JP2006187760A - Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method - Google Patents

Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method Download PDF

Info

Publication number
JP2006187760A
JP2006187760A JP2005299872A JP2005299872A JP2006187760A JP 2006187760 A JP2006187760 A JP 2006187760A JP 2005299872 A JP2005299872 A JP 2005299872A JP 2005299872 A JP2005299872 A JP 2005299872A JP 2006187760 A JP2006187760 A JP 2006187760A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
formaldehyde
metal
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005299872A
Other languages
Japanese (ja)
Inventor
Hong He
ヒュン へ
Changbin Zhang
チャビン ツァン
Kenichi Tanaka
虔一 田中
Xiaoyan Shi
シャオイェン シー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Mitsubishi Electric Corp
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS, Mitsubishi Electric Corp filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to EP05028602A priority Critical patent/EP1676625A1/en
Publication of JP2006187760A publication Critical patent/JP2006187760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a high-activity catalyst for completely decomposing a low-concentration formaldehyde gas at room temperature by a simple preparing method. <P>SOLUTION: The catalyst comprises a metal oxide carrying a noble metal composition. The metal oxide composition is at least one kind selected from a metal oxide group comprising cerium dioxide, zirconium dioxide, titanium dioxide, dialuminum trioxide, dilanthanum trioxide, magnesium oxide, zinc oxide, calcium oxide and copper oxide. The noble metal composition is at least one kind selected from a noble metal group comprising platinum, gold, rhodium, palladium and silver. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は常温環境下でホルムアルデヒドガスを酸化させるためになされたものであり、常温環境下でホルムアルデヒドガスを二酸化炭素と水とに転化させることができる。本発明の触媒は所定の期間内に極めて高いホルムアルデヒド酸化活性を有しており、本発明の触媒によるホルムアルデヒドの転化率は100%に達している。   The present invention was made to oxidize formaldehyde gas in a normal temperature environment, and can convert formaldehyde gas into carbon dioxide and water in a normal temperature environment. The catalyst of the present invention has an extremely high formaldehyde oxidation activity within a predetermined period, and the conversion rate of formaldehyde by the catalyst of the present invention reaches 100%.

ホルムアルデヒドは家具や内装品に使われる汚染物のうち最も深刻な汚染物である。例えばペンキ、壁紙、プラスチック床材、合成繊維製カーペット、扉や窓など多くの内装材がホルムアルデヒドを含有しており、室内でホルムアルデヒドを放出するおそれがある。とりわけ合成板材では、フェノール樹脂などホルムアルデヒドを放出する恐れのある接着剤が多用されており、このような接着剤によるホルムアルデヒドの室内放出は数年続くとされている。長期間にわたって少しずつホルムアルデヒドを吸込むと慢性呼吸系疾病にかかるおそれがあり、鼻癌や咽喉癌、結腸癌、脳腫瘍、月経不順、細胞核の遺伝子突然変異、DNA単鎖内交差結合およびタンパク質交差結合を誘発するとともに、DNA損傷の回復が抑制され、妊娠症候群、新生児染色体異常、白血病、青少年記憶力や知力の低下などを誘発する恐れがある。中でも、子供や妊婦はホルムアルデヒドの影響を最も受けやすく、ホルムアルデヒドの与える被害が最も大きい。ホルムアルデヒドは毒性の高い物質であり、わが国では、有毒化学品リストの第二位にリストアップされている。ホルムアルデヒドは、世界保健機関(WHO)によって発ガン性物質および催奇形性物質に指定されているほか、変異反応源であるとともに、潜在的な強変異誘発物質であるとされている。近年来、関係機関の宣伝や人々への科学知識の浸透により内装に起因する汚染問題に対して国民の関心が高くなっており、室内汚染問題の解決を目的とした研究が各国の研究者によって盛んに行われている。   Formaldehyde is the most serious contaminant used in furniture and interior items. For example, many interior materials such as paint, wallpaper, plastic flooring, synthetic fiber carpets, doors and windows contain formaldehyde and may release formaldehyde indoors. In particular, adhesives that may release formaldehyde, such as phenolic resins, are frequently used in synthetic board materials, and indoor release of formaldehyde by such adhesives is said to continue for several years. Inhalation of formaldehyde over a long period of time may cause chronic respiratory illness, including nasal cancer, throat cancer, colon cancer, brain tumor, irregular menstruation, gene mutation of cell nucleus, DNA single-strand cross-linking and protein cross-linking In addition to induction, the recovery of DNA damage is suppressed, which may induce pregnancy syndrome, neonatal chromosomal abnormalities, leukemia, youth memory and intellectual decline. Among them, children and pregnant women are most susceptible to formaldehyde, and formaldehyde is the most damaged. Formaldehyde is a highly toxic substance and is listed second in the toxic chemical list in Japan. Formaldehyde has been designated as a carcinogen and teratogen by the World Health Organization (WHO), and is also considered a potential source of mutation and a potential strong mutagen. In recent years, public interest in the pollution problem caused by the interior has increased due to the publicity of related organizations and the diffusion of scientific knowledge to people, and researchers aiming to solve the indoor pollution problem have been studied by researchers in various countries. It is actively done.

現在、さまざまな空気洗浄器が開発されており、それらの空気洗浄器は主として活性炭の強吸着性を利用してホルムアルデヒドなどの汚染物を吸着するようにしている。吸着剤としてハニカム状活性炭、球状活性炭、活性炭繊維、新型活性炭などの多孔質炭素材料、および分子篩、ゼオライト、多孔質粘土や鉱石、活性アルミナおよびシリカゲルなどが多用されている。このような空気洗浄器は比較的簡単であるが、吸着剤は定期的に交換する必要がある。触媒技術によりホルムアルデヒドを無臭無害な物質に分解する従来の触媒分解法は、所定の温度(一般200℃以上)を必要としており、常温におけるホルムアルデヒドの転化率が最高で88%に止まり、利用コストが高い(例えば特許文献1)。プラズマ触媒技術は、常温常圧で有害ガスを分解することができるが、一酸化炭素、オゾンおよび窒化酸化物などの二次生成物を発生するとともに、高価なプラズマ発生装置を必要とする。現在、ナノメータ級の光触媒を用いてホルムアルデヒドを分解する技術が盛んに研究されているが、このような触媒は、主としてナノメータ級のTiO2パウダーまたはフィルムを光触媒として用いており、原料の製造方法は複雑で高度の技術を必要としているほか、ナノメータ級の光触媒を励起するには特殊の励起光源が必要である(例えば非特許文献1、2)。常温環境下では光は直接低濃度のホルムアルデヒドを無害の水と二酸化炭素へ酸化させることはできない。 Currently, various air scrubbers have been developed, and these air scrubbers mainly use the strong adsorptivity of activated carbon to adsorb contaminants such as formaldehyde. As the adsorbent, porous carbon materials such as honeycomb activated carbon, spherical activated carbon, activated carbon fiber, and new activated carbon, and molecular sieves, zeolites, porous clays and ores, activated alumina, and silica gel are frequently used. Such an air scrubber is relatively simple, but the adsorbent needs to be replaced periodically. The conventional catalytic decomposition method, which decomposes formaldehyde into odorless and harmless substances using catalytic technology, requires a predetermined temperature (generally 200 ° C or higher), and the conversion rate of formaldehyde at room temperature is only 88% at the maximum, and the usage cost is low. High (for example, Patent Document 1). Plasma catalyst technology can decompose harmful gases at normal temperature and pressure, but generates secondary products such as carbon monoxide, ozone and nitrided oxide, and requires an expensive plasma generator. At present, a technology for decomposing formaldehyde using a nanometer class photocatalyst has been actively researched, but such a catalyst mainly uses a nanometer class TiO 2 powder or a film as a photocatalyst, In addition to requiring complex and advanced technology, a special excitation light source is required to excite a nanometer-class photocatalyst (for example, Non-Patent Documents 1 and 2). Under normal temperature conditions, light cannot directly oxidize low concentrations of formaldehyde to harmless water and carbon dioxide.

特開2001−187343(表2)JP 2001-187343 (Table 2) J.Mater.Chem.,2001,11,1694−1703J. et al. Mater. Chem. , 2001, 11, 1694-1703. Chemistry Letters,1994,723−726Chemistry Letters, 1994, 723-726.

本発明は、前記の課題に鑑みなされたものであり、常温環境下で低濃度のホルムアルデヒドを酸化させる高選択性の触媒を提供する。該触媒は入手しやすい金属酸化物および極めて少量の貴金属を原料とし、製造方法は簡単である。本発明はこれまでの研究結果を踏まえて研究を積み重ねてきた成果である。本発明により提供された触媒は、常温環境下でホルムアルデヒドを完全に酸化させて二酸化炭素と水とに転化するとともに、かなり長い期間において転化率を100%に維持することができる。本発明は複雑な付属装置や外部環境を必要としない。   The present invention has been made in view of the above problems, and provides a highly selective catalyst that oxidizes formaldehyde at a low concentration in a normal temperature environment. The catalyst is made from a readily available metal oxide and a very small amount of a noble metal, and the production method is simple. The present invention is the result of repeated research based on previous research results. The catalyst provided by the present invention can completely oxidize formaldehyde and convert it into carbon dioxide and water in a normal temperature environment, and can maintain the conversion rate at 100% for a considerably long period. The present invention does not require complex accessory devices or external environments.

本発明の触媒は金属酸化物を担体として0.1〜5%の貴金属を担持させる。前記金属酸化物が、二酸化セリウム、二酸化ジルコニウム、二酸化チタン、三酸化二アルミニウム、三酸化二ランタン、酸化マグネシウム、酸化亜鉛、酸化カルシウム、酸化銅から選ばれた一種または複数種の酸化物の混合物であり、前記貴金属組成がプラチナ、金、ロジウム、パラジウムと銀から選ばれた一種又は複数種である。   The catalyst of the present invention supports 0.1 to 5% of a noble metal using a metal oxide as a support. The metal oxide is a mixture of one or more oxides selected from cerium dioxide, zirconium dioxide, titanium dioxide, dialuminum trioxide, dilanthanum trioxide, magnesium oxide, zinc oxide, calcium oxide, and copper oxide. And the noble metal composition is one or more selected from platinum, gold, rhodium, palladium and silver.

また、本発明の触媒の使用方法は、上記触媒を水分添加量0.02%以上の雰囲気で使用することを特徴とする。   Moreover, the method of using the catalyst of the present invention is characterized in that the catalyst is used in an atmosphere having a water addition amount of 0.02% or more.

本発明により提供された触媒は、常温環境下でホルムアルデヒドを完全に酸化させて二酸化炭素と水とに転化するとともに、かなり長い期間において転化率を100%に維持することができる。本発明は複雑な付属装置や外部環境を必要としない。   The catalyst provided by the present invention can completely oxidize formaldehyde and convert it into carbon dioxide and water in a normal temperature environment, and can maintain the conversion rate at 100% for a considerably long period. The present invention does not require complex accessory devices or external environments.

本発明の触媒は金属酸化物を担体として0.1〜5%の貴金属を担持させる。前記金属酸化物が、二酸化セリウム、二酸化ジルコニウム、二酸化チタン、三酸化二アルミニウム、三酸化二ランタン、酸化マグネシウム、酸化亜鉛、酸化カルシウム、酸化銅から選ばれた一種または複数種の酸化物の混合物であり、前記貴金属組成がプラチナ、金、ロジウム、パラジウムと銀から選ばれた一種又は複数種である。   The catalyst of the present invention supports 0.1 to 5% of a noble metal using a metal oxide as a support. The metal oxide is a mixture of one or more oxides selected from cerium dioxide, zirconium dioxide, titanium dioxide, dialuminum trioxide, dilanthanum trioxide, magnesium oxide, zinc oxide, calcium oxide, and copper oxide. And the noble metal composition is one or more selected from platinum, gold, rhodium, palladium and silver.

また、前記金属酸化物が、三酸化二アルミニウム、酸化ニッケル、二酸化マンガン、二酸化ケイ素と三酸化二鉄から選ばれた一種または複数種の酸化物の混合物であってもよい。   The metal oxide may be a mixture of one or more oxides selected from dialuminum trioxide, nickel oxide, manganese dioxide, silicon dioxide and diiron trioxide.

前記触媒は、貴金属組成がそれぞれの可溶性化合物の水溶液を用いて、浸漬法、沈澱法、ゾル−ゲル法により金属酸化物に担持される。例えば、沈澱法を用いる場合には、攪拌しながら所定の金属酸化物を貴金属およびその他の金属のそれぞれ溶解しうる化合物の水溶液に1〜24時間浸漬させ、80〜120℃で乾燥し、空気または窒素ガスまたは水素ガスまたは真空中において段階的に100℃から600℃に昇温する。貴金属組成およびその他の金属組成の粒径は温度、時間および雰囲気などの要素を調整することにより制御することができる。本発明によれば、順番に拘ることなく前記方法により一種または複数種の貴金属組成を金属酸化物に担持させるとともに、同様の方法で他の貴金属組成を担持させることができる。本発明によれば、それぞれ異なる金属酸化物に貴金属組成を担持させてから混合して触媒を構成してもよい。
前記触媒は、必要に応じてさまざまな構造に形成してもよく、例えば、ハニカムセラミックや金属製スクリーン構造の壁表面に担持させることができ、または触媒の構造性担体として開孔泡沫体を用いてもよい。さらに触媒を球状または板状に形成してもよい。
The catalyst is supported on a metal oxide by a dipping method, a precipitation method, or a sol-gel method using an aqueous solution of each soluble compound having a noble metal composition. For example, when the precipitation method is used, a predetermined metal oxide is immersed in an aqueous solution of a compound capable of dissolving a noble metal and another metal with stirring for 1 to 24 hours, dried at 80 to 120 ° C., air or The temperature is raised stepwise from 100 ° C. to 600 ° C. in nitrogen gas, hydrogen gas or vacuum. The particle size of the noble metal composition and other metal compositions can be controlled by adjusting factors such as temperature, time and atmosphere. According to the present invention, one or more kinds of noble metal compositions can be supported on a metal oxide by the above method regardless of the order, and other noble metal compositions can be supported by the same method. According to the present invention, the catalyst may be configured by supporting a noble metal composition on different metal oxides and then mixing them.
The catalyst may be formed in various structures as required. For example, the catalyst can be supported on the wall surface of a honeycomb ceramic or a metal screen structure, or an open foam is used as a structural support for the catalyst. May be. Further, the catalyst may be formed in a spherical shape or a plate shape.

本発明は、製造プロセスが簡単であり、作業が簡単である。従来の技術に比べれば、本発明は以下の長所を有している。
(1)本発明の触媒は、構成原料が安価で入手しやすく、使用条件が簡単であり、常温環境下においてホルムアルデヒドを効率よく酸化させることができる。
(2)本発明の触媒は、常温環境下においてホルムアルデヒドを無害な二酸化炭素と水とに転化することができる。
(3)本発明の触媒は、有効期間中におけるホルムアルデヒドの転化率が100%に達している。
(4)本発明の触媒は、使用量が少なく、電気や熱源などを必要とせず、エネルギーを節約することができる。
以下において比較例および実施例により本発明をさらに詳しく説明する。但し、これらは本発明の範囲を限定するものではない。
In the present invention, the manufacturing process is simple and the operation is simple. Compared to the prior art, the present invention has the following advantages.
(1) The catalyst of the present invention is inexpensive and easily available, and the usage conditions are simple, so that formaldehyde can be efficiently oxidized in a room temperature environment.
(2) The catalyst of the present invention can convert formaldehyde into harmless carbon dioxide and water in a room temperature environment.
(3) In the catalyst of the present invention, the conversion rate of formaldehyde reaches 100% during the effective period.
(4) The catalyst of the present invention is used in a small amount, does not require electricity or a heat source, and can save energy.
Hereinafter, the present invention will be described in more detail by way of comparative examples and examples. However, these do not limit the scope of the present invention.

比較例1.
三酸化二アルミニウム粉末10グラムに所定量の脱イオン水を添加し、攪拌しながら1%のAu(金)溶液を添加し、1時間攪拌した後に、70℃で回転蒸発法により乾燥し、その後600℃で5時間焼成して所望の触媒を得た。触媒は40〜60メッシュのフィルタにかけた。
Comparative Example 1
A predetermined amount of deionized water is added to 10 grams of dialuminum trioxide powder, a 1% Au (gold) solution is added with stirring, the mixture is stirred for 1 hour, and then dried by rotary evaporation at 70 ° C. The desired catalyst was obtained by calcining at 600 ° C. for 5 hours. The catalyst was filtered through a 40-60 mesh filter.

比較例2.
比較例1で得たフィルタで選別後の触媒0.066グラムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生し、窒素ガスにより反応系に吹き込み、ホルムアルデヒドの濃度を0.05%、反応空間速度(GHSV)を50,000/時間に制御した。常温環境下におけるホルムアルデヒドの転化率は0である。
Comparative Example 2
0.066 grams of the catalyst selected by the filter obtained in Comparative Example 1 was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
Oxygen gas is 20% by volume and nitrogen gas is 80%. Formaldehyde gas is generated by a formaldehyde gas generator and blown into the reaction system with nitrogen gas. The concentration of formaldehyde is 0.05% and the reaction space velocity (GHSV) is Controlled to 50,000 / hour. The conversion rate of formaldehyde in a room temperature environment is zero.

実施例1.
二酸化チタン粉末10グラムに所定量の脱イオン水を添加し、攪拌しながら二酸化チタン重量の1%のPt(白金)を含有する溶液を添加し、1時間攪拌した後に、70℃で回転蒸発法により乾燥し、その後600℃で5時間焼成して所望の触媒を得た。触媒は40〜60メッシュのフィルタにかけた。
Example 1.
A predetermined amount of deionized water is added to 10 grams of titanium dioxide powder, a solution containing 1% Pt (platinum) by weight of titanium dioxide is added with stirring, and the mixture is stirred for 1 hour, followed by rotary evaporation at 70 ° C. And then calcined at 600 ° C. for 5 hours to obtain the desired catalyst. The catalyst was filtered through a 40-60 mesh filter.

実施例2.
実施例1で得たフィルタで選別後の触媒0.066グラムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生し、窒素ガスにより反応系に吹き込み、ホルムアルデヒドの濃度を0.05%、反応空間速度(GHSV)を50,000/時間に制御した。常温環境下におけるホルムアルデヒドの転化率は100%であり、24時間保持した後、転化率の低下が見られなかった。
Example 2
0.066 gram of the catalyst selected by the filter obtained in Example 1 was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
Oxygen gas is 20% by volume and nitrogen gas is 80%. Formaldehyde gas is generated by a formaldehyde gas generator and blown into the reaction system with nitrogen gas. The concentration of formaldehyde is 0.05% and the reaction space velocity (GHSV) is Controlled to 50,000 / hour. The conversion rate of formaldehyde in a room temperature environment was 100%, and no decrease in the conversion rate was observed after holding for 24 hours.

実施例3.
硝酸マンガン100グラムを所定量の水に溶解させ、攪拌しながら水酸化ナトリウム溶液によりPH=12〜13に調整し、硝酸マンガンと次亜塩素酸ナトリウム溶液とのモル%が2〜3となるように緩やかに次亜塩素酸ナトリウム溶液を添加して一夜放置した。濾過、沈殿後に、硝酸銀溶液を用いた塩素イオンの検出で濾液から塩素イオンが検出されなくなるまで、脱イオン水で洗浄した。沈殿物を70℃で加熱乾燥した。乾燥後の沈殿物を沈殿物重量の5%のPtを含有する溶液に浸漬し、回転蒸発後に70℃で加熱乾燥した。加熱乾燥後の触媒を40〜60メッシュのフィルタにかけた。
こうして得た二酸化マンガンに銀が担持された触媒0.066グラムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生し、窒素ガスにより反応系に吹き込み、ホルムアルデヒドの濃度を0.05%、反応空間速度(GHSV)を50,000/時間に制御した。常温環境下におけるホルムアルデヒドの転化率は100で%あり、この転化率は48時間維持した。その後転化率が約70%に降下したが、60時間保持した後も転化率の更なる低下が見られなかった。
Example 3
100 g of manganese nitrate is dissolved in a predetermined amount of water and adjusted to PH = 12-13 with a sodium hydroxide solution while stirring, so that the molar percentage of manganese nitrate and sodium hypochlorite solution is 2-3. The sodium hypochlorite solution was slowly added and left overnight. After filtration and precipitation, the sample was washed with deionized water until chlorine ions were not detected from the filtrate by detection of chloride ions using a silver nitrate solution. The precipitate was heat-dried at 70 ° C. The dried precipitate was immersed in a solution containing 5% Pt of the precipitate weight, and dried by heating at 70 ° C. after rotary evaporation. The catalyst after heat drying was passed through a 40 to 60 mesh filter.
0.066 grams of the catalyst in which silver was supported on the manganese dioxide thus obtained was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
Oxygen gas is 20% by volume and nitrogen gas is 80%. Formaldehyde gas is generated by a formaldehyde gas generator and blown into the reaction system with nitrogen gas. The concentration of formaldehyde is 0.05% and the reaction space velocity (GHSV) is Controlled to 50,000 / hour. The conversion rate of formaldehyde in a normal temperature environment was 100%, and this conversion rate was maintained for 48 hours. Thereafter, the conversion rate dropped to about 70%, but no further decrease in the conversion rate was observed after holding for 60 hours.

実施例4.
硝酸ニッケル100グラムを所定量の水に溶解させ、攪拌しながら水酸化ナトリウム溶液によりPH=12〜13に調整し、硝酸ニッケルと次亜塩素酸ナトリウム溶液とのモル%が2〜3となるように緩やかに次亜塩素酸ナトリウム溶液を添加して一夜放置した。濾過、沈殿後に、硝酸銀溶液を用いた塩素イオンの検出で濾液から塩素イオンが検出されなくなるまで、脱イオン水で洗浄した。沈殿物を70℃で加熱乾燥した。乾燥後の沈殿物を沈殿物重量の1%のAuを含有する溶液に浸漬し、回転蒸発後に70℃で加熱乾燥した。加熱乾燥後の触媒を40〜60メッシュのフィルタにかけた。
こうして得た酸化ニッケルに銀が担持された触媒0.066グラムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生し、窒素ガスにより反応系に吹き込み、ホルムアルデヒドの濃度を0.05%、反応空間速度(GHSV)を50,000/時間に制御した。常温環境下におけるホルムアルデヒドの転化率は100%であり、この転化率は48時間維持した。その後転化率が約80%に降下したが、48時間保持した後も転化率の更なる低下が見られなかった。
Example 4
100 g of nickel nitrate is dissolved in a predetermined amount of water, adjusted to PH = 12-13 with a sodium hydroxide solution while stirring, so that the molar percentage of nickel nitrate and sodium hypochlorite solution is 2-3. The sodium hypochlorite solution was slowly added and left overnight. After filtration and precipitation, the sample was washed with deionized water until chlorine ions were not detected from the filtrate by detection of chloride ions using a silver nitrate solution. The precipitate was heat-dried at 70 ° C. The dried precipitate was dipped in a solution containing 1% Au of the precipitate weight, and dried by heating at 70 ° C. after rotary evaporation. The catalyst after heat drying was passed through a 40 to 60 mesh filter.
0.066 grams of the catalyst in which silver was supported on the nickel oxide thus obtained was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
Oxygen gas is 20% by volume and nitrogen gas is 80%. Formaldehyde gas is generated by a formaldehyde gas generator and blown into the reaction system with nitrogen gas. The concentration of formaldehyde is 0.05% and the reaction space velocity (GHSV) is Controlled to 50,000 / hour. The conversion rate of formaldehyde in a normal temperature environment was 100%, and this conversion rate was maintained for 48 hours. Thereafter, the conversion rate dropped to about 80%, but no further decrease in the conversion rate was observed after holding for 48 hours.

実施例5.
硝酸ニッケル100グラムを所定量の水に溶解させ、攪拌しながら水酸化ナトリウム溶液によりPH=12〜13に調整し、硝酸ニッケルと次亜塩素酸ナトリウム溶液とのモル%が2〜3となるように緩やかに次亜塩素酸ナトリウム溶液を添加して一夜放置した。濾過、沈殿後に、硝酸銀溶液を用いた塩素イオンの検出で濾液から塩素イオンが検出されなくなるまで、脱イオン水で洗浄した。沈殿物を70℃で加熱乾燥した。乾燥後の沈殿物を沈殿物重量の0.5%のAu−0.5%のPdを含有する溶液に浸漬し、回転蒸発後に70℃で加熱乾燥した。加熱乾燥後の触媒を40〜60メッシュのフィルタにかけた。
こうして得た酸化ニッケルに銀が担持された触媒0.066グラムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生し、窒素ガスにより反応系に吹き込み、ホルムアルデヒドの濃度を0.05%、反応空間速度(GHSV)を50,000/時間に制御した。常温環境下におけるホルムアルデヒドの転化率は100%であり、この転化率は48時間維持した。その後転化率が約70%に降下したが、78時間保持した後も転化率の更なる低下が見られなかった。
Embodiment 5 FIG.
100 g of nickel nitrate is dissolved in a predetermined amount of water, adjusted to PH = 12-13 with a sodium hydroxide solution while stirring, so that the molar percentage of nickel nitrate and sodium hypochlorite solution is 2-3. The sodium hypochlorite solution was slowly added and left overnight. After filtration and precipitation, the sample was washed with deionized water until chlorine ions were not detected from the filtrate by detection of chloride ions using a silver nitrate solution. The precipitate was heat-dried at 70 ° C. The dried precipitate was dipped in a solution containing 0.5% Au-0.5% Pd of the precipitate weight, and dried by heating at 70 ° C. after rotary evaporation. The catalyst after heat drying was passed through a 40 to 60 mesh filter.
0.066 grams of the catalyst in which silver was supported on the nickel oxide thus obtained was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
Oxygen gas is 20% by volume and nitrogen gas is 80%. Formaldehyde gas is generated by a formaldehyde gas generator and blown into the reaction system with nitrogen gas. The concentration of formaldehyde is 0.05% and the reaction space velocity (GHSV) is Controlled to 50,000 / hour. The conversion rate of formaldehyde in a normal temperature environment was 100%, and this conversion rate was maintained for 48 hours. Thereafter, the conversion rate dropped to about 70%, but no further reduction in the conversion rate was observed after holding for 78 hours.

実施例6.
二酸化チタン粉末50gに所定量の水を添加、攪拌しながら、1.0%のPt溶液を添加し、1時間攪拌し、酸化チタンとPtの混合溶液を得た。その次にロータリーエバポレータを用いて、得られた混合溶液を70℃で乾燥し、その後、400℃で5時間焼成した。焼成後の粉末を乳鉢で粉砕し、粒子径が5μm程度の粉末を得た後、純水を添加し、ハニカム浸漬用のスラリーとした。
次にコージライト製のハニカムをスラリー中に浸漬し、ハニカム全体に粉末を塗布した後、100℃で5時間乾燥させた。塗布量を稼ぐために、この処理を5回繰り返した。
Example 6
While adding a predetermined amount of water to 50 g of titanium dioxide powder and stirring, a 1.0% Pt solution was added and stirred for 1 hour to obtain a mixed solution of titanium oxide and Pt. Next, using a rotary evaporator, the obtained mixed solution was dried at 70 ° C., and then calcined at 400 ° C. for 5 hours. The fired powder was pulverized in a mortar to obtain a powder having a particle size of about 5 μm, and then pure water was added to prepare a slurry for dipping the honeycomb.
Next, a cordierite honeycomb was immersed in the slurry, and the powder was applied to the entire honeycomb, followed by drying at 100 ° C. for 5 hours. This process was repeated 5 times in order to earn a coating amount.

その後、300℃で5時間焼成した。
それにより得たハニカムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生し、水中のバブリングにより1.7%の水分を添加した後、窒素ガスにより反応系に吹き込み、ホルムアルデヒドの濃度を0.05%、反応空間速度(GHSV)を50,000/時間に制御した。常温環境下におけるホルムアルデヒドの転化率は100%であり、この転化率は48時間維持した。その後、わずかに転化率は低下したが、100時間保持した後においても、転化率は98%を維持し、200時間保持した後、転化率の低下は見られなかった。
Then, it baked at 300 degreeC for 5 hours.
The honeycomb thus obtained was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
Oxygen gas is 20% by volume and nitrogen gas is 80%. Formaldehyde gas is generated by a formaldehyde gas generator, 1.7% water is added by bubbling in water, and then blown into the reaction system by nitrogen gas. Was controlled at 0.05%, and the reaction space velocity (GHSV) was controlled at 50,000 / hour. The conversion rate of formaldehyde in a normal temperature environment was 100%, and this conversion rate was maintained for 48 hours. Thereafter, although the conversion rate slightly decreased, the conversion rate was maintained at 98% even after being held for 100 hours, and no reduction in the conversion rate was observed after holding for 200 hours.

実施例7.
二酸化チタン粉末10gに所定量の水を添加、攪拌しながら、二酸化チタン粉末重量の0.5%のPtを含有する溶液を添加し、1時間攪拌し、二酸化チタンとPtの混合溶液を得た。その次にロータリーエバポレータを用いて、得られた混合溶液を80℃で乾燥し、その後、400℃で5時間焼成した。
それにより得た二酸化チタンにPtが担持された触媒0.5グラムを管状固定床反応器で反応させた。実験条件は下記のとおりである。
体積%で酸素ガス20%、窒素ガス80%であり、ホルムアルデヒドガスをホルムアルデヒドガス発生器で発生させた。これらガスを混合した後、水中でバブリングして水分を添加したガスを反応系に吹き込み、ホルムアルデヒドの濃度を0.01%に、反応空間速度(GHSV)を50,000/時間に制御した。添加水分量をバブリング無しの0.01%(供給酸素、窒素ガスの残留水分量)から変化させた。その結果、水分添加の有無にかかわらず、24時間後の常温環境下におけるホルムアルデヒドの転化率は100%であり、100時間後においては、水分添加が無い場合(添加しない場合で残留水分量として0.01%含有)のホルムアルデヒド転化率は85%、水分を0.02%加えた系のホルムアルデヒド転化率は92%、水分を0.5%加えた系のホルムアルデヒド転化率は95%、水分を1.7%加えた系のホルムアルデヒド転化率は98%、水分を3.5%添加した場合のホルムアルデヒド転化率は97%であった。200時間後において、水分を0.02%以上加えた場合は各ホルムアルデヒド転化率を保ったが、無添加の場合は、ホルムアルデヒド転化率が70%へと低下した。
Example 7
While adding a predetermined amount of water to 10 g of titanium dioxide powder and stirring, a solution containing 0.5% Pt of the titanium dioxide powder weight was added and stirred for 1 hour to obtain a mixed solution of titanium dioxide and Pt. . Next, the obtained mixed solution was dried at 80 ° C. using a rotary evaporator, and then calcined at 400 ° C. for 5 hours.
0.5 g of the catalyst in which Pt was supported on the titanium dioxide thus obtained was reacted in a tubular fixed bed reactor. The experimental conditions are as follows.
By volume%, oxygen gas was 20%, nitrogen gas was 80%, and formaldehyde gas was generated by a formaldehyde gas generator. After mixing these gases, a gas added with water by bubbling in water was blown into the reaction system to control the concentration of formaldehyde to 0.01% and the reaction space velocity (GHSV) to 50,000 / hour. The amount of water added was changed from 0.01% without bubbling (the amount of residual water supplied oxygen and nitrogen gas). As a result, regardless of the presence or absence of moisture addition, the conversion rate of formaldehyde in a normal temperature environment after 24 hours is 100%, and after 100 hours, when there is no moisture addition (the amount of residual moisture is 0 when not added). 0.01% content) formaldehyde conversion is 85%, 0.02% moisture added to formaldehyde is 92%, 0.5% moisture added to formaldehyde is 95%, and moisture is 1 The formaldehyde conversion rate of the system with 0.7% added was 98%, and when the water content was added 3.5%, the formaldehyde conversion rate was 97%. After 200 hours, each formaldehyde conversion was maintained when water was added in an amount of 0.02% or more, but when no water was added, the formaldehyde conversion was reduced to 70%.

Claims (7)

常温でホルムアルデヒドガスを完全酸化分解する触媒であって、該触媒が金属酸化物に少量の貴金属を担持させてなることを特徴とする触媒。 A catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature, wherein the catalyst comprises a metal oxide supporting a small amount of noble metal. 貴金属が白金、金、ロジウム、パラジウム、銀から選ばれた一種又は複数種であることを特徴とする請求項1に記載の触媒。 The catalyst according to claim 1, wherein the noble metal is one or more selected from platinum, gold, rhodium, palladium, and silver. 貴金属は、それぞれの可溶性化合物の水溶液を用いた浸漬法、沈澱法、ゾル−ゲル法のいずれかにより混合、乾燥され、金属酸化物に担持されることを特徴とする請求項1に記載の触媒。 2. The catalyst according to claim 1, wherein the noble metal is mixed, dried and supported on a metal oxide by any one of an immersion method, a precipitation method, and a sol-gel method using an aqueous solution of each soluble compound. . 金属酸化物担体上の貴金属の担持量が金属元素の重量換算値で0.1〜5%であることを特徴とする請求項1に記載の触媒。 The catalyst according to claim 1, wherein the amount of the noble metal supported on the metal oxide support is 0.1 to 5% in terms of the weight of the metal element. 金属酸化物担体が二酸化セリウム、二酸化ジルコニウム、二酸化チタン、三酸化二アルミニウム、三酸化二ランタン、酸化マグネシウム、酸化亜鉛、酸化カルシウム、酸化銅、から選ばれた一種または複数種の酸化物の混合物であることを特徴とする請求項1に記載の触媒。 The metal oxide support is a mixture of one or more oxides selected from cerium dioxide, zirconium dioxide, titanium dioxide, dialuminum trioxide, dilanthanum trioxide, magnesium oxide, zinc oxide, calcium oxide, and copper oxide. The catalyst according to claim 1, wherein 金属酸化物担体が酸化ニッケル、三酸化二アルミニウム、二酸化マンガン、二酸化ケイ素と三酸化二鉄から選ばれた一種または複数種の酸化物の混合物であることを特徴とする請求項1に記載の触媒。 The catalyst according to claim 1, wherein the metal oxide support is one or a mixture of oxides selected from nickel oxide, dialuminum trioxide, manganese dioxide, silicon dioxide and ferric trioxide. . 請求項1乃至6のいずれかに記載の触媒を、水分添加量0.02%以上の雰囲気で使用することを特徴とする触媒の使用方法。 A method for using a catalyst, wherein the catalyst according to any one of claims 1 to 6 is used in an atmosphere having a water addition amount of 0.02% or more.
JP2005299872A 2004-12-28 2005-10-14 Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method Pending JP2006187760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05028602A EP1676625A1 (en) 2004-12-28 2005-12-28 Method and catalyst for the oxidative decomposition of formaldehyde gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410102837 CN1795970B (en) 2004-12-28 2004-12-28 High performance catalyst for catalyzing formaldehyde to complete oxidation under room temperature temperature

Publications (1)

Publication Number Publication Date
JP2006187760A true JP2006187760A (en) 2006-07-20

Family

ID=36795411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005299872A Pending JP2006187760A (en) 2004-12-28 2005-10-14 Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method

Country Status (2)

Country Link
JP (1) JP2006187760A (en)
CN (1) CN1795970B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155141A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Catalyst and catalyst body
CN112657509A (en) * 2020-12-30 2021-04-16 苏州美吉科环保科技有限公司 Air pollution treating agent and preparation method and application thereof
CN113578374A (en) * 2021-07-30 2021-11-02 芜湖美的厨卫电器制造有限公司 Peculiar smell removing catalyst and preparation method and application thereof
CN114392736A (en) * 2022-02-17 2022-04-26 苏州道一至诚纳米材料技术有限公司 Catalytic membrane for purifying formaldehyde at normal temperature and preparation method and application thereof

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233269B (en) * 2010-04-26 2014-01-29 唐幸福 Integral nano material with high-efficiency removing formaldehyde at room temperature and broad-spectrum long-acting antibacterial property at same time
CN102284287B (en) * 2010-06-18 2014-07-30 上海牛翼新能源科技有限公司 Titanium dioxide molecular sieve supported platinum cold catalyst for removing formaldehyde in indoor air
CN102284292A (en) * 2010-06-18 2011-12-21 上海牛翼新能源科技有限公司 Ceria load-type high-efficient cold catalyst for purifying formaldehyde in air
CN102284289B (en) * 2010-06-18 2014-07-30 上海牛翼新能源科技有限公司 Tin dioxide load-type nanometer cold catalyst for purifying air
CN101898149A (en) * 2010-07-31 2010-12-01 大连理工大学 Supported nanometer metallic sliver catalyst with dual functions of adsorption and low-temperature catalysis, and preparation method and application thereof
CN102139234B (en) * 2011-01-06 2013-04-17 梁耀彰 Loaded reduced precious metal catalyst as well as preparation method and application thereof
CN102228790A (en) * 2011-04-16 2011-11-02 大连理工大学 Indoor air pollutant formaldehyde ''storage-oxidation'' cycle purification method
CN102389810A (en) * 2011-09-28 2012-03-28 海尔集团公司 Formaldehyde oxidation catalyst
CN102416291A (en) * 2011-09-28 2012-04-18 海尔集团公司 Making technology of formaldehyde removing module
CN103157491B (en) * 2011-12-12 2016-08-10 中国科学院生态环境研究中心 Mesoporous metal oxide supported palladium catalyst for catalytic oxidation of volatile organic compounds
CN103071492B (en) * 2012-12-07 2014-10-01 内蒙古大学 Preparation method of efficient formaldehyde catalytic conversion catalyst
CN103736484B (en) * 2014-01-13 2016-07-06 中山大学 A kind of support type class integral catalyzer for purifying formaldehyde and preparation method thereof
CN104162425A (en) * 2014-07-21 2014-11-26 贝谷科技股份有限公司 Catalyst for complete catalytic oxidation of indoor low concentration formaldehyde at room temperature
CN104475094A (en) * 2014-12-10 2015-04-01 哈尔滨澳宝硅藻新材料有限公司 Diatom ooze wall material applied to non-photo-catalysis purification of formaldehyde in air at room temperature
CN104907069B (en) * 2015-04-22 2017-06-06 中国科学院生态环境研究中心 A kind of catalyst for room temperature purifying formaldehyde and application thereof
CN106807239A (en) * 2015-11-27 2017-06-09 宁波市雨辰环保科技有限公司 Formaldehyde removes catalyst system and catalyzing of volatile organic matter and its preparation method and application for the oxygen of catalytic activation at room temperature of auxiliary agent
CN105400304A (en) * 2015-12-15 2016-03-16 上海源由纳米科技有限公司 Nano composite diatom ooze coating and preparation method thereof
CN106423198B (en) * 2016-08-22 2018-12-28 金华铂锐催化科技有限公司 It is a kind of for eliminating the catalyst and preparation method thereof of carbon monoxide and formaldehyde
CN106268791A (en) * 2016-09-30 2017-01-04 北京石油化工学院 A kind of preparation method of bimetallic catalyst
CN107159262B (en) * 2017-06-23 2019-10-08 江汉大学 Room temperature removes formaldehyde gas Pd/CuxThe preparation method of O@GO composite catalyst
CN107376905B (en) * 2017-09-08 2021-03-26 上海戈马环保科技有限公司 Preparation method of Ag/ZnO composite material capable of degrading formaldehyde
CN108069636A (en) * 2017-12-19 2018-05-25 上海亮龙晋保新材料科技有限公司 A kind of non-photocatalyst-type is except formaldehyde diatom ooze and preparation method thereof
CN108435203A (en) * 2018-03-29 2018-08-24 苏州飞仕环境科技有限公司 A kind of load-type nanometer metal composite material and preparation method
CN108714422B (en) * 2018-04-18 2021-04-13 山东大学 Mixed titanate nanoribbon supported metal palladium nanoparticle monolithic catalyst and preparation method and application thereof
CN108786844A (en) * 2018-05-31 2018-11-13 佛山中科鸿翔空气净化技术有限公司 A kind of metal carrier catalyst with purifying formaldehyde at room temperature
CN109529821B (en) * 2018-12-21 2021-04-02 中山大学 Palladium-based catalyst for thermal catalysis of formaldehyde degradation
CN109456043B (en) * 2018-12-30 2021-07-02 赣州添美环保科技有限公司 Preparation method of filter element containing nano titanium oxide for purifying formaldehyde
CN110538656B (en) * 2019-09-12 2021-04-30 中国科学院生态环境研究中心 Catalyst for degrading formaldehyde by photocatalyst and preparation method and application thereof
CN111151249A (en) * 2020-01-21 2020-05-15 山东玉皇化工有限公司 Preparation method and application of nanogold catalyst
CN112058308B (en) * 2020-11-10 2021-02-02 北京零微科技有限公司 Organic-inorganic composite formaldehyde catalytic composition, preparation method thereof and air purification filter element
CN112588298A (en) * 2020-12-29 2021-04-02 苏州美吉科环保科技有限公司 Composite catalyst for air purification and preparation method and application thereof
CN112588299A (en) * 2020-12-29 2021-04-02 苏州美吉科环保科技有限公司 Method for treating polluted air based on composite catalyst
CN113663707A (en) * 2021-08-13 2021-11-19 中山大学 Method for macro-preparation of multiple formaldehyde decomposition catalysts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114421A (en) * 1997-10-09 1999-04-27 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning air and filter for purifying air
JP2001187343A (en) * 1999-03-29 2001-07-10 Toyota Central Res & Dev Lab Inc Cleaning catalyst at normal temperature and utilization thereof
JP2003088759A (en) * 2001-09-18 2003-03-25 Mitsubishi Paper Mills Ltd Low temperature oxidation catalyst filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1279861C (en) * 1986-05-12 1991-02-05 Karl T. Chuang Catalyst assembly
US5585083A (en) * 1995-03-30 1996-12-17 The United States As Represented By The Administrator Of The National Aeronautics And Space Administration Catalytic process for formaldehyde oxidation
CN1209191C (en) * 2002-02-20 2005-07-06 中国科学院生态环境研究中心 Rarefied combustion tail gas nitrogen oxide purification catalyst and its purification
CN1226051C (en) * 2003-06-02 2005-11-09 中国科学院生态环境研究中心 Oxidative catalyst and sterilizing method for catalyzing oxygen sterilization in air and purifying indoor air under room temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114421A (en) * 1997-10-09 1999-04-27 Mitsui Mining & Smelting Co Ltd Catalyst for cleaning air and filter for purifying air
JP2001187343A (en) * 1999-03-29 2001-07-10 Toyota Central Res & Dev Lab Inc Cleaning catalyst at normal temperature and utilization thereof
JP2003088759A (en) * 2001-09-18 2003-03-25 Mitsubishi Paper Mills Ltd Low temperature oxidation catalyst filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155141A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Catalyst and catalyst body
CN112657509A (en) * 2020-12-30 2021-04-16 苏州美吉科环保科技有限公司 Air pollution treating agent and preparation method and application thereof
CN113578374A (en) * 2021-07-30 2021-11-02 芜湖美的厨卫电器制造有限公司 Peculiar smell removing catalyst and preparation method and application thereof
CN114392736A (en) * 2022-02-17 2022-04-26 苏州道一至诚纳米材料技术有限公司 Catalytic membrane for purifying formaldehyde at normal temperature and preparation method and application thereof

Also Published As

Publication number Publication date
CN1795970A (en) 2006-07-05
CN1795970B (en) 2011-04-13

Similar Documents

Publication Publication Date Title
JP2006187760A (en) Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method
EP1676625A1 (en) Method and catalyst for the oxidative decomposition of formaldehyde gas
JP6486360B2 (en) Carbon monoxide and / or oxidation catalyst for volatile organic compounds
JP4878141B2 (en) Composite photocatalyst
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
TWI404567B (en) Photocatalyst material, organic decomposition method, built-in component, air cleaner, oxidizer manufacturing device
CN100360224C (en) Formaldehyde gas oxidation catalyst under room temperature
WO2014079206A1 (en) Metal carrier loaded catalyst for purifying formaldehyde at room temperature
CN113144894B (en) Functional material for visually degrading formaldehyde and VOCs at normal temperature and pressure and preparation method thereof
JP2011005475A (en) Photocatalyst dispersion liquid and photocatalyst functional product using the same
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
WO2019172445A1 (en) Catalyst
JP2010069418A (en) Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst
JP2010058074A (en) Catalyst for oxidizing formaldehyde, method of producing the same, and method of cleaning air using the same catalyst
JP2004074069A (en) Formaldehyde oxidation removal method
JP3987289B2 (en) Photocatalyst, method for producing the same, and photocatalyst using the same
CN113083324B (en) Formaldehyde oxidation catalyst used at room temperature and preparation method thereof
CN115722220B (en) Catalytic oxidation catalyst and preparation method and application thereof
JP2002355558A (en) Method for oxidation removal of formaldehyde
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP2011178930A (en) Photocatalytic coating liquid and article having photocatalytic layer coated with the coating liquid
JP2011020009A (en) Photocatalyst body for decomposing volatile aromatic compound, and functional product of photocatalyst
CN110302830A (en) VOCs purification molecular sieve based catalyst under high humidity environment and the preparation method and application thereof
JP4826789B2 (en) Catalyst production method and catalyst body
JP2010172849A (en) Carbon monoxide oxidation catalyst, method of manufacturing the same and carbon monoxide removal filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026