JP5119508B2 - PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same - Google Patents

PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same Download PDF

Info

Publication number
JP5119508B2
JP5119508B2 JP2006067915A JP2006067915A JP5119508B2 JP 5119508 B2 JP5119508 B2 JP 5119508B2 JP 2006067915 A JP2006067915 A JP 2006067915A JP 2006067915 A JP2006067915 A JP 2006067915A JP 5119508 B2 JP5119508 B2 JP 5119508B2
Authority
JP
Japan
Prior art keywords
combustion
composite oxide
exhaust gas
oxidation catalyst
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006067915A
Other languages
Japanese (ja)
Other versions
JP2007160297A (en
Inventor
正人 町田
達哉 茨木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2006067915A priority Critical patent/JP5119508B2/en
Publication of JP2007160297A publication Critical patent/JP2007160297A/en
Application granted granted Critical
Publication of JP5119508B2 publication Critical patent/JP5119508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、自動車用をはじめとしたディーゼル機関等からの排ガス中に含有され、炭素質の煤等からなる粒子状物質(PMという。)の燃焼温度を低減させる触媒、並びにこれを用いたディーゼル機関排ガスの浄化方法、フィルター及び浄化装置に関するものである。   The present invention relates to a catalyst for reducing the combustion temperature of particulate matter (referred to as PM), which is contained in exhaust gas from automobiles and other diesel engines, etc., and is composed of carbonaceous soot, etc., and diesel using the same The present invention relates to an engine exhaust gas purification method, a filter, and a purification device.

近年、ディーゼル車から排出されるNOX、PMは環境汚染や人体への影響が懸念されることから、より一層の低減が求められるようになっており、年々その規制は強化される傾向にある。ガソリン機関では三元触媒など排ガス処理技術の進歩はめざましいものがあるが、ディーゼル機関では、排ガス中の酸素量が多いこと、PMや硫黄酸化物を多く含むため、これらガソリン機関で利用されているこれらの技術を応用できないことは広く知られたところである。 In recent years, there is NO X emitted from diesel vehicles, PM from the fact that the impact on the environment pollution and the human body is concerned, more has become so that further reduction is required, tend the regulations to be strengthened year by year . Gasoline engines, such as three-way catalysts, have made remarkable progress in exhaust gas treatment technology, but diesel engines are used in these gasoline engines because they contain a large amount of oxygen in the exhaust gas and contain a large amount of PM and sulfur oxides. It is widely known that these techniques cannot be applied.

このため、ディーゼル機関ではガソリン機関とは異なった排ガスの浄化方法を検討、導入することによって、排ガス浄化技術を確立してきた。例えば、排ガスの処理部分に対して、コーディライトや炭化ケイ素(SiC)を用いたフィルター(DPF)を配置してPMの除去を行う方法や、ディーゼル機関内の燃焼効率の向上技術の開発といったことが主として挙げられる。   For this reason, exhaust gas purification technology has been established by investigating and introducing exhaust gas purification methods different from those for gasoline engines in diesel engines. For example, a method of removing PM by placing a filter (DPF) using cordierite or silicon carbide (SiC) on the exhaust gas treatment part, or development of technology for improving combustion efficiency in diesel engines Is mainly mentioned.

ところで、上記技術の中で排ガス中のPMを除去する際には、排ガスから「濾しとった」あとのPMの処理が重要となる。主として利用されている方法は、周期的にフィルターそのものを加熱することによって、フィルター内に滞留しているPM成分を燃焼除去することが挙げられる。概説すると、フィルターの外部から電熱ヒータ等を使用し、強制的にフィルターの温度を上げてPM成分を燃焼する機構を供えた装置であり、PMの焼却燃焼といった観点では優れた機構といえる。   By the way, when removing the PM in the exhaust gas in the above technique, it is important to treat the PM after being “filtered” from the exhaust gas. As a method mainly used, it is mentioned that the PM component staying in the filter is burned and removed by periodically heating the filter itself. In summary, this is an apparatus provided with a mechanism for burning the PM component by forcibly raising the temperature of the filter by using an electric heater or the like from the outside of the filter, and can be said to be an excellent mechanism from the viewpoint of incineration combustion of PM.

この機構において、フィルターを含むディーゼル機関排ガス浄化装置の耐熱仕様度低減によるコストの削減、フィルター加熱コストの削減などを図るべく、燃焼用の触媒をフィルター中に担持することによってディーゼル機関排ガス中のPMの主成分であるカーボンの燃焼開始温度を低減させることが検討されている。   In this mechanism, in order to reduce the cost by reducing the heat resistance specification of the diesel engine exhaust gas purification device including the filter and reduce the filter heating cost, the PM in the exhaust gas of the diesel engine is supported by supporting the combustion catalyst in the filter. It has been studied to reduce the combustion start temperature of carbon, which is the main component of carbon.

例えば、検討・開示されている内容について列挙すると、触媒に白金族およびアルカリ土類金属を表面に形成させることで燃焼開始温度を低下させること(特許文献1)、触媒成分として貴金属と酸素保存成分を含むものを使用すること(特許文献2)、低温において二酸化窒素を捕捉する効果を持った触媒を担持させること(特許文献3)、酸化スズや酸化タンタルに白金族を担持すること(特許文献4)、排気中の一酸化窒素と酸素を選択的に反応させた後にそこで生成した二酸化窒素を用いてPM成分を燃焼させる仕組みを用いること(特許文献5)などが挙げられる。   For example, the contents that have been studied and disclosed are listed. The catalyst is formed with platinum group and alkaline earth metal on the surface to lower the combustion start temperature (Patent Document 1). (Patent document 2), supporting a catalyst having an effect of capturing nitrogen dioxide at a low temperature (patent document 3), supporting a platinum group on tin oxide or tantalum oxide (patent document 2) 4) Use of a mechanism in which nitrogen monoxide and oxygen in the exhaust gas are selectively reacted and then the PM component is combusted using the nitrogen dioxide generated there (Patent Document 5).

また、PM燃焼を助けるような効果を有する触媒としては、酸化リチウムなどの触媒活性物質上を通過させるもの(特許文献6)、VやWの酸化物とパラジウムを触媒成分として使用するもの(特許文献7)、酸化触媒にペロブスカイト複合酸化物を使用するもの(特許文献8)等がある。   Catalysts that have an effect of assisting PM combustion include those that pass over catalytically active substances such as lithium oxide (Patent Document 6), and those that use V and W oxides and palladium as catalyst components (patents). Document 7) and those using a perovskite complex oxide as an oxidation catalyst (Patent Document 8).

さらに、MnやCeを使用するような触媒に関しては、セリウムもしくはジルコニウム化合物の担体に触媒成分としてMn等を担持することで酸化触媒として使用する方法(特許文献9)、金、銀、銅、鉄、亜鉛、マンガン、セリウムおよび白金族元素といった数多くの成分からの一種もしくは二種以上の組み合わせによって酸化触媒を構成させるもの(特許文献10)、および耐火性担体に対してMnを担持することによってPMを燃焼させる方法(特許文献11)がある。
特開昭60−235620号公報 特表2004−509740号公報 特表2005−514551号公報 特許3131630号公報 特開2002−339728号公報 特開昭59−049825号公報 特開2005−046836号公報 特公平06−029542号公報 特開平10−151348号公報 特開2005−009454号公報 特開2003−062432号公報
Furthermore, regarding a catalyst using Mn or Ce, a method of using Mn or the like as a catalyst component on a cerium or zirconium compound carrier to use it as an oxidation catalyst (Patent Document 9), gold, silver, copper, iron , An oxide catalyst composed of one or a combination of two or more elements such as zinc, manganese, cerium and platinum group elements (Patent Document 10), and PM by supporting Mn on a refractory support There is a method (Patent Document 11) for burning the gas.
JP-A-60-235620 Special table 2004-509740 gazette JP 2005-514551 A Japanese Patent No. 3131630 JP 2002-339728 A JP 59-049825 A JP 2005-046836 A Japanese Patent Publication No. 06-029542 JP-A-10-151348 JP-A-2005-009454 JP 2003-062432 A

ところが、ほとんどの従来技術は白金をはじめとした白金族元素や貴金属を併用して使用しており、コスト面での改善が問題となっている。これに加えて、排ガス中のPMの燃焼開始温度がまだ高いという問題もある。
そこで、本発明の解決すべき技術的課題としては、より安価で提供でき、かつさらに低温でPMを燃焼させ得る触媒、及びそれを用いた浄化装置並びにそれを用いた排ガス浄化方法の提供とする。
However, most conventional techniques use platinum group elements such as platinum and noble metals in combination, and there is a problem of cost improvement. In addition, there is a problem that the combustion start temperature of PM in the exhaust gas is still high.
Therefore, the technical problem to be solved by the present invention is to provide a catalyst that can be provided at a lower cost and that can burn PM at a lower temperature, a purification device using the catalyst, and an exhaust gas purification method using the catalyst. .

上記課題を解決する手段として、従来技術において必須であった白金族元素や貴金属の使用を一切要せず且つPMの燃焼開始温度を従来技術よりも大幅に低下せしめる触媒を提供すべく取り組んだ結果、本発明者らが到達した発明は、
(1)PM燃焼用酸化触媒として遷移金属とCeとの複合酸化物を使用すること
(2)さらにその効果を高めるため、アルカリ金属を含有させること
(3)上記遷移金属がSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znの少なくとも一種であること、好ましくはMnまたはFeであること
(4)Ce/(Ce+遷移金属)のモル比を1.0未満、遷移金属としてMnを選択した場合には0.1より大で1.0未満、好ましくは0.2以上0.9未満、Feを選択した場合には0.5より大で1.0未満とすること
(5)上記遷移金属とCeとが固溶体を形成していること
(6)アルカリ金属が好ましくはK、Rb、Csの少なくとも一種であること
(7)上記複合酸化物において前記アルカリ金属/(遷移金属+Ce)のモル比が1未満、好ましくは0.05以上0.8未満であること
(8)上記の組成物を使用することによってPM酸化開始温度を低減させるディーゼル機関排ガスの浄化方法
(9)上記の組成物を用いたことを特徴とするディーゼル機関排ガスのフィルター及びそれを用いた浄化装置
が挙げられる。
Results of efforts to provide a catalyst that does not require the use of platinum group elements and noble metals that were essential in the prior art as a means to solve the above problems, and that can significantly lower the combustion start temperature of PM than in the prior art The invention reached by the inventors
(1) Use a composite oxide of transition metal and Ce as an oxidation catalyst for PM combustion (2) Add an alkali metal to further enhance the effect (3) The transition metal is Sc, Ti, V , Cr, Mn, Fe, Co, Ni, Cu, Zn, preferably Mn or Fe (4) Ce / (Ce + transition metal) molar ratio less than 1.0, transition metal When Mn is selected, it is greater than 0.1 and less than 1.0, preferably 0.2 or more and less than 0.9, and when Fe is selected, it should be greater than 0.5 and less than 1.0. (5) The transition metal and Ce form a solid solution. (6) The alkali metal is preferably at least one of K, Rb, and Cs. (7) In the composite oxide, the alkali metal / (transition Metal + Ce) molar ratio is less than 1 (8) Diesel engine exhaust gas purification method for reducing PM oxidation start temperature by using the above composition (9) Using the above composition A diesel engine exhaust gas filter and a purification device using the same.

本発明に係る触媒を使用することによりPM燃焼開始温度の低減をはかることができ、かつ貴金属を使用することなく汎用性の高い元素で構成されているため、触媒、フィルターおよび浄化装置において低コスト化がはかれるとともに、酸化物により構成されているため経時的な触媒性能劣化の小さいことが期待される触媒を得ることができる。   By using the catalyst according to the present invention, the PM combustion start temperature can be reduced, and since it is composed of highly versatile elements without using precious metals, the catalyst, the filter and the purification device are low in cost. Thus, a catalyst that is expected to have little deterioration in catalyst performance over time can be obtained because it is composed of oxides.

以下に本発明についてさらに詳細に説明する。
はじめに本発明に係る触媒はMn、Feをはじめとする遷移金属およびCeを含むことを特徴とする。複合酸化物中においてCeとMn、Feをはじめとする遷移金属とは、混合したのみの混合物形態ではなく、酸化セリウムに対して遷移金属が固溶した状態にあることがより好ましい。この中に含まれる遷移金属とは周期律表の3族から12族までの元素を表す。とりわけ4周期にある遷移元素(Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn)が好ましく、なかでもMn、Feの元素を使用することがさらに好適である。
The present invention is described in further detail below.
First, the catalyst according to the present invention is characterized by containing transition metals such as Mn and Fe and Ce. In the composite oxide, the transition metal such as Ce, Mn, and Fe is preferably not in the form of a mixture, but in a state where the transition metal is in solid solution with respect to cerium oxide. The transition metal contained therein represents an element from group 3 to group 12 of the periodic table. In particular, transition elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) in four periods are preferable, and it is more preferable to use elements of Mn and Fe.

また、遷移金属とCeの構成モル比としては、Ce/(遷移金属+Ce)が1未満が好ましい。Ce/(遷移金属+Ce)が1の場合は、CeO2単独で存在することになり、本発明の意図とは離れてしまう。また、本発明者が同様の製法で作成したCeO2では、本発明に示すような燃焼開始温度低減効果を有する触媒粉末は得られなかった。極端にCe/(遷移金属+Ce)が0に近い場合には、複合酸化物中において遷移金属とCeが完全な固溶体を形成できず、燃焼開始温度低減効果が小さくなるため好ましくない。また、Mn、Feに関して発明者が独自に検討した方法によれば、元素により上記モル比の好ましい範囲は異なり、Mnの場合では0.1より大で1.0未満、好ましくは0.2以上0.9未満の範囲、Feを選択する場合においては0.5より大で1.0未満の範囲が好ましいことがわかった。 Further, as the constituent molar ratio of the transition metal and Ce, Ce / (transition metal + Ce) is preferably less than 1. When Ce / (transition metal + Ce) is 1, CeO 2 exists alone, which is not the intention of the present invention. In addition, CeO 2 produced by the same production method by the inventor did not provide a catalyst powder having an effect of reducing the combustion start temperature as shown in the present invention. When Ce / (transition metal + Ce) is extremely close to 0, the transition metal and Ce cannot form a complete solid solution in the composite oxide, and the effect of reducing the combustion start temperature is reduced. Further, according to the method independently examined by the inventors regarding Mn and Fe, the preferred range of the molar ratio varies depending on the element. In the case of Mn, it is greater than 0.1 and less than 1.0, preferably 0.2 or more. It has been found that a range of less than 0.9 and a range of greater than 0.5 and less than 1.0 are preferable when Fe is selected.

また、複合酸化物はその組成中にアルカリ金属を含んだ方がカーボン(模擬PM)の燃焼開始温度がより低くなる傾向があり好ましい。このときに添加するアルカリ金属元素の量としては、モル比でアルカリ金属/(遷移金属+Ce)が1未満の範囲が好ましく、より好ましくは0.8未満の範囲である。下限値に関しては0.05である。特にアルカリ金属の中でも、K、Rb、Cs等の少なくとも一種を添加することにより、より燃焼開始温度低減の効果が得られるため好適である。   In addition, it is preferable that the composite oxide contains an alkali metal in its composition because the combustion start temperature of carbon (simulated PM) tends to be lower. The amount of the alkali metal element added at this time is preferably such that the alkali metal / (transition metal + Ce) is less than 1 in terms of molar ratio, more preferably less than 0.8. The lower limit is 0.05. In particular, among alkali metals, it is preferable to add at least one of K, Rb, Cs and the like because the effect of reducing the combustion start temperature can be obtained.

[遷移金属−Ce系触媒粉末の作成]
ここでは、複合酸化物中においてCeと遷移金属の主としてMn又はFeとの固溶体を形成させた場合について記載するが、本発明の技術的範囲はこれらの特定の記載に限定されないことはもちろんである。
[Preparation of transition metal-Ce catalyst powder]
Here, a case where a solid solution of Ce and a transition metal mainly Mn or Fe is formed in the composite oxide will be described, but it is a matter of course that the technical scope of the present invention is not limited to these specific descriptions. .

参考例1
硝酸マンガン(II)6水和物 Mn(NO326H2O(純度99.9%、株式会社高純度化学研究所製)0.01ymolと硝酸セリウム(III)6水和物Ce(NO3)36H2O(純度99.9%、株式会社高純度化学研究所製)0.01(1−y)mol(このときのyはMn/(Mn+Ce)のモル比を表す。参考例1においてはy=0.25とした。)を水15mLに溶解させる。激しく撹拌しながら、28%アンモニア水を滴下(15mL)し共沈させる。
得られた物質を蒸発乾固し、90℃の乾燥器で一晩乾燥させる。そうして得られた乾燥品粉末を空気中450℃(昇温速度300℃/h)で5時間焼成し、MnとCeを主成分とする複合酸化物の触媒粉末を作成した。
[ Reference Example 1 ]
Manganese (II) nitrate hexahydrate Mn (NO 3 ) 2 6H 2 O (purity 99.9%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) 0.01 ymol and cerium (III) nitrate hexahydrate Ce (NO 3 ) 3 6H 2 O (purity 99.9%, manufactured by Kojundo Chemical Laboratory Co., Ltd.) 0.01 (1-y) mol (where y is the molar ratio of Mn / (Mn + Ce). Reference Example 1 is set to y = 0.25) is dissolved in 15 mL of water. With vigorous stirring, 28% aqueous ammonia is added dropwise (15 mL) and coprecipitated.
The resulting material is evaporated to dryness and dried in a 90 ° C. oven overnight. The dried product powder thus obtained was calcined in air at 450 ° C. (heating rate 300 ° C./h) for 5 hours to prepare a catalyst powder of a composite oxide containing Mn and Ce as main components.

[本発明における評価方法]
(1)燃焼開始温度の測定
TG−DTA装置を使用して、模擬PM粒子としてカーボンブラックの燃焼開始温度の測定を行った。なおここで、TGはThermogravimetry(熱重量)、DTAはDifferential Thermal Analysis(示差熱)を指す。以下の全ての参考例、実施例及び比較例(ただし比較例1を除く)において混合割合は、複合酸化物触媒(比較例においては単独酸化物の場合を含む。)と模擬PM(カーボンブラック)の質量比が4:1になるように調整した。このときTG測定装置としてはリガク製TG−DTA装置Thermoplus TG8120を使用して測定した。装置内に流通させるガスの流量は、20vol.%O2と残部をN2とした混合ガス中で、昇温速度は10℃/分となるように調整後、測定を実施した。なお、燃焼開始温度は、TG曲線において、重量減少が始まる前の接線と重量減少率(角度)が最大となる点での接線との交点を燃焼開始温度として算出する。算出の方法を図5に示した。
(2)模擬PM(カーボンブラック)
三菱化学製カーボンブラック(平均粒径2.09μm)を模擬PMとして使用した。
[Evaluation method in the present invention]
(1) Measurement of combustion start temperature The combustion start temperature of carbon black was measured as simulated PM particles using a TG-DTA apparatus. Here, TG indicates Thermogravimetry (thermogravimetry) and DTA indicates Differential Thermal Analysis (differential heat). In all the following Reference Examples, Examples and Comparative Examples (except for Comparative Example 1), the mixing ratio is the composite oxide catalyst (including the case of a single oxide in the Comparative Example) and simulated PM (carbon black). The mass ratio was adjusted to 4: 1. At this time, it measured using TG-DTA apparatus Thermoplus TG8120 made from Rigaku as a TG measuring apparatus. The flow rate of the gas to be circulated in the apparatus was measured in a mixed gas in which 20 vol.% O 2 and the balance N 2 were adjusted so that the temperature rising rate was 10 ° C./min. The combustion start temperature is calculated as the combustion start temperature at the intersection of the tangent before the weight reduction starts and the tangent at the point where the weight reduction rate (angle) becomes maximum in the TG curve. The calculation method is shown in FIG.
(2) Simulated PM (carbon black)
Carbon black (average particle size: 2.09 μm) manufactured by Mitsubishi Chemical was used as a simulated PM.

(3)組成の分析
組成分析は堀場製作所製蛍光X線分析装置 MESA-500Wを使用して行った。
(4)XRD測定
結晶性の解析は粉末X線回折法を使用した。その際に使用した装置は島津製作所製のX線回折装置XD-D1を使用し、Cu-Kα線を使用して、管電圧30kV、管電流30mAにて2θ=10〜70°の角度をスキャンスピード2°/分の速度でスキャンすることにより回折を行った。
(5)比表面積の測定
比表面積の測定はBET法を用いて行い、日本ベル株式会社製のBelsorpMINIを使用して測定した。
(3) Composition analysis The composition analysis was performed using a fluorescent X-ray analyzer MESA-500W manufactured by Horiba.
(4) XRD measurement The crystallinity was analyzed using a powder X-ray diffraction method. The X-ray diffractometer XD-D1 manufactured by Shimadzu Corporation was used as the equipment used at that time, and Cu-Kα rays were used to scan an angle of 2θ = 10 to 70 ° at a tube voltage of 30 kV and a tube current of 30 mA. Diffraction was performed by scanning at a speed of 2 ° / min.
(5) Measurement of specific surface area The specific surface area was measured using the BET method and measured using BelsorpMINI manufactured by Bell Japan Co., Ltd.

得られた触媒粉末は組成分析の結果、モル比Ce/(Mn+Ce)=0.75の粒子になっており、図1に示すX線回折パターンを有するものだった。これをJCPDS(Joint Committee on Powder Diffraction Standards)パターンに当てはめるとMn酸化物に由来するピークは確認されず、大部分を占めるCe酸化物のピークのみが観察されたので、複合酸化物においてMnはCeの中に取り込まれた、いわゆる固溶体の形態をしているものと推測される。
また得られた粒子のBET値は80.1m2/gであり、TG(熱重量、Thermogravimetry)による燃焼開始温度は表1に示すように334℃と算出された。得られたTG曲線を図3に示す。
As a result of the compositional analysis, the obtained catalyst powder was particles having a molar ratio Ce / (Mn + Ce) = 0.75, and had an X-ray diffraction pattern shown in FIG. When this was applied to a JCPDS (Joint Committee on Powder Diffraction Standards) pattern, no peak derived from Mn oxide was confirmed, and only the peak of Ce oxide occupying the majority was observed. It is presumed that it is in the form of a so-called solid solution that is taken in.
The BET value of the obtained particles was 80.1 m 2 / g, and the combustion start temperature by TG (Thermogravimetry) was calculated as 334 ° C. as shown in Table 1. The obtained TG curve is shown in FIG.

Figure 0005119508
Figure 0005119508

参考例2〜5
複合酸化物中のCe/(Mn+Ce)のモル比を表1(表1及び後述の表2中において遷移金属をMで示す。)に記載のとおり変化させた以外は参考例1と同様に行った。その結果を表1に示す。
[ Reference Examples 2 to 5 ]
The same procedure as in Reference Example 1 was carried out except that the molar ratio of Ce / (Mn + Ce) in the composite oxide was changed as described in Table 1 (the transition metal is indicated by M in Table 1 and Table 2 described later). It was. The results are shown in Table 1.

参考例6〜11
硝酸マンガン(II)6水和物を硝酸鉄9水和物に変更し、FeとCeの割合を種々変化させた以外は参考例1と同様にして、FeとCeからなる複合酸化物粉末を作成した。その結果を表1に示す。
また、参考例6で得られた複合酸化物のX線回折パターンを図2に示す。これを前記JCPDSパターンに当てはめると、Fe酸化物に由来するピークは確認されず、大部分を占めるCe酸化物のピークのみが観察されたので、複合酸化物においてFeはCeの中に取り込まれた、いわゆる固溶体の形態をしているものと推測される。参考例6のカーボンブラックの燃焼挙動を示すTG曲線を図4に示す。
[ Reference Examples 6 to 11 ]
A composite oxide powder composed of Fe and Ce was prepared in the same manner as in Reference Example 1 except that manganese nitrate (II) hexahydrate was changed to iron nitrate nonahydrate and the ratio of Fe and Ce was variously changed. Created. The results are shown in Table 1.
Further, the X-ray diffraction pattern of the composite oxide obtained in Reference Example 6 is shown in FIG. When this was applied to the JCPDS pattern, the peak derived from Fe oxide was not confirmed, and only the peak of Ce oxide occupying the majority was observed, so that Fe was taken into Ce in the composite oxide. It is presumed that it is in the form of a so-called solid solution. A TG curve showing the combustion behavior of the carbon black of Reference Example 6 is shown in FIG.

参考例12〜14
参考例1において、Mnに代えてCo、Ni、Cuを使用した以外は同様にして、Co、Ni、CuのそれぞれとCeとからなる複合酸化物を作成した。その結果を表1に示す。
[ Reference Examples 12 to 14 ]
A composite oxide composed of Co, Ni, Cu and Ce was prepared in the same manner as in Reference Example 1 , except that Co, Ni, and Cu were used instead of Mn. The results are shown in Table 1.

参考例15
炭酸カリウム(K2CO3)を溶液濃度が0.60mol/Lになるよう水に溶解させ調製した。こうして得た溶液を参考例1の方法で作成しておいたMnとCeの複合酸化物(モル比:Ce/(Mn+Ce)=0.75)をるつぼに入れて90℃に加熱しながら、調製した前記0.60mol/Lの炭酸カリウム水溶液を撹拌させてK量でモル比:K/(Mn+Ce)=0.25となる液量を徐々に滴下した。滴下終了後、よく混合し、90℃に設定した乾燥器で一晩乾燥させた。そうして得られたK被着のMn−Ce複合酸化物の乾燥品を空気中450℃(昇温速度300℃/時間)で5時間焼成することによって、Kを含有するMnとCeの複合酸化物を得た。
得られた触媒粉末は組成分析の結果、モル比でCe/(Mn+Ce)=0.75、K/(Mn+Ce)=0.25の粒子であった。TGによる燃焼開始温度は337℃であった。
[ Reference Example 15 ]
Potassium carbonate (K 2 CO 3 ) was prepared by dissolving in water so that the solution concentration was 0.60 mol / L. The solution obtained in this way was prepared by putting the composite oxide of Mn and Ce (molar ratio: Ce / (Mn + Ce) = 0.75) prepared by the method of Reference Example 1 into a crucible and heating to 90 ° C. The 0.66 mol / L potassium carbonate aqueous solution was stirred and a liquid amount of K / (Mn + Ce) = 0.25 was gradually added dropwise. After completion of dropping, the mixture was mixed well and dried overnight in a drier set at 90 ° C. The thus obtained dried K-coated Mn—Ce composite oxide is fired in air at 450 ° C. (temperature increase rate: 300 ° C./hour) for 5 hours, thereby containing a composite of Mn and Ce containing K. An oxide was obtained.
As a result of composition analysis, the obtained catalyst powder was particles having a molar ratio of Ce / (Mn + Ce) = 0.75 and K / (Mn + Ce) = 0.25. The combustion start temperature by TG was 337 ° C.

参考例16〜20
滴下する炭酸カリウム水溶液量を変化させた以外は参考例15と同様の操作を行なって、触媒粒子を合成した。その際の粒子の組成、燃焼特性について表1に示す。
[ Reference Examples 16 to 20 ]
Catalyst particles were synthesized in the same manner as in Reference Example 15 except that the amount of potassium carbonate aqueous solution dropped was changed. Table 1 shows the composition and combustion characteristics of the particles.

参考例21
0.60mol/Lになるよう調製した炭酸ルビジウム(Rb2CO3)(和光純薬工業株式会社製)を準備し、参考例1の方法にて作成しておいたMnとCeの複合酸化物(モル比:Ce/(Mn+Ce)=0.75)におけるMnとCeの合計に対してRbがモル比でRb/(Mn+Ce)=0.15になるように添加する液量を調整した。その後、参考例1の方法にて作成しておいたMn−Ceの複合酸化物をるつぼに入れ、90℃で加熱しながら、調製した炭酸ルビジウム溶液を徐々に滴下した。全て滴下した後、よく混合し90℃の乾燥器で一晩乾燥させた。空気中450℃(昇温速度300℃/時間)で5時間焼成することによって、Rbを含有するMnとCeの複合酸化物を得た。
[ Reference Example 21 ]
A composite oxide of Mn and Ce prepared by the method of Reference Example 1 by preparing rubidium carbonate (Rb 2 CO 3 ) (manufactured by Wako Pure Chemical Industries, Ltd.) prepared to be 0.60 mol / L. The amount of liquid added was adjusted such that Rb was in a molar ratio of Rb / (Mn + Ce) = 0.15 with respect to the sum of Mn and Ce in (molar ratio: Ce / (Mn + Ce) = 0.75). Thereafter, the Mn—Ce composite oxide prepared by the method of Reference Example 1 was placed in a crucible, and the prepared rubidium carbonate solution was gradually added dropwise while heating at 90 ° C. After all was added dropwise, the mixture was mixed well and dried overnight in a 90 ° C. drier. The composite oxide of Mn and Ce containing Rb was obtained by firing for 5 hours at 450 ° C. (temperature increase rate 300 ° C./hour) in the air.

得られた触媒粉末は組成分析の結果、モル比でCe/(Mn+Ce)=0.75、Rb/(Mn+Ce)=0.15の粒子であった。BET値は15.17m2/gであり、TGによる燃焼開始温度は302℃であった。得られた粒子のX線回折パターンは図1に示すとおりであり、これをJCPDSパターンに当てはめるとMn酸化物に由来するピークは確認されず、大部分を占めるCe酸化物のピークのみが観察されたので、MnはCeの中に取り込まれた、いわゆる固溶体の形態をしているものと推測される。
また、参考例21のTG曲線を図3に示す。
As a result of composition analysis, the obtained catalyst powder was particles having a molar ratio of Ce / (Mn + Ce) = 0.75 and Rb / (Mn + Ce) = 0.15. The BET value was 15.17 m 2 / g, and the combustion start temperature by TG was 302 ° C. The X-ray diffraction pattern of the obtained particles is as shown in FIG. 1. When this is applied to the JCPDS pattern, no peak derived from Mn oxide is confirmed, and only the peak of Ce oxide occupying the majority is observed. Therefore, it is presumed that Mn is in the form of a so-called solid solution incorporated in Ce.
The TG curve of Reference Example 21 is shown in FIG.

参考例22〜26
Mn−Ceの複合酸化物に滴下するRb水溶液量をそれぞれ表1に示した物量になるように変化させた以外は参考例21と同様の操作を行なって触媒粒子を合成させた。その際の粒子の組成、燃焼特性について表1に示す。
[ Reference Examples 22 to 26 ]
Catalyst particles were synthesized in the same manner as in Reference Example 21 , except that the amount of the Rb aqueous solution dropped onto the Mn—Ce composite oxide was changed to the amount shown in Table 1, respectively. Table 1 shows the composition and combustion characteristics of the particles.

参考例27
0.60mol/Lになるよう調製した炭酸セシウムを準備し、参考例1の方法にて作成しておいたMnとCeの複合酸化物(モル比: Ce/(Mn+Ce)=0.75)におけるMnとCeの合計に対してCsがモル比でCs/(Mn+Ce)=0.38になるよう添加する液量を調整した。その後、参考例1の方法にて作成しておいたMnとCeの複合酸化物をるつぼに入れ、90℃で加熱・撹拌させながら、調製した炭酸セシウム溶液を徐々に滴下した。滴下終了後、よく混合し90℃の乾燥器で一晩乾燥させた。空気中450℃(昇温速度300℃/時間)で5時間焼成することによって、Csを含有するMnとCeとの複合酸化物を得た。
[ Reference Example 27 ]
Cesium carbonate prepared to 0.66 mol / L was prepared, and the composite oxide of Mn and Ce (molar ratio: Ce / (Mn + Ce) = 0.75) prepared by the method of Reference Example 1 was used. The amount of liquid added was adjusted so that Cs was in a molar ratio of Cs / (Mn + Ce) = 0.38 with respect to the total of Mn and Ce. Thereafter, the composite oxide of Mn and Ce prepared by the method of Reference Example 1 was put in a crucible, and the prepared cesium carbonate solution was gradually added dropwise while heating and stirring at 90 ° C. After completion of dropping, the mixture was mixed well and dried overnight in a 90 ° C. drier. The composite oxide of Mn and Ce containing Cs was obtained by firing in air at 450 ° C. (temperature rising rate 300 ° C./hour) for 5 hours.

得られた複合酸化物は組成分析の結果、モル比でCe/(Mn+Ce)=0.75、Cs/(Mn+Ce)=0.38の粒子であった。TGによる燃焼開始温度は296℃であった。得られた粒子のX線回折パターンは図1に示すとおりであり、これをJCPDSパターンに当てはめるとMn酸化物に由来するピークは確認されず、大部分を占めるCe酸化物のピークのみが観察されたので、複合酸化物においてMnはCeの中に取り込まれた、いわゆる固溶体の形態をしているものと推測される。
また、参考例27のTG曲線を図3に示す。
As a result of composition analysis, the obtained composite oxide was particles having a molar ratio of Ce / (Mn + Ce) = 0.75 and Cs / (Mn + Ce) = 0.38. The combustion start temperature by TG was 296 ° C. The X-ray diffraction pattern of the obtained particles is as shown in FIG. 1. When this is applied to the JCPDS pattern, no peak derived from Mn oxide is confirmed, and only the peak of Ce oxide occupying the majority is observed. Therefore, it is presumed that in the composite oxide, Mn is in the form of a so-called solid solution taken into Ce.
The TG curve of Reference Example 27 is shown in FIG.

参考例28〜29
Mn−Ceの複合酸化物に滴下するCs水溶液量をそれぞれ表1に示した物量になるように変化させた以外は参考例27と同様の操作を行なって触媒粒子を合成させた。その際の粒子の組成、燃焼特性について表1に示す。
[ Reference Examples 28 to 29 ]
Catalyst particles were synthesized in the same manner as in Reference Example 27 except that the amount of the Cs aqueous solution dropped onto the composite oxide of Mn—Ce was changed to the amount shown in Table 1, respectively. Table 1 shows the composition and combustion characteristics of the particles.

実施例1〜2
0.60mol/Lになるよう調製した炭酸ルビジウムを準備し、参考例6の方法にて作成しておいたFeとCeの複合酸化物(モル比: Ce/(Fe+Ce)=0.95)におけるFeとCeの合計に対してRbがモル比でRb/(Fe+Ce)=0.17、0.34になるよう添加する液量を調整した。その後、参考例6の方法にて作成しておいたFeとCeの複合酸化物をるつぼに入れ、90℃で加熱・撹拌させながら、調製した炭酸ルビジウム溶液を徐々に滴下した。滴下終了後、よく混合し90℃の乾燥器で一晩乾燥させた。空気中450℃(昇温速度300℃/時間)で5時間焼成することによって、Rbを含有するFeとCeとの複合酸化物を得た。
実施例2で得られたRb/(Fe+Ce)=0.34の粒子は、図2に示すX線回折パターンを有しており、これをJCPDSパターンに当てはめるとFe酸化物に由来するピークは確認されず、大部分を占めるCe酸化物のピークのみが観察されたので、複合酸化物においてFeはCeの中に取り込まれた、いわゆる固溶体の形態をしているものと推測される。実施例2で得られた物質の燃焼状態を示すTG曲線を図4に示した。
[ Examples 1-2 ]
In the composite oxide of Fe and Ce (molar ratio: Ce / (Fe + Ce) = 0.95) prepared by the method of Reference Example 6 , rubidium carbonate prepared to 0.66 mol / L was prepared. The amount of liquid added was adjusted so that Rb was in a molar ratio of Rb / (Fe + Ce) = 0.17, 0.34 with respect to the total of Fe and Ce. Thereafter, the composite oxide of Fe and Ce prepared by the method of Reference Example 6 was placed in a crucible, and the prepared rubidium carbonate solution was gradually added dropwise while heating and stirring at 90 ° C. After completion of dropping, the mixture was mixed well and dried overnight in a 90 ° C. drier. The composite oxide of Fe and Ce containing Rb was obtained by firing for 5 hours at 450 ° C. (temperature increase rate: 300 ° C./hour) in the air.
The particles of Rb / (Fe + Ce) = 0.34 obtained in Example 2 have the X-ray diffraction pattern shown in FIG. 2, and when this is applied to the JCPDS pattern, a peak derived from Fe oxide is confirmed. However, since only the peak of Ce oxide occupying the majority was observed, it is presumed that in the composite oxide, Fe is in the form of a so-called solid solution taken into Ce. A TG curve showing the combustion state of the substance obtained in Example 2 is shown in FIG.

実施例3
0.60mol/Lになるよう調製した炭酸セシウムを準備し、参考例6の方法にて作成しておいたFeとCeの複合酸化物(モル比: Ce/(Fe+Ce)=0.95)におけるFeとCeの合計に対してCsがモル比でCs/(Fe+Ce)=0.33になるよう添加する液量を調整した。その後、参考例6の方法にて作成しておいたFeとCeの複合酸化物をるつぼに入れ、90℃で加熱・撹拌させながら、調製した炭酸セシウム溶液を徐々に滴下した。滴下終了後、よく混合し90℃の乾燥器で一晩乾燥させた。空気中450℃(昇温速度300℃/時間)で5時間焼成することによって、Csを含有するFeとCeとの複合酸化物を得た。その際の粒子の組成、燃焼特性について表1に示す。
[ Example 3 ]
Cesium carbonate prepared to 0.66 mol / L was prepared, and the composite oxide of Fe and Ce (molar ratio: Ce / (Fe + Ce) = 0.95) prepared by the method of Reference Example 6 was used. The amount of liquid added was adjusted so that Cs was in a molar ratio of Cs / (Fe + Ce) = 0.33 with respect to the total of Fe and Ce. Thereafter, the composite oxide of Fe and Ce prepared by the method of Reference Example 6 was put in a crucible, and the prepared cesium carbonate solution was gradually added dropwise while heating and stirring at 90 ° C. After completion of dropping, the mixture was mixed well and dried overnight in a 90 ° C. drier. The composite oxide of Fe and Ce containing Cs was obtained by firing in air at 450 ° C. (temperature increase rate 300 ° C./hour) for 5 hours. Table 1 shows the composition and combustion characteristics of the particles.

実施例4
Fe−Ceの複合酸化物に滴下するCs水溶液量を表1に示した物量になるように変化させた以外は実施例3と同様の操作を行なって触媒粒子を合成させた。その際の粒子の組成、燃焼特性について表1に示す。
[ Example 4 ]
Catalyst particles were synthesized in the same manner as in Example 3 except that the amount of the Cs aqueous solution dropped onto the composite oxide of Fe—Ce was changed to the amount shown in Table 1. Table 1 shows the composition and combustion characteristics of the particles.

得られた複合酸化物は組成分析の結果、モル比でCe/(Fe+Ce)=0.95、Cs/(Fe+Ce)=0.49の粒子であった。TGによる燃焼開始温度は323℃であった。得られた粒子のX線回折パターンは図2に示すとおりであり、これをJCPDSパターンに当てはめるとFe酸化物に由来するピークは確認されず、大部分を占めるCe酸化物のピークのみが観察されたので、複合酸化物においてFeはCeの中に取り込まれた、いわゆる固溶体の形態をしているものと推測される。
また、実施例4のTG曲線を図4に示す。
As a result of the composition analysis, the obtained composite oxide was particles having a molar ratio of Ce / (Fe + Ce) = 0.95 and Cs / (Fe + Ce) = 0.49. The combustion start temperature by TG was 323 ° C. The X-ray diffraction pattern of the obtained particles is as shown in FIG. 2, and when this is applied to the JCPDS pattern, the peak derived from Fe oxide is not confirmed, and only the peak of Ce oxide occupying the majority is observed. Therefore, it is presumed that in the composite oxide, Fe is in the form of a so-called solid solution taken into Ce.
Moreover, the TG curve of Example 4 is shown in FIG.

[比較例1]
カーボンブラックのみの燃焼開始温度測定を行うと、表2に示すように624℃であった。
[Comparative Example 1]
When the combustion start temperature of only carbon black was measured, it was 624 ° C. as shown in Table 2.

Figure 0005119508
Figure 0005119508

[比較例2〜4]
触媒粒子として、それぞれMn23、CeO2、Fe23を使用して(これら酸化物の作成方法は、相対する元素を添加しなかった以外は参考例1参考例6と同様である。)、燃焼開始温度測定を行った。燃焼開始温度はMn23の場合(比較例2)が426℃、CeO2の場合(比較例3)が444℃、Fe23の場合(比較例4)が469℃であった。比較例2と比較例3の両比較例のTG曲線を図3に示し、比較例2(破線)と比較例4(実線)の両比較例のTG曲線
を図4に示す。
[Comparative Examples 2 to 4]
As catalyst particles, Mn 2 O 3 , CeO 2 , and Fe 2 O 3 were used, respectively. (The preparation method of these oxides was the same as in Reference Example 1 and Reference Example 6 except that the corresponding elements were not added. There was a combustion start temperature measurement. The combustion start temperature was 426 ° C. for Mn 2 O 3 (Comparative Example 2), 444 ° C. for CeO 2 (Comparative Example 3), and 469 ° C. for Fe 2 O 3 (Comparative Example 4). FIG. 3 shows the TG curves of both Comparative Examples 2 and 3, and FIG. 4 shows the TG curves of both Comparative Examples 2 (broken line) and Comparative Example 4 (solid line).

[比較例5]
複合酸化物においてCe/(Mn+Ce)=0.10に変化させた以外は参考例1と同様にして、触媒粒子を調製し、燃焼開始温度測定を行った。燃焼開始温度は412℃であった。
[Comparative Example 5]
Catalyst particles were prepared in the same manner as in Reference Example 1 except that the complex oxide was changed to Ce / (Mn + Ce) = 0.10, and the combustion start temperature was measured. The combustion start temperature was 412 ° C.

[比較例6]
複合酸化物においてCe/(Fe+Ce)=0.50に変化させた以外は参考例6と同様にして、触媒粒子を調製し、燃焼開始温度測定を行った。燃焼開始温度は401℃であった。
[Comparative Example 6]
Catalyst particles were prepared in the same manner as in Reference Example 6 except that the complex oxide was changed to Ce / (Fe + Ce) = 0.50, and the combustion start temperature was measured. The combustion start temperature was 401 ° C.

[比較例7〜9]
MnとCeの複合酸化物試料の調製と同様の手順でMn−Prを調製した。すなわち参考例のCe原料の代わりにPr原料として硝酸プラセオジム(III)6水和物(純度99.9%、キシダ化学株式会社製)を使用した。Pr/Mnのモル比をそれぞれ表2のとおり変化させた粒子を作成してそれぞれ燃焼開始温度測定を行った。燃焼開始温度を表2に示す。
[Comparative Examples 7 to 9]
Mn-Pr was prepared by the same procedure as that for preparing a composite oxide sample of Mn and Ce. That is, praseodymium (III) nitrate hexahydrate (purity 99.9%, manufactured by Kishida Chemical Co., Ltd.) was used as the Pr raw material instead of the Ce raw material of the reference example . Particles in which the Pr / Mn molar ratio was changed as shown in Table 2 were prepared, and the combustion start temperature was measured. Table 2 shows the combustion start temperature.

参考例と比較例7〜9の比較において、遷移金属とCeの複合酸化物と遷移金属とPrの複合酸化物の比較を行ったときの触媒活性の違いがわかる。この結果より、Ceと遷移金属の複合酸化物を形成させたときの方が、同様にランタノイド元素であるPrを使用した場合に比較してより高い触媒活性を有していることがわかる。 In the comparison between the reference example and Comparative Examples 7 to 9, the difference in catalytic activity is found when the transition metal / Ce composite oxide and the transition metal / Pr composite oxide are compared. From this result, it can be seen that when a complex oxide of Ce and a transition metal is formed, the catalyst activity is higher than that in the case of using Pr which is a lanthanoid element.

参考例1参考例15以降の比較によって、粒子に対する添加元素の効果がわかる。つまり、K、RbまたはCsが存在しているとカーボン燃焼開始温度の低下効果がより一層高まる可能性が示唆される結果が得られ、特に、参考例21以降に示したRb、Csを選択することによって燃焼開始温度の低減効果がより高まることがわかる。 A comparison between Reference Example 1 and Reference Example 15 and later shows the effect of the additive element on the particles. That is, when K, Rb, or Cs is present, a result suggesting that the effect of lowering the carbon combustion start temperature may be further increased. In particular, Rb and Cs shown in Reference Example 21 and later are selected. It can be seen that the effect of reducing the combustion start temperature is further increased.

参考例1〜5あるいは参考例6〜11と比較例2〜4の対比から、Mn、Ce、Feの各酸化物(Mn23、Fe23、CeO2)成分は単独で存在してもどの成分も存在しない比較例1に比べて燃焼開始温度は低下するが、これら成分が複合化することによって、さらにその効果を増すことが可能であることが示される。さらには、XRDパターンにおいて、Mn23あるいはFe23のピークが現れず、複合酸化物においてCeにMnが固溶した状態にあると見られる場合の方が、その効果は顕著となる可能性が高いことが示唆される。 From the comparison between Reference Examples 1 to 5 or Reference Examples 6 to 11 and Comparative Examples 2 to 4, each oxide of Mn, Ce, and Fe (Mn 2 O 3 , Fe 2 O 3 , CeO 2 ) is present alone. However, although the combustion start temperature is lower than that of Comparative Example 1 in which no component is present, it is shown that the effect can be further increased by combining these components. Further, in the XRD pattern, the Mn 2 O 3 or Fe 2 O 3 peak does not appear, and the effect is more remarkable when it is considered that Mn is in a solid solution state in Ce in the composite oxide. It is suggested that the possibility is high.

参考例1、21、27に係るMn−Ce系粒子のX線回折パターンを示した図である。It is the figure which showed the X-ray-diffraction pattern of the Mn-Ce type | system | group particle which concerns on the reference examples 1,2,27 . 参考例6実施例2、4に係るFe−Ce系粒子のX線回折パターンを示した図である。It is the figure which showed the X-ray-diffraction pattern of the reference example 6 and the Fe-Ce type particle | grain which concerns on Example 2 , 4. FIG. 参考例1、21、27に係る粒子と比較例2、3に係る粒子のTG曲線を示す図である。It is a figure which shows the TG curve of the particle | grains which concern on the reference example 1,2,27 and the particle | grains which concern on the comparative example 2,3. 参考例6実施例2、4に係る粒子と比較例2、4に係る粒子のTG曲線を示す図である。It is a figure which shows the TG curve of the particle which concerns on the reference example 6 , Example 2 , 4, and the particle which concerns on the comparative example 2,4. 燃焼開始温度の算出方法を示す模式図である。It is a schematic diagram which shows the calculation method of combustion start temperature.

Claims (8)

アルカリ金属を含有したFeとCeとの複合酸化物からなるPM燃焼用酸化触媒。 An oxidation catalyst for PM combustion comprising a complex oxide of Fe and Ce containing an alkali metal. 前記複合酸化物においてFeとCeとが固溶体を形成している、請求項1に記載のPM燃焼用酸化触媒。 The oxidation catalyst for PM combustion according to claim 1, wherein Fe and Ce form a solid solution in the composite oxide. 前記複合酸化物中におけるCe/(Fe+Ce)のモル比が0.5より大で1.0未満である、請求項1または2に記載のPM燃焼用酸化触媒。 The oxidation catalyst for PM combustion according to claim 1 or 2, wherein a molar ratio of Ce / (Fe + Ce) in the composite oxide is greater than 0.5 and less than 1.0. 前記アルカリ金属がK、Rb、Csの少なくとも一種である、請求項1〜3のいずれかに記載のPM燃焼用酸化触媒。 The oxidation catalyst for PM combustion according to any one of claims 1 to 3 , wherein the alkali metal is at least one of K, Rb, and Cs. 前記複合酸化物中において前記アルカリ金属/(Fe+Ce)のモル比が1未満である、請求項1〜4のいずれかに記載のPM燃焼用酸化触媒。 The oxidation catalyst for PM combustion according to any one of claims 1 to 4 , wherein a molar ratio of the alkali metal / ( Fe + Ce) is less than 1 in the composite oxide. 請求項1〜5のいずれかに記載の酸化触媒を用いてPM酸化開始温度を346℃以下に低減させるディーゼル機関排ガスの浄化方法。 A diesel engine exhaust gas purification method for reducing the PM oxidation start temperature to 346 ° C or lower using the oxidation catalyst according to any one of claims 1 to 5 . 請求項1〜5のいずれかに記載のPM燃焼用酸化触媒を用いたディーゼル機関排ガスのフィルター。 A diesel engine exhaust gas filter using the PM combustion oxidation catalyst according to any one of claims 1 to 5 . 請求項1〜5のいずれかに記載のPM燃焼用酸化触媒を用いたディーゼル機関排ガスの浄化装置。 A diesel engine exhaust gas purification apparatus using the PM combustion oxidation catalyst according to any one of claims 1 to 5 .
JP2006067915A 2005-11-21 2006-03-13 PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same Expired - Fee Related JP5119508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006067915A JP5119508B2 (en) 2005-11-21 2006-03-13 PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005336408 2005-11-21
JP2005336408 2005-11-21
JP2006067915A JP5119508B2 (en) 2005-11-21 2006-03-13 PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same

Publications (2)

Publication Number Publication Date
JP2007160297A JP2007160297A (en) 2007-06-28
JP5119508B2 true JP5119508B2 (en) 2013-01-16

Family

ID=38243795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006067915A Expired - Fee Related JP5119508B2 (en) 2005-11-21 2006-03-13 PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same

Country Status (1)

Country Link
JP (1) JP5119508B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904458B2 (en) * 2006-02-07 2012-03-28 Dowaエレクトロニクス株式会社 Composite oxide and filter for PM combustion catalyst
EP1920831B1 (en) * 2006-11-08 2020-06-03 Nissan Motor Co., Ltd. Compound oxide-based particulate matter oxidizing catalyst
JP5057462B2 (en) * 2007-12-26 2012-10-24 本田技研工業株式会社 Exhaust gas purification catalyst
JP5441380B2 (en) * 2008-09-19 2014-03-12 株式会社日本触媒 Formaldehyde oxidation catalyst and method for producing the same
JP2010131531A (en) * 2008-12-05 2010-06-17 Nippon Shokubai Co Ltd Air cleaning catalyst and its manufacturing method
JP5287358B2 (en) * 2009-03-03 2013-09-11 日産自動車株式会社 Oxidation catalyst
JP5708767B1 (en) * 2013-11-22 2015-04-30 トヨタ自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP2017144423A (en) * 2016-02-17 2017-08-24 トヨタ自動車株式会社 Catalyst for exhaust purification and method for producing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1131198A (en) * 1979-02-01 1982-09-07 Carus Corporation Rare earth-manganese oxidation catalysts and process of producing
JPH067920B2 (en) * 1987-03-31 1994-02-02 株式会社リケン Exhaust gas purification material and exhaust gas purification method
JP2863571B2 (en) * 1989-10-03 1999-03-03 株式会社リケン Exhaust gas purifying material and exhaust gas purifying method
JPH0440235A (en) * 1990-06-04 1992-02-10 Riken Corp Exhaust gas purifying material and method
JPH0440236A (en) * 1990-06-04 1992-02-10 Riken Corp Exhaust gas purifying material and method
JPH0440237A (en) * 1990-06-04 1992-02-10 Riken Corp Exhaust gas purifying material and method
JPH0531330A (en) * 1991-07-31 1993-02-09 Riken Corp Decontamination of exhaust gas
JPH09271665A (en) * 1996-04-04 1997-10-21 Nippon Soken Inc Exhaust gas purifying catalyst
US5977017A (en) * 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
JPH10151348A (en) * 1996-11-22 1998-06-09 Toyota Central Res & Dev Lab Inc Oxidation catalyst
JP2002186856A (en) * 2000-12-21 2002-07-02 Nippon Mitsubishi Oil Corp Diesel exhaust gas cleaning catalyst
JP3940794B2 (en) * 2002-11-08 2007-07-04 独立行政法人産業技術総合研究所 Catalyst for burning hydrocarbons in exhaust gas and method for burning hydrocarbons in exhaust gas
JP4776869B2 (en) * 2003-01-16 2011-09-21 パナソニック株式会社 Exhaust gas purification catalyst, exhaust gas purification material using the same, and method for producing the same
JP4679583B2 (en) * 2004-10-14 2011-04-27 田中貴金属工業株式会社 Platinum group metal-free catalyst for filtering particulates on diesel particulate filters

Also Published As

Publication number Publication date
JP2007160297A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP5119508B2 (en) PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same
JP5698908B2 (en) Exhaust gas purification catalyst
JP5864443B2 (en) Exhaust gas purification catalyst
JP5190196B2 (en) Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP5063980B2 (en) Composite oxide and filter for exhaust gas purification catalyst
JPWO2014103597A1 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
WO2007113981A1 (en) Catalyst composition
JP2011045840A (en) Catalyst composition
JP4904458B2 (en) Composite oxide and filter for PM combustion catalyst
CN109689205A (en) Purposes of the vanadate as oxidation catalyst
JP6145763B2 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP4768475B2 (en) Composite oxide and filter for PM combustion catalyst
JP5101346B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2008284512A (en) Oxygen absorbing-releasing material and exhaust gas purifying catalyst containing the same
JP5585805B2 (en) PM oxidation catalyst and production method thereof
JP5387318B2 (en) Particulate combustion catalyst and particulate combustion removal method using the same
JP5973914B2 (en) Method for producing catalyst composition for exhaust gas treatment
WO2018055894A1 (en) Particulate matter combustion catalyst and particulate matter combustion catalyst filter
JP5541843B2 (en) Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same
JP2019136632A (en) Combustion catalyst
JPWO2009044736A1 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
JP6549858B2 (en) Exhaust gas purification three-way catalyst
JP2000051698A (en) Exhaust emission purifying catalyst and its use
JP2020033246A (en) Delaffosite oxides and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees