KR100903439B1 - Preparation method of direct synthesis of light hydrocarbons from natural gas - Google Patents

Preparation method of direct synthesis of light hydrocarbons from natural gas Download PDF

Info

Publication number
KR100903439B1
KR100903439B1 KR1020070103677A KR20070103677A KR100903439B1 KR 100903439 B1 KR100903439 B1 KR 100903439B1 KR 1020070103677 A KR1020070103677 A KR 1020070103677A KR 20070103677 A KR20070103677 A KR 20070103677A KR 100903439 B1 KR100903439 B1 KR 100903439B1
Authority
KR
South Korea
Prior art keywords
reaction
catalyst
zeolite
light hydrocarbons
reforming
Prior art date
Application number
KR1020070103677A
Other languages
Korean (ko)
Other versions
KR20090038267A (en
Inventor
배종욱
강석환
이윤조
전기원
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020070103677A priority Critical patent/KR100903439B1/en
Priority to PCT/KR2008/005608 priority patent/WO2009051353A2/en
Priority to EP08838757.6A priority patent/EP2197816B1/en
Publication of KR20090038267A publication Critical patent/KR20090038267A/en
Application granted granted Critical
Publication of KR100903439B1 publication Critical patent/KR100903439B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/06Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0833Heating by indirect heat exchange with hot fluids, other than combustion gases, product gases or non-combustive exothermic reaction product gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

본 발명은 천연가스의 수증기 개질반응과, 동시에 이산화탄소와 메탄의 개질반응을 수행하는 복합 개질반응으로 일산화탄소와 수소가 일정비를 유지하는 합성가스를 제조하고, 상기 제조된 합성가스를 특정의 촉매하에서 피셔-트롭시 반응을 수행하며, 상기 일련의 공정상 부산물인 메탄 및 이산화탄소를 복합 개질반응의 원료물질로 재순환하는 일련의 공정으로, 종래에 비해 경질탄화수소의 수율 증대 뿐만 아니라 전체 공정의 탄소이용 효율을 증대할 수 있는 천연가스로부터 경질탄화수소의 직접 제조방법에 관한 것이다.The present invention is a composite reforming reaction that performs steam reforming of natural gas and simultaneously reforming of carbon dioxide and methane, thereby preparing a synthesis gas in which carbon monoxide and hydrogen are maintained at a constant ratio, and producing the synthesis gas under a specific catalyst. Fischer-Tropsch reaction and a series of processes to recycle the by-product methane and carbon dioxide to the raw materials of the complex reforming reaction, the yield of light hydrocarbons as well as the carbon utilization efficiency of the entire process compared to the conventional It relates to a direct production method of light hydrocarbons from natural gas that can increase.

피셔-트롭시 반응(FTS), 복합개질 반응, 경질탄화수소 Fischer-Tropsch Reaction (FTS), Combined Reforming Reaction, Light Hydrocarbons

Description

천연가스로부터 경질탄화수소의 직접 제조방법{Preparation method of direct synthesis of light hydrocarbons from natural gas}Preparation method of direct synthesis of light hydrocarbons from natural gas

본 발명은 천연가스의 수증기 개질반응과, 동시에 이산화탄소와 메탄의 개질반응을 수행하는 복합 개질반응으로 일산화탄소와 수소가 일정비를 유지하는 합성가스를 제조하고, 상기 제조된 합성가스를 특정의 촉매하에서 피셔-트롭시 반응을 수행하며, 상기 일련의 공정상 부산물인 메탄 및 이산화탄소를 복합 개질반응의 원료물질로 재순환하는 일련의 공정으로, 종래에 비해 경질탄화수소의 수율 증대뿐만 아니라 전체 공정의 탄소이용 효율을 증대할 수 있는 천연가스로부터 경질탄화수소의 직접 제조방법에 관한 것이다.The present invention is a composite reforming reaction that performs steam reforming of natural gas and simultaneously reforming of carbon dioxide and methane, thereby preparing a synthesis gas in which carbon monoxide and hydrogen are maintained at a constant ratio, and producing the synthesis gas under a specific catalyst. Fischer-Tropsch reaction and a series of processes to recycle the by-product methane and carbon dioxide as raw materials of the complex reforming reaction, the yield of light hydrocarbons as well as the carbon utilization efficiency of the entire process compared to the conventional process It relates to a direct production method of light hydrocarbons from natural gas that can increase.

합성가스로부터 경질탄화수소를 생산하기 위한 방법은 합성가스로부터 경질올레핀을 생산하는 방법(syngas to olefins; STO)과 유사하며 STO 반응의 근간이 되는 GTL(gas to liquid) 기술의 핵심 공정인 Fisher-Tropsch(F-T) 합성법은 1923년 독일의 화학자 Fischer와 Tropsch가 석탄의 가스화에 의한 합성가스로부터 합성 연료를 제조하는 기술 개발부터 시작되었다. The method for producing light hydrocarbons from syngas is similar to the process for producing light olefins from syngas (STO) and Fisher-Tropsch, a key process of GTL (gas to liquid) technology that is the basis of the STO reaction. Synthesis (FT) began in 1923 by the German chemists Fischer and Tropsch developing a technology to produce synthetic fuel from syngas from gasification of coal.

GTL 공정은 천연가스의 개질(reforming) 반응, 합성가스의 F-T 합성반응 및 생성물의 개질 반응과 같이 다음의 3단계의 주요 공정으로 구성되어 있으며, 이중에서 철 및 코발트 계열의 촉매로 사용하여 200 ∼ 350 ℃의 반응 온도와 10 ∼ 30 기압의 압력에서 수행되는 F-T 반응은 다음과 같이 4개의 주요 반응으로 설명될 수 있다. The GTL process consists of the following three main processes: reforming reaction of natural gas, FT synthesis reaction of synthesis gas, and reforming reaction of product. Among them, 200 to 200 are used as iron and cobalt-based catalysts. The FT reaction carried out at a reaction temperature of 350 ° C. and a pressure of 10 to 30 atm can be described as four main reactions as follows.

(a) 사슬성장 F-T 합성(Chain growth in F-T synthesis) 반응(a) Chain growth in F-T synthesis

CO + 2H2 → -CH2- + H2O △H(227 ℃) = -165 kJ/molCO + 2H 2 → -CH 2- + H 2 O ΔH (227 ° C) = -165 kJ / mol

(b) 메탄화 반응 (Methanation)(b) Methanation

CO + 3H2 → CH4 + H2O △H(227 ℃) = -215 kJ/molCO + 3H 2 → CH 4 + H 2 O ΔH (227 ° C) = -215 kJ / mol

(c) 수성가스 전환 반응 (Water gas shift reaction)(c) Water gas shift reaction

CO + H2O → CO2 + H2 △H(227 ℃) = -40 kJ/molCO + H 2 O → CO 2 + H 2 ΔH (227 ° C) = -40 kJ / mol

(d) 부다 반응 (Boudouard reaction)(d) Boudouard reaction

2CO → C + CO2 △H(227 ℃) = -134 kJ/mol2CO → C + CO 2 ΔH (227 ° C.) = − 134 kJ / mol

F-T 반응을 위해서는 철 및 코발트 계열의 촉매가 주로 사용되는데, 초기에는 철계 촉매가 주로 사용되었으나 최근에는 액체연료나 왁스의 생산을 늘리고 전환율을 향상시키기 위해서 저온에서 활용 가능한 코발트 계열의 촉매가 주류를 이루고 있다. 그러나, 철계 촉매의 특징으로는 F-T 촉매 중에서 가장 저가이며 고온에서도 메탄 생성이 낮으며, 탄화수소 중 올레핀의 선택성이 높으며, 제품은 연료 이외에도 경질 올레핀이나 알파올레핀이 생산 가능하여 화학산업 원료로 이용될 수 있으며, 탄화수소 이외에도 알콜, 알데히드, 케톤 등의 부산물이 많이 생성되는 특징이 있다. Iron and cobalt-based catalysts are mainly used for the FT reaction. Initially, iron-based catalysts were mainly used, but recently, cobalt-based catalysts that can be utilized at low temperatures to increase the production of liquid fuels or waxes and to improve the conversion rate have become mainstream. have. However, the characteristics of iron-based catalysts are the lowest among FT catalysts, low methane production at high temperatures, high selectivity of olefins in hydrocarbons, and the product can be used as a raw material for chemical industry as it can produce light olefins and alpha olefins in addition to fuels. In addition to the hydrocarbons, there are many features of producing by-products such as alcohols, aldehydes, ketones, and the like.

일례로 SASOL에서는 왁스 생산을 위한 저온 F-T용 철계 촉매에 Cu와 K의 성분이 조촉매로 함유되어 있고 SiO2를 바인더로 사용하여 침전법으로 제조된 촉매가 사용되고 있다. 또한, SASOL 사의 고온 F-T 촉매는 마그네타이트와 K, 알루미나, MgO 등을 용융시켜 제조하고 있으며 이를 이용하여 경질올레핀 및 가솔린의 생산에 이용하고 있다. 그러나, 기존의 F-T 합성법은 생성물의 분포가 넓고 경질탄화수소 및 올레핀의 선택성이 낮은 문제점(C2 ∼ C4 탄화수소 선택성 = 30%, 올레핀 선택성 = 80%)을 지니고 있어서, STO 반응용 촉매는 F-T 합성의 탄소 체인성장을 억제하거나 고비점 화합물의 분해 방법에 의한 경질탄화수소로의 선택성을 향상할 수 있는 추가적인 촉매 특성의 부여가 필요하다. 이러한 기능을 추가하기 위하여 F-T 합성 촉매에 분자체 구조를 혼성하여 촉매를 설계하거나 또는 하이브리드(메탄올 합성 촉매와 메탄올의 경질올레핀 전환 촉매의 혼성) 촉매 및 공정기술을 이용하여 F-T 합성의 한계성을 극복하기 위한 시도가 많이 수행되고 있는 실정이다. In SASOL, for example, a low temperature FT iron catalyst for wax production contains Cu and K as cocatalysts and a catalyst prepared by precipitation using SiO 2 as a binder. In addition, SASOL's high temperature FT catalyst is manufactured by melting magnetite, K, alumina, MgO, and the like, and is used to produce light olefins and gasoline. However, the conventional FT synthesis method has a problem of wide product distribution and low selectivity of light hydrocarbons and olefins (C 2 -C 4 hydrocarbon selectivity = 30%, olefin selectivity = 80%), so that the catalyst for STO reaction is FT synthesis. It is necessary to impart additional catalytic properties that can inhibit carbon chain growth and improve selectivity to light hydrocarbons by decomposition of high boiling point compounds. To add these functions, design the catalyst by hybridizing the molecular sieve structure to the FT synthesis catalyst or overcome the limitations of FT synthesis using hybrid (hybrid mixture of methanol synthesis catalyst and light olefin conversion catalyst of methanol) catalyst and process technology. Many attempts have been made.

F-T 합성공정의 발전은 SASOL에서의 오랜 개발경험에 의하여 촉매와 함께 반응기의 발전으로 이루어져 오고 있으며 반응기의 발전 경향은 고정층(fixed bed) → 순환 유동층(circulating fluid bed) → 고정 유동층(fixed fluid bed) → 슬러 리(slurry) 형태로 발전되고 있다. 남아공의 SASOL사는 1985년에 synthol process 를 개발하여 올레핀 및 가솔린 생산 공장(480 만톤/년)을 건설하였으며 1994년에 개선된 공정을 적용하여 년 45만톤 생산이 가능한 플랜트를 건설하여 운전 중이나, 본 공정은 F-T 합성법의 단점인 넓은 생성물 분포와 낮은 올레핀 선택성의 한계를 여전히 지니고 있으며 다음의 표 1에서 보인 바와 같이 C2 ∼ C4 탄화수소 선택성은 약 30%이며 이중에서 올레핀 선택성은 약 80% 정도인 것으로 보고되고 있다. 이와 함께, F-T 합성반응은 CH2 체인성장 메카니즘의 특성 때문에 Anderson-Schulz-Flory polymerization 모델에 의한 계산에 따르면 C2 ∼ C4의 탄화수소의 최대 수율이 56%를 넘을 수 없는 것으로 알려져 있다.The development of the FT synthesis process has been carried out with the development of reactors with catalysts through a long development experience in SASOL, and the development trend of the reactors is fixed bed → circulating fluid bed → fixed fluid bed. → It is developing in the form of slurry. South Africa's SASOL developed a synthol process in 1985 to build an olefin and gasoline production plant (4.8 million tonnes / year) .In 1994, the plant was built and operated to produce 450,000 tonnes per year. Has the limitations of wide product distribution and low olefin selectivity, which are disadvantages of FT synthesis, and as shown in Table 1 below, C 2 to C 4 hydrocarbon selectivity is about 30% and olefin selectivity is about 80%. Is being reported. In addition, FT synthesis reaction is known to have a maximum yield of C 2 ~ C 4 hydrocarbons can not exceed 56% according to the calculation by the Anderson-Schulz-Flory polymerization model due to the characteristics of the CH 2 chain growth mechanism.

Figure 112007073751486-pat00001
Figure 112007073751486-pat00001

최근 중국의 DICP(Dalian Institute of Chemical Physics)에서는 STO 촉매계로서 K-Fe-MnO/Si-2를 개발하여 CO 전환율을 70% 이상, C2 ∼ C4 올레핀 선택도 71 ∼ 74 %의 성능을 보이는 촉매상에서 반응 1000 시간 동안 비활성화 없이 안정적으로 운전이 가능함을 보고하였다[Fuel Processing Technology 62 (2000) 161-172]. 합성가스로부터 경질올레핀의 생성 수율 및 선택성을 향상하기 위한 노력이 촉매 개발 중심으로 진행되고 있는데, 이의 방안으로서 제올라이트와 F-T 촉매의 혼성을 통하여 세공구조 내에서 탄소수의 성장을 억제하는 원리를 이용하여 F-T 반응 메카니즘의 한계를 극복하여 C2 ∼ C4 탄소수 생성물의 선택성을 대폭 증가시킨 연구결과들이 최근 많이 보고 되고 있는 실정이다[Catalysis Today 106 (2005) 143-148].Recently, the Dalian Institute of Chemical Physics (DICP) in China developed K-Fe-MnO / Si-2 as an STO catalyst system, which showed a CO conversion of 70% or more and C 2 to C 4 olefin selectivity of 71 to 74%. It has been reported that it is possible to operate stably without deactivation for 1000 hours on a catalyst [Fuel Processing Technology 62 (2000) 161-172]. Efforts have been made to improve the yield and selectivity of light olefins from syngas. As a solution, FT is based on the principle of suppressing the growth of carbon number in the pore structure through the mixing of zeolite and FT catalyst. Recently, many studies have been reported to overcome the limitations of the reaction mechanism and greatly increase the selectivity of C 2 to C 4 carbon number products [Catalysis Today 106 (2005) 143-148].

해외에서는 SASOL사 이외에도 합성가스로부터 탄화수소를 제조하는 F-T 합성기술은 1990년대 이후 청정연료에 대한 관심 고조와 석유의 고갈에 따른 고유가 시대에 대비하기 위한 목적으로 유럽이나 미국의 아래의 회사들이 이미 기술을 개발하여 보유하고 있다. 특히, 기술을 선점한 외국의 업체들은 카르텔을 형성하여 GTL 기술 이전을 자제하고 있는 상황이며, 다음의 표 2에는 상기의 상업화된 F-T 공정들과 함께 각 공정에서의 생성되는 주산물을 정리하여 나타내었다.In addition to SASOL, FT synthesis technology, which manufactures hydrocarbons from syngas, has already been developed by companies below Europe and the United States for the purpose of preparing for the era of high oil prices due to the growing interest in clean fuels and the depletion of oil since the 1990s. Developed and possessed. In particular, foreign companies that have preoccupied the technology are forming a cartel to refrain from transferring GTL technology. Table 2 below shows the main products produced in each process along with the commercialized FT processes. .

Figure 112007073751486-pat00002
Figure 112007073751486-pat00002

합성가스로부터 올레핀을 제조하기 위한 기존의 기술들은 F-T 기술에 기반을 두고 있으며, 후처리 공정으로는 탄화수소로의 탈수소화 반응에 의하여 올레핀을 제조하거나 촉매의 개선에 의해 반응 중에 직접탈수소화 기능을 부가하여 올레핀으로의 수율을 증대시키는 공정이 주류를 이루고 있다. 또한, 목적하는 생성물에 따라 촉매 및 분리공정의 구성을 달리하는 방법을 채택하고 있으나 경질탄화수소 중에서도 LPG 등의 연료와 경질올레핀을 동시에 생산되는 공정이 주류를 이루고 있다. 이러한 기술로는 ExxonMobil의 AGC-21, SHELL사의 SASOL공정에 기반을 둔 Oryx 공정 및 Synthroleum사의 개질(reformer) 기술을 특징으로 하는 S-2 공정을 기반으로 하여 합성가스로부터 올레핀을 제조하는 기술이 상용화되어 있는 상황이다. 또한, DOE의 Vision 21 프로그램에서는 향후 CTL(coal to liquid)공정과 연계하여 제품생산 비용을 15 ∼ 20 $/bbl로 목표로 삼고 IGCC와 연계된 공정연구를 수행하고 있는 것으로 알려져 있다. 합성가스로부터 올레핀을 제조하기 위한 기술 중 제올라이트 계열 촉매와 관련된 기술에서 미국특허 제4283306호(1981, DU PONT)가 많이 인용되고 있으며, 올레핀의 제조 뿐만 아니라 제올라이트(zeolite) 분자체 촉매의 구조적 특징을 이용한 방향족 화합물의 선택적 생산 공정 등에 다양하게 이용될 수 있는 내용을 포함하고 있다. 합성가스로부터 올레핀을 제조하기 위한 기술 중 Fe-Co 계열의 촉매 기술에서 가장 많이 인용되고 있는 특허는 미국특허 제4151190호(1979, DOW CHEMICAL)으로 나타나고 있으며, Pt 등의 올레핀 전환촉매를 이용한 에탄, 에틸렌, 디메틸에테르 등의 올레핀 제조방법에 관한 내용을 포함하고 있다. 합성가스로부터 올레핀을 제조하기 위한 기술 중 공정분야에서 가장 많이 인용된 특허는 미국특허 제4423265호(1983, MOBIL OIL)이며, ZSM-5 제올라이트를 촉매로 한 고순도의 가솔린 생성물의 제조공정을 포함하고 있으며 F-T 공정을 통해 액체 탄화수소 합성을 위한 효율적 공정기술에 응용되고 있다. Existing techniques for the production of olefins from syngas are based on FT technology, and the post-treatment process adds direct dehydrogenation functions during the reaction by producing olefins by dehydrogenation to hydrocarbons or by improving the catalyst. Therefore, the process of increasing the yield to olefins is the mainstream. In addition, although a method of changing the composition of the catalyst and the separation process according to the desired product is adopted, a process of simultaneously producing a light olefin and a fuel such as LPG among light hydrocarbons is the mainstream. These technologies include commercialization of olefins from syngas based on ExxonMobil's AGC-21, the Oryx process based on SHELL's SASOL process, and the S-2 process featuring Synthroleum's reformer technology. It is a situation. In addition, DOE's Vision 21 program is known to conduct process research in conjunction with IGCC, targeting future production costs of 15 to $ 20 / bbl in conjunction with a CTL (coal to liquid) process. US Pat. No. 4,283,306 (1981, DU PONT) has been cited in the art related to zeolite-based catalysts among the techniques for preparing olefins from syngas, and not only the production of olefins but also the structural features of zeolite molecular sieve catalysts. It includes the contents that can be used in various ways, such as the selective production process of the aromatic compound used. The most cited patent for Fe-Co-based catalyst technology among the techniques for preparing olefin from synthesis gas is shown in US Pat. No. 4151190 (1979, DOW CHEMICAL), ethane using olefin conversion catalyst such as Pt, It contains the contents regarding the manufacturing method of olefins, such as ethylene and a dimethyl ether. The most cited patent in the field of processes for the production of olefins from syngas is US Pat. No. 4431265 (1983, MOBIL OIL), which includes a process for producing high purity gasoline products catalyzed by ZSM-5 zeolites. It is also applied to efficient process technology for liquid hydrocarbon synthesis through FT process.

또한, 천연가스를 이용한 합성 가스 제조 방법으로는 다음과 같은 일반적으로 알려진 방법들이 사용되고 있으며, 이의 혼합 사용에 의한 H2/CO 비를 F-T 합성에 적합한 영역으로 조절하여 사용하기 위한 방안에 대한 공정연구가 많이 진행되고 있는 실정이다.In addition, the following generally known methods are used as a method for preparing a synthesis gas using natural gas, and a process study for a method for controlling the H 2 / CO ratio by using a mixture thereof in a region suitable for FT synthesis There is a lot going on.

(e) 메탄의 수증기 개질반응(Steam reforming of methane, SRM)(e) Steam reforming of methane (SRM)

CH4 + H2O → 3H2 + CO △H = 226 kJ/molCH 4 + H 2 O → 3H 2 + CO ΔH = 226 kJ / mol

(f) 메탄과 이산화탄소 개질반응(Carbon dioxide reforming of methane,CDR)(f) Carbon dioxide reforming of methane (CDR)

CH4 + CO2 → 2H2 + 2CO △H = 261 kJ/molCH 4 + CO 2 → 2H 2 + 2CO ΔH = 261 kJ / mol

(g) 메탄의 부분 산화(Partial oxidation of methane, POx) 반응(g) Partial oxidation of methane (POx) reaction

CH4 + 0.5O2 → 2H2 + CO △H = - 44 kJ/molCH 4 + 0.5O 2 → 2H 2 + CO ΔH =-44 kJ / mol

본 발명에서는 종래의 메탄올 합성 공정 및 F-T 생성물의 개질 공정을 생략함으로써, 천연가스로부터 경질탄화수소를 생산하기 위한 공정을 단순화하고, 이에 적합한 특정의 촉매계를 제시하여 경질탄화수소로의 생산성을 향상함과 동시에 전체 공정의 카본 사용 효율을 향상하기 위한 방법을 제시하고자 한다.In the present invention, by omitting the conventional methanol synthesis process and the FT product reforming process, the process for producing light hydrocarbons from natural gas is simplified, and a specific catalyst system suitable for this is proposed to improve productivity to light hydrocarbons. A method for improving the carbon use efficiency of the entire process is presented.

본 발명은 Ni/알루미나계 촉매하에서, 천연가스의 수증기 개질반응과 이산화탄소와 메탄의 개질반응이 동시에 수행되는 복합 개질반응으로 일산화탄소와 수소가 1 : 1.5 ∼ 2.5 몰비를 유지하는 1 단계 ; Fe-Cu-K계/제올라이트 촉매하에서, 상기 일산화탄소와 수소를 피셔-트롭시(Fisher-Tropsch) 반응하여 경질탄화수소(C2 ∼ C4) 및 부산물인 메탄 및 이산화탄소을 제조하는 2 단계 ; 및 상기 반응의 부산물인 메탄 및 이산화탄소를 분리하여 1단계의 복합개질 반응으로 재순환하여 연속공정을 수행하는 3단계를 포함하여 이루어진 천연가스로부터 경질탄화수소의 제조방법에 그 특징이 있다.The present invention is a composite reforming reaction in which a steam reforming reaction of natural gas and a carbon dioxide and methane reforming reaction are simultaneously performed under a Ni / alumina-based catalyst, thereby maintaining carbon monoxide and hydrogen in a ratio of 1.5 to 2.5; Under a Fe-Cu-K-based / zeolite catalyst, two steps for producing light hydrocarbons (C 2 to C 4 ) and by-products methane and carbon dioxide by Fischer-Tropsch reaction with the carbon monoxide and hydrogen; And a method of producing light hydrocarbons from natural gas, which comprises three steps of separating the by-products of the reaction, methane and carbon dioxide, and recycling them in a one-step complex reforming reaction to perform a continuous process.

최근의 급변하는 유가 상승 문제에 대처하면서 석유화학의 기초원료인 경질올레핀 및 LPG 등의 경질탄화수소를 선택적으로 생산하기 위한 기술 개발에 있어서 공정의 단순화 및 경질탄화수소제조 반응에 효율적인 촉매의 개발에 의한 경쟁력 확보가 중요한 요소가 될 수 있다. 특히, 경질탄화수소제조 공정용 촉매 및 반응 공정의 개선에 따라서 전체 공정의 열효율 및 카본활용 효율을 향상할 수 있으며 최적의 공정을 설계할 수도 있으므로, 본 발명에서 제시된 경질탄화수소 제조용 공정 및 안정적인 생성물 선택성 및 낮은 비활성화를 보여주는 경질탄화수소 제조용 촉매의 제시는 향후의 경제적인 경질탄화수소제조 공정 개발에 크게 기여할 수 있을 것으로 판단된다.Competitiveness through the development of a catalyst that simplifies the process and develops an efficient catalyst for light hydrocarbon production in the development of technology to selectively produce light hydrocarbons such as light olefins and LPG, which are the basic raw materials of petrochemical, while coping with the recent rapidly changing oil price problem. Securing can be an important factor. In particular, it is possible to improve the thermal efficiency and carbon utilization efficiency of the entire process and to design the optimal process according to the improvement of the catalyst and reaction process for the light hydrocarbon manufacturing process, the process for producing light hydrocarbons and stable product selectivity presented in the present invention and The suggestion of a catalyst for the production of light hydrocarbons showing low deactivation is expected to contribute significantly to the development of economical light hydrocarbon production processes in the future.

본 발명은 천연가스(CH4)의 수증기 개질반응(steam reforming of methane; SMR)과, 메탄과 이산화탄소의 개질반응(Carbon dioxide reforming of methane; CDR)을 동시에 수행하는 복합 개질반응을 수행하여 생성물인 일산화탄소와 수소의 합성가스가 특정의 몰비를 유지하게 한다. 이후에, 일련의 공정으로 상기 생성물인 합성가스를 Fe-Cu-K계/제올라이트 촉매하에서 피셔-트롭시(F-T) 반응을 수행하여 경질탄화수소를 제조한다. 상기 경질탄화수소 제조공정의 부산물로 형성되는 메탄과 이산화탄소는 분리하여 상기 복합개질 반응에 재순환하여 연속적인 공정으로 반응을 수행한다.The present invention is a product of a complex reforming reaction that simultaneously performs steam reforming of methane (SMR) and carbon dioxide reforming of methane (CDR) of natural gas (CH 4 ). Syngas of carbon monoxide and hydrogen allows to maintain a specific molar ratio. Subsequently, in a series of processes, the hydrocarbon product is subjected to Fischer-Tropsch (FT) reaction under a Fe-Cu-K-based / zeolite catalyst to produce light hydrocarbons. Methane and carbon dioxide formed as by-products of the light hydrocarbon production process are separated and recycled to the complex reforming reaction to carry out the reaction in a continuous process.

통상적으로 피셔-트롭시(F-T) 반응에 사용되는 최적의 일산화탄소와 수소의 비율은 1 : 1.5 ∼ 2.5 몰비를 유지하는 것으로, 상기 범위 미만일 경우에는 일산화탄소의 일회 전환율이 감소하며, 범위를 초과하는 경우에는 메탄으로의 선택성이 증가하는 단점이 있는 바, 본 발명에 따라 천연가스로부터 제조된 합성가스인 일산화탄소와 수소는 1 : 1.5 ∼ 2.5 몰비를 유지한다. 이는 종래의 천연가스를 수증기 개질반응만으로 얻어지는 일산화탄소와 수소의 비가 1 : 3.0 ∼ 3.5 인 것에 비해 F-T 합성 반응에 효과적인 몰비로서 부산물의 생성 억제 및 일산화탄소의 전환율을 향상할 수 있는 영역인 것으로서, 이는 경질탄화수소제조 반응의 부산물인 이산화탄소와 메탄을 재순환하여 수증기 개질반응과 이산화탄소 리포밍 반응을 동시에 수행하는 과정에서 각각의 반응물 유량을 조절하여 복합리포밍 반응을 수행함으로써 얻어지는 결과이다.In general, the optimum ratio of carbon monoxide to hydrogen used in the Fischer-Tropsch (FT) reaction is 1: 1.5 to 2.5 molar ratio, and if less than the above range, the one-time conversion rate of carbon monoxide decreases and exceeds the range. There is a disadvantage in that the selectivity to methane is increased, carbon monoxide and hydrogen, which is a synthesis gas prepared from natural gas according to the present invention, maintains a 1: 1.5 to 2.5 molar ratio. This is a molar ratio effective for FT synthesis reaction as compared to the ratio of carbon monoxide and hydrogen obtained by steam reforming reaction of conventional natural gas only from 1: 3.0 to 3.5, which is an area capable of suppressing the production of by-products and improving the conversion rate of carbon monoxide. This is a result obtained by performing a complex reforming reaction by controlling the flow rate of each reactant in the process of simultaneously performing the steam reforming reaction and the carbon dioxide reforming reaction by recycling carbon dioxide and methane which are byproducts of the hydrocarbon production reaction.

또한, 상기와 같은 특정의 몰비를 유지하는 일산화탄소와 수소를 특정의 촉매하에서 피셔-트롭시(F-T) 반응을 수행함으로서, 경질탄화수소의 수율이 증대할 뿐만 아니라 종래 합성가스를 이용하는 경우에 비하여 부산물의 생성이 현격히 저 하되어 부산물의 재처리에 필요한 비용 및 이에 따른 공정의 단순화에 의한 경쟁력 있는 공정의 구성이 가능하므로, 적절한 몰비의 합성가스를 사용하여 천연가스부터 경질탄화수소로의 생산성을 향상할 수 있는 효과를 얻을 수 있다.In addition, by performing the Fischer-Tropsch (FT) reaction of carbon monoxide and hydrogen maintaining a specific molar ratio as described above under a specific catalyst, not only the yield of light hydrocarbons is increased but also the by-products of the conventional synthesis gas are used. Since the production is greatly reduced, the cost required for reprocessing the by-products and the comparable process can be configured by simplifying the process. Therefore, productivity from natural gas to light hydrocarbons can be improved by using a synthesis gas having an appropriate molar ratio. You can get the effect.

일반적으로 합성가스를 이용하여 액체 탄화수소를 제조하는 F-T 반응에 있어서 철계열의 촉매를 사용하는 경우에는 F-T 합성 메커니즘에 의하여 넓은 생성물 분포와 낮은 올레핀 선택성을 나타내어 C2 ∼ C4 탄화수소의 선택성은 약 30%이며 그 중에서 올레핀의 선택성은 약 80% 정도로 보고되고 있다. 또한, F-T 합성반응은 CH2 체인성장 메카니즘의 특성 때문에 Anderson-Schulz-Flory polymerization 모델에 따른 계산에 의하면 C2 ∼ C4 탄화수소의 최대 수율이 56%를 넘을 수 없는 것으로 알려져 있다. 따라서, 합성가스로부터 경질탄화수소를 생산하기 위한 방법으로서 고비점의 탄화수소를 2차로 열분해하거나 제올라이트 계열의 산촉매를 이용하여 촉매 분해하는 방법 및 탈수소화 반응을 통하여 경질올레핀 및 경질탄화수소로의 선택성을 향상하는 방법이 보고되고 있다. In general, in the case of using an iron-based catalyst in the FT reaction for producing a liquid hydrocarbon using synthesis gas, the FT synthesis mechanism shows a wide product distribution and low olefin selectivity, so that the selectivity of C 2 to C 4 hydrocarbons is about 30 %, And selectivity of the olefin is reported to be about 80%. In addition, the FT synthesis reaction is known to have a maximum yield of C 2 to C 4 hydrocarbons not to exceed 56% according to the Anderson-Schulz-Flory polymerization model due to the characteristics of the CH 2 chain growth mechanism. Therefore, as a method for producing light hydrocarbons from syngas, high-boiling hydrocarbons are thermally decomposed secondarily or catalytically decomposed using a zeolite-based acid catalyst and dehydrogenation to improve selectivity to light olefins and light hydrocarbons. The method is reported.

종래의 합성가스를 이용한 피셔-트롭시(F-T) 반응 시에 고비점 탄화수소의 생성이 보다 우세하여 경질탄화수소로의 수율이 감소하는 것이 일반적인 현상이므로 경질탄화수소의 수율 향상을 위하여 추가로 고비점 탄화수소를 선택적으로 열분해 또는 촉매 분해하기 위한 공정의 도입이 불가피하며 이에 따른 연료 사용으로 유틸리티 비용이 증가하는 문제가 있다. 본 발명은 새로운 경질탄화수소 제조용 촉매계를 도입하고 이를 이용하여 합성가스로부터 경질탄화수소의 생산량을 증가하기 위한 방법을 도입하여 상기의 문제가 개선된 공정을 도입하였으며, 천연가스로부터 합성가스를 제조하고 상기 제조된 합성가스를 이용하여 피셔-트롭시(F-T) 반응을 수행하는 일련의 공정을 도입하여 상기와 같은 문제를 개선하고자 하는 것이다. 즉, 상기와 같은 일련의 공정이 최적으로 수행될 수 있도록 각 반응에 사용되는 특정의 촉매계를 사용하고, 최적화된 반응조건하에서 수행하는 것으로 알려져 있는 반응을 단순히 조합하는 것이 아닌 것이다.Since the production of high-boiling hydrocarbons is more prevalent in the Fischer-Tropsch (FT) reaction using a conventional synthesis gas, the yield to light hydrocarbons is a general phenomenon. Therefore, additional high-boiling hydrocarbons may be added to improve the yield of light hydrocarbons. The introduction of a process for selectively pyrolysis or catalytic cracking is inevitable, and thus there is a problem in that utility costs are increased due to the use of fuel. The present invention introduces a process for improving the production of light hydrocarbons from syngas by introducing a new catalyst system for producing light hydrocarbons and using the same to introduce a process that improves the above problems. By introducing a series of processes to perform the Fischer-Tropsch (FT) reaction using the synthesized gas to improve the above problems. In other words, the specific catalyst system used in each reaction is used to perform the above-described series of processes optimally, and it is not simply a combination of reactions known to be performed under optimized reaction conditions.

상기에서 언급한 바와 같이 각각의 공정은 당 분야에서 다양하게 알려져 있으나, 이를 조합하여 본 발명과 같은 효과를 얻기 위하여 촉매계, 반응조건, 분리 방법 및 반응물 재순환 방법과 이와 관련된 복합공정 등은 지금까지 전혀 알려진 바 없는 것으로, 종래 공정을 개선하여 효율적으로 경질탄화수소를 제조하고자 하는데 목적이 있는 발명이다. As mentioned above, each process is variously known in the art, but in order to achieve the same effect as the present invention by combining them, the catalyst system, reaction conditions, separation method, and reactant recycling method and related complex processes have not been completely developed until now. What is not known is an invention aimed at producing light hydrocarbons efficiently by improving conventional processes.

또한, 본 발명은 특정의 경질탄화수소 제조용 촉매상에서 반응을 수행하여 우수한 일회 전환율에 의해 경질탄화수소의 생산성이 증가함과, 동시에 반응으로 생성된 메탄과 이산화탄소와 같은 부산물을 효율적인 방법으로 재사용하기 위하여 기존의 방법과는 차별성이 있는 촉매 및 공정을 도입하였다, 상기의 부산물을 선택적으로 복합개질 반응에 재사용하여 경질탄화수소제조 반응에 적합한 합성가스를 제조함으로써 카본 이용 효율을 향상함과 동시에 기존의 고비점 성분의 분해를 통한 경질탄화수소의 생산에 필요한 공정을 간소화하여 전체 공정의 에너지 효율을 향상시킨다. In addition, the present invention is carried out on a specific catalyst for the production of light hydrocarbons to increase the productivity of light hydrocarbons by excellent one-time conversion, and at the same time to reuse the by-products such as methane and carbon dioxide produced by the reaction in an efficient manner A catalyst and a process which are distinguished from the method are introduced. By selectively reusing the by-products in the complex reforming reaction to produce a synthesis gas suitable for the light hydrocarbon production reaction, the carbon utilization efficiency is improved and the existing Improve the energy efficiency of the overall process by simplifying the process required for the production of light hydrocarbons through decomposition.

이하, 본 발명을 보다 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

다음 도 1은 본 발명에 따라 천연가스로부터 경질탄화수소를 선택적으로 생산하기 위한 개략적인 반응 공정을 도시한 것으로, 이를 간략하게 살펴보면 다음과 같다. 1은 천연가스와 스팀 및 경질탄화수소제조 반응 후에 재순환되는 이산화탄소/메탄 등이 주성분으로서 이루어져 복합리포밍 공정으로 도입되는 흐름이고, 2는 복합리포밍 반응으로 생성되는 일산화탄소와 수소가 주성분이며 기타 미반응물로 구성되어 있는 흐름, 3은 복합리포밍 반응 후에 분리 공정(1)을 거쳐서 분리된 이산화탄소/메탄이 주성분인 재순환 흐름을 나타낸다. 4는 분리 공정(1)에서 분리된 수소/일산화탄소가 주성분인 경질탄화수소제조용 반응물 흐름이고, 5는 경질탄화수소제조 반응 후에 생성되는 경질탄화수소와 기타 미반응물 및 부산물(메탄, 이산화탄소 및 고비점 화합물 등)로 구성되는 분리공정(2)로 도입되는 흐름이고, 6은 경질탄화수소제조 공정 후에 분리 공정(2)을 통하여 분리된 미반응물 및 부산물(메탄 및 이산화탄소)로서 분리 공정(1)로 재도입되는 흐름을 나타낸다. 또한, 7은 본 반응의 주생물인 경질탄화수소로서 C2 ∼ C4의 생성물 흐름이고, 8은 경질탄화수소제조 반응의 생성물로서 기타 고비점의 탄화수소 구성된 납사, 디젤, 알코올 및 왁스 등으로 구성된 흐름을 나타낸다.1 illustrates a schematic reaction process for selectively producing light hydrocarbons from natural gas according to the present invention, which will be briefly described as follows. 1 is a flow introduced into a complex reforming process consisting of natural gas, carbon dioxide / methane recycled after the reaction of the production of steam and light hydrocarbons, etc., 2 is a carbon monoxide and hydrogen produced by a complex reforming reaction, and other unreacted products. The stream consisting of 3 represents a recycle stream whose main component is carbon dioxide / methane separated through the separation process (1) after the complex reforming reaction. 4 is a reactant stream for producing light hydrocarbons mainly composed of hydrogen / carbon monoxide separated in the separation process (1), and 5 is light hydrocarbons and other unreacted products and by-products (methane, carbon dioxide, and high boiling point compounds, etc.) generated after the light hydrocarbon production reaction. 6 is a stream introduced into the separation process (1) as unreacted and by-products (methane and carbon dioxide) separated through the separation process (2) after the hard hydrocarbon production process. Indicates. In addition, 7 is a product of light hydrocarbons, the main stream of this reaction, C 2 to C 4 , and 8 is a product of light hydrocarbon production reaction, a stream consisting of naphtha, diesel, alcohol and wax composed of other high boiling hydrocarbons. Indicates.

상기 도 1의 개략도를 근거로 하여 본 발명의 천연가스로부터 경질탄화수소의 제조방법을 구체적으로 살펴보면 다음과 같다.Based on the schematic diagram of FIG. 1, the method for producing light hydrocarbons from natural gas of the present invention will be described in detail.

먼저, Ni/알루미나계 촉매하에서, 천연가스의 수증기 개질반응과 이산화탄소와 메탄의 개질반응이 동시에 수행되는 복합 개질반응으로 일산화탄소와 수소가 1 : 1.5 ∼ 2.5 몰비를 유지한다.First, under a Ni / alumina-based catalyst, carbon monoxide and hydrogen are maintained at 1: 1.5 to 2.5 by a complex reforming reaction in which steam reforming of natural gas and reforming of carbon dioxide and methane are simultaneously performed.

상기 복합개질 반응은 천연가스(CH4)의 수증기 개질반응(steam reforming of methane; SMR)과 이산화탄소와 메탄의 개질(carbon dioxide reforming of methane; CDR)으로 구성되는 바, 이러한 복합개질 반응은 경질탄화수소제조 반응에 적합한 H2/CO 비, 구체적으로 일산화탄소와 수소가 1 : 1.5 ∼ 2.5 몰비의 구현이 가능하다. 상기 수소가 1.5 몰비 미만이면 일산화탄소의 일회 전환율이 감소하여 경질탄화수소의 생성이 감소하는 문제가 있으며, 2.5 몰비를 초과하는 경우에는 메탄으로의 선택성이 지나치게 증가하는 문제가 발생할 수 있으므로 상기 범위를 유지하는 것이 좋다. The complex reforming reaction consists of steam reforming of methane (SMR) of natural gas (CH 4 ) and carbon dioxide reforming of methane (CDR), and the complex reforming reaction is a light hydrocarbon. A H 2 / CO ratio suitable for the production reaction, specifically, a carbon monoxide and hydrogen in a ratio of 1: 1.5 to 2.5 can be realized. When the hydrogen is less than 1.5 molar ratio, there is a problem that the one-time conversion of carbon monoxide is reduced, and the generation of light hydrocarbons is reduced. When the hydrogen is more than 2.5 molar ratio, the selectivity to methane may be excessively increased. It is good.

이때, 복합개질 반응은 상기에 언급된 촉매상에서 카본 침적에 의한 비활성화 억제 및 일산화탄소 생산량을 증가시키기 위한 방안으로서 일반적으로 알려진 바와 같이 수증기의 도입량을 증가시키거나 또는 산소를 추가로 투입하여 복합개질 반응을 수행할 수도 있다. 상기 투입되는 산소는 이산화탄소 1 몰에 대하여 0.02 ∼ 0.30 몰비 범위로 사용될 수 있는 바, 상기 사용량이 0.02 몰비 미만이면 산소 첨가에 의한 영향이 미미하여 카본 생성 억제 및 일산화탄소 생성량 증가 현상이 적으며, 0.30을 초과하는 경우에는 평형 전환율에 의한 제약을 받거나 일산화탄소의 산화에 의한 이산화탄소의 재생성에 의한 이산화탄소의 전환율이 감소하는 문제가 발생하므로 상기 범위를 유지하는 것이 좋다. 또한, 경질탄화수소제조 반응 중에 생성되는 공정상의 물은 열 교환 과정을 통하여 SMR 반응에 효율적으로 재이용됨으로써 전체 공정의 에너지 효율이 향상된 경질탄화수소 생산 공정을 구성할 수 있다. In this case, the complex reforming reaction is a method for suppressing deactivation by carbon deposition and increasing carbon monoxide production on the catalyst mentioned above, and as a general known idea, the complex reforming reaction may be performed by increasing the amount of water vapor introduced or adding oxygen. It can also be done. The introduced oxygen may be used in a range of 0.02 to 0.30 molar ratio with respect to 1 mole of carbon dioxide. When the amount of the used oxygen is less than 0.02 molar ratio, the effect of oxygen addition is insignificant. In this case, it is preferable to maintain the above range because the conversion rate of carbon dioxide decreases due to the limitation of equilibrium conversion or the regeneration of carbon dioxide by oxidation of carbon monoxide. In addition, the process water generated during the light hydrocarbon production reaction can be efficiently recycled to the SMR reaction through the heat exchange process to configure the light hydrocarbon production process with improved energy efficiency of the entire process.

상기 복합개질 반응에 사용되는 촉매는 Ni계/알루미나로서, 이는 본 출원인에 의해서 공지된 것[한국 등록특허 제0482646호]으로, 바람직하기로는 활성성분인 Ni이 지지체에 고르게 분산될 수 있는 방법으로서 Ce-ZrO2 성분으로 전처리된 알루미나 지지체에 공침법 또는 담지법 등에 의하여 활성 성분을 함유시켜 제조된 촉매또는 상기 촉매에 추가로 알칼리 또는 알칼리 토금속 등을 적절하게 처리한 것으로, 카본 침적에 의한 비활성화 억제 및 장기 성능이 향상된 것을 사용할 수 있다. 구체적으로, 상기 Ni/알루미나계 촉매는 다음 화학식 1로 표시되는 것을 사용할 수 있다.The catalyst used in the complex reforming reaction is Ni-based / alumina, which is known by the applicant [Korean Patent No. 0482646], and preferably a method in which the active ingredient Ni can be evenly dispersed in the support. A catalyst prepared by containing the active ingredient in the alumina support pretreated with Ce-ZrO 2 component by coprecipitation method or supporting method, or by appropriately treating alkali or alkaline earth metal in addition to the catalyst, and inhibiting deactivation by carbon deposition And improved long term performance. Specifically, the Ni / alumina-based catalyst may be used as represented by the following formula (1).

NixCeyZrzOx+2(y+z)/Al2O3 Ni x Ce y Zr z O x + 2 (y + z) / Al 2 O 3

상기 화학식 1에서, x+y+z = 1.0 이고, x는 0.04 ∼ 0.45 이며 y는 0.01 ∼ 0.96의 범위를 나타낸다.In Formula 1, x + y + z = 1.0, x is 0.04 to 0.45 and y represents the range of 0.01 to 0.96.

이때, 상기 지지체로 사용되는 알루미나는 감마- 또는 쎄타-알루미나를 사용할 수 있다.At this time, the alumina used as the support may be gamma- or theta-alumina.

이러한 촉매는 500 ∼ 1,000 ℃ 온도범위에서 환원 처리한 후에, 복합개질반응에 사용한다. 상기 복합개질반응은 온도 600 ∼ 1,000 ℃ 범위의 반응온도, 0.5 ∼ 30 기압범위의 압력 및 1,000 ∼ 500,000 h-1 범위의 공간속도 조건에서 수 행한다. 이때, 산소를 추가로 사용하여 개질반응을 수행할 수 있는 바, 상기 산소는 이산화탄소에 대하여 0.02 ∼ 0.30 몰비의 범위로 사용하는 것이 좋다.Such a catalyst is used in a complex reforming reaction after reduction treatment at a temperature in the range of 500 to 1,000 ° C. The complex reforming reaction is carried out at a reaction temperature in the range of 600 to 1,000 ° C., a pressure in the range of 0.5 to 30 atm and a space velocity in the range of 1,000 to 500,000 h −1 . In this case, the reforming reaction may be performed using additional oxygen, and the oxygen may be used in a range of 0.02 to 0.30 molar ratio with respect to carbon dioxide.

상기 복합개질반응으로 CH4의 전환율은 80 ∼ 95 %이고, CO2의 전환율이 60 ∼ 90% 범위를 나타낸다.The conversion rate of CH 4 in the complex reforming reaction is 80 to 95%, and the conversion rate of CO 2 is in the range of 60 to 90%.

다음으로, Fe-Cu-K계/제올라이트 촉매하에서, 상기 일산화탄소와 수소를 피셔-트롭시(Fisher-Tropsch) 반응하여 경질탄화수소(C2 ∼ C4) 및 부산물인 메탄 및 이산화탄소를 제조한다.Next, under a Fe-Cu-K-based / zeolite catalyst, the hydrocarbons and hydrogen are reacted with Fischer-Tropsch to give light hydrocarbons (C 2). C 4 ) and by-products methane and carbon dioxide.

상기 촉매는 Fe, Cu 및 K 등의 활성금속성분은 제올라이트에 대하여 각각 Fe는 10 ∼ 70 중량%, Cu는 1 ∼ 10 중량%, 및 K는 1 ∼ 10 중량%를 범위를 유지하는 바, Fe의 함량이 10 중량% 미만이면 경질탄화수소제조 반응을 위한 활성점이 감소하여 일산화탄소의 일회 전환율이 감소하는 문제가 있으며 70 중량%를 초과하는 경우에는 제올라이트이 기공을 막아서 촉매의 비표면적이 감소하며 Fe의 분산성이 감소하고 이로 인하여 경질탄화수소 제조를 위한 반응 활성이 감소하는 문제가 발생할 수 있다. 또한, Fe 성분의 환원성을 증진시키기 위하여 첨가되는 Cu의 함량이 1 중량% 미만이면 증진제에 의한 영향이 미미하여 촉매의 활성 변화가 적으며 10 중량%를 초과하는 경우에는 알코올류의 부산물 생성량이 증가하거나 Fe 함유량의 감소에 따른 촉매 활성점이 감소하는 문제가 발생하며, K의 함량이 1 중량% 미만이면 첨가제에 의한 영향이 미미하여 메탄의 선택성이 증가하는 문제가 발생하고 10 중량%를 초과하는 경우에는 Fe의 활성점을 감소시켜서 일산화탄소의 일회 전환 율이 감소하는 문제가 발생한다.In the catalyst, active metal components such as Fe, Cu, and K maintain 10 to 70% by weight of Fe, 1 to 10% by weight of Cu, and 1 to 10% by weight of K, respectively, based on zeolite. If the content of is less than 10% by weight, there is a problem that the conversion rate of carbon monoxide decreases due to the decrease of the active point for the production of light hydrocarbons.If the content of the content exceeds 70% by weight, the specific surface area of the catalyst is reduced because the zeolite blocks the pores. There may be a problem that the acidity is reduced and thereby the reaction activity for the production of light hydrocarbons is reduced. In addition, when the amount of Cu added to enhance the reducibility of the Fe component is less than 1% by weight, the effect of the enhancer is insignificant, and the change in activity of the catalyst is small. When the Fe content decreases, the catalytic activity point decreases. If the content of K is less than 1 wt%, the effect of the additive is negligible, which increases the selectivity of methane. By reducing the active point of the problem occurs that the one-time conversion rate of carbon monoxide decreases.

이때, 상기 활성성분으로 Al를 제올라이트에 대하여 0 ∼ 20 중량% 범위로 추가 사용할 수 있는 바, 상기 Al는 Fe-Cu 성분의 분산성을 향상하여 경질탄화수소 제조용 활성점 증가 및 비표면적을 향상하기 위하여 추가하는 구조 증진제이며 20 중량%를 초과하는 경우에는 Fe의 함유량이 감소하여 경질탄화수소 반응용 활성점이 감소하고 이로 인하여 일산화탄소의 일회 전환율이 감소하는 문제가 발생한다.At this time, Al can be used in the range of 0 to 20% by weight with respect to the zeolite as the active ingredient, the Al is to improve the dispersibility of the Fe-Cu component to increase the active point for producing hard hydrocarbons and to improve the specific surface area If it is an additional structural enhancer and exceeds 20% by weight, the Fe content is reduced to decrease the active point for the hard hydrocarbon reaction, which causes a problem that the one-time conversion of carbon monoxide is reduced.

상기 지지체로 사용되는 제올라이트는 당 분야에서 일반적으로 사용되는 것으로, 비표면적이 200 ∼ 500 ㎡/g이고, Si/Al이 2 ∼ 200 몰비 범위이다. 상기 비표면적이 200 ㎡/g 미만이면 Fe-Cu-K 성분의 분산성이 감소하여 촉매의 활성점이 감소하고 이로 인한 일산화탄소의 일회 전환율이 감소하는 문제가 있고, 500 ㎡/g를 초과하는 경우에는 Fe-Cu-K 성분의 담지 과정에서 미세 기공 막힘 현상이 증가하여 촉매의 비표면적이 감소하는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다. 또한, 상기 제올라이트는 프로톤 형태나, IA, IIA, Zr, P 및 란탄계 중에서 선택된 단일 금속전구체 또는 이원 금속전구체를 이용하여 이온교환 또는 담지법으로 전처리한 후에 300 ∼ 600 ℃의 영역에서 소성 처리된 것을 사용할 수 있다. 이때, 전처리에 사용되는 금속의 양은 금속/Al의 몰비가 50을 초과하는 경우에는 제올라이트의 산점이 과도하게 제거되어 경질탄화수소제조 반응에서 생성되는 고비점 올레핀의 촉매분해 반응성이 저하되는 문제가 발생하여 경질탄화수소의 선택성이 감소하는 문제가 발생할 수 있다. 구체적으로, 사용 가능한 제올라이트로는 Y-제올라이트, 페리어라이트, 모더나이트 및 ZSM-5 등이 포함될 수 있다.Zeolites used as the support are generally used in the art, have a specific surface area of 200 to 500 m 2 / g, and Si / Al in the range of 2 to 200 molar ratio. If the specific surface area is less than 200 m 2 / g, the dispersibility of the Fe-Cu-K component is reduced, thereby reducing the active point of the catalyst, thereby reducing the one-time conversion rate of carbon monoxide, and in case of exceeding 500 m 2 / g It is preferable to maintain the above range because a problem occurs that the specific surface area of the catalyst decreases due to an increase in fine pore blockage during the Fe-Cu-K component loading. In addition, the zeolite is pretreated by a single metal precursor or binary metal precursor selected from proton form, IA, IIA, Zr, P, and lanthanum, and then calcined in an area of 300 to 600 ° C. Can be used. In this case, when the metal / Al molar ratio exceeds 50, the acid point of the zeolite is excessively removed so that the catalytic decomposition reactivity of the high-boiling olefin produced in the hard hydrocarbon production reaction may be deteriorated. The problem of reduced selectivity of light hydrocarbons may occur. Specifically, usable zeolites may include Y-zeolites, ferrites, mordenites and ZSM-5.

상기와 같은 Fe-Cu-K계/제올라이트 촉매는 비표면적이 150 ∼ 300 ㎡/g 범위를 나타내는 바, 촉매의 비표면적이 150 ㎡/g 미만이면 경질탄화수소 반응용 활성점이 감소하여 일산화탄소의 일회 전환율이 감소하는 문제가 발생할 수 있고 300 ㎡/g을 초과하는 경우에는 촉매의 열적 안정성이 감소하여 반응 중에 촉매의 비활성화가 급격하게 진행되거나 Fe-Cu-K 성분의 담지량이 적어져서 촉매의 활성이 감소하거나 부산물의 생성량이 과도하게 증가하는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.As described above, the Fe-Cu-K-based / zeolite catalyst has a specific surface area of 150 to 300 m 2 / g, and when the specific surface area of the catalyst is less than 150 m 2 / g, the active point for hard hydrocarbon reaction decreases, thereby reducing the carbon monoxide once conversion rate. This decrease may occur, and if it exceeds 300 m 2 / g, the thermal stability of the catalyst is reduced, the catalyst deactivation is rapidly progressed during the reaction, or the amount of the Fe-Cu-K component is reduced to reduce the activity of the catalyst It is preferable to maintain the above range because the problem of excessively increasing the amount of by-products generated.

이러한 촉매는 당 분야에서 일반적으로 사용되는 촉매를 제조하는 방법으로 구체적으로 함침법 또는 공침법으로 제조할 수 있는 바, 이를 자세하게 설명하면 다음과 같다.Such a catalyst can be prepared by impregnation method or co-precipitation method as a method of preparing a catalyst generally used in the art, which will be described in detail as follows.

철 전구체로는 아이언 나이트레이트 수화물(Fe(NO3)3·9H2O), 아이언 아세테이트(Fe(CO2CH3)2), 아이언 옥살레이트 수화물(Fe(C2O4)3·6H2O), 아이언 아세틸아세트네이트(Fe(C5H7O2)3) 및 아이언 클로라이드(FeCl3) 등의 Fe(II) 및 Fe(III) 전구체가 사용될 수 있다. 철의 환원성을 향상하기 위하여 첨가되는 구리 성분으로는 아세테이트, 나이트레이트 및 클로라이드 계열의 전구체 중에서 선택하여 사용할 수 있으며, 올레핀의 선택성을 향상하기 위한 성분으로 사용되는 칼륨 전구체로는 K2CO3 및 KOH 등이 사용될 수 있다. 또한, Fe-Cu 성분의 분산성을 향상하기 위하여 추가로 Al 성분을 사용할 수 있는데 이때는 아세테이트 및 나이트레이트 계열 의 전구체 중에서 선택하여 사용할 수 있다. Iron precursors include iron nitrate hydrate (Fe (NO 3 ) 3 · 9H 2 O), iron acetate (Fe (CO 2 CH 3 ) 2 ), iron oxalate hydrate (Fe (C 2 O 4 ) 3 · 6H 2 Fe (II) and Fe (III) precursors such as O), iron acetylacetonate (Fe (C 5 H 7 O 2 ) 3 ) and iron chloride (FeCl 3 ) can be used. The copper component added to improve the reducibility of iron may be selected from acetate, nitrate, and chloride-based precursors. The potassium precursors used as components for improving the selectivity of olefins include K 2 CO 3 and KOH. And the like can be used. In addition, in order to improve the dispersibility of the Fe-Cu component, an Al component may be additionally used. In this case, the precursor may be selected from acetate and nitrate-based precursors.

합침법은 전처리된 제올라이트에 Fe, Cu, Al 및 K 등의 금속 전구체를 동시에 함침법으로 제조하거나, 또는 순차적으로 함침법으로 제조한 후에 300 ∼ 700 ℃에서 소성하여 제조하는 바, 상기 소성온도가 300 ℃ 미만이면 Fe-Cu-Al-K성분이 옥사이드 형태로 전환되지 못하여 활성 성분의 분산성이 감소하는 문제가 발생할 수 있으며, 700 ℃를 초과하는 경우에는 Fe-Cu-Al-K 성분의 응집에 의한 활성점이 감소하는 문제가 발생할 수 있으므로 상기의 영역을 유지할 필요성이 있다. The impregnation method is prepared by simultaneously impregnating the metal precursors such as Fe, Cu, Al, and K into the pretreated zeolite, or sequentially by impregnation, followed by firing at 300 to 700 ° C. If it is less than 300 ℃ Fe-Cu-Al-K component can not be converted into the oxide form may cause a problem that the dispersibility of the active ingredient is reduced, if the temperature exceeds 700 ℃, the aggregation of Fe-Cu-Al-K component There may be a problem that the active point is reduced by the need to maintain the above area.

또 다른 방법인 공침법은 전처리된 제올라이트에, Fe, Cu 및 Al 금속의 전구체를 혼합하여 금속 전구체 용액을 제조하고 pH 7 ∼ 8의 수용액 하에서 공침시킨 후 40 ∼ 90 ℃의 영역에서 숙성하여 침전물을 여과 및 세척하여 제조한다. 상기 공침 시 pH 7 ∼ 8을 유지하기 위하여 염기성 침전제를 사용하는 바, 상기 염기성 침전제는 구체적으로 탄산나트륨, 탄산칼슘 및 탄산암모늄 및 암모니아수를 사용하는 것이 바람직하다. 촉매의 숙성시간은 0.1 ∼ 10 시간 미만, 바람직하게는 0.5 ∼ 8시간으로 유지하는 것이 적절한데, 이는 제시된 숙성시간 영역에서 활성이 우수한 철계열의 촉매 형성에 도움이 되며, 상기 숙성 시간이 0.5시간 미만이면 Fe-Cu-Al 성분의 분산성이 감소하여 F-T 반응 면에서 불리하며, 10 시간을 초과하는 경우에는 Fe-Cu-Al 입자 사이즈가 증가하여 활성점이 감소하고 합성 시간이 증가하여 경제적이지 않으므로 적절하지 못하다. 상기의 공침법으로 제조된 Fe-Cu-Al촉매와 제올라이트와의 혼성 촉매는 K 성분을 1 ∼ 10 중량%로 담지하여 최종 경질탄화수소제조용 촉매를 제조하게 되는데, 상기의 방법으로 제조된 촉매는 100 ℃ 이상의 오븐에서 하루 정도 건조시킨 후에 경질탄화수소제조 반응용 촉매로 사용하기 위하여 300 ∼ 700 ℃ 범위, 바람직하기로는 400 ∼ 600 ℃ 범위에서 소성하여 사용할 수 있다.Another method of coprecipitation is to prepare a metal precursor solution by mixing precursors of Fe, Cu and Al metal with pre-treated zeolite, coprecipitation under an aqueous solution of pH 7-8, and then aged at 40-90 ° C. to precipitate the precipitate. Prepared by filtration and washing. In order to maintain pH 7 to 8 during the coprecipitation, a basic precipitant is used. Specifically, the basic precipitant preferably uses sodium carbonate, calcium carbonate and ammonium carbonate and ammonia water. The aging time of the catalyst is appropriately maintained at less than 0.1 to 10 hours, preferably 0.5 to 8 hours, which helps to form an iron-based catalyst having excellent activity in the range of aging time given, and the aging time is 0.5 hours. If less than the dispersibility of the Fe-Cu-Al component is disadvantageous in terms of FT reaction, if it exceeds 10 hours Fe-Cu-Al particle size is increased, the active point is reduced and the synthesis time is not economical because Not appropriate The mixed catalyst of the Fe-Cu-Al catalyst and zeolite prepared by the co-precipitation method supports 1 to 10% by weight of a K component to prepare a catalyst for producing a final hard hydrocarbon. The catalyst prepared by the above method is 100 After drying for about one day in an oven at or above, it may be used by firing in the range of 300 to 700 ° C., preferably 400 to 600 ° C., for use as a catalyst for hard hydrocarbon production reaction.

상기의 방법으로 제조된 경질탄화수소제조용 촉매는 고정층, 유동층 및 슬러리 반응기에서 200 ∼ 700 ℃의 영역에서 수소 분위기에서 환원한 후에 촉매 반응에 활용한다. 상기 환원된 경질탄화수소제조 반응용 촉매는 일반적인 STO 합성 반응과 유사한 반응 조건에서 수행되는 바, 구체적으로 반응 온도는 250 ∼ 500 ℃, 반응 압력은 5 ∼ 60 kg/㎠와 공간속도는 500 ∼ 10,000 h-1에서 수행하는 것이 좋다.The catalyst for producing hard hydrocarbons prepared by the above method is used in a catalytic reaction after reduction in a hydrogen atmosphere in a region of 200 to 700 ° C. in a fixed bed, a fluidized bed, and a slurry reactor. The reduced light hydrocarbon production reaction catalyst is carried out under reaction conditions similar to the general STO synthesis reaction, specifically, the reaction temperature is 250 to 500 ° C., the reaction pressure is 5 to 60 kg / cm 2 and the space velocity is 500 to 10,000 h. It is recommended to do this at -1 .

다음으로 상기 반응의 부산물인 메탄 및 이산화탄소를 분리하여 1단계의 복합개질 반응으로 재순환하여 연속공정을 수행한다.Next, methane and carbon dioxide, which are by-products of the reaction, are separated and recycled in a one-step complex reforming reaction to carry out a continuous process.

상기 경질 탄화수소(C2 ∼ C4)의 수율은 15 ∼ 55 카본몰%이고, 경질 올레핀(C2 ∼ C4)의 수율은 10 ∼ 45 카본몰%이며, CO 전환율은 70 ∼ 99 카본몰% 범위를 유지한다.The yield of the light hydrocarbons (C 2 to C 4 ) is 15 to 55 carbon mol%, the yield of light olefins (C 2 to C 4 ) is 10 to 45 carbon mol%, and the CO conversion is 70 to 99 carbon mol% Maintain the range.

도 1에 따라 본 발명에 따른 천연가스로부터 경질탄화수소를 제조하는 방법을 구체적으로 살펴보면 다음과 같다.Referring to the method of producing light hydrocarbons from natural gas according to the present invention in detail as follows.

먼저 반응물인 천연가스는 후속 공정의 촉매 비할성화를 억제하기 위하여 전처리 과정(탈황 및 금속 성분의 제거)을 통하여 반응물의 순도를 향상시키게 된다. 전처리된 천연가스 스트림 1 은 먼저 니켈계열의 촉매상에서 메탄의 스팀 개 질(steam reforming of methane; SMR) 반응에 의하여 합성가스를 제조할 수 있으며 이때의 합성가스의 이론적인 H2/CO 비는 반응식(e)와 같이 3정도 또는 수성가스 전환반응의 동반에 따라서 그 이상이 된다. 일반적으로 F-T 합성 반응에서 최적의 H2/CO비는 2정도이며 이보다 작을 경우에는 일산화탄소의 일회 전환율이 감소하며 이보다 클 경우에는 메탄으로의 선택성이 증가하는 단점이 있는 것으로 알려져 있다. 이때. 미반응물과 부산물로 생성되는 메탄 및 이산화탄소 구성되는 가스 스트림 6은 PSA(pressure swing adsorption) 및 막분리 방법 등(분리공정(1))에 의하여 CH4/CO2-풍부(rich) 가스 스트림 3 이 분리되어 복합개질 공정으로 재순환되어 SMR 반응(반응식-e)과 CDR 반응(반응식-f)이 동시에 수행되게 된다. CDR 반응의 경우에는 반응식-f 에서 알 수 있는 바와 같이 H2/CO비가 1정도가 되므로 SMR 반응과 CDR반응을 조합한 복합개질 반응에 의하면 H2/CO비가 2정도인 F-T반응에 적절한 조성의 합성가스를 생산할 수 있다. 이때, 복합개질 반응 촉매상에서 카본 침적에 의한 촉매의 비활성화를 억제하기 위한 방안으로서 산소를 추가로 소량 사용하여 복합개질 반응을 수행할 수도 있다. 복합개질 반응 공정에서 생성되는 가스 스트림 2는 분리 공정(1)에 의하여 CH4/CO2 가 풍부한 미반응 가스 스트림 3으로 분리되어 재순환되어 사용되며, H2/CO가 풍부한 가스 스트림 4는 경질탄화수소제조 공정에 이용되게 된다. 따라서, 복합개질 반응기는 메탄의 수증기 개질(steam reforming of methane; SMR) 및 이산화탄소와 메탄의 개질(carbon dioxide reforming of methane; CDR)이 함께 진행되는 복합개질 공정으로 구성될 수 있다. First, the reactant natural gas improves the purity of the reactant through a pretreatment process (desulfurization and removal of metal components) in order to suppress catalyst deactivation in subsequent processes. The pretreated natural gas stream 1 can first produce syngas by steam reforming of methane (SMR) reaction on a nickel-based catalyst, where the theoretical H 2 / CO ratio of the syngas is As in (e), the degree is 3 or higher depending on the accompanying water gas shift reaction. In general, the optimum H 2 / CO ratio in the FT synthesis reaction is about 2, the smaller the conversion rate of carbon monoxide decreases, the larger is known to have the disadvantage of increasing the selectivity to methane. At this time. Gas stream 6 consisting of unreacted and by-products of methane and carbon dioxide is converted to CH 4 / CO 2 -rich gas stream 3 by pressure swing adsorption (PSA) and membrane separation methods (separation process (1)). It is separated and recycled to the complex reforming process so that the SMR reaction (Scheme-e) and the CDR reaction (Scheme-f) are performed simultaneously. In the case of the CDR reaction, as shown in Scheme-f, the H 2 / CO ratio is about 1, and according to the complex reforming reaction combining the SMR reaction and the CDR reaction, the H 2 / CO ratio is about 2, Syngas can be produced. In this case, the complex reforming reaction may be performed using an additional small amount of oxygen as a method for suppressing deactivation of the catalyst by carbon deposition on the complex reforming reaction catalyst. The gas stream 2 produced in the combined reforming process is separated and recycled to the unreacted gas stream 3 enriched in CH 4 / CO 2 by the separation process (1), and the gas stream 4 enriched in H 2 / CO is used as light hydrocarbon. To be used in the manufacturing process. Therefore, the complex reforming reactor may be composed of a steam reforming of methane (SMR) and a complex reforming process in which carbon dioxide reforming of methane (CDR) is performed together.

상기 반응으로 제조된 합성가스를 경질탄화수소제조 반응을 수행한 생성물은 스트림 5를 통하여 이송되는 바, 스트림 5에는 메탄, 이산화탄소 및 C2 ∼ C4의 경질탄화수소와 C5+ 이상의 액체탄화수소와 미반응물인 H2/CO가 포함되어 있으며, 상기의 성분들은 일반적인 분리 방법(분리공정 2)에 의하여 분리될 수 있다. 이때 미반응물 및 CH4/CO2-rich 성분은 6번 스트림에 의하여 분리공정(1)로 재도입되어 사용되며, C2 ∼ C4 성분은 7번 스트림을 통하여 분리(생성물 1)된다. 경질탄화수소인 C2 ∼ C4 성분 중에서 올레핀은 추가적인 정제 공정을 거친 후에 폴리머(polyethylene 및 polypropylene 등) 합성 및 기타 화학원료 합성에 바로 사용될 수 있으며, C2 ∼ C4 파라핀은 추가적인 열분해 방법에 의하여 C2 ∼ C4 올레핀으로 전환하여 사용하거나 복합개질 공정의 열원 및 LPG로도 사용될 수도 있다. 8번 스트림으로 분리되는 C5 이상의 고비점 탄화수소류(생성물 2)는 촉매 열분해 방법에 의하여 C2 ∼ C4 올레핀으로 추가로 전환되어 사용되거나 기타 가솔린 및 납사 등의 용도로 사용될 수 있다. 경질탄화수소제조 공정 중에 발생되는 응축 공정의 물은 경질탄화수소제조 공정과 복합개질 공정에서 순차적으로 열 교환되어 SMR 반응용 스팀으로 효율적으로 이용됨으로써 전체 공정의 열 효율을 향상할 수 있다. The product produced by the light hydrocarbon production reaction of the synthesis gas produced by the reaction is transferred through stream 5, the stream 5 is methane, carbon dioxide and light hydrocarbons of C 2 ~ C 4 and C 5 + or more liquid hydrocarbons and unreacted products Phosphorus H 2 / CO is included, and the above components may be separated by a general separation method (separation step 2). At this time, the unreacted material and the CH 4 / CO 2 -rich components are reintroduced into the separation process (1) by the sixth stream, and the C 2 to C 4 components are separated through the seventh stream (product 1). Of the hard hydrocarbons, C 2 to C 4 , olefins can be used directly for the synthesis of polymers (polyethylene and polypropylene) and other chemical raw materials after further purification, and C 2 to C 4 paraffins can be prepared by additional pyrolysis. It may be converted to 2 to C 4 olefins or used as a heat source and LPG in a complex reforming process. C 5 or higher high-boiling hydrocarbons (product 2) separated in stream 8 can be further converted to C 2 to C 4 olefins by catalytic pyrolysis or used for other gasoline and naphtha applications. The water of the condensation process generated during the hard hydrocarbon manufacturing process is heat exchanged sequentially in the hard hydrocarbon manufacturing process and the complex reforming process to be efficiently used as steam for the SMR reaction, thereby improving the thermal efficiency of the entire process.

이하, 본 발명을 실시예에 의거하여 구체적으로 설명하는 바, 본 발명이 다 음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1 : 천연가스로부터 합성가스 제조Example 1 Synthesis Gas from Natural Gas

함침법에 의하여 감마-알루미나에 세륨아세테이트(Ce-acetate)와 지르코니움나이트레이트(Zr-nitrate)를 Ce/Zr 비가 0.25 중량비가 되도록 알루미나에 담지한 후에 900 ℃에 6 시간 동안 소성하여 Ce-ZrO2/θ-Al2O3 촉매를 제조하였다. Cementate (Ce-acetate) and Zirconium Nitrate (Zr-nitrate) in Gamma-Alumina by Impregnation It was supported by alumina so that the ratio was 0.25 weight ratio, and then calcined at 900 ° C. for 6 hours to prepare a Ce—ZrO 2 / θ-Al 2 O 3 catalyst.

상기 제조된 촉매에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 Ce-ZrO2/θ-Al2O3 촉매 대비 12 중량%를 담지하고 550 ℃에서 6 시간 동안 소성하여 최종 촉매인 Ni0.40Ce0.12Zr0.48O2/θ-Al2O3를 제조하였다. 복합개질 반응을 수행하기 전에 촉매 1.0 g을 인콜로이(Incolloy) 800H 반응기에 장입하고 700 ℃의 수소(5 부피%H2/N2)분위기 하에서 3시간 환원 처리한 후에 반응을 수행하였다. The prepared catalyst was loaded with 12 wt% of the Ce-ZrO 2 / θ-Al 2 O 3 catalyst by using nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O) as a nickel precursor, and then 6 hours at 550 ° C. It was calcined during to prepare Ni 0.40 Ce 0.12 Zr 0.48 O 2 / θ-Al 2 O 3 as a final catalyst. Before performing the reforming reaction, 1.0 g of the catalyst was charged to an Incolloy 800H reactor, and the reaction was performed after 3 hours of reduction treatment under hydrogen (5 vol% H 2 / N 2 ) atmosphere at 700 ° C.

반응온도 800 ℃, 반응압력 1 kg/㎠, 공간속도 12420 L(CH4)/kgcat/hr의 조건에서 반응물로는 CH4 : (CO2/H2O/2O2) : N2의 몰 비를 1 : 1.2 : 1의 비율로 고정하여 반응기로의 주입하여 반응을 수행하였다. 상기 반응은 CO2/H2O 비 및 O2/H2O의 비를 변경하면서 수행하였으며, 촉매의 활성이 안정화되어 유지되는 구간에서의 평균값을 사용하여 그 결과를 다음 표 3에 나타내었다.The reaction product was reacted at 800 ℃, reaction pressure 1 kg / ㎠, space velocity 12420 L (CH 4 ) / kgcat / hr as mole ratio of CH 4 : (CO 2 / H 2 O / 2O 2 ): N 2 Reaction was performed by injecting into the reactor at a ratio of 1: 1.2: 1. The reaction was performed while changing the ratio of CO 2 / H 2 O and O 2 / H 2 O, the results are shown in the following Table 3 using the average value in the interval in which the activity of the catalyst is stabilized and maintained.

Figure 112007073751486-pat00003
Figure 112007073751486-pat00003

합성가스로부터 경질탄화수소 제조Manufacture of Light Hydrocarbons from Syngas

실시예 2 : 경질탄화수소 제조용 촉매 제조(합침법)Example 2 Preparation of Catalyst for Hard Hydrocarbon Production

암모니아 형태의 페리어라이트 제올라이트(Si/Al = 10; 비표면적 = 400 m2/g)를 600 ℃에서 소성하여 프로톤 형태의 페리어라이트 제올라이트를 제조하였다. 상기 페리어라이트 제올라이트 5 g을 사용하고 철 전구체로는 아이언 나이트레이트 수화물(Fe(NO3)3·9H2O), 구리 전구체로는 질산구리(Cu(NO3)2·6H2O) 및 칼륨 전구체로는 K2CO3를 사용하여 60 ml의 물에 녹인 후에 혼합하고 상온에서 12시간 이상 교반하여 담지 촉매를 제조하였다. 상기의 담지 촉매는 100 ℃에서 12시간 이상 건조한 후에 500 ℃의 공기 분위기에서 5시간 동안 소성 처리하였다. 제조된 촉매의 조성은 메탈 기준으로 20중량%Fe-2중량%Cu-4중량%K/페리어라이트 이었으며, 이 때의 촉매의 비표면적은 227 ㎡/g이었다. Ferrilite zeolite in ammonia form (Si / Al = 10; specific surface area = 400 m 2 / g) was calcined at 600 ° C. to produce a proton type ferrite zeolite. 5 g of the ferrierite zeolite is used, and iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) is used as an iron precursor, copper nitrate (Cu (NO 3 ) 2 .6H 2 O) is used as a copper precursor, and The potassium precursor was dissolved in 60 ml of water using K 2 CO 3 , mixed, and stirred at room temperature for 12 hours or more to prepare a supported catalyst. The supported catalyst was dried at 100 ° C. for at least 12 hours and calcined for 5 hours in an air atmosphere at 500 ° C. The composition of the prepared catalyst was 20% by weight Fe-2% by weight Cu-4% by weight K / ferrilite, and the specific surface area of the catalyst was 227 m 2 / g.

반응을 시작하기 전에 1/2인치 스테인레스 고정층 반응기에 상기에서 제조한 0.3 g의 촉매를 장입하고 450 ℃의 수소(5 부피%H2/He)분위기 하에서 12시간 환원 처리한 후에, 반응온도 300 ℃, 반응압력 10 kg/㎠, 공간속도 2000 L/kgcat/hr의 조건에서 반응물인 일산화탄소 : 수소 : 아르곤(내부 표준물질)의 몰비를 63.2 : 31.3 : 5.5의 비율로 고정하여 반응기로의 주입하여 반응을 수행하였다. 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.Before starting the reaction, charge 0.3 g of the catalyst prepared above in a 1/2 inch stainless fixed bed reactor and reduce the reaction for 12 hours under an atmosphere of hydrogen (5 vol% H 2 / He) at 450 ° C., and then reaction temperature of 300 ° C. The reaction rate was injected into the reactor by fixing the molar ratio of carbon monoxide: hydrogen: argon (internal standard), which is a reactant, at a reaction pressure of 10 kg / ㎠ and a space velocity of 2000 L / kgcat / hr at a ratio of 63.2: 31.3: 5.5. Was performed. The reaction results are shown in the following Table 4 using an average value of 10 hours after the reaction time of 50 hours in which the activity of the catalyst is stabilized.

실시예 3Example 3

상기 실시예 2와 동일한 방법으로 촉매를 제조하되, 암모니아 형태의 ZSM-5 제올라이트(Si/Al = 25, 비표면적 = 350 ㎡/g)를 600 ℃에서 소성하여 프로톤 형태의 ZSM-5 제올라이트를 제조하였다. 최종으로 제조된 촉매의 조성은 메탈 기준으로 20중량%Fe-2중량%Cu-4중량%K/ZSM-5이었으며, 이 때의 촉매의 비표면적은 265 ㎡/g 이었다. 상기 실시예 2와 동일한 방법으로 환원 과정을 수행하고 반응을 수행하였으며 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.A catalyst was prepared in the same manner as in Example 2, except that ZSM-5 zeolite in ammonia form (Si / Al = 25, specific surface area = 350 m 2 / g) was calcined at 600 ° C. to prepare ZSM-5 zeolite in proton form. It was. The composition of the finally prepared catalyst was 20% by weight Fe-2% by weight Cu-4% by weight K / ZSM-5 based on the metal, the specific surface area of the catalyst was 265 m 2 / g. Reduction was carried out in the same manner as in Example 2, and the reaction was carried out. The reaction results are shown in Table 4 using an average value of 10 hours after the reaction time of 50 hours in which the activity of the catalyst was stabilized and maintained.

실시예 4Example 4

상기 실시예 2와 동일한 방법으로 촉매를 제조하되, 나트륨 형태의 Y 제올라이트(Si/Al = 2.5, 비표면적 = 600 ㎡/g)를 암모니아로 이온 교환한 후에 600 ℃에서 소성하여 프로톤 형태의 Y-제올라이트를 제조하였다. 제조된 촉매의 조성은 메탈 기준으로 20중량%Fe-2중량%Cu-4중량%K/Y-제올라이트이었다. 상기 실시예 2와 동일한 방법으로 환원 과정을 수행하고 반응을 수행하였으며 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.A catalyst was prepared in the same manner as in Example 2, except that the sodium zeolite (Si / Al = 2.5, specific surface area = 600 m 2 / g) was ion-exchanged with ammonia and calcined at 600 ° C. to yield Y- in proton form. Zeolite was prepared. The composition of the prepared catalyst was 20% by weight Fe-2% by weight Cu-4% by weight K / Y- zeolite on a metal basis. Reduction was carried out in the same manner as in Example 2, and the reaction was carried out. The reaction results are shown in Table 4 using an average value of 10 hours after the reaction time of 50 hours in which the activity of the catalyst was stabilized and maintained.

실시예 5Example 5

상기 실시예 2와 동일한 방법으로 촉매를 제조하되, 모더나이트 제올라이트 (Si/Al = 6; 비표면적 = 350 m2/g)를 전처리 및 600 ℃에서 소성하여 프로톤 형태의 모더나이트 제올라이트를 제조하였다. 제조된 촉매의 조성은 메탈 기준으로 20중량 %Fe-2중량%Cu-4중량%K/모더나이트이었다. 상기 실시예 2와 동일한 방법으로 환원 과정을 수행하고 반응을 수행하였으며 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.A catalyst was prepared in the same manner as in Example 2, but mordenite zeolite (Si / Al = 6; specific surface area = 350 m 2 / g) was pretreated and calcined at 600 ° C. to prepare a proton-type mordenite zeolite. The composition of the prepared catalyst was 20% by weight Fe-2% by weight Cu-4% by weight K / mordenite based on the metal. Reduction was carried out in the same manner as in Example 2, and the reaction was carried out. The reaction results are shown in Table 4 using an average value of 10 hours after the reaction time of 50 hours in which the activity of the catalyst was stabilized and maintained.

실시예 6 : 경질탄화수소 제조용 촉매 제조(공침법)Example 6 Preparation of Catalysts for Light Hydrocarbon Production (Coprecipitation Method)

암모니아 형태의 페리어라이트 제올라이트(Si/Al = 10, 비표면적 = 400 ㎡/g)를 600 ℃에서 소성하여 프로톤 형태의 페리어라이트 제올라이트를 제조하였다. 상기 제조된 페리어라이트 제올라이트 1.2 g을 70 ℃의 3차 증류수를 이용하여 삼구프라스크 반응기에서 슬러리 상에서 교반하였다. 다음으로 철 전구체로는 아이언 나이트레이트 수화물(Fe(NO3)3·9H2O) 21 g, 구리 전구체로는 질산구리수화물(Cu(NO3)2·6H2O) 1.5 g및 알루미나 전구체로는 질산알루미늄수화물(Al(NO3)3·9H2O) 4.9 g을 400 mL의 3차 증류수에 동시에 녹인 금속 혼합용액을 준비하였다. 침전제로는 탄산칼륨 19.5 g을 400 mL의 3차 증류수에 녹인 용액을 사용하였다. 2000 mL 플라스크에서 70 ℃하에서, 3 차 증류수에서 슬러리상인 페리어라이트 제올라이트가 포함된 200 mL에, 상기에서 제조된 금속 혼합용액과 침전제 용액을 동시에 천천히 주입하여 최종 pH를 7.5 ∼ 8.0으로 유지하였다. 이때, 상기 혼합 용액은 70 ℃의 온도에서 3시간 정도 교반하였으며, 제조된 촉매는 2000 mL의 3차 증류수로 3회 이상 세척하고 필터링한 후에 12시간 이상 건조하여 합성가스로부터 경질 올레핀을 직접 제조하기 위한 경질탄화수소제조용 촉매를 제조하였다. 이때의 Fe-Cu-Al 촉매의 성분은 85중량%Fe-5중량%Cu-13중량%Al이었으며 Fe-Cu-Al 옥사이드(Fe-Cu-AlOx)와 페리어라이트 제올라이트의 중량비는 5이었다. 제조된 촉매는 100 ℃에서 12시간 이상 건조한 후에 500 ℃의 공기 분위기에서 5시간 동안 소성 처리하였다. 마지막으로 K2CO3를 이용하여 촉매의 전체 중량 대비 3중량%의 칼륨을 담지하여 최종 촉매를 제조하였으며 이때의 성분은 K/Fe-Cu-AlOx/페리어라이트이었다.Ammonia-type ferrite zeolite (Si / Al = 10, specific surface area = 400 m 2 / g) was calcined at 600 ° C. to produce a proton-type ferrite zeolite. 1.2 g of the ferrierite zeolite prepared above was stirred on a slurry in a three-necked flask reactor using tertiary distilled water at 70 ° C. Next, as iron precursor, 21 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O), as copper precursor 1.5 g of copper nitrate hydrate (Cu (NO 3 ) 2 .6H 2 O), and alumina precursor Prepared a metal mixed solution in which 4.9 g of aluminum nitrate hydrate (Al (NO 3 ) 3 .9H 2 O) was simultaneously dissolved in 400 mL of tertiary distilled water. As a precipitant, a solution of 19.5 g of potassium carbonate dissolved in 400 mL of tertiary distilled water was used. In a 2000 mL flask at 70 ° C., 200 mL of the slurry containing ferrilite zeolite in distilled water was slowly injected at the same time, and the final pH was maintained at 7.5 to 8.0. At this time, the mixed solution was stirred for about 3 hours at a temperature of 70 ℃, the prepared catalyst was washed three times or more with 2000 mL of distilled water, filtered and dried for at least 12 hours to prepare a light olefin directly from the synthesis gas A catalyst for preparing light hydrocarbons was prepared. At this time, the component of the Fe-Cu-Al catalyst was 85 wt% Fe-5 wt% Cu-13 wt% Al, and the weight ratio of Fe-Cu-Al oxide (Fe-Cu-AlO x ) and ferrilite zeolite was 5. . The prepared catalyst was dried at 100 ° C. for at least 12 hours, and calcined at 500 ° C. for 5 hours in an air atmosphere. Finally, the final catalyst was prepared by supporting 3% by weight of potassium relative to the total weight of the catalyst using K 2 CO 3 , and the component at this time was K / Fe-Cu-AlO x / ferrilite.

상기 제조된 촉매는 상기 실시예 2와 동일한 방법으로 환원 과정을 수행하고 반응을 수행하였으며 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.The prepared catalyst was subjected to a reduction process in the same manner as in Example 2, and the reaction was performed. The reaction results are shown in Table 4 using the average value of 10 hours after the reaction time of 50 hours in which the activity of the catalyst is stabilized and maintained. Indicated.

실시예 7Example 7

상기 실시예 6과 동일한 방법으로 촉매를 제조하되 페리어라이트 기준으로 지르코늄(IV) 옥시클로라이드 전구체(ZrCl2O·8H2O; zirconium(IV) oxychloride octahydrate)를 이용하여 3중량%의 지르코늄 금속이 함유되도록 슬러리 상에서 담지하였다. 이후에, 70 ℃의 증발 건조기(rotary evaporator)에서 건조 후 400 ℃의 공기 분위기에서 소성하여 Zr-페리어라이트 제올라이트를 제조하였다. 제조된 Zr-페리어라이트 제올라이트를 이용하여 실시예 5와 동일하게 촉매를 제조하였으며 최종 촉매의 성분은 K/Fe-Cu-AlOx/Zr-페리어라이트이었다.To prepare a catalyst in the same manner as in Example 6, using a zirconium (IV) oxychloride precursor (ZrCl 2 O · 8H 2 O; zirconium (IV) oxychloride octahydrate) on a ferrierite basis 3% by weight of zirconium metal Supported on slurry to contain. Thereafter, the resultant was dried in a rotary evaporator at 70 ° C. and calcined at 400 ° C. in an air atmosphere to prepare a Zr-peririte zeolite. A catalyst was prepared in the same manner as in Example 5 using the prepared Zr-ferrilite zeolite and the final catalyst was K / Fe-Cu-AlOx / Zr-perilite.

제조된 촉매는 상기 실시예 2와 동일한 방법으로 환원 과정을 수행하고 반응을 수행하였으며 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.The prepared catalyst was subjected to a reduction process in the same manner as in Example 2, and the reaction was performed. The reaction results are shown in Table 4 using an average value of 10 hours after the reaction time of 50 hours in which the activity of the catalyst was stabilized and maintained. It was.

실시예 8Example 8

상기 실시예 2의 촉매를 사용하여 반응온도 350 ℃, 반응압력 10 kg/㎠, 공간속도 2000 L/kgcat/hr의 조건에서 반응하면서 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.Using the catalyst of Example 2, the reaction temperature of 350 ℃, reaction pressure 10 kg / ㎠, space velocity 2000 L / kgcat / hr while reacting at the conditions of the catalyst activity while the reaction time is maintained for 50 hours 10 hours after 10 hours The average value of is shown in Table 4 below.

비교예 1 : 합성가스로부터 경질탄화수소의 제조Comparative Example 1: Production of Light Hydrocarbons from Syngas

철 전구체로는 아이언 나이트레이트 수화물 (Fe(NO3)3·9H2O) 21 g, 구리 전구체로는 질산구리수화물(Cu(NO3)2·6H2O) 1.5 g및 알루미나 전구체로는 질산알루미늄수화물(Al(NO3)3·9H2O) 4.9 g을 400 mL의 3차 증류수에 동시에 녹인 금속 혼합용액을 준비하였다. 침전제로는 탄산칼륨 19.5 g을 400 mL의 3차 증류수에 녹인 용액을 사용하였다. 2000 mL 플라스크에서 70 ℃하에서, 3 차 증류수에서 200 mL에, 상기에서 제조된 금속 혼합용액과 침전제 용액을 동시에 천천히 주입하여 최종 pH를 7.5 ∼ 8.0으로 유지하였다. 이때, 상기 혼합 용액은 70 ℃의 온도에서 3시간 정도 교반하였으며, 제조된 촉매는 2000 mL의 3차 증류수로 3회 이상 세척하고 필터링한 후에 12시간 이상 건조하여 합성가스로부터 경질 올레핀 제조용 촉매를 제조하였다. 이때 Fe-Cu-Al 촉매의 조성은 85중량%Fe-5중량%6Cu-13중량%Al이었으며, 제조된 촉매는 100 ℃에서 12시간 이상 건조한 후에 500 ℃의 공기 분위기에서 5시간 동안 소성 처리하였다. 마지막으로 K2CO3를 이용하여 촉매의 전체 중량 대비 3중량%의 칼륨을 담지하여 최종 촉매의 성분은 K/Fe-Cu-AlOx 이었다.21 g of iron nitrate hydrate (Fe (NO 3 ) 3 .9H 2 O) as an iron precursor, 1.5 g of copper nitrate hydrate (Cu (NO 3 ) 2 .6H 2 O) as a copper precursor and nitric acid as an alumina precursor A metal mixed solution was prepared by dissolving 4.9 g of aluminum hydrate (Al (NO 3 ) 3 .9H 2 O) simultaneously in 400 mL of tertiary distilled water. As a precipitant, a solution of 19.5 g of potassium carbonate dissolved in 400 mL of tertiary distilled water was used. In a 2000 mL flask at 70 ° C., and 200 mL in tertiary distilled water, the metal mixture solution and the precipitant solution prepared above were slowly injected at the same time to maintain a final pH of 7.5 to 8.0. At this time, the mixed solution was stirred for about 3 hours at a temperature of 70 ℃, the prepared catalyst was washed three times or more with 2000 mL of distilled water, filtered and dried for at least 12 hours to prepare a catalyst for the production of light olefin from the synthesis gas It was. At this time, the composition of the Fe-Cu-Al catalyst was 85 wt% Fe-5 wt% 6Cu-13 wt% Al, and the prepared catalyst was calcined for 5 hours in an air atmosphere at 500 ℃ after drying at 100 ℃ for more than 12 hours. . Finally, K 2 CO 3 was used to support 3% by weight of potassium relative to the total weight of the catalyst so that the component of the final catalyst was K / Fe-Cu-AlO x .

제조된 촉매는 상기 실시예 1과 동일한 방법으로 환원 과정을 수행하고 반응을 수행하였으며 반응 결과는 촉매의 활성이 안정화되어 유지되는 반응시간 50시간 이후에 10시간의 평균값을 사용하여 다음 표 4에 나타내었다.The prepared catalyst was subjected to the reduction process and the reaction was carried out in the same manner as in Example 1, the reaction results are shown in Table 4 using the average value of 10 hours after the reaction time is maintained for 50 hours the activity of the catalyst is stabilized It was.

Figure 112007073751486-pat00004
Figure 112007073751486-pat00004

상기 표 4에서 살펴본 바와 같이, 본 발명에 따라서 제조된 제올라이트가 포함된 철 계열의 촉매(실시예 1 ∼ 실시예 7)에서는 제올라이트 포함되지 않은 철 계열의 촉매(비교예 1)와 비교하여 경질탄화수소(C2 ∼ C4)로의 선택성이 우수하여 올레핀 및 파라핀으로의 수율이 증가함을 확인할 수 있었다. 상기의 촉매를 사용하는 공정은 도 1에서 나타낸 바와 같이 반응 중에 생성되는 메탄 및 이산화탄소를 복합개질 공정에 재순환하여 사용함으로써 경질탄화수소(C2 ∼ C4)로의 수율을 향상할 수 있었으며, 추가로 고비점의 C5 이상의 액체탄화수소를 분리하여 열분해하는 공정이 생략되어 경제적인 공정의 구성이 가능함을 알 수 있었다. 따라서 합성가스를 이용하여 액체 탄화수소를 제조하는 F-T 반응에 있어서 철계 촉매를 사용하는 경우에 발생하는 넓은 생성물 분포의 문제를 해결하여 경질탄화수소(C2 ∼ C4)로의 수율을 향상할 수 있는 공정을 구성할 수 있었다. 또한, 도 2에서 보인 바와 같이 본 발명에서 제시한 제올라이트가 함유된 철계 촉매상에서는 반응 시간에 따른 촉매의 비활성화가 매우 적어서 촉매의 장기 성능 확보 및 공정의 안정적인 운전에도 도움이 된다는 것을 확인할 수 있었다.As shown in Table 4, in the iron-based catalyst (Examples 1 to 7) containing the zeolite prepared according to the present invention, compared to the light hydrocarbons compared to the iron-based catalyst (Comparative Example 1) not containing zeolite It was confirmed that the selectivity to (C 2 to C 4 ) was excellent and the yield to olefin and paraffin increased. In the process using the above catalyst, as shown in FIG. 1, the yield of light hydrocarbons (C 2 to C 4 ) could be improved by recycling the methane and carbon dioxide generated during the reaction in a complex reforming process, and further, high cost. It can be seen that an economical process is possible because the process of separating and thermally decomposing liquid hydrocarbons having a point of C 5 or more is omitted. Therefore, the process of improving the yield to light hydrocarbons (C 2 to C 4 ) by solving the problem of wide product distribution that occurs when using an iron catalyst in the FT reaction for producing liquid hydrocarbons using synthesis gas. Could construct. In addition, as shown in Figure 2 on the zeolite-containing iron-based catalyst presented in the present invention it was confirmed that the deactivation of the catalyst according to the reaction time is very small, which helps to ensure long-term performance of the catalyst and stable operation of the process.

도 1은 본 발명에 따라 천연가스로부터 경질탄화수소를 선택적으로 생산하기 위한 개략적인 반응 공정을 도시한 것이다.1 shows a schematic reaction process for the selective production of light hydrocarbons from natural gas in accordance with the present invention.

도 2는 본 발명에 따라 Fe-Cu-K계/제올라이트 촉매하에서 피셔-트롭시(Fisher-Tropsch) 반응 시, 반응시간에 따른 일산화탄소의 전환율을 나타낸 것이다.Figure 2 shows the conversion rate of carbon monoxide according to reaction time in the Fischer-Tropsch reaction under Fe-Cu-K-based / zeolite catalyst according to the present invention.

Claims (10)

하기 화학식 1로 표시되는 Ni/알루미나계 촉매하에서, 천연가스의 수증기 개질반응과 이산화탄소와 메탄의 개질반응이 동시에 수행되는 복합 개질반응으로 일산화탄소와 수소가 1 : 1.5 ∼ 2.5 몰비를 유지하는 1 단계와 ;Under the Ni / alumina-based catalyst represented by the following formula (1), a first stage of maintaining a molar ratio of carbon monoxide and hydrogen 1: 1.5 to 2.5 as a complex reforming reaction in which steam reforming of natural gas and reforming of carbon dioxide and methane are performed simultaneously. ; 제올라이트를 기준으로 Fe는 10 ∼ 70 중량%, Cu는 1 ∼ 10 중량%, 및 K는 1 ∼ 10 중량% 범위로 각각 담지된 Fe-Cu-K계/제올라이트 촉매하에서, 상기 일산화탄소와 수소를 피셔-트롭시(Fisher-Tropsch) 반응하여 경질탄화수소(C2 ∼ C4) 및 부산물인 메탄 및 이산화탄소를 제조하는 2 단계 ; 및Fischer the carbon monoxide and hydrogen under a Fe-Cu-K based / zeolite catalyst supported in the range of 10 to 70% by weight of Fe, 1 to 10% by weight of Cu, and 1 to 10% by weight of K based on zeolite, respectively. Two steps to produce a light hydrocarbon (C 2 to C 4 ) and by-products methane and carbon dioxide by reaction with a Fisher-Tropsch; And 상기 반응의 부산물인 메탄 및 이산화탄소를 분리하여 1단계의 복합개질 반응으로 재순환하여 연속공정을 수행하는 3단계Methane and carbon dioxide, which are byproducts of the reaction, are separated and recycled in a one-step complex reforming reaction to carry out a three-step continuous process. 를 포함하여 이루어진 것을 특징으로 하는 천연가스로부터 경질탄화수소의 제조방법 :Method for producing light hydrocarbons from natural gas, characterized in that consisting of: [화학식 1][Formula 1] NixCeyZrzOx+2(y+z)/Al2O3 Ni x Ce y Zr z O x + 2 (y + z) / Al 2 O 3 상기 화학식 1에서, x+y+z = 1.0 이고, x는 0.04 ∼ 0.45 이며 y는 0.01 ∼ 0.96의 범위를 나타낸다.In Formula 1, x + y + z = 1.0, x is 0.04 to 0.45 and y represents the range of 0.01 to 0.96. 삭제delete 제 1 항에 있어서, 상기 복합 개질반응은 반응 온도 600 ∼ 1,000 ℃, 반응 압력 0.5 ∼ 30 기압 및 공간속도 1,000 ∼ 500,000 h-1 범위에서 수행하는 것을 특징으로 하는 제조방법.The method of claim 1, wherein the complex reforming reaction is performed at a reaction temperature of 600 to 1,000 ° C, a reaction pressure of 0.5 to 30 atmospheres, and a space velocity of 1,000 to 500,000 h -1 . 제 1 항에 있어서, 상기 복합개질 반응은 CH4의 전환율이 80 ∼ 95 %이고, CO2의 전환율이 60 ∼ 90 % 범위인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the complex reforming reaction has a conversion ratio of CH 4 of 80 to 95% and a conversion rate of CO 2 of 60 to 90%. 삭제delete 제 1 항에 있어서, 상기 Fe-Cu-K계/제올라이트 촉매의 제올라이트는 비표면적이 200 ∼ 500 ㎡/g이고, Si/Al이 2 ∼ 200 몰비 범위이며, The zeolite of the Fe-Cu-K-based / zeolite catalyst has a specific surface area of 200 to 500 m 2 / g, and Si / Al in a range of 2 to 200 molar ratio, IA, IIA, Zr, P 및 란탄계 중에서 선택된 단일 금속전구체 또는 이원 금속전구체를 이용하여 이온교환 또는 담지법으로 전처리된 것을 특징으로 하는 제조방법.A method of manufacturing a method comprising pretreatment by ion exchange or supporting method using a single metal precursor or a binary metal precursor selected from IA, IIA, Zr, P, and lanthanum. 제 1 항에 있어서, 상기 Fe-Cu-K계/제올라이트 촉매는 담체인 제올라이트에 대하여 0 ∼ 20 중량% 범위의 Al을 추가로 함유하는 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the Fe-Cu-K-based / zeolite catalyst further contains Al in the range of 0 to 20 wt% based on the zeolite as the carrier. 제 1 항에 있어서, 상기 Fe-Cu-K계/제올라이트 촉매는 비표면적이 150 ∼ 300 ㎡/g 범위인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the Fe-Cu-K-based / zeolite catalyst has a specific surface area in the range of 150 to 300 m 2 / g. 제 1 항에 있어서, 상기 피셔-트롭시(Fisher-Tropsch) 반응은 반응 온도 250 ∼ 500 ℃, 반응 압력은 5 ∼ 60 kg/㎠, 공간속도 500 ∼ 10,000 h-1 범위에서 수행하는 것을 특징으로 하는 제조방법.According to claim 1, wherein the Fischer-Tropsch reaction is characterized in that the reaction temperature is carried out in the range of 250 ~ 500 ℃, the reaction pressure is 5 ~ 60 kg / ㎠, space velocity 500 ~ 10,000 h -1 Manufacturing method. 제 1 항에 있어서, 경질 탄화수소(C2 ∼ C4)의 수율은 15 ∼ 55 카본몰%이 고, 경질 올레핀(C2 ∼ C4)의 수율은 10 ∼ 45 카본몰%이며, CO 전환율은 70 ∼ 99 카본몰% 범위를 유지하는 것을 특징으로 하는 제조방법.The yield of light hydrocarbons (C 2 to C 4 ) is 15 to 55 carbon mol%, the yield of light olefins (C 2 to C 4 ) is 10 to 45 carbon mol%, and the CO conversion rate is A manufacturing method characterized by maintaining the range of 70 to 99 carbon mol%.
KR1020070103677A 2007-10-15 2007-10-15 Preparation method of direct synthesis of light hydrocarbons from natural gas KR100903439B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020070103677A KR100903439B1 (en) 2007-10-15 2007-10-15 Preparation method of direct synthesis of light hydrocarbons from natural gas
PCT/KR2008/005608 WO2009051353A2 (en) 2007-10-15 2008-09-22 Method of direct synthesis of light hydrocarbons from natural gas
EP08838757.6A EP2197816B1 (en) 2007-10-15 2008-09-22 Method of direct synthesis of light hydrocarbons from natural gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070103677A KR100903439B1 (en) 2007-10-15 2007-10-15 Preparation method of direct synthesis of light hydrocarbons from natural gas

Publications (2)

Publication Number Publication Date
KR20090038267A KR20090038267A (en) 2009-04-20
KR100903439B1 true KR100903439B1 (en) 2009-06-18

Family

ID=40567920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070103677A KR100903439B1 (en) 2007-10-15 2007-10-15 Preparation method of direct synthesis of light hydrocarbons from natural gas

Country Status (3)

Country Link
EP (1) EP2197816B1 (en)
KR (1) KR100903439B1 (en)
WO (1) WO2009051353A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087165B1 (en) * 2009-07-20 2011-11-25 (주)시너지 The method for preparing of Fe based catalyst used in Fischer-Tropsch systhesis reaction and that of liquid hydrocarbon using Fe based catalyst

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026536B1 (en) * 2009-06-12 2011-04-01 한국화학연구원 Fe-based catalyst for the reaction of Fischer-Tropsch synthesis and preparation method thereof
EP2314557A1 (en) * 2009-10-23 2011-04-27 Netherlands Organisation for Scientific Research (Advanced Chemical Technologies for Sustainability) Production of lower olefins from synthesis gas
EP2501781B1 (en) 2009-11-19 2014-03-19 Basf Se Process for selectively producing light olefins
US8461220B2 (en) * 2010-06-10 2013-06-11 Chevron U.S.A. Inc. Process and system for reducing the olefin content of a fischer-tropsch product stream
GB201118228D0 (en) 2011-10-21 2011-12-07 Ingen Gtl Ltd Methods of preparation and forming supported active metal catalysts and precursors
CA2851988C (en) * 2011-10-21 2019-05-21 Igtl Technology Ltd Methods of preparation and forming supported active metal catalysts and precursors
KR20140104636A (en) * 2013-02-20 2014-08-29 한국화학연구원 Cobalt catalyst for fischer tropsh synthesis, preparation method of the same, and method of liqiud hydrocarbon using the same
KR20140109224A (en) * 2013-02-28 2014-09-15 한국화학연구원 catalyst for fischer tropsh synthesis supported in pores of ordered mesoporous carbon and preparation method of the same
US20140264176A1 (en) * 2013-03-14 2014-09-18 Membrane Technology And Research, Inc. Membrane-Based Gas Separation Processes to Produce Synthesis Gas With a High CO Content
WO2014170200A1 (en) * 2013-04-19 2014-10-23 Gunnar Sanner Methods for production of liquid hydrocarbons from energy, co2 and h2o
RU2017116832A (en) * 2014-10-27 2018-11-30 Сабик Глобал Текнолоджис Б.В. INTEGRATION OF PRODUCING SYNTHESIS GAS FROM STEAM REFORMING AND DRY REFORMING
CN108199054B (en) * 2018-01-04 2020-10-27 西南化工研究设计院有限公司 Preparation method of catalyst for methane steam reforming in fuel cell
US11278874B2 (en) 2018-11-30 2022-03-22 Johnson Matthey Public Limited Company Enhanced introduction of extra-framework metal into aluminosilicate zeolites
EP3892603A4 (en) * 2018-12-03 2022-08-31 Furukawa Electric Co., Ltd. Production device for hydrocarbons and production method for hydrocarbons
EP3900829A4 (en) * 2018-12-21 2022-03-09 Dalian Institute of Chemical Physics, Chinese Academy of Sciences Method for the preparation of low-carbon olefin in high selectivity from synthesis gas catalyzed by heteroatom-doped molecular sieve
KR102365335B1 (en) * 2019-12-12 2022-02-18 한국화학연구원 Direct Method for Preparing Liquid―phase Hydrocarbon Mixture of Gasoline Range by Using Syngas
KR102499704B1 (en) * 2021-05-21 2023-02-14 한국에너지기술연구원 Ultra-clean acid gas separation system including absorption and adsorption processes
CN114716300A (en) * 2022-04-08 2022-07-08 南方海洋科学与工程广东省实验室(广州) Method for co-production of alcohol and hydrogen by chemical chain conversion of natural gas hydrate
CN114789064A (en) * 2022-05-07 2022-07-26 合肥综合性国家科学中心能源研究院(安徽省能源实验室) Catalyst for preparing methanol by partial oxidation of coal bed gas and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482646B1 (en) 2002-12-13 2005-04-14 한국화학연구원 Co-precipitated Ni-Ce-ZrO2 catalyst for reforming natural gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4340503A (en) 1980-08-15 1982-07-20 The United States Of America As Represented By The United States Department Of Energy Catalyst for converting synthesis gas to light olefins
CA1176228A (en) 1981-05-18 1984-10-16 Minoru Koikeda Catalyst for the production of hydrocarbons from the synthesis gas
US5100856A (en) * 1990-10-01 1992-03-31 Exxon Research And Engineering Company Iron-zinc based catalysts for the conversion of synthesis gas to alpha-olefins
CN1260823A (en) * 1997-06-18 2000-07-19 埃克森化学专利公司 Conversion of synthesis gas to lower carbon olefins using modified molecular sieves
US6225359B1 (en) * 1999-12-21 2001-05-01 Chevron U.S.A. Inc. Process for conversion of natural gas and associated light hydrocarbons to salable products
WO2001060773A1 (en) * 2000-02-15 2001-08-23 Syntroleum Corporation System and method for preparing a synthesis gas stream and converting hydrocarbons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482646B1 (en) 2002-12-13 2005-04-14 한국화학연구원 Co-precipitated Ni-Ce-ZrO2 catalyst for reforming natural gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Catalysis Today 2005
Fuel 2003

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087165B1 (en) * 2009-07-20 2011-11-25 (주)시너지 The method for preparing of Fe based catalyst used in Fischer-Tropsch systhesis reaction and that of liquid hydrocarbon using Fe based catalyst

Also Published As

Publication number Publication date
WO2009051353A2 (en) 2009-04-23
KR20090038267A (en) 2009-04-20
EP2197816B1 (en) 2018-10-24
WO2009051353A3 (en) 2009-06-04
EP2197816A2 (en) 2010-06-23
EP2197816A4 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
KR100903439B1 (en) Preparation method of direct synthesis of light hydrocarbons from natural gas
Jin et al. Indirect coal to liquid technologies
WO2018045652A1 (en) Production of lower olefins from hydrogenation of co2
KR20100133766A (en) Fe-based catalyst for the reaction of fischer-tropsch synthesis and preparation method thereof
JP5285776B2 (en) Catalyst for producing synthesis gas from natural gas and carbon dioxide and method for producing the same
Numpilai et al. Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide
WO2006016444A1 (en) Liquefied petroleum gas production catalyst and process for producing liquefied petroleum gas using this catalyst
EP2318131B1 (en) Catalyst for direct production of light olefins and preparation method thereof
TWI296614B (en) Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst
KR101437072B1 (en) Catalyst for efficient co2 conversion and method for preparing thereof
WO2014018653A1 (en) Nanoparticle catalyst capable of forming aromatic hydrocarbons from co2 and h2
KR100837377B1 (en) Preparation methods for liquid hydrocarbons from syngas by using the zirconia-aluminum oxide-based fischer-tropsch catalysts
KR100933062B1 (en) Catalysts for direct production of light olefins from syngas and preparation method there of
KR101261124B1 (en) Iron-based fishcer-tropsch catalyst with high catalytic activity and olefin selectivity, preparation method thereof, and method for preparing heavy olefin using the same
KR101847549B1 (en) Methods of manufacturing iron-base catalysts and methods of manufacturing hydrocarbons using iron-base catalysts made by the method
JP4833856B2 (en) Method for converting synthesis gas to hydrocarbons in the presence of β-SiC
KR101968297B1 (en) Catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof
KR101969554B1 (en) Fe-Co based complex catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof
KR20190057186A (en) High-yield synthesizing method of Synthetic-Natural-Gas with higher heating level in a reactor containing Fe-based catalytic bed and Ni-based catalytic bed
KR101386629B1 (en) Granule-Type Catalyst Composition, Preparation Method Thereof and Preparation Method of Liquid Hydrocarbon using the same
US11717812B2 (en) Catalyst
KR102147421B1 (en) System for preparation of synthetic fuel with slurry bubble column reactor operating in two or more FT modes
KR20230057947A (en) Iron-based catalyst, method for preparing the same and method for producing hydrocarbons using the same
GB2599966A (en) Catalyst
KR101276018B1 (en) Catalyst for fischer―tropsch process and method for preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120305

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130329

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150420

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee