KR20140109224A - catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same - Google Patents

catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same Download PDF

Info

Publication number
KR20140109224A
KR20140109224A KR1020130101799A KR20130101799A KR20140109224A KR 20140109224 A KR20140109224 A KR 20140109224A KR 1020130101799 A KR1020130101799 A KR 1020130101799A KR 20130101799 A KR20130101799 A KR 20130101799A KR 20140109224 A KR20140109224 A KR 20140109224A
Authority
KR
South Korea
Prior art keywords
catalyst
metal
fischer
catalyst particles
carbon material
Prior art date
Application number
KR1020130101799A
Other languages
Korean (ko)
Inventor
하경수
곽근재
이진우
전기원
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of KR20140109224A publication Critical patent/KR20140109224A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • B01J35/393
    • B01J35/394
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/644Arsenic, antimony or bismuth
    • B01J23/6447Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Abstract

The present invention relates to a catalyst for fischer tropsch synthesis containing mesoporous carbon materials in a regular structure of which an average diameter of mesopores is nanoscale; and metal-containing catalyst particles of which an average inner size of the mesoporous carbon materials is nanoscale. The catalyst for fischer tropsch synthesis features that a cross sectional area of the metal-containing catalyst particles inside mesopore takes 85-95% of a cross sectional area of the mesopore when the metal-containing catalyst particles are metallic oxides, and a cross sectional area of the metal-containing catalyst particles inside mesopore takes 65-95% of a cross sectional area of the mesopore when the metal-containing catalyst particles are reduced metals. The catalyst for fischer tropsch synthesis according to the present invention improves productivity in synthesizing reaction of fischer tropsch manufacturing synthetic oil from synthetic gas as utilization of the catalyst becomes maximized because nanosize metal catalyst particles are supported with high dispersivity in mesoporous carbon materials, which are supporters, and natural performance of the catalyst is manifested to the fullest because interaction with the supporters becomes minimized.

Description

다공성 탄소 물질에 담지된 피셔 트롭시 합성용 촉매 및 그 제조방법 {catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same}[0001] The present invention relates to a catalyst for synthesis of Fischer-Trops supported on a porous carbon material, and a catalyst for fischer trops synthesis supported on pores of ordered mesoporous carbon and preparation method of the same,

본 발명은 규칙적 구조의 다공성 탄소 물질에 균일한 나노 크기의 금속 함유 촉매입자들이 담지된 피셔 트롭시 합성용 촉매 및 그 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a catalyst for synthesizing Fischer-Tropsch on which porous nano-sized metal-containing catalyst particles are supported on a porous carbon material having a regular structure, and a method for producing the same.

석유화학 공정의 주목적 중 하나는 반응촉매, 반응물의 조성, 온도, 압력 등을 최적화하여 석유화학제품을 높은 전환율과 선택도로 제조하는 것이다. 이때 상기 반응촉매로서 많은 경우 철, 코발트, 몰리브덴, 텅스텐, 비스무스, 니켈, 구리와 같은 금속촉매들이 많이 사용되는데, 로듐, 금, 백금, 루테늄, 레니움 등 귀금속 촉매가 사용되기도 한다. 이러한 금속 촉매를 알루미나, 실리카, 티타니아 등과 같은 지지체 표면에 균일하게 분산, 담지시켜 주로 사용하며, 필요하다면 촉매 성능의 향상을 위해 백금, 팔라듐과 같은 귀금속이 조촉매로서 사용될 수도 있다One of the main goals of the petrochemical process is to optimize the composition of the reaction catalyst, the composition of the reactants, the temperature and the pressure to produce petrochemical products with high conversion and selectivity. In this case, metal catalysts such as iron, cobalt, molybdenum, tungsten, bismuth, nickel and copper are often used as the reaction catalyst, and noble metal catalysts such as rhodium, gold, platinum, ruthenium and rhenium may be used. Such a metal catalyst is dispersed and supported on the surface of a support such as alumina, silica, titania, etc., and is mainly used. If necessary, a noble metal such as platinum or palladium may be used as a cocatalyst

이러한 촉매는 주로 알루미나 (γ-Al2O3 , a-Al2O3 등), 실리카 (SiO2), 티타니아 (TiO2), 마그네시아 (MgO), 탄소 등의 지지체에 담지되어 사용되고 있다. 대개 이러한 지지체에 incipient wetness 법, 함침법 등이 주로 사용된다. 피셔-트롭쉬 합성반응 촉매를 예로 들면, 촉매의 전구체인 코발트 산염(Co(NO3)2·H2O 등)과 조촉매로 사용하는 Pt, Ru, Re 등의 염을 적당한 용매에 녹여 전구체의 혼합 용액을 제조하여 지지체의 기공에 함침시킨 후 건조하는 과정을 되풀이하면서 원하는 만큼의 촉매물질을 담지시킨다. 이후 건조된 촉매는 공기 혹은 비활성 기체 분위기에서 소성과정을 거쳐 금속산화물 결정이 지지체에 담지된 형태의 촉매입자를 얻는다.These catalysts are mainly of alumina γ-Al (2 O 3, a-Al 2 O 3 Etc.), silica (SiO 2 ), titania (TiO 2 ), magnesia (MgO), carbon and the like. Generally, incipient wetness method and impregnation method are mainly used for such a support. For example, the Fischer-Tropsch synthesis reaction catalyst may be prepared by dissolving a salt of Pt, Ru, Re or the like used as a catalyst precursor cobaltate (Co (NO 3 ) 2 .H 2 O and the like) as a cocatalyst in an appropriate solvent, Is impregnated into the pores of the support, and dried, and the desired amount of catalyst material is supported. Thereafter, the dried catalyst is calcined in air or an inert gas atmosphere to obtain catalyst particles in the form of metal oxide crystals supported on a support.

하지만 이런 통상적인 방법으로는 촉매의 결정의 크기나 형태가 균일하게 얻어지지 않으며 금속 촉매 결정과 지지체 간의 상호작용으로 활성이나 선택성이 현저히 떨어질 수 있다.
However, such a conventional method does not uniformly obtain the size or shape of the crystal of the catalyst, and the activity or selectivity may be significantly deteriorated due to the interaction between the metal catalyst crystal and the support.

본 발명의 목적은 피셔 트롭시 합성용 촉매 성능을 개선하기 위해, 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체의 기공에 구속 효과(confinement effect)를 발휘할 수 있는 균일한 나노크기의 촉매 입자들을 제공하는 것이다.It is an object of the present invention to provide a method for improving the performance of a catalyst for Fischer-Tropsch synthesis, in which a uniform nano-scale size capable of exerting a confinement effect on the pores of a regularly structured porous carbon material support having an average diameter of mesopores of nanoscale Of catalyst particles.

본 발명의 다른 목적은 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에서 구속 효과가 없는 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니하면서 기공 내 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유한 피셔 트롭시 합성용 촉매를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a porous carbonaceous material support having a regular structure in which the mean diameter of the mesopore is nanoscale and having a size capable of exhibiting a constraining effect in a pore without forming metal- And a method for producing a catalyst for Fischer-Tropsch synthesis containing metal-containing catalyst particles.

본 발명의 제1양태는 메조포어(mesopore)의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질; 및 상기 다공성 탄소 물질의 기공 내 담지된, 평균크기가 나노 스케일인 금속 함유 촉매입자들;을 함유하는 피셔 트롭시 합성용 촉매로서, 상기 금속 함유 촉매입자가 금속산화물인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지하고, 상기 금속 함유 촉매입자가 환원된 금속인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 65 % 내지 95%를 차지하는 것을 특징으로 하는 피셔 트롭시 합성용 촉매를 제공한다.A first aspect of the present invention relates to a porous carbon material having a regular structure in which mesopores have an average diameter of nanoscale; And metal-containing catalyst particles supported on the pores of the porous carbon material and having an average size of nanoscale, wherein when the metal-containing catalyst particles are metal oxides, When the cross-sectional area of the catalyst particles accounts for 85% to 95% of the mesopore cross-sectional area, and when the metal-containing catalyst particles are a reduced metal, the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 65% to 95% And a catalyst for synthesis of Fischer-Tropsch.

본 발명의 제2양태는 1) 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계; 2) 상기 함침된 지지체를 건조하는 단계; 3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 4) 상기 건조된 지지체를 소성하는 단계를 포함하는, 본 발명의 제1양태에 따른 피셔 트롭시 합성용 촉매의 제조방법을 제공한다.A second aspect of the present invention is a method for preparing a porous carbon material comprising the steps of: 1) impregnating a porous carbon material support having a regular structure in which mesopores have an average diameter of nanoscale, a catalyst precursor solution; 2) drying the impregnated support; 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And 4) calcining the dried support. The present invention also provides a method for producing a catalyst for Fischer-Tropsch synthesis according to the first aspect of the present invention.

본 발명의 제3양태는 메조포어 단면적의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에서, 기공 구속 효과(pore confinement effect)가 없는 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니하면서 기공 내 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유한 피셔 트롭시 합성용 촉매를 제조하는 방법으로서, 1) 상기 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계; 2) 상기 함침된 지지체를 건조하는 단계; 3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 4) 상기 건조된 지지체를 소성하는 단계를 포함하되, 단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 함침이 되지 않을 정도로만 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하는 것을 특징으로 하는 촉매 제조방법을 제공한다.In the third aspect of the present invention, in the porous carbon material support having a regular structure in which the mean diameter of mesopore cross-section is nanoscale, the metal-containing catalyst particles are not formed on the outer surface having no pore confinement effect, 1. A method for producing a catalyst for Fischer-Tropsch synthesis comprising metal-containing catalyst particles having a size capable of exhibiting a restraining effect, comprising the steps of: 1) impregnating the porous carbon material support with a catalyst precursor solution; 2) drying the impregnated support; 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And (4) calcining the dried support. In step (1), (i) a porous carbon material support not subjected to a hydrophilic treatment is used so that the catalyst precursor solution is not impregnated on the outer surface, or (ii) Characterized in that a porous carbon material support is used which has been subjected to a hydrophilic treatment only to such an extent that the catalyst precursor solution is not impregnated on the outer surface of the porous carbon material support.

본 발명의 제4양태는, 제3양태의 제조방법에 따라 제조된 피셔 트롭시 합성용 촉매를 제공한다.A fourth aspect of the present invention provides a catalyst for Fischer-Tropsch synthesis prepared according to the production method of the third aspect.

본 발명의 제4양태는 피셔 트롭시 합성반응을 이용하여 합성가스로부터 액체 탄화수소를 제조하는 방법에 있어서, 제1양태의 피셔-트롭시 합성용 촉매 또는 제3양태의 제조방법에 따라 제조된 피셔 트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 i) 단계, 상기 촉매를 환원시켜 피셔-트롭시 합성용 촉매로 활성화시키는 ii) 단계, 및 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 iii) 단계를 포함하는 것이 특징인 제조방법을 제공한다.
A fourth aspect of the present invention is a method for producing a liquid hydrocarbon from a syngas using a Fischer-Tropsch synthesis reaction, comprising the steps of: a catalyst for Fischer-Tropsch synthesis of the first aspect or a Fischer- (Ii) a step (i) of applying a catalyst for the synthesis of Tropsch to a Fischer-Tropsch synthesis reactor, (ii) a step of reducing the catalyst to activate it as a catalyst for Fischer-Tropsch synthesis, and And iii) carrying out a Fischer-Tropsch synthesis reaction by the Fischer-Tropsch synthesis reaction.

이하 본 발명을 자세히 설명한다.
Hereinafter, the present invention will be described in detail.

CMK-3과 같은 규칙적 구조의 다공성 탄소물질 지지체는 나노 채널과 같은 확장된 기공 구조를 가지고 있어서, 기공 안에 촉매 나노입자가 담지되면 나노채널 반응기 역할을 할 수 있다. 본 발명은 나노 스케일의 규칙적인 기공 구조를 가진 다공성 탄소물질 지지체의 기공 구속 효과와 소수성 특성을 이용하여 성능이 우수한 피셔 트롭시 합성용 촉매를 제공하고자 한다.The porous carbon material support having a regular structure such as CMK-3 has an expanded pore structure such as a nanochannel, so that when the catalyst nanoparticles are supported in the pores, they can serve as a nanocarbon reactor. The present invention provides a catalyst for the synthesis of Fischer-Tropsch with excellent performance by utilizing the pore-restraining effect and the hydrophobic property of a porous carbon material support having a regular pore structure of nanoscale.

탄소물질은 촉매 활성물질에 대해 다소 불활성인 것으로 알려져 있다. 촉매 물질과 지지체 물질 사이에 강한 상호작용은 금속을 산화시킬 수 있고 이는 촉매의 활성 및 선택도를 손실시킨다. The carbon material is known to be somewhat inert to the catalytically active material. Strong interactions between the catalyst material and the support material can oxidize the metal, which loses the activity and selectivity of the catalyst.

탄소 지지체는 피셔-트롭시 합성용 촉매의 성능을 강화하고, 부산물인 물을 쉽게 탈착시키고, 반응열을 분산시킬 수 있고, 높은 표면적으로 인해 촉매 나노입자들을 분산시키는데 일조할 수 있고(도 10), 활성점(active sites)의 개수를 증가시킬 수 있다. 특히, 규칙적 구조의 메조포러스 탄소물질(ordered mesoporous carbons, OMCs)은, 활성탄소, 흑연과 같은 다른 다공성 탄소 보다, 더 높은 비표면적, 잘 발달된 상호연결된 기공들, 기공 크기를 조절할 수 있다는 점에서 우수하다.The carbon support can enhance the performance of the catalyst for Fischer-Tropsch synthesis, facilitate the desorption of by-product water, disperse the heat of reaction, and aid in dispersing the catalyst nanoparticles due to the high surface area (FIG. 10) The number of active sites can be increased. In particular, ordered mesoporous carbons (OMCs) have a higher specific surface area, well-developed interconnected pores, and a smaller pore size than other porous carbons such as activated carbon and graphite great.

본 발명은 촉매와 지지체와의 상호작용을 최소화하기 위해 다공성 탄소물질을 지지체로 사용하고, 규칙적 구조의 다공성 탄소물질 지지체의 기공(메조포어)에 촉매 전구체 용액 함침 및 건조를 2회 이상 반복하여 금속 함유 촉매입자들을 형성시킴으로써, 다공성 탄소물질의 기공 내 금속 함유 촉매입자들을 서로 동일 또는 유사한 나노 크기로, 즉 균일한 나노크기로 형성시키고, 기공 내 금속 함유 촉매입자들의 입자크기를 일정한 크기 이상으로 성장시키는 것이 특징이다.In order to minimize the interaction between the catalyst and the support, the present invention uses a porous carbon material as a support and repeats the impregnation and drying of the catalyst precursor solution in the pores (mesopore) of the porous carbon material support with a regular structure twice or more, Containing catalyst particles in the pores of the porous carbon material are formed to have the same or similar nano size, i.e., uniform nano size, in the pores of the porous carbon material, and the particle size of the metal-containing catalyst particles in the pores is grown .

메조포어 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질의 기공에 이보다 작은 크기의 금속 함유 촉매입자들을 형성시키는 경우라고 하더라도, 금속산화물 형태의 금속 함유 촉매입자들을 기공 단면적 대비 일정한 크기 이상으로 성장시켜야, 금속산화물로부터 환원되어 일부 그 부피가 작아진 금속 형태의 금속 함유 촉매입자들도 일정한 크기 이상을 유지하여, 기공 구속 효과에 의해 금속 함유 촉매입자가 agglomeration 또는 sintering되지 않고 피셔 트롭시 반응시 극심한 반응열 및 부산물로 생성되는 물에 대항하여 그 성능을 유지할 수 있다(도 8). 즉, 기공 단면적 대비 일정 크기 이상을 갖지 아니하는 금속 함유 촉매입자들은 피셔 트롭시 반응시 극심한 반응열 및 부산물로 생성되는 물에 의해 산화되거나 소결되어 활성이 떨어진다.Even when the metal-containing catalyst particles having a smaller size are formed in the pores of the regular porous carbon material having a mesopore average diameter of nanoscale, the metal-containing catalyst particles in the form of metal oxide must be grown to a size larger than the pore cross- , Metal-containing catalyst particles reduced in metal volume and reduced in size from the metal oxide are maintained at a predetermined size or more, and the metal-containing catalyst particles are not agglomeration or sintering due to the pore-constraining effect. In the case of the Fischer- And its performance against water produced as a by-product (Fig. 8). That is, the metal-containing catalyst particles which do not have a certain size or more with respect to the pore cross-sectional area are oxidized or sintered by the reaction heat of extreme reaction and the water produced as a byproduct during the Fischer-Tropsch reaction.

상기 금속 함유 촉매입자가 금속산화물인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%, 바람직하게는 90% 내지 95%를 차지하는 것이 좋다. When the metal-containing catalyst particles are metal oxides, it is preferable that the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95%, preferably 90% to 95% of the mesopore cross-sectional area.

또한, 상기 금속 함유 촉매입자가 환원된 금속인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 65 % 내지 95%, 바람직하게는 70 % 내지 95%, 더욱 바람직하게는 80 % 내지 95%, 더더욱 바람직하게는 85% 내지 90%를 차지하는 것이 좋다.When the metal-containing catalyst particles are a reduced metal, the cross-sectional area of the metal-containing catalyst particles in the mesophore ranges from 65% to 95%, preferably 70% to 95%, more preferably 80% 95%, and still more preferably 85% to 90%.

본 발명에 따라 CMK-3과 같은 규칙적 구조의 다공성 탄소물질 지지체에 금속산화물인 금속 함유 촉매입자가 기공 단면적의 65 % 내지 95%를 차지하고 있으면, 상기 금속 산화물이 환원되어도 구속된 금속 나노입자들을 구비한 나노채널 반응기 구조를 유지하고 , FT 합성 이후에도 결정은 sintering되지 않는다(도 11).According to the present invention, if the metal-containing catalyst particles as metal oxide occupy 65% to 95% of the pore cross sectional area in the porous carbon material support having a regular structure such as CMK-3, even if the metal oxide is reduced, A nanocrystal reactor structure is maintained, and crystals are not sintered after FT synthesis (FIG. 11).

본 발명에서 금속 함유 촉매입자는 피셔 트롭시 합성용 촉매 100중량%를 기준으로 금속 함량 15 중량 % 초과, 바람직하게는 20 중량% 이상, 바람직하게는 50 중량% 이하일 수 있다.
In the present invention, the metal-containing catalyst particles may have a metal content of 15 wt% or more, preferably 20 wt% or more, and preferably 50 wt% or less, based on 100 wt% of the catalyst for Fischer-Tropsch synthesis.

한편, 본 발명자들은 기공(메조포어) 단면적의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체는 화학적 상호작용이 작고, 다공성 탄소 물질 지지체의 외부표면에는 기공 구속 효과도 없어서, 다공성 탄소 물질 지지체의 외부표면에 담지된 촉매 결정은 agglomeration 또는 sintering에 매우 취약하며, 심각한 경우 FT 합성 반응 중에 탄소 침적(carbon deposition)으로 인해 금속 촉매 결정이 지지체 외부로 떨어져 나갈 수도 있다는 것을 발견하였다. 이러한 발견에 기초하여, 본 발명은 기공 내에는 기공 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유하면서, 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 거의 형성되지 않도록 피셔 트롭시 합성용 촉매를 제공하는 것이 또 다른 특징이다.On the other hand, the present inventors have found that a porous carbonaceous material support having a regular structure in which the average diameter of pores (mesopores) are nanoscale is small in chemical interaction and has no pore-restraining effect on the outer surface of the porous carbonaceous material support, The catalyst crystals supported on the outer surface of the catalyst are very vulnerable to agglomeration or sintering and it has been found that the metal catalyst crystals may fall off the support due to carbon deposition during the FT synthesis reaction in severe cases. On the basis of these discoveries, the present invention is characterized in that the catalyst containing metal-containing catalyst particles having a size capable of exhibiting a pore-restraining effect in the pores, and that the metal-containing catalyst particles are hardly formed on the outer surface of the porous carbon material support, It is another feature to provide a catalyst for use.

따라서, 본 발명의 피셔 트롭시 합성용 촉매는 기공(메조포어)의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체의 기공 내부에 주로 금속 함유 촉매입자들이 담지되어, 금속 함유 촉매입자들이 지지체와의 상호작용이 최소화되며 높은 분산도를 가질 수 있다. X선 회절법에 의해 측정한 금속 결정의 분산도는 15% 이상이며, 더욱 바람직하게는 25% 이상일 수 있다. 기존 알루미나 지지체 등에 금속 함유 촉매입자들을 담지시키는 경우, 금속 산화물의 결정 크기가 일정하지 않으며, 모양이 불규칙하게 생성되고, 고르게 분산되지 않는 문제점이 있다.Therefore, the catalyst for Fischer-Tropsch synthesis according to the present invention mainly contains metal-containing catalyst particles in the pores of a porous carbonaceous material support having a regular structure in which the average diameter of pores (mesopores) is nanoscale, ≪ / RTI > is minimized and can have a high degree of dispersion. The degree of dispersion of the metal crystal measured by the X-ray diffraction method may be 15% or more, and more preferably 25% or more. When the metal-containing catalyst particles are supported on an existing alumina support or the like, the crystal size of the metal oxide is not constant, irregular shapes are formed, and the particles are not uniformly dispersed.

특히, 본 발명의 피셔 트롭시 합성용 촉매는 이의 제조방법에서, 다공성 탄소 물질 지지체에 촉매 전구체 용액 함침시 (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 화학적 함침이 되지 않을 정도로 친수성 처리를 한 다공성 탄소 물질 지지체를 사용함으로써, 이로 인해 기공 구속 효과가 없어서 agglomeration 또는 sintering에 취약한 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 거의 형성되지 않을 수 있다.In particular, the catalyst for Fischer-Tropsch synthesis according to the present invention is characterized in that, when the catalyst precursor solution is impregnated into the porous carbon material support, the catalyst precursor solution is impregnated into the porous carbon material support (i) , Or (ii) a porous carbon material support having a hydrophilic treatment on the outer surface of the porous carbon material support to such an extent that the catalyst precursor solution is not chemically impregnated is used, whereby porosity weakening effect of agglomeration or sintering The metal-containing catalyst particles may hardly be formed on the outer surface of the carbon material support.

본 발명에서, 다공성 탄소 물질 지지체의 외부 표면에 금속 함유 촉매 입자가 형성되어 있지 아니하였다는 의미는, 금속 함유 촉매 입자가 실질적으로 형성되어 있지 아니하였다는 의미로, 그 크기가 작아 X선 회절법에 의해 측정한 금속 결정의 분산도가 15% 이상, 바람직하게는 25% 이상을 유지할 수 있는 한, 비록 다공성 탄소 물질 지지체의 외부 표면에 금속 함유 촉매 입자가 일부 형성되더라도 실질적으로 외부 표면에 금속 함유 촉매 입자가 형성되어 있지 아니하였다고 볼 수 있다.
In the present invention, the fact that the metal-containing catalyst particles are not formed on the outer surface of the porous carbon material support means that the metal-containing catalyst particles are not substantially formed, Containing catalyst particles are formed on the outer surface of the porous carbonaceous material support as long as the degree of dispersion of the metal crystal measured by the porous carbonaceous material support can be maintained at 15% or more, preferably 25% or more, It can be considered that the catalyst particles are not formed.

본 발명에서, 금속 함유 촉매입자는 금속 산화물 형태일 수도 있고, 이로부터 환원된 금속 형태일 수도 있다.In the present invention, the metal-containing catalyst particles may be in a metal oxide form or in a reduced metal form.

상기 금속 함유 촉매입자는 코발트(Co), 니켈(Ni), 구리(Cu), 철(Fe), 아연(Zn), 루테늄(Ru), 몰리브덴(Mo), 텅스텐(W), 비스무스(Bi), 레니윰(Re), 로듐(Rh), 팔라듐(Pd), 은(Ag), 백금(Pt), 이의 조합으로 이루어진 군으로부터 선택되는 금속을 함유할 수 있다.  The metal-containing catalyst particles may be at least one selected from the group consisting of Co, Ni, Cu, Fe, Zn, Ru, Mo, W, (Rh), palladium (Pd), silver (Ag), platinum (Pt), and combinations thereof.

본 발명에서 금속 함유 촉매입자들은 평균크기가 5 nm 이하인 것이 바람직하다. 상기 금속 함유 촉매입자들의 크기는 다공성 탄소물질의 기공 크기와 동일 또는 유사하며, 금속 산화물 형태의 금속 함유 촉매입자들은 환원 과정을 거쳐 금속 입자가 되면서, 예컨대 본래 크기의 70 내지 90% 수준으로, 작아질 수 있다. 이전 연구에 따르면 촉매활성 측면에서 촉매 결정의 적절한 크기는 약 6 ~ 8nm이고, 6nm 미만의 금속 결정을 갖는 촉매는 일반적으로 낮은 C5+ 선택도 및 높은 메탄 선택도를 가지며, 피셔-트롭시 합성동안 H2O 부산물이 작은 Co0 나노입자들을 재산화시키는 원인이 되고 재산화된 CoO 나노입자들은 환원되기 어렵다고 알려져 있다. 그러나, 실시예 2의 20 Co/CMK-3의 촉매활성은 정상 상태(steady state)에 이르러 20시간 후에도 거의 일정하게 유지되었으며, 이는 재산화가 발생하지 않았다는 것을 의미한다(도 8).
In the present invention, the metal-containing catalyst particles preferably have an average size of 5 nm or less. The size of the metal-containing catalyst particles is the same as or similar to the pore size of the porous carbon material, and the metal-containing catalyst particles in the form of metal oxide are reduced to metal particles, for example, 70 to 90% Can be. According to previous studies, the appropriate size of catalyst crystals in terms of catalytic activity is about 6-8 nm, and catalysts with metal crystals of less than 6 nm generally have low C 5+ selectivity and high methane selectivity, and Fischer-Tropsch synthesis It is known that H 2 O by-products cause reoxidation of small Co 0 nanoparticles and that reoxidized CoO nanoparticles are difficult to reduce. However, the catalytic activity of 20 Co / CMK-3 of Example 2 remained almost constant after 20 hours in the steady state, which means that no re-oxidation occurred (FIG. 8).

상기 다공성 탄소 물질은 메조포러스 탄소 물질일 수 있다. 다공성 물질은 물질 기공(pore) 크기에 따라 마이크로포러스(microporous), 메조포러스(mesoporous) 물질로 나뉘는데, 통상 기공 크기가 2 nm 이하인 경우 마이크로포러스, 기공 크기가 2 내지 50 nm 사이인 경우를 메조포러스라고 한다. 본 발명의 다공성 탄소 물질은 기공의 크기에 제한되지 아니하나, 나노수준의 금속 입자의 제조를 위해 메조포러스 탄소 물질인 것이 바람직하다. 메조포러스 탄소 물질의 기공 크기는 10 nm 미만인 것이 바람직하다.The porous carbon material may be a mesoporous carbon material. The porous material is divided into microporous and mesoporous materials depending on the pore size. Typically, when the pore size is 2 nm or less, micropores and when the pore size is between 2 and 50 nm, . The porous carbon material of the present invention is not limited to the pore size, but is preferably a mesoporous carbon material for the production of nano-sized metal particles. The pore size of the mesoporous carbon material is preferably less than 10 nm.

본 발명에서, 상기 다공성 물질은 탄소나노튜브, CMK-3, CMK-8, MSU-F-C, 활성탄(acticated carbon), 흑연 섬유, 활성 탄소 섬유 또는 이의 혼합물일 수 있으나 이에 제한되지 않는다. 본 발명에서 사용되는 규칙적 구조의 다공성 탄소 물질은 직선형 기공 구조체의 배열이 균일한 것일 수 있다. 또한, 기공이 연결되어 물질전달 성능을 높일 수 있는 것이 바람직하다.In the present invention, the porous material may be carbon nanotubes, CMK-3, CMK-8, MSU-F-C, activated carbon, graphite fiber, activated carbon fiber or a mixture thereof. The porous carbon material having a regular structure used in the present invention may have a uniform array of linear pore structures. Further, it is preferable that the pores are connected to improve the mass transfer performance.

도 1에 도시된 바와 같이, CMK-3는 규칙적인 채널을 가지고 있으며, 기공의 평균 크기는 약 4nm이고, Brunauer.Emmett.Teller (BET) 표면적은 약 1500 m2 g-1이다. CMK-3에서, 채널 형태의 기공 구조는 서로 연결된 탄소 막대들(rods)에 의해 형성되어 있고, 이들 탄소 막대의 측면에는 개방형 슬릿들(slits)이 있다.As shown in FIG. 1, CMK-3 has a regular channel, the average pore size is about 4 nm, and the Brunauer.Emmett.Teller (BET) surface area is about 1500 m 2 g -1 . In CMK-3, the channel-shaped pore structure is formed by interconnected carbon rods, with open slits on the sides of these carbon rods.

본 발명에서 사용되는 다공성 탄소 물질은, a) 당류, 탄화수소류 또는 알코올류인 탄소 전구체를 메조포러스한 실리카의 기공에 채우고 소성하는 단계; b) 상기 단계 a)의 결과 물질을 산성 또는 염기성 물질을 사용하여 실리카 구조를 녹이는 단계; c) 상기 단계 b)의 결과 물질을 산성물질에 침지시켜 처리한 후 건조하는 단계;를 포함하는 방법으로 제조될 수 있다.The porous carbon material used in the present invention is prepared by: a) filling a carbon precursor, which is a saccharide, a hydrocarbon, or an alcohol, into pores of mesoporous silica and firing; b) dissolving the resultant material of step a) in a silica structure using an acidic or basic material; c) immersing the resultant material of step b) in an acidic material, followed by treatment and drying.

상기 당류(saccharide)는 탄수화물 중에서 비교적 분자가 작고, 물에 녹아서 단맛이 나는 화합물을 총칭한다. 당의 종류로는 포도당, 과당, 갈락토스, 글루코스, 수크로스 등이 있다. 본 발명에서 탄소전구체로 글루코스, 수크로스, furfuryl alcohol 등을 사용할 수 있으나 이에 제한되지 않는다. The saccharide is a compound which is relatively small in the carbohydrate and is soluble in water to give a sweet taste. Sugars include glucose, fructose, galactose, glucose, sucrose, and the like. In the present invention, the carbon precursor may be glucose, sucrose, furfuryl alcohol, or the like, but is not limited thereto.

상기 단계 a)에서 사용되는 메조포러스한 실리카 물질의 종류로는 SBA-15, SBA-3, MSU-H, MCM-41, KIT-6, MCM-48, SBA-16, MSU-F 등이 있으나, 이에 제한되지 않는다. 규칙적인 미세 다공성 구조를 가지는 실리카 물질이라면, 무엇이든 사용 가능하다. 상기 SBA-15, SBA-3, MSU-H 및 MCM-41 은 모두 긴 원통 형태의 다발이 모여 있는 구조를 가지고, 후에 원통 내부에 탄소 전구체가 함침된다. SBA-15, SBA-3, MSU-H, MCM-41, KIT-6, MCM-48, SBA-16 and MSU-F are examples of the mesoporous silica materials used in step a) , But is not limited thereto. Any silica material having a regular microporous structure can be used. The SBA-15, SBA-3, MSU-H and MCM-41 all have a structure in which a bundle of long cylinders is gathered, and then a carbon precursor is impregnated into the inside of the cylinder.

상기 단계 a)에서 탄소 전구체의 메조포러스한 실리카 내부로의 함침은, 탄소 전구체를 수용액으로 만든 후 함침과 건조를 반복하여 수행할 수 있다. 이때 탄소 전구체를 수용액으로 제조한 후 함침시키며, 수용액에는 황산 등 산촉매를 첨가할 수 있다. 탄소 전구체가 충분히 함침될 때까지 함침과 건조를 반복하며, 건조가 완성되면 소성하여 실리카-탄소 복합체를 완성할 수 있다. The impregnation of the carbon precursor into the mesoporous silica in step a) may be performed by repeating impregnation and drying after making the carbon precursor into an aqueous solution. At this time, the carbon precursor is prepared into an aqueous solution and impregnated, and an aqueous acid catalyst such as sulfuric acid may be added to the aqueous solution. Impregnation and drying are repeated until the carbon precursor is sufficiently impregnated, and when drying is completed, the silica-carbon composite can be completed by calcination.

상기 단계 b)는 산성물질 또는 염기성 물질로 인해, 실리카-탄소 복합체에서 실리카가 제거되고, 탄소 구조만 남게 된다. 이렇게 제조된 규칙적 구조의 탄소 지지체는 실리카의 구조와 레플리카 구조를 가지므로, 사용된 메조포러스 실리카와 대등한 표면적을 가지며, 실리카로 채워졌던 공간이 기공이 된다.In step b), the silica is removed from the silica-carbon composite due to the acidic or basic substance, leaving only the carbon structure. The carbon support of the regular structure thus produced has a structure of silica and a replica structure, so that it has a surface area equal to that of the mesoporous silica used, and the space filled with silica becomes pores.

이때 산성 물질의 비제한적인 예로는 HF이 있고, 염기성 물질의 비제한적인 예로는 NaOH이 있다.A non-limiting example of an acidic material is HF, and a non-limiting example of a basic material is NaOH.

상기 단계 c)는 상기 단계 b)의 결과 물질을 산성물질로 처리하고 건조하는 단계이다. 이때 산성물질은 강산성 용액인 질산, 황산, 염산 등이 모두 가능하며, 수용액형태로 사용하고, 농도는 0.01 내지 1 M 인 것이 바람직하다. 대표적으로는 질산 수용액을 사용할 수 있다, 상기 처리는 상온에서 지지체를 산성 수용액에 담구는 방법으로 수행될 수 있으며, 상기 처리를 통해 지지체는 이후 촉매전구체의 함침이 더 용이해진다.
The step c) is a step of treating the resultant material of the step b) with an acidic substance and drying the resultant. In this case, the acidic substance may be a strong acidic solution such as nitric acid, sulfuric acid, hydrochloric acid, etc., and is used in the form of an aqueous solution, and the concentration is preferably 0.01 to 1 M. Typically, a nitric acid aqueous solution can be used. This treatment can be carried out by immersing the support in an acidic aqueous solution at room temperature, through which the support is more easily impregnated with the catalyst precursor.

한편, 본 발명에 따른 피셔 트롭시 합성용 촉매의 제조방법은 Meanwhile, the method for producing a catalyst for Fischer-Tropsch synthesis according to the present invention comprises

1) 메조포어 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계;1) impregnating a porous carbonaceous material support having a mesopore average diameter of nanoscale with a catalyst precursor solution;

2) 상기 함침된 지지체를 건조하는 단계;2) drying the impregnated support;

3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및 3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And

4) 상기 건조된 지지체를 소성하는 단계를 포함한다.
4) firing the dried support.

다공성 탄소 물질 지지체 내 기공은 나노채널 형태일 수 있고, 단계 1)에서, 나노채널 형태의 기공 내에 촉매 전구체 용액의 함침은 나노채널의 모세관 힘 또는 나노채널 내 감압 또는 물리적 힘(예, sonication)을 통해 수행될 수 있다.The pores in the porous carbonaceous material support may be in the form of nanocrystals, and in step 1), the impregnation of the catalyst precursor solution into the pores of the nanocrystalline type may result in capillary forces or nanocrystal pressure reduction or physical force (e.g., sonication) Lt; / RTI >

단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 화학적 함침이 되지 않을 정도로 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하는 것이 바람직하다. 이로 인해 기공 구속 효과가 없는 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 거의 형성되지 않는다. (ii)의 친수성 처리의 비제한 적인 예는 0.01M 내지 1M의 강산 수용액으로 다공성 탄소 물질 지지체를 처리하는 것이다. 예컨대 1M의 질산 수용액으로 다공성 탄소 물질 지지체를 처리하면, 메조기공 내부에 촉매 전구체 용액이 함침될 수 있기에 충분한 소량의 친수성 기능기들을 형성시키나, 대부분의 표면은 소수성을 유지한다.
In step 1), (i) a non-hydrophilic porous carbonaceous material support is used to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) a chemical impregnation of the catalyst precursor solution on the outer surface of the porous carbonaceous material support It is preferable to use a hydrophobic porous carbon material support. As a result, the metal-containing catalyst particles are hardly formed on the outer surface of the porous carbon material support having no pore-restraining effect. A non-limiting example of the hydrophilic treatment of (ii) is to treat the porous carbon material support with a strong acid aqueous solution of 0.01 M to 1 M. For example, treating a porous carbon material support with a 1 M aqueous nitric acid solution forms a small amount of hydrophilic functional groups sufficient to allow the catalyst precursor solution to be impregnated within the mesopores, but most of the surface remains hydrophobic.

촉매 전구체는 코발트(Co), 니켈(Ni), 구리(Cu), 철(Fe), 아연(Zn), 루테늄(Ru), 몰리브덴(Mo), 텅스텐(W), 비스무스(Bi), 레니윰(Re), 로듐(Rh), 팔라듐(Pd), 은(Ag) 및 백금(Pt)으로 이루어진 군으로부터 선택되는 하나 이상의 금속을 함유하는 금속함유 전구체일 수 있으며, 상기 금속함유 전구체는 수용성 전구체로 금속의 산화물염, 옥시수산화물염, 염화물염, 탄산염, 초산염, 시트르산염, 니토로실질산염, 질산염. 수산화염. 옥살산염, 카르복시산염, 황산염 등, 지용성 전구체로 탄화수소가 포함된 알콕시 전구체. 암모늄 전구체 등을 포함하지만 이에 제한되지 않는다.
The catalyst precursor may be selected from the group consisting of Co, Ni, Cu, Fe, Zn, Ru, Mo, T, Bi, Containing precursor may be a metal-containing precursor containing at least one metal selected from the group consisting of Re, Rh, Pd, Ag and Pt, Oxides of metal, Hydroxides, Chloride salts, Carbonates, Acetates, Citrates, Nitrosyl nitrates, Nitrates. Firefighting. Oxalate, carboxylate, sulfate and the like, alkoxy precursors containing hydrocarbons as oil-soluble precursors. Ammonium precursors, and the like.

상기 함침은 촉매 전구체를 용액으로 만들어, 초기 습식 함침법(incipient wetness impregnation)으로 수행될 수 있다. 이때, 촉매 전구체 용액의 용매로는 물 또는 알코올을 사용할 수 있다. 초기 습식 함침법(incipient wetness impregnation)은 가장 널리 사용되는 함침법으로서 촉매 지지체의 세공 부피에 해당 하는 함침 용액을 담지하여 제조하며, 방법이 간단하다.The impregnation can be carried out by incipient wetness impregnation, making the catalyst precursor solution. At this time, water or an alcohol may be used as a solvent of the catalyst precursor solution. The incipient wetness impregnation is the most widely used impregnation method, and it is manufactured by impregnating impregnation solution corresponding to the pore volume of the catalyst support, and the method is simple.

상기 함침시 기공의 부피가 제한되어 있으므로, 충분히 함침 될 때까지 2번 또는 3번의 함침을 반복할 수 있으며 함침마다 건조 과정을 거친다. 함침시, 모세관 힘을 최대한 이용하며, 함침이 잘 되지 않는 경우는 지지체를 진공 처리 후 사용하거나, 함침시 sonication을 병행하는 방법을 사용할 수도 있다.
Since the volume of the pores is limited at the time of impregnation, the impregnation can be repeated twice or three times until the impregnation is sufficiently performed, and the impregnation is subjected to a drying process. When the impregnation is performed, the capillary force is utilized as much as possible. In the case where the impregnation is not performed well, the support may be used after vacuum treatment, or a method of performing sonication at the time of impregnation may be used.

단계 2)에서 건조는 110 ~ 150℃에서 5 ~ 24시간 동안 이루어질 수 있다.
The drying in step 2) may be carried out at 110 to 150 ° C for 5 to 24 hours.

상기 단계 1) 및 2)는 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 예컨대 최종 피셔 트롭시 합성용 촉매(100중량% 기준) 내 촉매 금속의 함량이 20 중량% 이상이 될 때까지 반복한다. The above steps 1) and 2) are repeated until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area, Repeat until the content is at least 20% by weight.

건조된 지지체를 소성하는 단계 4)는 질소, 헬륨, 아르곤 등과 같은 불활성 기체 분위기 하에서 수행할 수 있다. 상기 소성을 통해 메조포러스 기공 사이즈와 비슷하거나 조금 작은 사이즈의 금속 함유 촉매입자들이 생성된다. 촉매입자들은 질서정연한 메조포러스 구조 안에 구속되므로 지지체의 구속 효과로 인해, 촉매입자의 성장이 억제되어 사이즈가 일정하고 균일한 분포로 생성된다. 일 실시예에서 촉매의 사이즈는 약 4nm, 분산도는 30.1% 로 기존 촉매에 비하여 현저하게 개선된 분산도를 나타내었다.
Step 4) of calcining the dried support may be carried out in an inert gas atmosphere such as nitrogen, helium, argon, and the like. Through the calcination, metal-containing catalyst particles having a size similar to or slightly smaller than the mesoporous pore size are produced. Since the catalyst particles are confined within a regular mesoporous structure, the growth of the catalyst particles is suppressed due to the constraining effect of the support, and a uniform and uniform size distribution is produced. In one embodiment, the size of the catalyst was about 4 nm and the degree of dispersion was 30.1%.

나아가, 본 발명은 피셔 트롭시 합성반응을 이용하여 합성가스로부터 액체 탄화수소를 제조하는 방법을 제공하며, 상기 액체 탄화수소 제조 방법은 i) 본 발명에 따른 피셔 트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 단계; ii) 상기 촉매를 환원시켜 활성화시키는 단계; 및 iii) 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 단계를 포함한다.
Further, the present invention provides a method for producing liquid hydrocarbons from syngas using a Fischer-Tropsch synthesis reaction, comprising the steps of: i) subjecting the Fischer-Tropsch synthesis catalyst according to the present invention to a Fischer- Applying to the reactor; ii) reducing and activating the catalyst; And iii) performing the Fischer-Tropsch synthesis reaction with the activated Fischer-Tropsch synthesis catalyst.

본 발명에 따른 액체 탄화수소 제조방법은 적어도 iii) 단계 이전에, 천연가스를 개질하여 합성가스(CO/H2)를 준비할 수 있다. The method for producing liquid hydrocarbons according to the present invention may prepare a synthesis gas (CO / H 2 ) by reforming natural gas at least before step iii).

한편, 피셔-트롭시 합성 반응기는 고정층, 유동층 또는 슬러리 반응기일 수 있다. On the other hand, the Fischer-Tropsch synthesis reactor may be a fixed bed, fluidized bed or slurry reactor.

본 발명에서, 상기 ii) 단계는 피셔-트롭시 합성용 촉매를 환원시키는 단계이다. 상기 환원과정에서, 금속 산화물 형태의 촉매 입자들이 금속으로 환원되면서 그 입자 크기가 예컨대 75% 수준으로 작아질 수 있는데, 이로 인해, 피셔-트롭시 합성반응시 반응물이나 생성물의 이동과 확산을 저해하지 않게 된다. In the present invention, the step ii) is a step of reducing the catalyst for Fischer-Tropsch synthesis. In the reduction process, the metal oxide-type catalyst particles may be reduced to metal and the particle size thereof may be reduced to, for example, 75%, thereby inhibiting migration and diffusion of reactants or products during the Fischer-Tropsch synthesis reaction .

피셔 트롭시 합성 반응은 수소/일산화탄소 반응비를 1.5 내지 2.5 몰비로 유지하면서 수행하는 것이 바람직하다. iii) 단계는 200 내지 350℃, 반응 압력 5 내지 30kg/cm3, 공간속도 1000 - 10000 h- 1 에서 수행될 수 있다.The Fischer-Tropsch synthesis reaction is preferably carried out while maintaining the hydrogen / carbon monoxide reaction ratio at 1.5 to 2.5 molar ratio. iii) steps from 200 to 350 ℃, a reaction pressure of 5 to 30kg / cm 3, a space velocity of 1000 may be performed at 1 - 10000 h.

또한, 본 발명에 따른 액체 탄화수소 제조방법은 iii) 단계 이후 피셔 트롭시 합성 반응 생성물의 개질 반응 단계를 추가로 포함할 수 있다.
In addition, the method for producing liquid hydrocarbons according to the present invention may further comprise a step of reforming the Fischer-Tropsch synthesis reaction product after step iii).

상기와 같이, 본 발명의 피셔 트롭시 합성용 촉매를 사용하여 피셔 트롭시 합성 반응을 수행하는 경우, 본 발명 촉매의 높은 분산도, 반응 도중에 금속이 산화되거나 소결되지 않는 적당한 결정크기로 인해 피셔 트롭시 합성 반응의 일산화탄소 전환율 및 액체 탄화수소 선택성이 증가한다.
As described above, when the Fischer-Tropsch synthesis catalyst is used for the Fischer-Tropsch synthesis reaction, the catalyst of the present invention exhibits a high degree of dispersion, and the Fischer- The carbon monoxide conversion and the liquid hydrocarbon selectivity of the synthesis reaction increase.

본 발명에 따른 제조방법으로 제조된 나노 크기의 촉매는 높은 분산도로 인하여 촉매의 활용도가 극대화되며, 지지체와의 상호작용이 최소가 되어 촉매 본연의 성능이 최대한 발현되므로 피셔-트롭시 합성반응의 생산성이 향상된다.
The nano-sized catalyst prepared by the process of the present invention maximizes the utilization of the catalyst due to its high dispersion and minimizes the interaction with the support, thereby maximizing the performance of the catalyst. Thus, the productivity of the Fischer- .

도 1은 실시예 1에 따라 제조된 규칙적 다공성 탄소물질(OMC; ordered mesoporous carbon)의 기공크기를 측정한 결과(a) 및 TEM 이미지(b)이다.
도 2는 본 발명의 일 구체예에 따른 나노채널 반응기의 개념으로, 나노채널 반응기에서 합성가스로부터 합성 석유를 제조하는 모식도(a), A 방향으로 바라본 나노채널 반응기의 모습(b), 소성 후 연장된 기공들 내에 코발트 산화물 나노 입자들이 구속되어 있는 것을 보여주는 TEM 이미지(c), 그 확대도 (d) 및 (e) 이다.
도 2(b) ~ (e)는 CMK-3의 메조기공들 내부에 평균 기공크기가 약 4nm이고 CoO 결정들이 균일하게 분포되어있는 것을 보여준다.
도 3의 (a) 및 (b)는 실시예 2에 따라 제조된 촉매의 HR TEM 이미지를 나타낸 것이다. 도 3의 (c)는 코발트, 산소, 탄소의 EDX mapping을 나타낸 것이며(코발트: 보라색, 산소: 초록색, 탄소: 노란색), 도 3의 (D) 내지 (f)는 (c) 분리하여 나타낸 것으로 (d)는 코발트, (e)는 산소, (f)는 탄소의 원소분석 이미지를 나타낸다.
도 3(a)(b)에는 각 메조기공 내부에 Co 나노입자들이 다소 균일하고 등간격으로 이격되어 있는 것을 보여준다.
도 4는 비교예 1 및 실시예 2에 따라 코발트의 중량을 각기 다르게 한 촉매(10 Co/CMK-3, 15 Co/CMK-3, 20 Co/CMK-3)의 XRD 분석 데이터를 나타낸 것이다. 도 3(c) ~ (f) 및 도 4에서 알 수 있듯이, 원소 Co의 분포는 원소 O의 분포와 유사하고 대부분의 나노입자들은 CoO로 존재하는 것을 알 수 있다.
도 5는 비교예 1 및 실시예 2에 따라 제조된 각 촉매에 대하여 TPR(temperature programmed reduction) profile(a) 및 H2 uptake profile(b) 측정한 결과를 나타낸 것이다.
도 6은 비교예 2에 따라 제조된, 알루미늄 지지체에 담지된 Co/γ-Al2O3 촉매입자의 TEM 이미지를 나타낸 것이다.
도 7은 비교예 3에서 제조된 20 Co/MSU-F-C의 TEM 이미지를 나타낸 것이다.
도 8은 각 촉매에 대하여 시간에 따른 FT activity 변화를 측정한 결과를 나타낸 것이다. 촉매 나노입자 크기가 메조 기공보다 훨씬 작은 10 Co/CMK-3와 15 Co/CMK-3는 점차적으로 불활성화되었다. 작은 촉매 나노입자는 쉽게 주변으로 이동될 수 있고 FT 합성동안 발열 및 공간적 제한(spatial restriction)의 결여로 인해 sintering된다.
도 9는 CMK-3(a)와 MSU-F-C(b)의 SEM 이미지를 나타낸 것이다.
도 10은, CMK-3과 MSU-F-C 기공 크기 분포 및 표면적을 나타낸 것이다.
도 11은 FT 합성 반응 40시간 후, (a)20 Co/CMK-3 및 (b) 20 Co/MSU-F-C의 TEM 이미지를 나타낸 것이다.
FIG. 1 shows the results (a) and (b) of the measurement of the pore size of ordered mesoporous carbon (OMC) prepared according to Example 1. FIG.
FIG. 2 is a conceptual view of a nano-channel reactor according to one embodiment of the present invention. FIG. 2 is a schematic view (a) of producing a synthetic petroleum gas from a syngas in a nanochannel reactor, a view (b) A TEM image (c) showing the cobalt oxide nanoparticles confined in the extended pores, and enlarged views (d) and (e) thereof.
FIGS. 2 (b) to 2 (e) show that the average pore size is about 4 nm and the CoO crystals are uniformly distributed in the mesopores of CMK-3.
Figures 3 (a) and 3 (b) show HR TEM images of the catalyst prepared according to Example 2. 3 (c) shows the EDX mapping of cobalt, oxygen and carbon (cobalt: purple, oxygen: green, carbon: yellow), and FIGS. 3 (D) (d) is an elemental analysis image of cobalt, (e) is oxygen, and (f) is carbon.
3 (a) and 3 (b) show that the Co nanoparticles are uniformly spaced at equal intervals in each mesopore.
FIG. 4 shows XRD analysis data of catalysts (10 Co / CMK-3, 15 Co / CMK-3, 20 Co / CMK-3) having different weights of cobalt according to Comparative Examples 1 and 2, respectively. As can be seen from FIGS. 3 (c) to (f) and FIG. 4, the distribution of the element Co is similar to the distribution of the element O, and most of the nanoparticles are present as CoO.
5 shows the results of measurement of the TPR (temperature programmed reduction) profile (a) and the H 2 uptake profile (b) for each of the catalysts prepared according to Comparative Example 1 and Example 2. FIG.
6 is a TEM image of a Co / γ-Al 2 O 3 catalyst particle supported on an aluminum support prepared according to Comparative Example 2. FIG.
7 shows a TEM image of 20 Co / MSU-FC prepared in Comparative Example 3. Fig.
FIG. 8 shows the results of measuring changes in FT activity with time for each catalyst. 10 Co / CMK-3 and 15 Co / CMK-3, which have much smaller catalyst nanoparticle sizes than mesopores, were gradually deactivated. Small catalyst nanoparticles can easily migrate to the periphery and are sintered due to heat and lack of spatial restriction during FT synthesis.
9 shows SEM images of CMK-3 (a) and MSU-FC (b).
10 shows the pore size distribution and surface area of CMK-3 and MSU-FC.
11 shows TEM images of (a) 20 Co / CMK-3 and (b) 20 Co / MSU-FC after 40 hours of FT synthesis reaction.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to examples. These examples are for further illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예 1: OMC 지지체의 제조Example 1: Preparation of an OMC support

메조포러스 실리카 SBA-15 2g을 물 20g에 AlCl3 0.36g이 용해된 수용액에 함침시켜, Alumination시켰다(AlSBA-15). 만들어진 AlSBA-15 1g에 furfuryl alcohol 1.5 ml을 고루 문지른 후, 85℃에서 4시간 동안 열처리 과정을 거쳐 furfuryl alcohol을 중합시켰다. 중합이 끝난 후, Ar 가스 하에서 850 ℃에서 2시간 동안 탄화시켜 실리카-탄소 복합체를 완성하였다. 상온으로 식힌 후, HF 나 수산화나트륨 수용액을 사용하여 실리카 골격을 녹여내어 규칙적 구조의 메조포러스 탄소(OMC) 지지체를 완성하였다. 이렇게 얻어진 OMC의 기공 사이즈 분포를 측정한 결과를 도 1a에, TEM 이미지를 도 1b에 나타내었다. 얻어진 OMC는 표면적이 약 1500 m2/g에 달하며, 기공의 크기가 약 4 nm 정도이고, 직선형 기공 구조체의 배열이 매우 균일함을 확인할 수 있었다. 이와 같이 SBA-15를 주형으로 하여 제조한 탄소 물질은 CMK-3이라고도 한다.
A mesoporous silica SBA-15 2g water to 20g AlCl 3 Was impregnated with an aqueous solution of 0.36 g and Aluminized (AlSBA-15). 1.5 g of furfuryl alcohol was thoroughly rubbed on 1 g of the prepared AlSBA-15, followed by heat treatment at 85 ° C for 4 hours to polymerize furfuryl alcohol. After completion of the polymerization, the mixture was carbonized at 850 DEG C for 2 hours under an Ar gas to complete a silica-carbon composite. After cooling to room temperature, the mesoporous carbon (OMC) support with a regular structure was completed by dissolving the silica skeleton using HF or an aqueous solution of sodium hydroxide. The results of measuring the pore size distribution of the OMC thus obtained are shown in FIG. 1A, and TEM images are shown in FIG. 1B. The obtained OMC has a surface area of about 1500 m 2 / g, a pore size of about 4 nm, and the arrangement of linear pore structures is very uniform. The carbon material prepared using SBA-15 as a template is also referred to as CMK-3.

실시예 2: OMC에 담지된 코발트 촉매의 제조Example 2: Preparation of OMC-supported cobalt catalyst

상기 제조예 1에서 만든 OMC(CMK-3) 를 1M 질산 수용액으로 약 30분간 상온에서 처리하였다. 이후 세척과 건조를 마친 후, 약 20 wt %의 코발트 촉매입자가 되도록 질산염 코발트 전구체를 에탄올 용액상으로 만들어 incipient wetness impregnation 법으로 OMC 기공에 함침시켰다. 기공의 부피가 제한되어 있으므로 2번 혹은 3번의 함침과정을 거치며, 함침마다 건조 과정을 거쳤다. 함침시, 모세관 힘을 최대한 이용하며, 함침이 잘 되지 않는 경우 필요에 따라 OMC 지지체를 진공처리한 후 사용하거나, 함침시 sonication 등의 방법을 병행하였다. 건조된 촉매는 400 ℃에서 질소분위기로 5시간 소성하여 메조포러스 기공 사이즈와 비슷하거나 조금 작은 사이즈의 코발트 산화물 결정을 생성시켰다. 상기 제조된 코발트 산화물 결정을 도 2에 나타내었다. 또한, 제조된 코발트 촉매의 원소 분석 이미지를 도 3에 나타내었다. 이를 통해, 코발트 산화물 결정이 매우 일정한 크기로 제조된 것을 알 수 있으며, OMC 기공의 영향으로 배열 또한 매우 질서 정연한 것을 확인하였다. 얻어진 코발트 산화물 결정의 크기는 약 4 nm로서 기공 크기와 유사하였다. 참고문헌 R. D. Jones, C. H. Bartholomew, Appl. Catal. 1988, 39, 77-88를 참고하여 % Dispersion (%분산도 = 96.2/코발트 결정 사이즈)을 구하고, 그 값이 30.1 % 임을 확인하였다. 피셔 트롭시 합성 반응시 환원하여 촉매를 활성화시키는데, 이때 코발트 산화물이 코발트 금속으로 환원되면서 그 그 크기가 약 75% 수준으로 작아진다. 따라서, 본 실시예에서 제조된 촉매가 반응물이나 생성물의 이동과 확산을 크게 저해하지 않으며, 이는 이후 촉매의 성능 검증으로 확인하였다.
OMC (CMK-3) prepared in Preparation Example 1 was treated with a 1 M nitric acid aqueous solution for about 30 minutes at room temperature. After washing and drying, the cobalt nitrate precursor was made into an ethanol solution so as to be about 20 wt% of the cobalt catalyst particles, and impregnated into the OMC pores by the incipient wetness impregnation method. Since the volume of the pores is limited, the impregnation process is carried out two or three times, and each impregnation is subjected to a drying process. In case of impregnation, the capillary force is utilized to the maximum. In the case where the impregnation does not work well, the OMC support is subjected to a vacuum treatment or a sonication at the time of impregnation. The dried catalyst was calcined in a nitrogen atmosphere at 400 ° C for 5 hours to produce cobalt oxide crystals having a size similar to or slightly smaller than the mesoporous pore size. The prepared cobalt oxide crystals are shown in Fig. An elemental analysis image of the produced cobalt catalyst is shown in FIG. From this, it can be seen that the cobalt oxide crystals are produced to a very constant size, and the arrangement is also very orderly due to the influence of OMC pores. The size of the obtained cobalt oxide crystals was about 4 nm, which was similar to the pore size. References RD Jones, CH Bartholomew, Appl. Catal. 1988, 39, 77-88, the% Dispersion (% dispersion degree = 96.2 / cobalt crystal size) was determined to be 30.1%. During the Fischer-Tropsch synthesis reaction, the catalyst is activated by reducing the cobalt oxide to cobalt metal, which is reduced to about 75%. Therefore, the catalyst prepared in this Example does not significantly inhibit the migration and diffusion of the reactants or products, and this is confirmed by the performance verification of the catalyst afterwards.

비교예 1: 코발트 함량이 20 wt% 미만인, CMK-3에 지지된 코발트 촉매의 제조Comparative Example 1: Preparation of cobalt catalyst supported on CMK-3 with a cobalt content of less than 20 wt%

최종 촉매입자 내 코발트 금속의 무게 함량이 20 wt% 미만인 것을 제외하고는, 실시예 2의 제조방법과 동일한 방법을 사용하여 10 wt%, 15 wt 코발트 함유 CMK-3 담지 촉매를 제조하였다. 코발트 금속이 10 wt% 포함된 CMK-3 담지 촉매를 10 Co/CMK-3, 15 wt% 포함된 CMK-3 담지 촉매를 15 Co/CMK-3로 명명하였다.
A CMK-3 supported catalyst containing 10 wt% and 15 wt% of cobalt was prepared in the same manner as in Example 2, except that the weight content of cobalt metal in the final catalyst particle was less than 20 wt%. CMK-3 supported catalyst containing 10 wt% of cobalt metal was named 10 Co / CMK-3, and CMK-3 supported catalyst containing 15 wt% was named 15 Co / CMK-3.

상기 실시예 및 비교예의 10 Co/CMK-3, 15 Co/CMK-3 및 20 Co/CMK-3 촉매의 XRD 데이터를 도 4에 나타내었다. 그 결과 코발트 함량이 증가할수록, 45°근처의 주 피크의 폭이 좁아지며 더 뾰족해지는 것을 확인할 수 있었다. 이는 주 피크에서 계산한 FWHM(full width at half maximum, 피크 높이 중간 지점에서 피크 폭의 길이)가 더 짧다는 것으로, 촉매 결정의 크기가 커진다는 것을 의미한다(A.L.Patterson, Phys. Rev.,1939,56,978). 즉, 20 Co/CMK-3 코발트 산화물 결정의 크기가, 10 Co/CMK-3, 15 Co/CMK-3의 코발트 산화물 결정의 크기보다 크다는 것을 확인할 수 있었다.
XRD data of 10 Co / CMK-3, 15 Co / CMK-3 and 20 Co / CMK-3 catalysts of the above Examples and Comparative Examples are shown in FIG. As a result, it was confirmed that as the content of cobalt increased, the width of the main peak near 45 ° became narrower and became sharper. This means that the FWHM (full width at half maximum) calculated at the main peak is shorter and the size of the catalyst crystal is larger (ALPatterson, Phys. Rev., 1939, 56,978). That is, it was confirmed that the size of the 20 Co / CMK-3 cobalt oxide crystal is larger than the size of the cobalt oxide crystal of 10 Co / CMK-3 and 15 Co / CMK-3.

또한, 각 촉매에 대하여 TPR(temperature programmed reduction) profile 및 H2 uptake profile을 측정하여 이를 도 5에 나타내었다. 그 결과 낮은 온도의 환원피크가 150℃ 내지 350℃에서 나타나며, 높은 온도의 환원 피크가 350℃ 내지 900℃에서 나타났으며 코발트 담지량이 많은 경우 H2 uptake 양이 증가하였다. 환원 profile을 두 부분으로 나누었을 때, 코발트 담지량이 많은 경우 저온 영역의 피크가 증가한 반면 높은 온도영역의 피크는 감소했다. 이는 코발트 담지량이 많은 경우 지지체와 촉매 물질과의 상호작용이 약해지고, 이로 인해 환원성이 증가했기 때문이다.
The temperature programmed reduction (TPR) profile and the H 2 uptake profile of each catalyst were measured and are shown in FIG. As a result, a reduction peak at a low temperature appeared at 150 ° C to 350 ° C, a reduction peak at a high temperature appeared at 350 ° C to 900 ° C, and an increase in the amount of H 2 uptake was observed at a high cobalt loading. When the reduction profile was divided into two parts, the peak in the low temperature region increased while the peak in the high temperature region decreased when the cobalt loading was large. This is because, when the cobalt loading is large, the interaction between the support and the catalyst material is weakened and the reducing property is increased.

비교예Comparative Example 2: 알루미나 지지체를 사용한 코발트계 촉매의 제조 (20 2: Preparation of cobalt-based catalyst using alumina support (20 CoCo /γ-/ γ- AlAl 22 OO 33 ))

감마-알루미나 지지체에 코발트 전구체를 담지하여 코발트계 촉매를 제조하였다. 사용한 감마-알루미나는 기공 부피가 0.5 ml/g, 기공 크기가 9-10 nm 이며 BET법으로 측정한 표면적이 약 170 m2/g 정도 되는 알루미나로서 Sasol puralox 제품을 사용하였다.The cobalt precursor was supported on a gamma-alumina support to prepare a cobalt-based catalyst. The used gamma-alumina was alumina having a pore volume of 0.5 ml / g, a pore size of 9-10 nm and a surface area of about 170 m 2 / g as measured by the BET method.

감마-알루미나 지지체에 약 20 wt%의 코발트 금속이 담지 되도록 질산염 코발트 전구체의 무게를 정량하여 용액으로 제조한 후(용매는 알코올, 물 등), 함침법으로 Co/γ-Al2O3 형태의 촉매입자를 제조하였다. 상기 제조된 촉매입자의 TEM 이미지를 도 5에 나타내었다. XRD 분석에 의하면 제조된 촉매입자에서 코발트 산화물 결정의 크기는 평균 약 14.4 nm 이지만, 도 5의 TEM 이미지를 살펴보면 검은색으로 나타난 코발트 산화물의 결정크기는 일정하지 않은 것을 알 수 있었다. 또한 그 모양 역시 불규칙적하게 얻어지는 것을 확인할 수 있었다. Gamma - after the determination of the weight of the nitrates of cobalt precursor to cobalt metal from about 20 wt% supported on an alumina support prepared by the solution of a Co / γ-Al 2 O 3 forms to (the solvent is an alcohol, water and the like), impregnation Catalyst particles were prepared. A TEM image of the prepared catalyst particles is shown in Fig. According to the XRD analysis, the average size of the cobalt oxide crystals in the prepared catalyst particles is about 14.4 nm, but the crystal size of the cobalt oxide, which is shown in black in the TEM image of FIG. 5, is not constant. Also, it was confirmed that the shape is also irregularly obtained.

또한, 사용한 지지체의 기공 크기가 9-10 nm인 반면 생성된 산화물 결정의 크기는 약 14.4 nm로, 기공 크기보다도 큰 산화물 결정이 생성되었다. 이는 금속 산화물 결정이 지지체의 기공 내에서만 생성된 것이 아니라 기공 외부에도 생성되었다는 것을 의미한다. 이는 도 6는 TEM 이미지에서도 확인할 수 있는데, 결정이 뭉쳐진 모양으로 생성되거나 알루미나 지지체 표면에 덩어리로 생성된 것을 확인할 수 있다. 참고문헌 R. D. Jones, C. H. Bartholomew, Appl. Catal. 1988, 39, 77-88에 의하여 구한 % 분산도는 8.9 % 였다.Also, while the pore size of the support used was 9-10 nm, the size of the oxide crystals formed was about 14.4 nm, which was larger than the pore size. This means that the metal oxide crystals were not produced only in the pores of the support but also outside the pores. This can be confirmed also in the TEM image of FIG. 6, which shows that the crystals are formed in the form of agglomerated or agglomerated on the alumina support surface. References R. D. Jones, C. H. Bartholomew, Appl. Catal. 1988, 39, 77-88. The percent dispersion was 8.9%.

20Co/γ-Al2O3는 또한, 환원시 어느정도 sintering이 되어 환원 전 금속 결정입자 크기는 10.8nm이었는데 환원된 후 16.0nm로 증가하였다.
20Co / γ-Al 2 O 3 was also sintered to a certain extent during reduction, and the metal crystal particle size before reduction was 10.8 nm, which was increased to 16.0 nm after reduction.

비교예 3: MSU-F-C에 담지된 코발트 촉매의 제조Comparative Example 3: Preparation of cobalt catalyst supported on MSU-F-C

다공성 탄소 물질로 MSU-F-C를 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 코발트 촉매를 제조하였다(20 Co/MSU-F-C). MSU-F-C는 메조포러스 실리카인 "MSU-F-silica"로부터 합성된 것으로서, 약 30 nm의 큰 기공과 기공 구조 사이에 4 내지 8 nm의 작은 기공을 갖는 메조셀룰러 구조의 다공성 탄소 물질이다. 상기 제조된 20 Co/MSU-F-C의 TEM 이미지를 도 7에 나타내었다. 20 Co/MSU-F-C에서 CoO 결정 크기는 8.7nm이었다. 20 Co/MSU-F-C에서 나노 입자들은 큰 기공 보다 훨씬 작으므로, 구속 효과(confinement effect)가 미비하다고 할 수 있다. 약한 구속 효과와 탄소의 불활성 특성으로 인해, 코발트 나노 결정들은 탄소 지지체와 매우 약한 상호작용을 하며, 약한 구속 효과와 탄소의 불활성 특성은 촉매 제조 또는 FT 합성 동안 나노입자들의 agglomeration 또는 sintering이 일어난다.
A cobalt catalyst was prepared (20 Co / MSU-FC) in the same manner as in Example 2 except that MSU-FC was used as the porous carbon material. MSU-FC is a mesocellular porous carbon material synthesized from mesoporous silica "MSU-F-silica" and having small pores of 4 to 8 nm between large pores of about 30 nm and pore structure. The TEM image of the 20 Co / MSU-FC prepared above is shown in FIG. The CoO crystal size at 20 Co / MSU-FC was 8.7 nm. At 20 Co / MSU-FC, the nanoparticles are much smaller than the larger pores, so the confinement effect is insignificant. Due to the weak constraining effect and the inert nature of the carbon, the cobalt nanocrystals interact very poorly with the carbon support, and the weak constraining effect and the inert nature of the carbon occur agglomeration or sintering of the nanoparticles during catalyst preparation or FT synthesis.

비교예 4: 알루미나 지지체를 사용하며, 조촉매를 첨가한 코발트계 촉매의 제조 (0.05Comparative Example 4: Preparation of cobalt-based catalyst with alumina support and co-catalyst added (0.05 PtPt -23-23 CoCo /γ-/ γ- AlAl 22 OO 33 ))

비교예 2와 동일한 방법으로 촉매를 제조하되, 0.05 wt%의 Pt를 조촉매 성분으로 포함하며, 코발트의 함량이 23 wt%가 되도록 제조하였다.
A catalyst was prepared in the same manner as in Comparative Example 2 except that 0.05 wt% of Pt was contained as a cocatalyst component and the content of cobalt was 23 wt%.

실시예Example 3: 촉매 성능 테스트 3: Catalyst performance test

하기 표 1에는 상기 실시예 2, 비교예 2 및 3에서 제조된 촉매의 크기를 나타내었다.Table 1 below shows the sizes of the catalysts prepared in Example 2, Comparative Examples 2 and 3.

Catalyst
Catalyst
XRD로부터 측정한
입자크기 (nm)
Measured from XRD
Particle Size (nm)
Co0
입자 크기 (nm)
Co 0
Particle Size (nm)
% Dispersion
96.2/d(Co0)
% Dispersion
96.2 / d (Co 0)
실시예 2Example 2 OMC 촉매 (20 Co/CMK-3)OMC catalyst (20 Co / CMK-3) 4.0 (CoO)4.0 (CoO) 3.23.2 30.130.1 비교예 2Comparative Example 2 알루미나 지지촉매
(20Co/γ-Al2O3)
Alumina supported catalyst
(20Co / γ-Al 2 O 3)
8.7 (CoO)8.7 (CoO) 7.07.0 11.111.1
비교예 3Comparative Example 3 20 Co/MSU-F-C20 Co / MSU-F-C 14.4 (Co3O4)14.4 (Co 3 O 4 ) 10.810.8 8.98.9

또한, 상기 제조된 실시예 및 비교예 1 내지 4의 촉매의 성능을 비교하기 위해, 상기 촉매를 이용하여 피셔 트롭시 합성 반응을 실시하였다. 이때 반응 조건은, 합성가스 공간속도(GHSV) = 4000 ml/g-cat/h, 온도(T) = 220℃, 압력(P) = 2.0 MPa, H2/CO ratio = 2.0, 합성가스 조성(H2/CO/CO2/Ar) = 57.3/28.4/9.3/5.0 (mol%)로 설정하였다. 상기 피셔 트롭시 합성반응 결과를 하기 표 2에 나타내었다.Further, in order to compare the performances of the catalysts of the above-described Examples and Comparative Examples 1 to 4, Fischer-Tropsch synthesis reaction was carried out using the above catalyst. The reaction conditions were as follows: Syngas space velocity (GHSV) = 4000 ml / g-cat / h, temperature (T) = 220 캜, pressure (P) = 2.0 MPa, H 2 / CO ratio = H 2 / CO / CO 2 / Ar) = 57.3 / 28.4 / 9.3 / 5.0 (mol%). The result of the Fischer-Trops synthesis reaction is shown in Table 2 below.

Catalyst
Catalyst
CO 전환율
(%)
CO conversion rate
(%)
FT activity
(10-5molCOgCo -1s-1)
FT activity
(10 -5 mol CO g Co -1 s -1)
선택도 (%)Selectivity (%)
CH4 CH 4 C5+ C 5+ 실시예 2Example 2 OMC 촉매 (20 Co/CMK-3)OMC catalyst (20 Co / CMK-3) 81.381.3 5.735.73 2.72.7 93.693.6 비교예 1Comparative Example 1 OMC 촉매 (15 Co/CMK-3)OMC catalyst (15 Co / CMK-3) 48.148.1 3.833.83 10.310.3 80.880.8 비교예 1Comparative Example 1 OMC 촉매 (10 Co/CMK-3)OMC catalyst (10 Co / CMK-3) 35.535.5 4.944.94 10.810.8 82.182.1 비교예 2Comparative Example 2 알루미나 지지촉매
(20Co/γ-Al2O3)
Alumina supported catalyst
(20Co / γ-Al 2 O 3)
54.954.9 3.863.86 4.74.7 90.390.3
비교예 3Comparative Example 3 20 Co/MSU-F-C20 Co / MSU-F-C 24.424.4 1.721.72 5.45.4 89.589.5 비교예 4Comparative Example 4 0.05Pt-23Co/γ-Al2O3 0.05Pt-23Co / γ-Al 2 O 3 62.962.9 3.853.85 4.34.3 90.990.9

상기 표 2를 통해 알 수 있듯이, 본 발명의 20 Co/CMK-3 촉매는 촉매의 함량이 이에 미치지 못한 촉매(15 Co/CMK-3, 10 Co/CMK-3)에 비해 CO 전환율, C5+ 선택도 및 생산성(FT activity)이 더 높은 것을 확인할 수 있었다. 이는 촉매금속의 결정크기가 일정한 크기로 성장하지 못하면, 반응시 극심한 반응열과 부산물로 생성되는 물에 의하여 금속 결정이 쉽게 산화되거나 소결되어 활성이 크게 떨어지기 때문이다.As can be seen from the above Table 2, CO conversion than 20 Co / CMK-3 catalyst, the catalyst content of the catalyst did not have this (15 Co / CMK-3, 10 Co / CMK-3) of the present invention, C 5 + Selectivity and productivity (FT activity) were higher. This is because if the crystal size of the catalytic metal does not grow to a certain size, the metal crystals are easily oxidized or sintered by the reaction heat and the water produced as a by-product during the reaction.

표 2에 나타난 바와 같이, 20 Co/CMK-3 촉매(실시예 2)는 20 Co/γ-Al2O3 (비교예 2)보다 CO 전환율 및 C5 + 선택도가 더 높다.As shown in Table 2, the 20 Co / CMK-3 catalyst (Example 2) has a higher CO conversion and C 5 + selectivity than 20 Co / γ-Al 2 O 3 (Comparative Example 2).

뿐만 아니라 촉매의 함량이 20%에 미치지 못하는 촉매는, 기존에 널리 사용되는 알루미나 지지촉매(20 Co/γ-Al2O3)와 비교하여도 전환율과 선택도가 떨어진다. 다만 10 Co/CMK-3, 15 Co/CMK-3 는 투입된 코발트의 양이 20 Co/γ-Al2O3에 비해 작으므로, 투입된 코발트 금속 대비 생산량을 계산하는 FT activity의 값은 비슷하거나 더 높다.
In addition, the catalyst having a content of less than 20% of the catalyst is lower in conversion and selectivity than the conventional alumina supported catalyst (20 Co / γ-Al 2 O 3 ). However, since the amount of cobalt added is smaller than that of 20 Co / γ-Al 2 O 3 , the value of FT activity for calculating the production amount of cobalt metal added to the 10 Co / CMK-3 and 15 Co / CMK- high.

그러나 본 발명의 20 Co/CMK-3는 기존 알루미나 지지촉매와 비교하여도 전환율, C5+ 선택도, 생산성(FT activity)등 모든 면에서 성능이 뛰어나며, 촉매의 금속함량이 낮은 촉매(15 Co/CMK-3, 10 Co/CMK-3)에 비해서도 모든 면에서 성능이 뛰어남을 확인할 수 있었다. 또한, 조촉매가 추가로 첨가된 알루미나 지지촉매보다도 전환율이 뛰어나며, MSU-F-C에 담지된 촉매보다도 성능이 뛰어남을 확인할 수 있었다.
However, the 20 Co / CMK-3 of the present invention is superior in all aspects such as conversion rate, C 5+ selectivity, and productivity (FT activity) compared with conventional alumina supported catalysts, / CMK-3, 10 Co / CMK-3). In addition, it was confirmed that the conversion was superior to the alumina supported catalyst in which the cocatalyst was further added, and the performance was superior to that of the catalyst supported on MSU-FC.

실시예 4: 시간에 따른 촉매의 활성 측정Example 4: Measurement of catalytic activity over time

상기 실시예 3과 동일한 방법으로 피셔 트롭시 합성 반응을 수행하고, 시간에 따른 FT activity를 측정하고 이를 도 8에 나타내었다. 그 결과 본 발명의 20 Co/CMK-3는 FT activity가 가장 뛰어나고, 35시간 이후부터 안정한 상태로 유지되며, 재산화가 일어나지 않는 것을 확인할 수 있었다. 그러나, 촉매의 금속 함량이 낮은 촉매는(15 Co/CMK-3, 10 Co/CMK-3) 안정화되지 못하며, 반응 시간이 흐를수록 재산화되거나 소결되어 FT activity가 감소하는 것을 확인할 수 있었다.
FT activity was measured in the same manner as in Example 3, and FT activity over time was measured. The result is shown in FIG. As a result, 20 Co / CMK-3 of the present invention showed the best FT activity and remained stable after 35 hours, indicating that reoxidation did not occur. However, the catalyst with a low metal content of the catalyst was not stabilized (15 Co / CMK-3, 10 Co / CMK-3), and it was confirmed that the FT activity was reduced by the reoxidation or sintering as the reaction time became longer.

Claims (17)

메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질; 및 상기 다공성 탄소 물질의 기공 내 담지된, 평균크기가 나노 스케일인 금속 함유 촉매입자들;을 함유하는 피셔 트롭시 합성용 촉매로서,
상기 금속 함유 촉매입자가 금속산화물인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지하고,
상기 금속 함유 촉매입자가 환원된 금속인 경우, 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 65 % 내지 95%를 차지하는 것을 특징으로 하는 피셔 트롭시 합성용 촉매.
A porous carbon material having a regular structure in which mesopores have an average diameter of nanoscale; And metal-containing catalyst particles supported on the pores of the porous carbon material and having an average size of nanoscale,
When the metal-containing catalyst particles are metal oxides, the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-
Wherein when the metal-containing catalyst particles are a reduced metal, the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 65% to 95% of the mesopore cross-sectional area.
제1항에 있어서, 상기 금속 함유 촉매입자는 피셔 트롭시 합성용 촉매 100중량%를 기준으로 금속 함량 20 중량% 이상 담지된 것을 특징으로 하는 피셔 트롭시 합성용 촉매.
The catalyst for synthesis of Fischer-Tropsch according to claim 1, wherein the metal-containing catalyst particles are supported at a metal content of 20 wt% or more based on 100 wt% of the catalyst for Fischer-Tropsch synthesis.
제1항에 있어서, 상기 금속 함유 촉매입자들은 평균 입경이 5 nm 이하인 것을 특징으로 하는 피셔 트롭시 합성용 촉매.
The catalyst for Fischer-Tropsch synthesis according to claim 1, wherein the metal-containing catalyst particles have an average particle diameter of 5 nm or less.
제1항에 있어서, 규칙적 구조의 다공성 탄소 물질은 직선형 기공 구조체의 배열이 균일한 것을 특징으로 하는 촉매.
The catalyst according to claim 1, wherein the porous carbon material having a regular structure is uniform in the arrangement of the linear pore structure.
제1항에 있어서, 상기 금속 함유 촉매입자는 코발트(Co), 니켈(Ni), 구리(Cu), 철(Fe), 아연(Zn), 루테늄(Ru), 몰리브덴(Mo), 텅스텐(W), 비스무스(Bi), 레니윰(Re), 로듐(Rh), 팔라듐(Pd), 은(Ag), 백금(Pt), 및 이의 조합으로 이루어진 군으로부터 선택되는 금속을 포함하는 것을 특징으로 하는 촉매.
The method of claim 1, wherein the metal-containing catalyst particles are selected from the group consisting of Co, Ni, Cu, Fe, Zr, Ru, Mo, ), Bismuth (Bi), rhenium (Re), rhodium (Rh), palladium (Pd), silver (Ag), platinum (Pt), and combinations thereof. catalyst.
제1항에 있어서, 다공성 탄소 물질 지지체의 외부 표면에 금속 함유 촉매 입자들이 없어서 X선 회절법에 의해 측정한 금속 결정의 분산도가 15% 이상인 것을 특징으로 하는 피셔 트롭시 합성용 촉매.
The catalyst for Fischer-Tropsch synthesis according to claim 1, wherein the metal-containing catalyst particles are not present on the outer surface of the porous carbon material support, and the dispersion degree of the metal crystal measured by the X-ray diffraction method is 15% or more.
제1항에 있어서, 상기 다공성 탄소 물질은
a) 당류, 탄화수소류 또는 알코올류인 탄소 전구체를 메조포러스한 실리카의 기공에 채우고 소성하는 단계;
b) 상기 단계 a)의 결과 물질을 산성 또는 염기성 물질을 사용하여 실리카 구조를 녹이는 단계;
c) 상기 단계 b)의 결과 물질을 산성물질에 침지시켜 처리한 후 건조하는 단계;
를 포함하는 방법으로 제조된 것을 특징으로 하는 촉매.
The method of claim 1, wherein the porous carbon material comprises
a) filling a pore of a mesoporous silica with a carbon precursor, which is a saccharide, a hydrocarbon, or an alcohol, and calcining;
b) dissolving the resultant material of step a) in a silica structure using an acidic or basic material;
c) immersing the resultant material of step b) in an acidic material, followed by treatment and drying;
Lt; RTI ID = 0.0 > of: < / RTI >
제7항에 있어서, 단계 c)에서 사용되는 산성물질은 농도가 0.01M 내지 1M인 강산성 수용액인 것을 특징으로 하는 촉매.
The catalyst according to claim 7, wherein the acidic substance used in step c) is a strongly acidic aqueous solution having a concentration of 0.01M to 1M.
제1항에 있어서, 상기 다공성 탄소 물질은 CMK-3인 것을 특징으로 하는 촉매.
The catalyst according to claim 1, wherein the porous carbon material is CMK-3.
1) 메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계;
2) 상기 함침된 지지체를 건조하는 단계;
3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및
4) 상기 건조된 지지체를 소성하는 단계
를 포함하는, 제1항 내지 제9항 중 어느 한 항에 기재된 피셔 트롭시 합성용 촉매의 제조방법.
1) impregnating a porous precursor porous porous material support having a mesopore average diameter of nanoscale with a catalyst precursor solution;
2) drying the impregnated support;
3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And
4) firing the dried support
10. The method for producing a catalyst for synthesis of a Fischer-Tropsch according to any one of claims 1 to 9.
제10항에 있어서, 단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 함침이 되지 않을 정도로만 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하며,
이로 인해 기공 구속 효과(pore confinement effect)가 없는 다공성 탄소 물질 지지체의 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니한 피셔 트롭시 합성용 촉매를 제조하는 것을 특징으로 하는 촉매 제조방법.
The method of claim 10, wherein in step (1), a porous carbon material support not subjected to hydrophilicity treatment is used so that the catalyst precursor solution is not impregnated on the outer surface, or (ii) A porous carbon material support having a hydrophilic treatment only to the extent that the precursor solution is not impregnated is used,
Thereby producing a catalyst for Fischer-Tropsch synthesis in which no metal-containing catalyst particles are formed on the outer surface of the porous carbon material support having no pore confinement effect.
메조포어의 평균 직경이 나노 스케일인 규칙적 구조의 다공성 탄소 물질 지지체에서, 기공 구속 효과(pore confinement effect)가 없는 외부 표면에는 금속 함유 촉매 입자가 형성되어 있지 아니하면서 기공 내 구속 효과를 발휘할 수 있는 크기의 금속 함유 촉매 입자를 함유한 피셔 트롭시 합성용 촉매를 제조하는 방법으로서,
1) 상기 다공성 탄소 물질 지지체에 촉매 전구체 용액을 함침하는 단계;
2) 상기 함침된 지지체를 건조하는 단계;
3) 메조포어 내 금속 함유 촉매입자의 단면적이 메조포어 단면적의 85 % 내지 95%를 차지할 때까지, 상기 단계 1) 및 2)를 반복하는 단계; 및
4) 상기 건조된 지지체를 소성하는 단계 를 포함하되,
단계 1)에서, (i) 외부 표면에 촉매 전구체 용액이 함침이 되지 않도록 친수성 처리가 되지 않은 다공성 탄소 물질 지지체를 사용하거나, (ii) 다공성 탄소 물질 지지체의 외부 표면에 촉매 전구체 용액이 함침이 되지 않을 정도로만 친수성 처리를 한 다공성 탄소 물질 지지체를 사용하는 것을 특징으로 하는 촉매 제조방법.
In a porous carbon material support having a regular structure in which the mesopores have an average diameter of nanoscale, a metal-containing catalyst particle is not formed on the outer surface having no pore confinement effect, A method for producing a catalyst for synthesis of Fischer-Tropsch containing metal-containing catalyst particles,
1) impregnating the porous carbon material support with a catalyst precursor solution;
2) drying the impregnated support;
3) repeating steps 1) and 2) until the cross-sectional area of the metal-containing catalyst particles in the mesopore accounts for 85% to 95% of the mesopore cross-sectional area; And
4) firing the dried support,
In step 1), (i) a non-hydrophilic porous carbonaceous material support is used to prevent impregnation of the catalyst precursor solution on the outer surface, or (ii) the catalyst precursor solution is not impregnated on the outer surface of the porous carbonaceous material support Wherein the porous carbon material support is subjected to a hydrophilic treatment only to the extent that the porous carbon material support is not used.
제12항에 있어서, 다공성 탄소 물질 지지체 내 기공은 나노채널을 형성하는 것이고,
단계 1)에서, 나노채널 형태의 기공 내에 촉매 전구체 용액의 함침은 나노채널의 모세관 힘 또는 나노채널 내 감압 또는 물리적 힘을 통해 수행되는 것을 특징으로 하는 촉매 제조 방법.
13. The method of claim 12, wherein the pores in the porous carbonaceous material support form nano channels,
Wherein in step 1) the impregnation of the catalyst precursor solution in the pores of the nanocrystalline type is carried out through a capillary force of the nanocouple or a reduced pressure or physical force in the nanocannon.
제12항에 있어서, (ii)의 친수성 처리는 0.01M 내지 1M의 강산 수용액으로 다공성 탄소 물질 지지체를 처리하는 것을 특징으로 하는 촉매 제조 방법.
13. The method of claim 12, wherein the hydrophilic treatment of (ii) comprises treating the porous carbon material support with a strong acid aqueous solution of 0.01M to 1M.
제12항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 피셔 트롭시 합성용 촉매.
14. A catalyst for synthesis of Fischer-Tropsch produced by the production method of any one of claims 12 to 14.
피셔 트롭시 합성반응을 이용하여 합성가스로부터 액체 탄화수소를 제조하는 방법에 있어서,
i) 제1항 내지 제9항 중 어느 한 항에 기재된 피셔 트롭시 합성용 촉매 또는 제12항 내지 제14항 중 어느 한 항의 제조방법으로 제조된 피셔 트롭시 합성용 촉매를 피셔-트롭시 합성반응기에 적용하는 단계;
ii) 상기 촉매를 환원시켜 활성화시키는 단계; 및
iii) 상기 활성화된 피셔-트롭시 합성용 촉매에 의해 피셔-트롭시 합성반응을 수행하는 단계를 포함하는 것이 특징인 제조방법.
A method of producing liquid hydrocarbons from syngas using a Fischer-Tropsch synthesis reaction,
(i) A process for producing a catalyst for Fischer-Tropsch synthesis according to any one of claims 1 to 9 or a process for producing a Fischer-Tropsch synthesis catalyst produced by the process according to any one of claims 12 to 14, Applying to the reactor;
ii) reducing and activating the catalyst; And
iii) performing the Fischer-Tropsch synthesis reaction with the activated Fischer-Tropsch synthesis catalyst.
제16항에 있어서, iii) 단계는 200 내지 350℃, 반응 압력 5 내지 30kg/cm3, 공간속도 1000 - 10000 h- 1 에서 수행되는 것인 제조방법.17. The method of claim 16, iii) steps from 200 to 350 ℃, a reaction pressure of 5 to 30kg / cm 3, a space velocity of 1000 - a method is performed at 1 - 10000 h.
KR1020130101799A 2013-02-28 2013-08-27 catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same KR20140109224A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130021745 2013-02-28
KR20130021745 2013-02-28

Publications (1)

Publication Number Publication Date
KR20140109224A true KR20140109224A (en) 2014-09-15

Family

ID=51428475

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130101799A KR20140109224A (en) 2013-02-28 2013-08-27 catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same

Country Status (2)

Country Link
KR (1) KR20140109224A (en)
WO (1) WO2014133236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153780A1 (en) * 2019-01-23 2020-07-30 한국화학연구원 Bifunctional catalyst for hydrogenation of carbon dioxide, and method for preparing hydrocarbon by using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9687825B1 (en) 2016-06-27 2017-06-27 Chevron U.S.A. Inc. Stable tungsten-phosphorus modified support for a Fischer-Tropsch catalyst
CN107754793B (en) * 2017-11-23 2020-04-17 中科合成油技术有限公司 Porous carbon loaded Fischer-Tropsch synthesis catalyst and preparation method and application thereof
EP3801887B1 (en) * 2018-06-05 2022-06-29 SABIC Global Technologies B.V. Bulk-metal crystalline transition metal based heterogeneous catalysts, methods of making and uses thereof
AU2020480581A1 (en) * 2020-12-11 2023-07-06 Beijing Guanghe New Energy Technology Co., Ltd. Method for producing hydrocarbon molecule by means of energy radiation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474854B1 (en) * 2003-02-13 2005-03-10 삼성에스디아이 주식회사 Carbon molecular sieve and preparation method thereof
KR100903439B1 (en) * 2007-10-15 2009-06-18 한국화학연구원 Preparation method of direct synthesis of light hydrocarbons from natural gas
CN102049273B (en) * 2009-10-27 2013-05-01 中国科学院大连化学物理研究所 Mesoporous carbon-supported tungsten carbide catalyst and preparation and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153780A1 (en) * 2019-01-23 2020-07-30 한국화학연구원 Bifunctional catalyst for hydrogenation of carbon dioxide, and method for preparing hydrocarbon by using same
US11865521B2 (en) 2019-01-23 2024-01-09 Korea Research Institute Of Chemical Technology Bifunctional catalyst for hydrogenation of carbon dioxide, and method for preparing hydrocarbon by using same

Also Published As

Publication number Publication date
WO2014133236A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
Li et al. Morphology-dependent nanocatalysts: Rod-shaped oxides
RU2516467C2 (en) Method of obtaining metal nitrate on substrate
Hu et al. Cu@ ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO 2 hydrogenation to methanol
de Sousa et al. Mesoporous catalysts for dry reforming of methane: Correlation between structure and deactivation behaviour of Ni-containing catalysts
Winter et al. Hydrotalcites supported on carbon nanofibers as solid base catalysts for the synthesis of MIBK
Dai et al. The influence of alumina phases on the performance of Pd/Al2O3 catalyst in selective hydrogenation of benzonitrile to benzylamine
KR20140109224A (en) catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same
US9776172B2 (en) Porous silicon carbide nanocomposite structure comprising nanowires and method of preparing the same
Wei et al. Enhanced Fischer–Tropsch performances of graphene oxide-supported iron catalysts via argon pretreatment
KR102335322B1 (en) A catalyst for ammonia decomposition and the method for producing the same through vacuum firing
Wang et al. Atomically dispersed Au catalysts supported on CeO 2 foam: controllable synthesis and CO oxidation reaction mechanism
WO2014070116A1 (en) Encapsulated Nanoparticles
Yue et al. Loading oxide nano sheet supported Ni–Co alloy nanoparticles on the macroporous walls of monolithic alumina and their catalytic performance for ethanol steam reforming
Zheng et al. A highly active and hydrothermal-resistant Cu/ZnO@ NC catalyst for aqueous phase reforming of methanol to hydrogen
Mrabet et al. A new route to the shape-controlled synthesis of nano-sized γ-alumina and Ag/γ-alumina for selective catalytic reduction of NO in the presence of propene
AU2012264468B2 (en) Catalytic process for the conversion of a synthesis gas to hydrocarbons
Rezazadeh et al. Morphology engineering of γ-alumina microgranules as support of cobalt catalysts used for Fischer–Tropsch synthesis: an effective strategy for improving catalytic performance
CN108367272B (en) Extruded titania-based materials comprising and/or prepared using quaternary ammonium compounds
AU2016376824B2 (en) Hydrogenation catalyst and method for preparing the same
JP7043072B2 (en) Gold composite material, its manufacturing method and gold nanocatalyst
US9687825B1 (en) Stable tungsten-phosphorus modified support for a Fischer-Tropsch catalyst
Saber Effect of the nano size of the particles on the porous structure of alumina and its role in dehydrogenation reactions
Ananthan et al. Liquid phase selective hydrogenation of citral over bimetallic transition metal catalysts
KR101577432B1 (en) A platinum-based metal composite catalyst for aqueous phase reforming reaction of polyols, using mesoporous carbon carrier and manufacturing method of the same
KR101792630B1 (en) Preparation method of cobalt-based Fischer-Tropsch catalysts and regeneration method of catalysts by feeding of liquid hydrocarbons formed during FTS reaction

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid