JPH044043A - Heat-resistant catalyst for purifying exhaust gas - Google Patents

Heat-resistant catalyst for purifying exhaust gas

Info

Publication number
JPH044043A
JPH044043A JP2103192A JP10319290A JPH044043A JP H044043 A JPH044043 A JP H044043A JP 2103192 A JP2103192 A JP 2103192A JP 10319290 A JP10319290 A JP 10319290A JP H044043 A JPH044043 A JP H044043A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
weight
carrier
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2103192A
Other languages
Japanese (ja)
Inventor
Naoki Kachi
直樹 可知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2103192A priority Critical patent/JPH044043A/en
Publication of JPH044043A publication Critical patent/JPH044043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst having high oxygen storage performance which can remove hydrocarbon, CO, and NOX at high conversion rate by preparing a multiple oxide carrier by simultaneous precipitation of mixed metal in a liquid phase and depositing noble metal on this carrier. CONSTITUTION:Aluminum salt is dissolved in water, to which cerium salt and zirconium salt are added and sufficiently stirred, and then aq. ammonia soln. is added to the mixture to obtain precipitate. This precipitate is baked to obtain a multiple oxide, which can be used as a carrier having Xwt.% (CeO2.ZrO2).Al2 O3 composition. (X is 5-40 and the weight ratio of CeO2 to Zr2 ranges from 70:30 to 20:80.) Then noble metal such as platinum, rhodium, etc., is made to deposit on this carrier. The obtd. catalyst is a ternary catalyst, having high oxygen storage property even after enduring high temp., and has high conversion rate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気ガス、特に自動車などの内燃機関などか
ら排出される高温の排気ガスの浄化に用いられる、排気
ガス浄化用耐熱性触媒に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a heat-resistant catalyst for exhaust gas purification, which is used to purify exhaust gas, particularly high-temperature exhaust gas discharged from internal combustion engines such as automobiles. It is something.

(従来の技術) 従来の排気ガス浄化用触媒は、一般に触媒活性の高い触
媒金属(主に白金、パラジウム、ロジウムなどの貴金属
)とそれを担持するための担体、及び担体の支持体とな
る基材からなるものが知られている。
(Prior art) Conventional catalysts for exhaust gas purification generally consist of a catalytic metal with high catalytic activity (mainly noble metals such as platinum, palladium, and rhodium), a carrier for supporting the metal, and a group that serves as a support for the carrier. It is known that it is made of wood.

これら担体の条件としては比表面積が大きく高温での耐
久後も比表面積の低下が小さいことがあげられ、−船釣
にはアルミナ、シリカ、ジルコニア、チタニアなどが用
いられることが多い。
These carriers are required to have a large specific surface area and a small decrease in specific surface area even after durability at high temperatures; - alumina, silica, zirconia, titania, etc. are often used for boat fishing.

自動車排気ガス浄化用触媒に関しては担体中に上記酸化
物以外の希土類、遷移金属を含有させることにより排気
ガス浄化性能の向上を図る技術が知られている。
Regarding catalysts for purifying automobile exhaust gas, a technique is known in which the exhaust gas purifying performance is improved by incorporating rare earth elements and transition metals other than the above-mentioned oxides into the carrier.

例えば特開昭61−157347号公報などにセリウム
を利用した技術が開示されている。これは担体中に含有
されているセリウムのもつ酸素ストレージ効果を利用し
たものであり、下記(1)式に示す反応の効果により、
酸化雰囲気、還元雰囲気を緩和しIC,C01NOxな
どの排気ガス成分を浄化する性能を向上させることを目
的としたものである。
For example, a technique using cerium is disclosed in Japanese Patent Laid-Open No. 157347/1983. This utilizes the oxygen storage effect of cerium contained in the carrier, and due to the effect of the reaction shown in equation (1) below,
The purpose is to improve the performance of purifying exhaust gas components such as IC and CO1NOx by relaxing the oxidizing atmosphere and reducing atmosphere.

Ce0z−” CeO,−、+χ/2  oz −−−
−(1)(発明が解決しようとする課題) しかしながら、このような排気ガス浄化用触媒において
は、800°Cを越えるような高温にさらされると触媒
金属のシンタリング、触媒担体の比表面積の低下などの
原因以外にセリウムのもつ酸素ストレージ能が低下する
という原因のために、排気浄化性能の著しい低下が起こ
る。従って本発明はかかる従来技術の問題点を克服し、
高温度での耐久後にも高い酸素ストレージ能をもちIC
,C01No、などの排気ガス成分を高い転換率で除去
可能な排気ガス浄化用耐熱性触媒の捉供を目的とするも
のである。
Ce0z-” CeO,-, +χ/2 oz ---
-(1) (Problem to be solved by the invention) However, in such exhaust gas purifying catalysts, when exposed to high temperatures exceeding 800°C, sintering of the catalyst metal and reduction of the specific surface area of the catalyst carrier occur. In addition to the cause of deterioration, the exhaust gas purification performance is significantly decreased due to a decrease in the oxygen storage capacity of cerium. Therefore, the present invention overcomes the problems of the prior art,
IC with high oxygen storage capacity even after durability at high temperatures
, C01No, and the like at a high conversion rate.

(課題を解決するための手段) 本発明者は、前記目的を達成すべく、セリアのもつ酸素
ストレージ能の耐熱性の向上について鋭意研究を進めた
結果、水中にアルミニウム塩を溶解した後にセリウム塩
及びジルコニウム塩を加えて溶解し、十分に攪拌した後
にアンモニア水溶液を加えて得たアルミニウム、セリウ
ム、ジルコニウムの水酸化物の混合物を500°C以上
で焼成することによって得られる複合酸化物に任意の触
媒金属を担持した触媒は850°Cの高温での焼成を行
なった後でも高い酸素放出能をもつという事実を見いだ
し、この知見に基づいて本発明を達成するに至った。
(Means for Solving the Problems) In order to achieve the above object, the present inventor conducted extensive research on improving the heat resistance of ceria's oxygen storage ability, and found that after dissolving aluminum salt in water, cerium salt A mixture of aluminum, cerium, and zirconium hydroxides obtained by adding and dissolving a zirconium salt, stirring thoroughly, and then adding an ammonia aqueous solution to a composite oxide obtained by firing at 500°C or higher, It was discovered that a catalyst supporting a catalytic metal has a high oxygen release ability even after being calcined at a high temperature of 850°C, and based on this knowledge, the present invention was achieved.

すなわち、本発明の排気ガス浄化用耐熱性触媒とは、上
記のような方法で得られた次の組成式%式% (式中のX重量%はAft(hとCe0zとZr0tの
合計重量に対するCeO□とZrO2の合計重量の割合
を示す)で表わされる複合酸化物から成る触媒担体に白
金、ロジウムおよびパラジウムからなる群から選ばれた
少なくとも1種の貴金属を担持させることからなってい
る排気ガス浄化用耐熱性触媒である。
That is, the heat-resistant catalyst for exhaust gas purification of the present invention is obtained by the method described above and has the following compositional formula % formula % (in the formula, X weight % is Aft (with respect to the total weight of h, Ce0z, and Zr0t) Exhaust gas made by supporting at least one noble metal selected from the group consisting of platinum, rhodium and palladium on a catalyst carrier made of a composite oxide represented by (representing the ratio of the total weight of CeO□ and ZrO2) It is a heat-resistant catalyst for purification.

本発明において使用する金属塩については、アルミニウ
ム、ジルコニウム、セリウムのいずれに関しても水溶性
のもので塩基性の溶液中において水酸化物の沈澱を生ず
るものならばいずれも使用可能で、例えば、硝酸塩、硫
酸塩、酢酸塩などがあげられる。
Regarding the metal salts used in the present invention, any of aluminum, zirconium, and cerium can be used as long as they are water-soluble and cause hydroxide precipitation in a basic solution. For example, nitrates, Examples include sulfate and acetate.

アルミニウムと、セリウムとジルコニウムの混合比につ
いては、最終複合酸化物において、酸化セリウムと酸化
ジルコニウムの合計重量がアルミニウム酸化物を含む全
重量の5〜40重量%の範囲、即ち前記組成式中のX重
量%のXが5〜40の範囲に入るように混合する。酸化
セリウムと酸化ジルコニウムの合計含有量が5重量%よ
り少ないと十分な酸素ストレージ能の効果が得られず、
40重量%より多いと高温耐久後に酸化セリウムおよび
酸化ジルコニウムの結晶成長が著しくなり、比表面積の
低下が大きくなるため触媒化した時に排気ガス浄化性能
の低下を生ずる。
Regarding the mixing ratio of aluminum, cerium, and zirconium, in the final composite oxide, the total weight of cerium oxide and zirconium oxide is in the range of 5 to 40% by weight of the total weight including aluminum oxide, that is, X in the above composition formula. Mix so that the weight percent X is in the range of 5 to 40. If the total content of cerium oxide and zirconium oxide is less than 5% by weight, sufficient oxygen storage capacity cannot be obtained,
If the amount is more than 40% by weight, the crystal growth of cerium oxide and zirconium oxide becomes significant after high-temperature durability, and the specific surface area decreases greatly, resulting in a decrease in exhaust gas purification performance when used as a catalyst.

また、酸化セリウムと酸化ジルコニウムの混合比につい
ては酸化セリウムと酸化ジルコニウムの重量比が30 
: 70〜20 : 80の範囲で混合するのがよい。
Regarding the mixing ratio of cerium oxide and zirconium oxide, the weight ratio of cerium oxide and zirconium oxide is 30.
It is preferable to mix in the range of: 70 to 20: 80.

酸化ジルコニウムの含有量が30重量%より少ないと酸
化ジルコニウムを含有させることによる酸素ストレージ
能の耐久性向上効果が望めず、80重量%より多くなる
七高温耐久後に酸化ジルコニウムの結晶成長が著しくな
り比表面積の低下が大きくなるため触媒化した時に排気
ガス浄化性能の低下が生ずる。
If the content of zirconium oxide is less than 30% by weight, the effect of improving the durability of oxygen storage capacity by containing zirconium oxide cannot be expected, and the crystal growth of zirconium oxide becomes significant after high-temperature durability when the content exceeds 80% by weight. Since the surface area decreases greatly, when used as a catalyst, the exhaust gas purification performance decreases.

金属塩の溶解にあたっては、溶解に十分な量の水中で溶
解することが必要である。混合温度は特に限定されず、
室温で十分であるが、金属塩の溶解度を増すためなどの
理由で所要に応して加温して溶解する。混合時間に関し
ては、含有金属が十分、分散して焼成した時に複合化し
やすくなるようにする必要上から少なくとも1時間以上
行なうのがよい。
When dissolving a metal salt, it is necessary to dissolve it in a sufficient amount of water. The mixing temperature is not particularly limited;
Although room temperature is sufficient, heating may be necessary to increase the solubility of the metal salt. Regarding the mixing time, it is preferable to carry out the mixing for at least 1 hour or longer in order to ensure that the metals contained are sufficiently dispersed and are easily formed into a composite when fired.

アンモニア水溶液の添加については、高濃度の塩基によ
る象、激な水酸化物の沈澱を防くために3〜7モル/l
程度の濃度のものを用いることが好ましい。アンモニア
水溶液を加えていくにしたがってpHが上昇していくが
、pHが8〜9に達したところでアンモニア水溶液の滴
下をやめ、沈澱を熟成させる。
Regarding the addition of ammonia aqueous solution, 3 to 7 mol/l is added in order to prevent precipitation caused by high concentration of base and severe precipitation of hydroxide.
It is preferable to use one with a concentration of about 100%. As the ammonia aqueous solution is added, the pH increases, but when the pH reaches 8 to 9, the dropping of the ammonia aqueous solution is stopped and the precipitate is aged.

濾過に関して特に制約はなく、任意の濾過法が選択可能
である。
There are no particular restrictions regarding filtration, and any filtration method can be selected.

本発明では、500°C以上で処理することを特徴とし
ているが、500°C以上で処理する以前に500°C
以下の温度で前処理を行なってもよい。前処理における
温度及び雰囲気については特に制限はない。
The present invention is characterized by processing at 500°C or higher; however, before processing at 500°C or higher,
Pretreatment may be performed at the following temperatures. There are no particular restrictions on the temperature and atmosphere in the pretreatment.

以上のようにして得られたCeO□−ZrO□−A l
 zo3複合酸化物に白金、ロジウム、及びパラジウム
からなる群から選ばれた少なくとも1種の貴金属を担持
させた排気ガス浄化用触媒においては高温での耐久後に
も、高い浄化性能を示す。
CeO□-ZrO□-A l obtained as above
An exhaust gas purification catalyst in which at least one noble metal selected from the group consisting of platinum, rhodium, and palladium is supported on a zo3 composite oxide exhibits high purification performance even after durability at high temperatures.

(発明の効果) 本発明においては、液相中で混合された金属を同時に沈
澱させるという手法を用いたため、沈澱状態においてセ
リウムを微粒子状態で分散させることができる。
(Effects of the Invention) In the present invention, since the method of simultaneously precipitating the metals mixed in the liquid phase is used, cerium can be dispersed in the form of fine particles in the precipitated state.

また焼成により複合酸化物化する場合にアルミニウム酸
化物、ジルコニウム酸化物もセリウム酸化物と同時に生
成するため、セリウムは微粒子状に分散したままアルミ
ニウムまたはジルコニウム中に取り込まれる。そのため
熱耐久後にも高い酸素ストレージ能をもち、高比表面積
の物質を合成することができた。
Further, when forming a composite oxide by firing, aluminum oxide and zirconium oxide are also produced simultaneously with cerium oxide, so cerium is incorporated into aluminum or zirconium while being dispersed in the form of fine particles. As a result, we were able to synthesize a material with high oxygen storage capacity and high specific surface area even after thermal endurance.

すなわち、この複合酸化物に触媒金属を担持することで
高温耐久後にも高い活性を持つ触媒の合成が可能であり
、触媒耐久性への貢献も大きい。
That is, by supporting a catalytic metal on this composite oxide, it is possible to synthesize a catalyst that has high activity even after high-temperature durability, and it also greatly contributes to catalyst durability.

(実施例) 以下本発明を実施例、比較例に基づき更に詳細に説明す
る。
(Examples) The present invention will be described in more detail below based on Examples and Comparative Examples.

大庭■土 5N容のプラスチック容器中に、硝酸アルミニウム9水
和物(Aj! (NO:+)+・98zO) 600.
0gと水2.000gを投入し、室温にて30分間攪拌
した後、硝酸セリウム水溶液(Ce濃度18.7重量%
) 41.6gと硝酸ジルコニウム水溶液(Zr濃度1
8.5重量%)70.7gを加えて120分間攪拌を続
けた。その後、5モル/lアンモニア水溶液をpHが9
になるまで加え、吸引濾過により水酸化物の沈澱を得た
。この沈澱をオーブン中150°Cで15時間乾燥した
後、空気気流中500°Cにて2時間の焼成を行うこと
により、複合酸化物を調製した。
Ohba ■ Soil In a 5N plastic container, aluminum nitrate nonahydrate (Aj! (NO:+)+・98zO) 600.
After adding 0 g and 2.000 g of water and stirring at room temperature for 30 minutes, a cerium nitrate aqueous solution (Ce concentration 18.7% by weight) was added.
) 41.6g and zirconium nitrate aqueous solution (Zr concentration 1
8.5% by weight) was added and stirring was continued for 120 minutes. Then, add a 5 mol/l ammonia aqueous solution until the pH is 9.
The mixture was added until the mixture was dissolved, and the hydroxide was precipitated by suction filtration. This precipitate was dried in an oven at 150°C for 15 hours, and then calcined for 2 hours at 500°C in a stream of air to prepare a composite oxide.

以上調製した複合酸化物に対して、ジニトロジアンミン
白金溶液を用いて1.0重量%の担持量になるように白
金を含浸し、オーブン中150°Cにて3時間乾燥し、
400″Cで2時間空気気流中で焼成を行ない白金担持
複合酸化物を調製した。
The composite oxide prepared above was impregnated with platinum using a dinitrodiammine platinum solution so that the supported amount was 1.0% by weight, and dried in an oven at 150°C for 3 hours.
A platinum-supported composite oxide was prepared by firing at 400''C for 2 hours in an air stream.

さらにこの白金担持複合酸化物について850°Cで4
時間空気気流中で焼成を行い、触媒1とした。
Furthermore, this platinum-supported composite oxide was heated at 850°C to
Catalyst 1 was obtained by calcination in an air stream for an hour.

XRDにより触媒1の結晶状態を確認したところセリア
・ジルコニア・アルミナが複合していた。
When the crystalline state of catalyst 1 was confirmed by XRD, it was found that ceria, zirconia, and alumina were composite.

触媒1に関して昇温還元法(TPR)により水素消費量
から酸素放出挙動を検討した。得られたTPR曲線を第
1図に示す。
The oxygen release behavior of Catalyst 1 was investigated from the amount of hydrogen consumed by temperature programmed reduction (TPR). The obtained TPR curve is shown in FIG.

実Jd津り 白金担持濃度を1.5重量%にした以外は実施例1と同
様にして、白金担持複合酸化物を調製した。
A platinum-supported composite oxide was prepared in the same manner as in Example 1, except that the platinum-supported concentration was 1.5% by weight.

ジニトロジアンミン白金溶液の代りに硝酸ロジウム溶液
を用いた以外は実施例1と同様にして1.0重量%のロ
ジウム担持複合酸化物を調製した。
A 1.0% by weight rhodium-supported composite oxide was prepared in the same manner as in Example 1, except that a rhodium nitrate solution was used instead of the dinitrodiammine platinum solution.

この白金担持複合酸化物875g、酸化セリウム585
g、r−アルミナを主たる成分とする活性アルミナ20
0g、硝酸酸性ベーマイトゾル(ベーマイトアルミナ1
0重量%けん濁液に10重量%HNO3を添加すること
によって得られるゾル)  150gをボールミルボッ
トに投入し、8時間粉砕してスラリーを得た。得られた
スラリーをモノリス担体基材(1,3L 400セル)
に塗布し乾燥した後、400℃で2時間、空気雰囲気中
で焼成した。この時の塗布量は、210 g /個に設
定した。さらに上記ロジウム担持複合酸化物LOOOg
、硝酸酸性ベーマイトゾル180g、r−アルミナを主
成分とする活性アルミナ粉末530gをボールミルポッ
トに投入し、8時間粉砕して得たスラリーを塗布量50
g/個になるように塗布し乾燥後、400°Cで2時間
、空気雰囲気中で焼成し、触媒2を調製した。
875 g of this platinum-supported composite oxide, 585 g of cerium oxide
Activated alumina 20 whose main component is g, r-alumina
0g, nitric acid acidic boehmite sol (boehmite alumina 1
150 g of the sol obtained by adding 10 wt % HNO3 to a 0 wt % suspension was put into a ball mill and ground for 8 hours to obtain a slurry. The obtained slurry was transferred to a monolithic carrier base material (1.3L 400 cells).
After coating and drying, it was baked at 400° C. for 2 hours in an air atmosphere. The coating amount at this time was set to 210 g/piece. Furthermore, the above rhodium-supported composite oxide LOOOg
, 180 g of nitric acidic boehmite sol, and 530 g of activated alumina powder whose main component is r-alumina were placed in a ball mill pot, and ground for 8 hours. The resulting slurry was applied in an amount of 50 g.
After coating and drying, the catalyst was calcined at 400° C. for 2 hours in an air atmosphere to prepare catalyst 2.

1施拠主 実施例1における硝酸アルミニウム9水和物の量を67
5.0 g、硝酸セリウム水溶液の量を30.3g、硝
酸ジルコニウム水溶液の量を12.2gとした以外は実
施例2と同様にして触媒3を調製した。
1 The amount of aluminum nitrate nonahydrate in Example 1 was 67
Catalyst 3 was prepared in the same manner as in Example 2, except that the amount of the cerium nitrate aqueous solution was 30.3 g, and the amount of the zirconium nitrate aqueous solution was 12.2 g.

裏旌■工 実施例1における硝酸アルミニウム9水和物の量を44
4.0 g、硝酸セリウム水溶液の量を104.0g、
硝酸ジルコニウム水溶液の量を65.0gとした以外は
実施例2と同様にして触媒4を調製した。
The amount of aluminum nitrate nonahydrate in Example 1 was 44
4.0 g, the amount of cerium nitrate aqueous solution 104.0 g,
Catalyst 4 was prepared in the same manner as in Example 2 except that the amount of the zirconium nitrate aqueous solution was changed to 65.0 g.

止較■上 21容プラスチツク容器中に水500 gを投入し、硝
酸セリウム水溶液76.4 gと硝酸ジルコニウム水溶
液130.0 gを加えて撹拌を続けた。30分後T 
−アルミナを主たる成分とする活性アルミナ粉末150
gを加え、60分間撹拌を行い、実施例1と同様に乾燥
、焼成を行なうことにより複合酸化物を調製した。
First, 500 g of water was placed in a 21-volume plastic container, 76.4 g of an aqueous cerium nitrate solution and 130.0 g of an aqueous zirconium nitrate solution were added, and stirring was continued. 30 minutes later T
-Activated alumina powder 150 whose main component is alumina
g was added thereto, stirred for 60 minutes, dried and fired in the same manner as in Example 1 to prepare a composite oxide.

以上含浸法により調製した複合酸化物に対して、実施例
1と同様に1.0重量%の白金を担持した後に乾燥、焼
成を行い、850°Cで4時間空気中で耐久を行なった
触媒を触媒Aとした。
The composite oxide prepared by the above impregnation method was supported with 1.0% by weight of platinum in the same manner as in Example 1, then dried and fired, and the catalyst was subjected to durability in air at 850°C for 4 hours. was designated as catalyst A.

触媒Aに関して、得られたTPR曲線を第1図に示す。The TPR curve obtained for catalyst A is shown in FIG.

北較拠I 白金担持濃度を1.5重量%にした以外は比較例1と同
様にして、白金担持複合酸化物を調製した。
Northern Comparison I A platinum-supported composite oxide was prepared in the same manner as in Comparative Example 1 except that the platinum-supported concentration was 1.5% by weight.

ジニトロジアンミン白金溶液の代りに硝酸ロジウム溶液
を用いた以外は比較例1と同様にして1.0重量%のロ
ジウム担持複合酸化物を調製した。
A 1.0% by weight rhodium-supported composite oxide was prepared in the same manner as in Comparative Example 1, except that a rhodium nitrate solution was used instead of the dinitrodiammine platinum solution.

上記白金担持複合酸化物及びロジウム担持複合酸化物を
用いた以外は実施例2と同様にして、触媒Bを調製した
Catalyst B was prepared in the same manner as in Example 2, except that the above platinum-supported composite oxide and rhodium-supported composite oxide were used.

北較炎1 比較例1における硝酸セリウム水溶液の量を51.1 
g、硝酸ジルコニウム水溶液の量を20.0gにした以
外は比較例2と同様にして触媒Cを調製した。
Hokkaien 1 The amount of cerium nitrate aqueous solution in Comparative Example 1 was 51.1
Catalyst C was prepared in the same manner as in Comparative Example 2, except that the amount of zirconium nitrate aqueous solution was changed to 20.0 g.

ス11引i ジニトロジアンミン白金溶液の代わりにジニトロジアン
ミンパラジウム溶液を用いて調製した1、5重量%パラ
ジウム担持値合酸化物1330 gと、活性アルミナ2
30g、硝酸酸性ベーマイトゾル150gを用いた以外
は実施例2と同様にして触媒5を調製した。
1330 g of a 1.5% by weight palladium loading composite oxide prepared using a dinitrodiammine palladium solution instead of a dinitrodiammine platinum solution, and activated alumina 2
Catalyst 5 was prepared in the same manner as in Example 2, except that 30 g of nitric acid boehmite sol and 150 g of nitric acid acidic boehmite sol were used.

北較尉土 ジニトロジアンミン白金溶液の代わりにジニトロジアン
ミンパラジウム溶液を用いた以外は比較例2と同様にし
て、1.5重量%パラジウム担持値合酸化物を調製した
A 1.5% by weight palladium supported compound was prepared in the same manner as in Comparative Example 2, except that a dinitrodiammine palladium solution was used in place of the Kitakkiyoto dinitrodiammine platinum solution.

上記パラジウム担持複合酸化物を用いた以外は実施例5
と同様にして触媒りを調製した。
Example 5 except that the above palladium-supported composite oxide was used
A catalyst was prepared in the same manner as above.

触媒1及びAに関するTPR測定条件を以下に示す。TPR measurement conditions for catalysts 1 and A are shown below.

ユバ盪定条註 サンプル量:300■ ガス流速 :  100d/+win 昇温速度 :10″(:/min 測定温度 :室温〜850°C 触媒2〜5及び触媒B、CおよびDについて下記条件で
耐久試験を行った後、性能評価試験を行った。その結果
を表1に示す。
Sample amount: 300 ■ Gas flow rate: 100d/+win Temperature increase rate: 10'' (:/min Measurement temperature: room temperature to 850°C Catalysts 2 to 5 and catalysts B, C, and D were durable under the following conditions After conducting the test, a performance evaluation test was conducted.The results are shown in Table 1.

耐久拭星条件 触媒         一体型貴金属触媒触媒出口ガス
温度   850°C 空間速度       約7万Hr−’耐久時間   
    100時間 エンジン       排気量2200 cc燃料  
       無鉛ガソリン 耐久中入ロガス雰囲気CO0,4〜0.6%0□  0
.5±0.1% NO1001000 pp   2500ppm COz   14.9±0.1% 立IJb11財 車両 セドリック 排気量2000 cc(10% H
2/^r)
Durability catalyst Integrated noble metal catalyst Catalyst outlet gas temperature 850°C Space velocity Approximately 70,000 Hr-' Durability time
100 hour engine displacement 2200 cc fuel
Unleaded gasoline durable log gas atmosphere CO0.4~0.6%0□0
.. 5±0.1% NO1001000 pp 2500ppm COz 14.9±0.1% Standing IJb11 vehicle Cedric Displacement 2000 cc (10% H
2/^r)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1の触媒1と比較例1の触媒Aの昇温
換元法(TPR)による酸素放出量と温度の関係を示す
曲線図である。
FIG. 1 is a curve diagram showing the relationship between the amount of oxygen released and the temperature in the temperature-promoted conversion method (TPR) of Catalyst 1 of Example 1 and Catalyst A of Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1.触媒担持層と触媒担持金属を有する排気ガス浄化用
触媒において、触媒担持層は共沈法によって得られたア
ルミニウム酸化物とセリウム酸化物とジルコニウム酸化
物とを含み、それら酸化物が次の組成式 X重量%(CeO_2・ZrO_2)・Al_2O_3
(式中のX重量%はAl_2O_3とCeO_2とZr
O_2の合計重量に対するCeO_2とZrO_2の合
計重量の割合を示し、Xは5〜40で、さらにCeO_
2とZrO_2の重量比が70:30〜20:80であ
る)から成り、CeO_2、ZrO_2、Al_2O_
3の3種が複合酸化物化することにより耐久後の酸素ス
トレージ特性に優れ、触媒金属が白金、パラジウムおよ
びロジウムから成る群から選ばれた少くとも1種の貴金
属であることを特徴とする排気ガス浄化用耐熱性触媒。
1. In an exhaust gas purification catalyst having a catalyst support layer and a catalyst support metal, the catalyst support layer contains aluminum oxide, cerium oxide, and zirconium oxide obtained by a coprecipitation method, and these oxides have the following composition formula: X weight% (CeO_2・ZrO_2)・Al_2O_3
(X weight% in the formula is Al_2O_3, CeO_2 and Zr
It shows the ratio of the total weight of CeO_2 and ZrO_2 to the total weight of O_2, where X is 5 to 40, and further CeO_
2 and ZrO_2 in a weight ratio of 70:30 to 20:80), and consists of CeO_2, ZrO_2, Al_2O_
Exhaust gas characterized by having excellent oxygen storage properties after durability by forming three of the above three into a composite oxide, and in which the catalytic metal is at least one noble metal selected from the group consisting of platinum, palladium, and rhodium. Heat-resistant catalyst for purification.
JP2103192A 1990-04-20 1990-04-20 Heat-resistant catalyst for purifying exhaust gas Pending JPH044043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2103192A JPH044043A (en) 1990-04-20 1990-04-20 Heat-resistant catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2103192A JPH044043A (en) 1990-04-20 1990-04-20 Heat-resistant catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH044043A true JPH044043A (en) 1992-01-08

Family

ID=14347654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2103192A Pending JPH044043A (en) 1990-04-20 1990-04-20 Heat-resistant catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH044043A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602865A1 (en) * 1992-12-18 1994-06-22 Johnson Matthey Public Limited Company Catalyst
EP0706980A1 (en) * 1994-10-05 1996-04-17 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
EP0708066A1 (en) * 1994-10-05 1996-04-24 Santoku Metal Industry Co., Ltd. Method for preparing composite oxide having oxygen absorbing and desorbing capability
AU676120B2 (en) * 1994-12-19 1997-02-27 Toyota Jidosha Kabushiki Kaisha A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium
JP2000312825A (en) * 1999-04-23 2000-11-14 Degussa Huels Ag High performance catalyst containing precious metal and manufacture thereof
US6150288A (en) * 1996-10-07 2000-11-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, composite oxide carrier and catalyst
EP1172139A1 (en) * 2000-07-14 2002-01-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas
JP2002102700A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Normal temperature catalyst
JP2002160922A (en) * 2000-11-20 2002-06-04 Toyota Central Res & Dev Lab Inc Composite oxide powder, method of producing the same and catalyst therefor
US6852665B2 (en) 2000-07-27 2005-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, process for producing the same, catalyst for purifying exhaust gas, and process for producing the same
JP2006297260A (en) * 2005-04-19 2006-11-02 Mazda Motor Corp Catalyst for exhaust gas purification
US7939041B2 (en) 2004-12-30 2011-05-10 Magnesium Elektron Limited Composite oxides or hydroxides comprising alumina and zirconia for automotive catalyst applications and method of manufacturing

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0602865A1 (en) * 1992-12-18 1994-06-22 Johnson Matthey Public Limited Company Catalyst
US5480854A (en) * 1992-12-18 1996-01-02 Johnson Matthey Public Limited Company Catalyst
US5993762A (en) * 1992-12-18 1999-11-30 Johnson Matthey Public Limited Company Method of using catalyst containing noble metal and cerium dioxide
US5883037A (en) * 1994-05-27 1999-03-16 Rhone-Poulenc Chimie Thermally stable/highly reducible catalyst compositions comprising alumina and the oxides of cerium and zirconium
EP0706980A1 (en) * 1994-10-05 1996-04-17 Santoku Metal Industry Co., Ltd. Composite oxide having oxygen absorbing and desorbing capability and method for preparing same
EP0708066A1 (en) * 1994-10-05 1996-04-24 Santoku Metal Industry Co., Ltd. Method for preparing composite oxide having oxygen absorbing and desorbing capability
AU676120B2 (en) * 1994-12-19 1997-02-27 Toyota Jidosha Kabushiki Kaisha A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
US6150288A (en) * 1996-10-07 2000-11-21 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, composite oxide carrier and catalyst
US6306794B1 (en) 1996-10-07 2001-10-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, composite oxide carrier and catalyst
JP2000312825A (en) * 1999-04-23 2000-11-14 Degussa Huels Ag High performance catalyst containing precious metal and manufacture thereof
EP1172139A1 (en) * 2000-07-14 2002-01-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas
US6852665B2 (en) 2000-07-27 2005-02-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide, process for producing the same, catalyst for purifying exhaust gas, and process for producing the same
JP2002102700A (en) * 2000-09-28 2002-04-09 Toyota Central Res & Dev Lab Inc Normal temperature catalyst
JP2002160922A (en) * 2000-11-20 2002-06-04 Toyota Central Res & Dev Lab Inc Composite oxide powder, method of producing the same and catalyst therefor
US7939041B2 (en) 2004-12-30 2011-05-10 Magnesium Elektron Limited Composite oxides or hydroxides comprising alumina and zirconia for automotive catalyst applications and method of manufacturing
JP2006297260A (en) * 2005-04-19 2006-11-02 Mazda Motor Corp Catalyst for exhaust gas purification

Similar Documents

Publication Publication Date Title
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2659796B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3861303B2 (en) Exhaust gas purification catalyst
US20130108530A1 (en) Process for producing ceria-zirconia-alumina composite oxides and applications thereof
EP1415956A2 (en) A method for preparing metal oxide particles and an exhaust gas purifying catalyst
JP3688974B2 (en) Exhaust gas purification catalyst
JPS63162043A (en) Catalyst for cleaning exhaust gas
JPS63116741A (en) Catalyst for purifying exhaust gas
CN101421037B (en) Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
US20210355851A1 (en) Oxygen storage and release material, catalyst, exhaust gas purification system, and exhaust gas treatment method
JPH044043A (en) Heat-resistant catalyst for purifying exhaust gas
JPH10286462A (en) Catalyst of purifying exhaust gas
JPH05237390A (en) Catalyst for purification of exhaust gas
JP2578219B2 (en) Method for producing exhaust gas purifying catalyst
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JPH07299360A (en) Catalyst for purifying exhaust gas
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JPH11217220A (en) Compound oxide, its production and exhaust gas-cleaning catalyst using the same
JP2010022892A (en) Catalyst for cleaning exhaust gas
JP2011136257A (en) Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier
JP4382180B2 (en) Exhaust gas purification catalyst
JPH0768175A (en) Catalyst for purification of exhaust gas
JPH0523599A (en) Catalyst for decontaminating exhaust gas
JP6889012B2 (en) Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this
JP2000051700A (en) Exhaust emission purifying catalyst and its production