanoparticles, niobium-containing titanium-ruthenium composite nanoparticles, and chlorine-generating electrode comprising same

Also Published As

Publication number Publication date
MX2009002113A (en) 2009-06-12
DK2069439T3 (en) 2015-01-12
CA2663782C (en) 2013-06-25
AU2007286908A1 (en) 2008-02-28
CN101517013A (en) 2009-08-26
KR101166432B1 (en) 2012-07-23
US20090324472A1 (en) 2009-12-31
EP2069439B1 (en) 2014-12-17
AU2007286908C1 (en) 2013-02-21
US20090325787A1 (en) 2009-12-31
CA2663782A1 (en) 2008-02-28
US8501132B2 (en) 2013-08-06
US20120308460A1 (en) 2012-12-06
PT2069439E (en) 2015-03-31
AU2007286908B2 (en) 2012-10-18
US7820583B2 (en) 2010-10-26
WO2008024635A1 (en) 2008-02-28
EP2069439A1 (en) 2009-06-17
US20100099552A1 (en) 2010-04-22
US8075859B2 (en) 2011-12-13
MY151456A (en) 2014-05-30
ES2532130T3 (en) 2015-03-24
CN105148887A (en) 2015-12-16
US7842641B2 (en) 2010-11-30
EP2069439A4 (en) 2011-11-23

Similar Documents

Publication Publication Date Title
KR101166432B1 (en) Nanocomposite particle and process of preparing the same
KR101654875B1 (en) Silica-stabilized ultrafine anatase titania, vanadia catalysts, and methods of production thereof
TWI417137B (en) Catalyst promoters in vanadium-free mobile catalyst
EP2406006B1 (en) Mobile denox catalyst
TW200904526A (en) DeNOx catalyst preparation method
US20170320043A1 (en) Low-Alkali Catalyst Material and Process for Preparation Thereof
JP2018520870A (en) Powdered titanium oxide, method for producing and using the same
US9566565B2 (en) Catalyst material and process for the production thereof
JP2005111336A (en) Heat-resistant catalyst and manufacturing method therefor
KR20220089322A (en) Urea hydrolysis catalyst, production method thereof, and selective catalytic reduction system comprising the urea hydrolysis catalyst
JP5628049B2 (en) Compositions based on zirconium oxide, titanium oxide or mixed zirconium titanium oxide on a silica support, preparation methods and use as catalysts
JP2008230876A (en) Method for manufacturing metal oxide porous body having mesopore and micropore, metal oxide porous body having mesopore and micropore, and gas purification material using the same
US20160256853A1 (en) Nitrogen oxide reduction catalyst and method of preparing the same
JPWO2017154927A1 (en) Gold composite material, method for producing the same, and gold nanocatalyst
CN108452794A (en) A kind of preparation method and applications of catalyst precarsor
JP4586293B2 (en) NOx occlusion agent, NOx occlusion reduction type catalyst and method for producing the same
KR20220125364A (en) Nanoplatelet vanadium oxide-supported denitration catalyst and manufacturing method thereof
JP2000254504A (en) Catalyst for cleaning exhaust gas and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160616

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190711

Year of fee payment: 8