JP4768475B2 - Composite oxide and filter for PM combustion catalyst - Google Patents

Composite oxide and filter for PM combustion catalyst Download PDF

Info

Publication number
JP4768475B2
JP4768475B2 JP2006054383A JP2006054383A JP4768475B2 JP 4768475 B2 JP4768475 B2 JP 4768475B2 JP 2006054383 A JP2006054383 A JP 2006054383A JP 2006054383 A JP2006054383 A JP 2006054383A JP 4768475 B2 JP4768475 B2 JP 4768475B2
Authority
JP
Japan
Prior art keywords
composite oxide
combustion
combustion catalyst
molar ratio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006054383A
Other languages
Japanese (ja)
Other versions
JP2007229619A (en
Inventor
拓哉 矢野
優樹 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2006054383A priority Critical patent/JP4768475B2/en
Publication of JP2007229619A publication Critical patent/JP2007229619A/en
Application granted granted Critical
Publication of JP4768475B2 publication Critical patent/JP4768475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、自動車等のディーゼルエンジンから排出されるPM(粒子状物質)を燃焼するための触媒に適した複合酸化物、並びにそれを用いたPM燃焼触媒およびディーゼル排ガス浄化用フィルターに関する。   The present invention relates to a composite oxide suitable for a catalyst for burning PM (particulate matter) discharged from a diesel engine such as an automobile, and a PM combustion catalyst and a diesel exhaust gas purification filter using the same.

ディーゼルエンジンの排ガスに関しては、特に窒素酸化物(NOx)とPMが問題となっている。このうちPMはカーボンを主体とする微粒子であり、その除去方法として排気ガス流路にパーティキュレート・フィルター(DPF)を設置してPMをトラップする方法が一般化されつつある。トラップされたPMは間欠的または連続的に燃焼され、当該DPFは再生される。 Nitrogen oxides (NO x ) and PM are particularly problematic with regard to exhaust gas from diesel engines. Among these, PM is fine particles mainly composed of carbon, and a method for trapping PM by installing a particulate filter (DPF) in an exhaust gas flow path is becoming common as a method for removing the particulate matter. The trapped PM is burned intermittently or continuously, and the DPF is regenerated.

このDPF再生処理には、電気ヒーターやバーナー等を用いて外部加熱によりPMを燃焼させる方法、DPFよりもエンジン側に酸化触媒を設置し、排ガス中のNOを酸化触媒によりNO2にし、NO2の酸化力によりPMを燃焼させる方法などがある。しかし、電気ヒーターやバーナーなどは外部からエネルギーを加える必要があり、システムが複雑化する。また、酸化触媒については触媒活性が十分発揮されるほど排ガス温度が高くないことや、ある一定の運転状況下でなければPM燃焼に必要なNOが排ガス中に含まれてこないことなど、種々の問題がある。そのような中、DPFに触媒を担持させ、その触媒作用によりPMの燃焼温度を低下させ、排ガス温度にて連続的に燃焼させる触媒方式が望ましいとされている。 In this DPF regeneration process, a method of burning PM by external heating using an electric heater, a burner or the like, an oxidation catalyst is installed on the engine side of the DPF, NO in the exhaust gas is changed to NO 2 by the oxidation catalyst, and NO 2 There is a method of burning PM by the oxidizing power of the. However, electric heaters and burners need to be externally applied, which complicates the system. In addition, regarding the oxidation catalyst, the exhaust gas temperature is not so high that the catalytic activity is sufficiently exhibited, and NO necessary for PM combustion is not contained in the exhaust gas unless under certain operating conditions. There's a problem. Under such circumstances, a catalyst system in which a catalyst is supported on a DPF, the PM combustion temperature is lowered by the catalytic action, and combustion is continuously performed at the exhaust gas temperature is desirable.

特許文献1には触媒金属としてPtを担持したものが開示されている。しかし、排ガス温度レベルではPtはPMを燃焼させる触媒作用が低いため、燃料排ガス温度にてPMを連続的に燃焼させるのは困難と考えられる。また、貴金属を使用しているためコストの増大が避けられない。   Patent Document 1 discloses a material carrying Pt as a catalyst metal. However, since Pt has a low catalytic action for burning PM at the exhaust gas temperature level, it is considered difficult to continuously burn PM at the fuel exhaust gas temperature. Further, since noble metals are used, an increase in cost is inevitable.

特許文献2には白金族金属を含まない種々の元素を用いた触媒が開示されている。その多くはAgを含むものである。Agを含まない組成でPMの燃焼に効果が見られた組成物は、NO2存在下ではPMに対する高い燃焼活性を示すが、酸素が唯一の酸化剤である雰囲気では十分な燃焼活性を示さず、燃焼雰囲気に大きく左右されるものであった。排ガス組成は一定ではないため、排ガスに含まれるガス濃度に影響されず、PMに対する高い燃焼活性を示すものが望まれる。 Patent Document 2 discloses a catalyst using various elements not containing a platinum group metal. Many of them contain Ag. A composition that does not contain Ag and has an effect on PM combustion exhibits high combustion activity against PM in the presence of NO 2 , but does not exhibit sufficient combustion activity in an atmosphere where oxygen is the only oxidant. It was greatly influenced by the combustion atmosphere. Since the composition of the exhaust gas is not constant, it is desirable to have a high combustion activity for PM without being affected by the concentration of gas contained in the exhaust gas.

特開平11−253757号公報Japanese Patent Laid-Open No. 11-253757 特開2004−42021号公報JP 2004-42021 A

本出願人は、貴金属元素を使用しない触媒として、Ceと遷移金属元素の複合酸化物を含むPM燃焼触媒を特願2005−336408号にて提案し、これによりPM燃焼温度の大幅な低温化が実現されている。しかし、この技術ではPM燃焼触媒の耐熱性については特段の配慮がなされておらず、PM燃焼時の発熱により触媒温度が急激に上昇した場合を考慮すると、高温の熱履歴を受けた場合にも触媒活性が高く維持できる耐熱性を具備した触媒物質の開発が待たれている。   The present applicant has proposed a PM combustion catalyst containing a composite oxide of Ce and a transition metal element in Japanese Patent Application No. 2005-336408 as a catalyst that does not use a noble metal element, thereby significantly reducing the PM combustion temperature. It has been realized. However, in this technology, no special consideration is given to the heat resistance of the PM combustion catalyst. Considering the case where the catalyst temperature suddenly rises due to the heat generated during PM combustion, Development of a catalytic material having heat resistance that can maintain high catalytic activity is awaited.

本発明は、貴金属元素を含まずにディーゼルエンジン排ガスのPMを低温で燃焼させることができる触媒活性を有し、かつPM燃焼時の発熱に耐えうる耐熱性を備えた複合酸化物を開発し提供しようというものである。   The present invention develops and provides composite oxides that have catalytic activity that can burn PM of diesel engine exhaust gas at low temperatures without containing precious metal elements, and that have heat resistance that can withstand the heat generated during PM combustion. It is to try.

上記目的は、CeおよびCoと、酸素で構成され、CeおよびCoのモル比が下記[a]を満たすPM燃焼触媒用複合酸化物によって達成される。
[a]CeおよびCoのモル比を、Ce:Co=(1−x):xとするとき、0<x≦0.5が成立する。
また、Ce、Coおよび1種以上の元素Mと、酸素で構成され、Ce、Coおよび元素Mのモル比が下記[b]を満たすPM燃焼触媒用複合酸化物が提供される。
[b]Ce、Coおよび元素Mのモル比を、Ce:Co:M=(1−x−y):x:yとするとき、0<x≦0.5、0<y≦0.4、x+y<1が成立する。
ただし元素Mは、Ce以外の希土類元素(Yも希土類元素として扱う)およびアルカリ土類金属元素からなる元素群から選択される元素であり、例えばY、La、Pr、Nd、Sm、Gd、Tb、Dy、BaおよびSrからなる元素群から選択される元素が挙げられる。
The above object is achieved by a composite oxide for PM combustion catalyst which is composed of Ce and Co and oxygen, and the molar ratio of Ce and Co satisfies the following [a].
[A] When the molar ratio of Ce and Co is Ce: Co = (1-x): x, 0 <x ≦ 0.5 is established.
Also provided is a composite oxide for PM combustion catalyst, which is composed of Ce, Co and one or more elements M and oxygen, and the molar ratio of Ce, Co and element M satisfies the following [b].
[B] When the molar ratio of Ce, Co and element M is Ce: Co: M = (1-xy): x: y, 0 <x ≦ 0.5, 0 <y ≦ 0.4 , X + y <1 holds.
However, the element M is an element selected from an element group consisting of a rare earth element other than Ce (Y is also treated as a rare earth element) and an alkaline earth metal element. For example, Y, La, Pr, Nd, Sm, Gd, Tb , Dy, Ba, and Sr.

これらの複合酸化物は、酸化セリウム(CeO2)構造を主体とするものであり、下記組成式(1)において、0<x≦0.5、0≦y≦0.4、x+y<1を満たす組成の複合酸化物である。
Ce(1-x-y)Coxyδ ……(1)
ここで、δ>0であり、代表的にはδ=2あるいはそれに近い値、例えば1≦δ≦3、あるいは1.3≦δ≦2.5が挙げられる。この複合酸化物はX線回折によれば酸化セリウム構造のピークが認められ、また、ミクロ的な分析手段から、酸化セリウム相の他に、コバルト酸化物相が検出される場合がある。
These composite oxides mainly have a cerium oxide (CeO 2 ) structure. In the following composition formula (1), 0 <x ≦ 0.5, 0 ≦ y ≦ 0.4, x + y <1. It is a complex oxide having a composition to satisfy.
Ce (1-xy) Co x M y O δ ...... (1)
Here, δ> 0, and typically δ = 2 or a value close thereto, for example, 1 ≦ δ ≦ 3, or 1.3 ≦ δ ≦ 2.5. In this composite oxide, a peak of a cerium oxide structure is recognized by X-ray diffraction, and in addition to a cerium oxide phase, a cobalt oxide phase may be detected from a microscopic analysis means.

前記複合酸化物は、酸化セリウム構造の結晶子径Dxが20nm以下であることにより、高い触媒活性を呈する。大気中800℃×2hの加熱処理に供した後においても、当該結晶子径Dxは20nm以下を維持する性質を有する。前記複合酸化物のBET比表面積は5〜70m2/gの範囲にある。また、前記複合酸化物は200〜500℃の温度域で雰囲気ガス中のNOをNO2に変換することができる性質を有する。 The composite oxide exhibits high catalytic activity when the crystallite diameter Dx of the cerium oxide structure is 20 nm or less. Even after being subjected to heat treatment at 800 ° C. for 2 hours in the air, the crystallite diameter Dx has a property of maintaining 20 nm or less. The composite oxide has a BET specific surface area of 5 to 70 m 2 / g. Further, the composite oxide has a property capable of converting NO in the atmospheric gas into NO 2 in a temperature range of 200 to 500 ° C.

このような複合酸化物は、ディーゼルエンジン排ガス中のPMを燃焼させる触媒(PM燃焼触媒)として極めて好適である。この複合酸化物を触媒物質として用いた触媒を、例えばSiC、コージェライト、ムライト、アルミナなどの多孔質物質からなるDPFに担持させることにより、捕集されたPMを排ガスの熱を有効利用して燃焼除去することのできるディーゼル排ガス浄化用フィルターが構築される。   Such a complex oxide is extremely suitable as a catalyst (PM combustion catalyst) for burning PM in exhaust gas from a diesel engine. A catalyst using this composite oxide as a catalyst material is supported on a DPF made of a porous material such as SiC, cordierite, mullite, alumina, etc., so that the collected PM can be effectively used for the heat of exhaust gas. A filter for purifying diesel exhaust that can be burned off is constructed.

本発明の複合酸化物は比較的低温から高い触媒活性を発揮するので、これを触媒物質として用いるとPM燃焼温度を低下させることができ、排ガス温度を有効利用してPMを燃焼除去することのできるディーゼル排ガス浄化フィルターを構築することが可能になる。排ガス中のNO2濃度が希薄な場合でも高い触媒活性が得られるので、排ガス濃度の変動にも対応できる。また、本発明の複合酸化物は耐熱性に優れるため、PM燃焼による急激な発熱が生じた場合でも、高い触媒活性が維持される。さらに、貴金属元素を必要としないのでDPFの材料コスト低減にも寄与できる。 Since the composite oxide of the present invention exhibits high catalytic activity from a relatively low temperature, when it is used as a catalyst substance, the PM combustion temperature can be lowered, and the exhaust gas temperature can be effectively used to burn and remove PM. It is possible to construct a diesel exhaust gas purification filter that can be used. Even when the concentration of NO 2 in the exhaust gas is low, high catalytic activity can be obtained, so that it is possible to cope with fluctuations in the exhaust gas concentration. Moreover, since the composite oxide of the present invention is excellent in heat resistance, high catalytic activity is maintained even when sudden heat generation due to PM combustion occurs. Furthermore, since no precious metal element is required, it can contribute to the reduction of the material cost of DPF.

本発明の複合酸化物では、CeとCoを必須成分として含有し、かつ必要に応じて前記の元素Mを含有する。この複合酸化物は、酸化セリウム構造体にCoあるいはさらに元素Mが複合化した形態を有する酸化物相が主体となっている。代表的な組成式は前述の(1)式のように表示される。   The composite oxide of the present invention contains Ce and Co as essential components, and contains the element M as necessary. This composite oxide is mainly composed of an oxide phase having a form in which Co or further an element M is combined with a cerium oxide structure. A typical composition formula is represented as the above-mentioned formula (1).

この酸化セリウム構造体のセリウム原子の一部はコバルト原子で置換されている。このとき、セリウム原子を主とする複合酸化物の陽イオンの見かけ上の価数変化が起こり、また、イオン半径が異なる元素同士の置換による格子の歪のため、格子中の酸素が格子外に放出されやすい状態となり、これによって比較的低温の温度域からPMの燃焼に必要な活性酸素がPMに供給され、PM燃焼温度の低下が実現されるものと考えられる。Coを含有しない、従来知られている単なる酸化セリウム(CeO2)の場合は、格子中の酸素の放出が起こりにくい安定な構造をとると考えられるため、PMの燃焼に対する高い触媒活性を得ることは困難である。 A part of the cerium atom of the cerium oxide structure is substituted with a cobalt atom. At this time, the apparent valence change of the cation of the complex oxide mainly composed of cerium atoms occurs, and the lattice distortion due to substitution of elements having different ionic radii causes oxygen in the lattice to move out of the lattice. It is considered that the active oxygen necessary for PM combustion is supplied to the PM from a relatively low temperature range, and the PM combustion temperature is lowered. In the case of the conventional mere cerium oxide (CeO 2 ) that does not contain Co, it is considered that it has a stable structure in which the release of oxygen in the lattice is unlikely to occur, so that high catalytic activity for PM combustion is obtained. It is difficult.

発明者らの検討によれば、後述の製造法によって得られる、Coで一部を置換した酸化セリウム構造の複合酸化物は、PMに対する高い触媒活性が得られ、800℃といった高温に加熱される熱履歴を受けても、触媒活性は高く維持される。   According to the study by the inventors, a composite oxide having a cerium oxide structure partially substituted with Co, obtained by the manufacturing method described later, has high catalytic activity for PM and is heated to a high temperature such as 800 ° C. Even if it receives a heat history, the catalytic activity is kept high.

前記元素Mを添加した複合酸化物構造とすることによっても、Coで一部を置換した酸化セリウム構造の複合酸化物が本来有する優れた触媒活性が得られ、さらに耐熱性が向上する傾向が見られる。元素Mにより耐熱性が向上するメカニズムは現時点で十分解明されていないが、元素Mの添加によって熱による複合酸化物粒子の粗大化が抑制されることが影響しているものと推察される。   Even with the composite oxide structure added with the element M, the excellent catalytic activity inherent in the composite oxide having a cerium oxide structure partially substituted with Co can be obtained, and the heat resistance tends to be further improved. It is done. Although the mechanism by which the heat resistance is improved by the element M has not been sufficiently elucidated at present, it is presumed that the addition of the element M has an influence on the suppression of the coarsening of the composite oxide particles due to heat.

前記[a]に示されるように、Coのモル比を表すxは、0<x≦0.5の範囲にあることが望ましい。x=0、すなわちCoが存在しない場合は前述のように高い触媒活性が得られない。xが0.5より大きくなるとCoが酸化セリウム構造体に複合化せずに酸化コバルトとして存在しやすくなるため、酸化セリウム構造体と酸化コバルトの混合相が形成されやすい。そうなると、酸化コバルトはPMの燃焼に対する触媒活性が低いため、酸化コバルトの存在が複合酸化物の触媒活性点を低減させ、触媒活性が低下すると考えられる。xの範囲は0.05≦x≦0.5であることがより好ましく、0.10≦x≦0.45が一層好ましい。   As shown in the above [a], x representing the Co molar ratio is preferably in the range of 0 <x ≦ 0.5. When x = 0, that is, when Co is not present, high catalytic activity cannot be obtained as described above. When x is larger than 0.5, Co is likely to exist as cobalt oxide without being complexed with the cerium oxide structure, so that a mixed phase of the cerium oxide structure and cobalt oxide is easily formed. Then, since the cobalt oxide has a low catalytic activity for PM combustion, it is considered that the presence of cobalt oxide reduces the catalytic activity point of the composite oxide and the catalytic activity is lowered. The range of x is more preferably 0.05 ≦ x ≦ 0.5, and more preferably 0.10 ≦ x ≦ 0.45.

前記[b]に示されるように、元素Mのモル比を表すyは、0≦y≦0.4の範囲にあることが望ましい。y=0、すなわち元素Mが存在しない場合でも、後述する製法により得られる複合酸化物では比較的良好な耐熱性を有するが、0<y≦0.4となるように元素Mが含まれるとさらに耐熱性が向上する傾向が見られる。ただし、yが0.4を超えて元素M含有量が多くなると、複合酸化物粒子の粗大化は抑制されるが、粒子同士のネッキングが過剰に起こりやすくなり、PM燃焼の活性点減少によって触媒活性の低下が生じやすくなると考えられる。yの範囲は0<y≦0.35であることがより好ましく、0.01≦y≦0.30が一層好ましい。   As shown in [b] above, y representing the molar ratio of the element M is preferably in the range of 0 ≦ y ≦ 0.4. Even if y = 0, that is, the element M does not exist, the composite oxide obtained by the manufacturing method described later has relatively good heat resistance, but if the element M is included so that 0 <y ≦ 0.4. Furthermore, the tendency which heat resistance improves is seen. However, if y exceeds 0.4 and the element M content increases, the coarsening of the composite oxide particles is suppressed, but the necking between the particles tends to occur excessively, and the catalytic point is reduced by reducing the active point of PM combustion. It is thought that a decrease in activity is likely to occur. The range of y is more preferably 0 <y ≦ 0.35, and more preferably 0.01 ≦ y ≦ 0.30.

また、発明者らの研究によれば、PMの燃焼開始温度に関して注目すべき点として、触媒物質である複合酸化物の結晶子径が挙げられ、結晶子径が小さいほど高いPM燃焼活性を示すことがわかった。PMの燃焼活性は格子中の酸素、すなわち格子表面の酸素の出入りが関与すると考えられ、結晶子径が小さくなるに従い格子中の酸素原子数に対し、結晶格子表面の酸素原子数の割合が高くなり、酸素の出入りが起こりやすくなると考えられる。酸化セリウム構造体にCoを含有させた本発明対象の複合酸化物の結晶子径(X線粒径Dx)は20nm以下と小さいことから、比較的低温域でも酸素の出入りが活発に起こり、PM燃焼温度の低下をもたらしているものと推察される。本発明の複合酸化物は、大気中800℃×2hの加熱処理を受けた場合でも20nm以下の結晶子径Dxを維持する性質を持つ。   In addition, according to the research by the inventors, as a point to be noted regarding the combustion start temperature of PM, the crystallite diameter of the composite oxide which is a catalyst substance can be mentioned, and the smaller the crystallite diameter, the higher the PM combustion activity. I understood it. The combustion activity of PM is thought to involve oxygen in and out of the lattice, that is, oxygen on the surface of the lattice. As the crystallite diameter decreases, the ratio of the number of oxygen atoms on the surface of the crystal lattice to the number of oxygen atoms in the lattice increases. Therefore, it is considered that oxygen enters and exits easily. Since the crystallite diameter (X-ray particle diameter Dx) of the composite oxide of the present invention in which Co is contained in the cerium oxide structure is as small as 20 nm or less, oxygen enters and exits actively even in a relatively low temperature range, and PM It is assumed that the combustion temperature is lowered. The composite oxide of the present invention has a property of maintaining a crystallite diameter Dx of 20 nm or less even when subjected to heat treatment at 800 ° C. for 2 hours in the atmosphere.

格子から出た活性酸素(以下「格子酸素」という)が滞りなくPMに到達するためには、触媒粉体の比表面積が適切であることが必要である。比表面積は細孔径や粒子径に依存しており、比表面積が大きい場合は細孔径が小さい可能性がある。その場合、格子酸素の円滑な通過が妨げられ、PMに格子酸素が迅速に供給されないおそれがある。したがって、触媒活性を高めるためには必ずしも比表面積が大きい方が有利とは言えず、触媒物質の種類に応じて適切な比表面積の範囲が存在する。種々検討の結果、酸化セリウム構造体の一部をCoで置換した複合酸化物においては、BET比表面積が概ね5〜70m2/gの範囲において、PMに対する優れた燃焼活性が得られる。10〜40m2/gの範囲とすることが一層好ましい。 In order for active oxygen (hereinafter referred to as “lattice oxygen”) coming out of the lattice to reach the PM without delay, it is necessary that the specific surface area of the catalyst powder is appropriate. The specific surface area depends on the pore diameter and the particle diameter. When the specific surface area is large, the pore diameter may be small. In that case, the smooth passage of lattice oxygen is hindered, and there is a possibility that lattice oxygen is not rapidly supplied to PM. Therefore, it is not necessarily advantageous to increase the specific surface area in order to increase the catalytic activity, and there is an appropriate specific surface area range depending on the type of the catalyst substance. As a result of various studies, in the composite oxide in which a part of the cerium oxide structure is substituted with Co, excellent combustion activity with respect to PM can be obtained when the BET specific surface area is in the range of about 5 to 70 m 2 / g. It is still more preferable to set it as the range of 10-40 m < 2 > / g.

本発明の複合酸化物は、例えば、通常の共沈法、有機錯体法、非晶質前駆体を用いた製法などによって製造することができる。以下、各製法について説明する。
〔共沈法〕
共沈法では、複合酸化物を構成する各元素の塩を、Ce、Coあるいはさらに元素Mのモル比が前述のようになる複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、この水溶液と中和剤を混合して共沈させた後、得られた共沈物を乾燥後、熱処理する。各元素の塩としては特に限定されないが、例えば硫酸塩、硝酸塩、リン酸塩、塩化物などの無機塩、酢酸塩、シュウ酸塩などの有機酸塩などが使用できる。中でも酢酸塩、硝酸塩が好適に使用できる。原料塩水溶液は、上記の各元素の塩を目的の化学量論比となるように水に加えて、撹拌することにより調製することができる。
The composite oxide of the present invention can be produced, for example, by a usual coprecipitation method, an organic complex method, a production method using an amorphous precursor, or the like. Hereinafter, each manufacturing method will be described.
[Co-precipitation method]
In the coprecipitation method, a raw salt solution containing salts of elements constituting the composite oxide in a stoichiometric ratio suitable for producing a composite oxide in which the molar ratio of Ce, Co, or further the element M is as described above. The aqueous solution and the neutralizing agent are mixed and coprecipitated, and the obtained coprecipitate is dried and then heat-treated. Although it does not specifically limit as a salt of each element, For example, organic acid salts, such as inorganic salts, such as a sulfate, nitrate, phosphate, and chloride, acetate, oxalate, etc. can be used. Of these, acetates and nitrates can be preferably used. The raw salt aqueous solution can be prepared by adding the salt of each of the above elements to water so as to achieve the desired stoichiometric ratio and stirring.

そして、この原料塩水溶液と中和剤を混合し、共沈させる。中和剤としては特に限定されないが、例えばアンモニア、苛性ソーダ、苛性カリなどの無機塩基、トリエチルアミン、ピリジンなどの有機塩基が使用できる。また中和剤は、その中和剤を加えた後に生成されるスラリーのpHが6〜14となるように混合する。このように混合することにより、結晶性のよい各元素の水酸化物の共沈物を得ることができる。   Then, this raw salt aqueous solution and a neutralizing agent are mixed and coprecipitated. Although it does not specifically limit as a neutralizing agent, For example, organic bases, such as inorganic bases, such as ammonia, caustic soda, and caustic potash, a triethylamine, and a pyridine can be used. Moreover, a neutralizing agent is mixed so that the pH of the slurry produced | generated after adding the neutralizing agent may be 6-14. By mixing in this way, it is possible to obtain a coprecipitate of a hydroxide of each element having good crystallinity.

得られた共沈物は必要に応じて水洗され、例えば、真空乾燥や通風乾燥などにより乾燥させた後、例えば500〜1200℃、好ましくは550〜1000℃で熱処理することにより、目的とする組成の複合酸化物を得ることができる。この際、熱処理時の雰囲気は上記複合酸化物が生成される範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組み合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組み合わせた雰囲気が使用できる。   The obtained coprecipitate is washed with water as necessary. For example, the coprecipitate is dried by, for example, vacuum drying or ventilation drying, and then heat-treated at, for example, 500 to 1200 ° C., preferably 550 to 1000 ° C. The composite oxide can be obtained. At this time, the atmosphere during the heat treatment is not particularly limited as long as the above complex oxide is generated. For example, in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with them, preferably in air. In addition, an atmosphere in nitrogen and a combination thereof with water vapor can be used.

〔有機錯体法〕
有機錯体法では、例えばクエン酸、リンゴ酸、エチレンジアミン4酢酸ナトリウムなどの有機錯体を形成する塩と、前述の各元素の塩とを目的の化学量論比となるように水に加えて、攪拌することにより調製することができる。
この原料水溶液を乾固させ、前述の各元素の有機錯体を形成させた後、仮焼成・熱処理することによりCe、Coあるいはさらに元素Mのモル比が前述のようになる組成の複合酸化物を得ることができる。
[Organic complex method]
In the organic complex method, for example, a salt that forms an organic complex such as citric acid, malic acid, sodium ethylenediaminetetraacetate, and the salt of each of the aforementioned elements is added to water so as to achieve the desired stoichiometric ratio, and stirred. Can be prepared.
The raw material aqueous solution is dried to form an organic complex of each element described above, and then calcined and heat-treated to form a composite oxide having a composition in which the molar ratio of Ce, Co, or further element M is as described above. Obtainable.

各元素の塩としては、共沈法の場合と同様の塩が使用でき、また原料塩水溶液は各元素の原料塩を目的の化学量論比に混合して水に溶解した後、有機錯体を形成する塩の水溶液と混合することにより、調製することができる。なお、有機錯体を形成する塩の配合比率は得られる複合酸化物1モルに対して1.2〜3モル程度であることが好ましい。
その後、この原料溶液を乾固させて、前述の有機錯体を得る。乾固は有機錯体が分解しない温度であれば特に限定されず、例えば室温〜150℃程度、好ましくは室温〜110℃で、速やかに水分を除去する。これにより前述の有機錯体が得られる。
As the salt of each element, the same salt as in the coprecipitation method can be used. The raw salt aqueous solution is prepared by mixing the raw salt of each element in the desired stoichiometric ratio and dissolving it in water. It can be prepared by mixing with an aqueous solution of the salt that forms. In addition, it is preferable that the mixture ratio of the salt which forms an organic complex is about 1.2-3 mol with respect to 1 mol of complex oxides obtained.
Thereafter, this raw material solution is dried to obtain the aforementioned organic complex. Drying is not particularly limited as long as it is a temperature at which the organic complex is not decomposed. For example, water is rapidly removed at room temperature to about 150 ° C., preferably at room temperature to 110 ° C. Thereby, the above-mentioned organic complex is obtained.

得られた有機錯体は仮焼成後に熱処理される。仮焼成は、例えば真空または不活性ガス雰囲気下において250℃以上で加熱すればよい。その後、例えば500〜1000℃、好ましくは550〜950℃で熱処理することにより、目的とする組成の複合酸化物を得ることができる。この際、熱処理時の雰囲気は上記複合酸化物が生成される範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組み合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組み合わせた雰囲気が使用できる。   The obtained organic complex is heat-treated after calcination. Pre-baking may be performed at 250 ° C. or higher, for example, in a vacuum or an inert gas atmosphere. Thereafter, for example, a heat treatment is performed at 500 to 1000 ° C., preferably 550 to 950 ° C., whereby a composite oxide having a desired composition can be obtained. At this time, the atmosphere during the heat treatment is not particularly limited as long as the above complex oxide is generated. For example, in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with them, preferably in air. In addition, an atmosphere in nitrogen and a combination thereof with water vapor can be used.

〔非晶質前駆体を用いた製法〕
非晶質前駆体を用いた製法では、Ce、Coあるいはさらに元素Mのモル比が前述のようになる組成の複合酸化物を生成するにふさわしい化学量論比で前述の各元素を含む、粉状の非晶質からなる前駆体物質を、低温で熱処理することによって得ることができる。
[Production method using amorphous precursor]
In the production method using an amorphous precursor, a powder containing each of the aforementioned elements in a stoichiometric ratio suitable for producing a composite oxide having a composition in which the molar ratio of Ce, Co, or further the element M is as described above. The amorphous precursor material can be obtained by heat treatment at a low temperature.

このような非晶質の前駆体は、前述の各元素の塩を目的組成の複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、それと炭酸アルカリまたはアンモニウムイオンを含む炭酸塩などの沈殿剤とを、反応温度60℃以下、pH6以上で反応させて沈殿生成物を作り、その濾過物を乾燥させて得ることができる。   Such an amorphous precursor is prepared by preparing a raw salt aqueous solution containing a salt of each of the above elements in a stoichiometric ratio suitable for forming a composite oxide having a target composition, and containing an alkali carbonate or ammonium ion. It can be obtained by reacting with a precipitating agent such as carbonate at a reaction temperature of 60 ° C. or lower and a pH of 6 or higher to produce a precipitation product, and drying the filtrate.

より具体的には、まず、各元素の硝酸塩、硫酸塩、塩化物等の水溶性鉱酸塩を目的とする組成のモル比となるように溶解させた水溶液を用意する。沈殿を生成させる液中の構成元素のイオン濃度は、用いる塩類の溶解度によって上限が決まるが、構成元素の結晶性化合物が析出しない状態が望ましく、通常は、前述の各元素の合計イオン濃度が0.01〜0.60mol/L程度の範囲であるのが望ましいが、場合によっては、0.60mol/Lを超えてもよい。   More specifically, first, an aqueous solution in which water-soluble mineral salts such as nitrates, sulfates, and chlorides of each element are dissolved so as to have a molar ratio of a target composition is prepared. The upper limit of the ion concentration of the constituent element in the liquid for generating the precipitate is determined by the solubility of the salt used, but it is desirable that the crystalline compound of the constituent element does not precipitate. Usually, the total ion concentration of each of the above elements is 0. The range of about 0.01 to 0.60 mol / L is desirable, but in some cases, it may exceed 0.60 mol / L.

この液から非晶質の沈殿を得るには、炭酸アルカリまたはアンモニウムイオンを含む炭酸塩からなる沈殿剤を用いるのがよく、このような沈殿剤としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等を使用することができ、必要に応じて、水酸化ナトリウム、アンモニア等の塩基を加えることも可能である。また、水酸化ナトリウム、アンモニア等を用いて沈殿を形成した後、炭酸ガスを吹き込むことによっても本発明の複合酸化物を得るための前駆体物質に適した非晶質を得ることができる。非晶質の沈殿を得る際、液のpHを6〜11の範囲に制御するのがよい。pHが6未満の領域では、希土類元素類が沈殿を形成しない場合があるので不適切である。他方、pHが11を超える領域では、沈殿剤単独の場合には生成する沈殿の非晶質化が十分に進行せずに、水酸化物などの結晶性の沈殿を形成する場合がある。また、反応温度は60℃以下にするのがよい。60℃を超える温度で反応を開始した場合、構成元素の結晶性の化合物粒子が生成する場合があり、前駆体物質の非晶質化を妨げるので好ましくない。   In order to obtain an amorphous precipitate from this liquid, it is preferable to use a precipitating agent composed of a carbonate containing an alkali carbonate or ammonium ion. Examples of such a precipitating agent include sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, Ammonium hydrogen carbonate or the like can be used, and a base such as sodium hydroxide or ammonia can be added as necessary. Further, after forming a precipitate using sodium hydroxide, ammonia or the like, an amorphous suitable for the precursor material for obtaining the composite oxide of the present invention can be obtained by blowing carbon dioxide gas. When obtaining an amorphous precipitate, the pH of the liquid should be controlled in the range of 6-11. In the region where the pH is less than 6, rare earth elements may not form a precipitate, which is inappropriate. On the other hand, in the region where the pH exceeds 11, in the case of the precipitating agent alone, the generated precipitate may not be sufficiently amorphized and a crystalline precipitate such as a hydroxide may be formed. The reaction temperature is preferably 60 ° C. or lower. When the reaction is started at a temperature exceeding 60 ° C., crystalline compound particles of the constituent elements may be formed, which is not preferable because it prevents the precursor material from becoming amorphous.

得られた非晶質前駆体は必要に応じて水洗され、真空乾燥や通風乾燥などにより乾燥させた後、例えば500〜1000℃、好ましくは500〜800℃で熱処理することにより、目的とする組成の複合酸化物を得ることができる。この際、熱処理時の雰囲気は上記複合酸化物が生成される範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組合わせた雰囲気が使用できる。   The obtained amorphous precursor is washed with water as necessary, dried by vacuum drying or ventilation drying, and then heat treated at, for example, 500 to 1000 ° C., preferably 500 to 800 ° C. The composite oxide can be obtained. At this time, the atmosphere during the heat treatment is not particularly limited as long as the above complex oxide is generated. For example, in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined, preferably air. Medium, nitrogen, and an atmosphere that combines them with water vapor can be used.

《触媒物質の作製》
各実施例、比較例の触媒物質を以下のようにして作製した。
〔実施例1〜3〕
硝酸セリウム、硝酸コバルトを、Ce:Coのモル比が表1に示す値になるように混合した。この混合物を、CeおよびCoの液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た。この溶液を撹拌しながら溶液の温度を15℃に調整し、温度が15℃に達した段階で、沈殿剤として炭酸アンモニウムを添加しながら、pH=8に調整した。得られた沈殿物を濾過して回収した後、水洗し、125℃で乾燥した。得られた粉末を前駆体粉という。
<Production of catalyst material>
The catalyst materials of each Example and Comparative Example were prepared as follows.
[Examples 1-3]
Cerium nitrate and cobalt nitrate were mixed so that the molar ratio of Ce: Co was as shown in Table 1. Water was added to the mixture so that the total molar concentration of Ce and Co in the liquid was 0.2 mol / L to obtain a raw material solution. While stirring this solution, the temperature of the solution was adjusted to 15 ° C., and when the temperature reached 15 ° C., the pH was adjusted to 8 while adding ammonium carbonate as a precipitant. The resulting precipitate was collected by filtration, washed with water, and dried at 125 ° C. The obtained powder is called precursor powder.

次に、この前駆体粉を大気雰囲気下において600℃で2h熱処理して焼成した。得られた粉体を「焼成品」という。焼成品の一部を用い、耐熱性を評価するために、さらに大気雰囲気下において800℃で2h加熱処理を施した。この加熱処理を「耐熱処理」といい、耐熱処理後の粉体を「800℃熱処理品」という。
この耐熱処理は、アルミナ製るつぼ(容量50cc、外径54mm、高さ43mm)に粉体3gを入れ、そのるつぼを炉内温度800℃のマッフル炉に入れて2h保持し、その後炉外の大気中で急冷する方法で行った。
Next, the precursor powder was heat-treated at 600 ° C. for 2 hours in an air atmosphere and fired. The obtained powder is called “baked product”. In order to evaluate heat resistance using a part of the fired product, heat treatment was further performed at 800 ° C. for 2 hours in an air atmosphere. This heat treatment is called “heat-resistant treatment”, and the powder after the heat-treatment is called “800 ° C. heat-treated product”.
In this heat-resistant treatment, 3 g of powder is put in an alumina crucible (capacity 50 cc, outer diameter 54 mm, height 43 mm), the crucible is put in a muffle furnace having an in-furnace temperature of 800 ° C. and held for 2 hours, and then the atmosphere outside the furnace It went by the method of quenching in the inside.

〔実施例4〜8〕
硝酸セリウム、硝酸コバルトおよび硝酸ランタンを、Ce:Co:Laのモル比が表1に示す値になるように混合し、Ce、Co、Laの液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
[Examples 4 to 8]
Cerium nitrate, cobalt nitrate, and lanthanum nitrate are mixed so that the molar ratio of Ce: Co: La becomes the value shown in Table 1, and the total molar concentration of Ce, Co, and La in the liquid becomes 0.2 mol / L. Thus, it produced on the conditions similar to Examples 1-3 except having added water and having obtained the raw material solution.

〔実施例9〕
硝酸セリウム、硝酸コバルトおよび硝酸ネオジムを、Ce:Co:Ndのモル比が表1に示す値になるように混合し、Ce、CoおよびNdの液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
Example 9
Cerium nitrate, cobalt nitrate and neodymium nitrate are mixed so that the molar ratio of Ce: Co: Nd becomes the value shown in Table 1, and the total molar concentration of Ce, Co and Nd in the liquid becomes 0.2 mol / L. Thus, it produced on the conditions similar to Examples 1-3 except having added water and having obtained the raw material solution.

〔実施例10〕
硝酸セリウム、硝酸コバルトおよび硝酸プラセオジムを、Ce:Co:Prのモル比が表1に示す値になるように混合し、Ce、CoおよびPrの液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
Example 10
Cerium nitrate, cobalt nitrate, and praseodymium nitrate are mixed so that the molar ratio of Ce: Co: Pr becomes the value shown in Table 1, and the total molar concentration of Ce, Co, and Pr in the liquid becomes 0.2 mol / L. Thus, it produced on the conditions similar to Examples 1-3 except having added water and having obtained the raw material solution.

〔実施例11〕
硝酸セリウム、硝酸コバルトおよび硝酸バリウムを、Ce:Co:Baのモル比が表1に示す値になるように混合し、Ce、CoおよびBaの液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
Example 11
Cerium nitrate, cobalt nitrate and barium nitrate are mixed so that the molar ratio of Ce: Co: Ba becomes the value shown in Table 1, and the total molar concentration of Ce, Co and Ba in the liquid becomes 0.2 mol / L. Thus, it produced on the conditions similar to Examples 1-3 except having added water and having obtained the raw material solution.

〔実施例12〕
硝酸セリウム、硝酸コバルト、硝酸ランタンおよび硝酸ネオジムを、Ce:Co:La:Ndのモル比が表1に示す値になるように混合し、Ce、Co、La、Ndの液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
Example 12
Cerium nitrate, cobalt nitrate, lanthanum nitrate and neodymium nitrate are mixed so that the molar ratio of Ce: Co: La: Nd is the value shown in Table 1, and the total molar concentration of Ce, Co, La and Nd in the liquid is It produced on the conditions similar to Examples 1-3 except having added water so that it might be set to 0.2 mol / L, and having obtained the raw material solution.

〔比較例1〕
市販のγアルミナ(比表面積250m2/g)に、ジニトロジアミン白金水溶液を用いてPtを含浸させた後、90℃で12h通風乾燥を行った。Pt固着のために得られた含浸物を大気雰囲気下で500℃×1h熱処理して、Pt担持アルミナを得た。これを大気中600℃×2hまたは大気中800℃×2hの熱処理に供して、試験用の触媒物質とした。600℃で熱処理したものを「焼成品」、800℃で熱処理したものを「800℃熱処理品」と呼ぶ。「800℃熱処理品」は、アルミナ中におけるPt含有量が3.42質量%であった。
[Comparative Example 1]
Commercially available γ-alumina (specific surface area 250 m 2 / g) was impregnated with Pt using a dinitrodiamine platinum aqueous solution, and then air-dried at 90 ° C. for 12 hours. The impregnated material obtained for fixing Pt was heat-treated at 500 ° C. for 1 hour in an air atmosphere to obtain Pt-supported alumina. This was subjected to a heat treatment at 600 ° C. × 2 h in the air or 800 ° C. × 2 h in the air to obtain a test catalyst material. A product heat treated at 600 ° C. is called a “baked product”, and a product heat treated at 800 ° C. is called an “800 ° C. heat treated product”. The “800 ° C. heat-treated product” had a Pt content in alumina of 3.42% by mass.

〔比較例2〕
硝酸コバルトを0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
[Comparative Example 2]
It was produced under the same conditions as in Examples 1 to 3, except that water was added so that cobalt nitrate was 0.2 mol / L to obtain a raw material solution.

〔比較例3〕
硝酸セリウムを0.2mol/Lとなるように水を添加して原料溶液を得た以外は、実施例1〜3と同様の条件で作製した。
[Comparative Example 3]
It was produced under the same conditions as in Examples 1 to 3, except that water was added so that cerium nitrate was 0.2 mol / L to obtain a raw material solution.

以上のようにして得られた触媒物質を用いて以下の実験を行った。
《X線回折測定》
各実施例で得られた「焼成品」について、X線回折測定を行った。測定条件は以下のとおりである。
・X線回折装置: 株式会社リガク製、RINT−2100
・測定範囲: 2θ=10〜90°
・管球: Co管球
・管電圧: 40kV
・管電流: 30mA
測定の結果、各実施例で得られた触媒物質はいずれもCeO2構造をもつ複合酸化物であることが確かめられた。
図1に実施例1の触媒物質についてのX線回折パターンを例示する。
The following experiment was conducted using the catalyst material obtained as described above.
<< X-ray diffraction measurement >>
X-ray diffraction measurement was performed on the “baked product” obtained in each example. The measurement conditions are as follows.
X-ray diffractometer: RINT-2100 manufactured by Rigaku Corporation
・ Measurement range: 2θ = 10-90 °
-Tube: Co tube-Tube voltage: 40 kV
・ Tube current: 30mA
As a result of the measurement, it was confirmed that all of the catalyst materials obtained in the respective examples were complex oxides having a CeO 2 structure.
FIG. 1 illustrates an X-ray diffraction pattern for the catalyst material of Example 1.

《結晶子径Dxの測定》
各実施例および比較例3で得られた「焼成品」および「800℃熱処理品」について、酸化セリウム構造の(220)面のブラッグ条件を満たす2θの近傍でX線回折測定を行い、結晶子径Dxを測定した。測定条件は以下のとおりである。
・X線回折装置: 株式会社リガク製、RINT−2100
・測定範囲: 2θ=53.5〜58.5°
・サンプリング幅: 0.02°
・計数時間: 5sec
・積算回数: 5回
・管球: Co管球
・管電圧: 40kV
・管電流: 30mA
結晶子径Dxの算出には下記のシェラーの式を用いた。
t=0.9λ/B・cosθ
ただし、t:結晶子径(nm)
λ:CoのKα1の波長(nm)
B:ピークの半価幅(°)
θ:CeO2の(220)面のブラッグ条件を満たす角度(°)
結果を表1に示す。
<< Measurement of crystallite diameter Dx >>
The “baked product” and “800 ° C. heat-treated product” obtained in each Example and Comparative Example 3 were subjected to X-ray diffraction measurement in the vicinity of 2θ satisfying the Bragg condition of the (220) plane of the cerium oxide structure. The diameter Dx was measured. The measurement conditions are as follows.
X-ray diffractometer: RINT-2100 manufactured by Rigaku Corporation
Measurement range: 2θ = 53.5-58.5 °
・ Sampling width: 0.02 °
・ Counting time: 5 sec
・ Number of integration: 5 times ・ Tube: Co tube ・ Tube voltage: 40 kV
・ Tube current: 30mA
The Scherrer equation below was used to calculate the crystallite diameter Dx.
t = 0.9λ / B · cos θ
Where t: crystallite diameter (nm)
λ: wavelength of Co Kα 1 (nm)
B: Half width of peak (°)
θ: Angle (°) that satisfies the Bragg condition of the (220) plane of CeO 2
The results are shown in Table 1.

《BET比表面積の測定》
各実施例、比較例で得られた「焼成品」および「800℃熱処理品」について、メノウ乳鉢で解粒し、粉末とした後、BET法により比表面積を求めた。測定はユアサイオニクス製の4ソーブUSを用いて行った。
結果を表1に示す。
<< Measurement of BET specific surface area >>
The “baked product” and “800 ° C. heat-treated product” obtained in each Example and Comparative Example were pulverized in an agate mortar to form a powder, and then the specific surface area was determined by the BET method. The measurement was carried out using 4 Saab US made by Your Sonics.
The results are shown in Table 1.

《粉体試料によるPM燃焼開始温度評価》
各実施例、比較例で得られた「焼成品」および「800℃熱処理品」について、カーボンブラックとの混合粉を作り、カーボンブラック燃焼開始温度を求めることによってPM燃焼開始温度を評価した。具体的には以下のようにした。
<< Evaluation of PM combustion start temperature by powder sample >>
For the “baked product” and “800 ° C. heat-treated product” obtained in each Example and Comparative Example, mixed powder with carbon black was prepared, and the PM combustion start temperature was evaluated by determining the carbon black combustion start temperature. Specifically, it was as follows.

模擬PMとして市販のカーボンブラック(三菱化学製、平均粒径2.09μm)を用い、触媒物質の粉体とカーボンブラックの質量比が6:1になるように秤量し、自動乳鉢機(石川工場製AGA型)で20分混合し、カーボンブラックと各粉体の混合粉体を得た。この混合粉体について熱重量測定(TG)を行い、カーボンブラックの燃焼に伴う重量減少からカーボンブラックの燃焼温度を求めた。評価方法はTG/DTA装置(セイコーインスツルメンツ社製、TG/DTA6300型)を用い、混合粉体20mgを昇温速度10℃/minにて常温から700℃まで大気中で昇温し、重量測定を行った。図に、重量変化曲線(TG曲線)を模式的に示す。カーボンブラック燃焼開始温度は、TG曲線において、重量減少が始まる前の接線と、重量減少率(傾き)が最大となる点での接線とが交わる点の温度とした(図2参照)。
結果を表1に示す。
A commercially available carbon black (Mitsubishi Chemical, average particle size 2.09 μm) was used as a simulated PM and weighed so that the mass ratio of the powder of the catalyst material to the carbon black was 6: 1. Mixed for 20 minutes to obtain a mixed powder of carbon black and each powder. The mixed powder was subjected to thermogravimetry (TG), and the combustion temperature of carbon black was determined from the weight loss associated with the combustion of carbon black. The evaluation method uses a TG / DTA apparatus (TG / DTA6300 type, manufactured by Seiko Instruments Inc.), and 20 mg of the mixed powder is heated from the normal temperature to 700 ° C. at a temperature increase rate of 10 ° C./min. went. FIG. 2 schematically shows a weight change curve (TG curve). The carbon black combustion start temperature was defined as the temperature at the point where the tangent line before the weight reduction starts and the tangent line at the point where the weight reduction rate (slope) becomes maximum in the TG curve (see FIG. 2).
The results are shown in Table 1.

Figure 0004768475
Figure 0004768475

表1に示した実験結果から、各実施例の触媒物質は、Pt触媒(比較例1)や、酸化コバルト(比較例2)と比較してカーボンブラック燃焼開始温度を大幅に低下させていることがわかる。なお、酸化セリウム(比較例3)は、この実験におけるカーボンブラック燃焼開始温度については比較的良好であったが、後述の粒状試料による評価が劣る。   From the experimental results shown in Table 1, the catalyst material of each example greatly reduces the carbon black combustion start temperature as compared with Pt catalyst (Comparative Example 1) and cobalt oxide (Comparative Example 2). I understand. In addition, although the cerium oxide (comparative example 3) was comparatively favorable about the carbon black combustion start temperature in this experiment, evaluation by the below-mentioned granular sample is inferior.

前述のように、CeとCoの複合酸化物では、酸化セリウム構造体のセリウム原子の一部をコバルト原子で置換することにより、セリウムを主とする複合酸化物の陽イオンの見かけ上の価数変化が起こり、またはイオン半径が異なる元素置換による格子の歪みが起こることにより、格子中の酸素が格子外に放出されやすくなり、この酸素の酸化力によりPM燃焼に対する触媒活性が向上するものと考えられる。BET比表面積が例えば70m2/gを超えるものや、結晶子径Dxが20nmを超えるものでは、各実施例で得られた触媒物質のようなPM燃焼開始温度の顕著な低下は期待できない。 As described above, in the composite oxide of Ce and Co, the apparent valence of the cation of the composite oxide mainly containing cerium is obtained by substituting a part of the cerium atom of the cerium oxide structure with a cobalt atom. It is considered that the lattice distortion due to the change or the substitution of elements with different ionic radii makes it easier for oxygen in the lattice to be released out of the lattice, and this oxygen oxidizing power improves the catalytic activity for PM combustion. It is done. When the BET specific surface area exceeds, for example, 70 m 2 / g, or the crystallite diameter Dx exceeds 20 nm, the PM combustion start temperature cannot be expected to be significantly reduced as in the catalyst materials obtained in each example.

また、元素Mを添加した実施例4〜12の触媒物質は、元素Mを添加していない実施例1〜3の触媒物質と同様、優れた耐熱性を有する。表1中には「800℃熱処理品」と「焼成品」のカーボンブラック燃焼開始温度の差ΔTを表示してあるが、元素Mを添加することによりΔTは小さくなる傾向が見られ、元素Mは耐熱性の向上に寄与すると考えられる。   Moreover, the catalyst material of Examples 4-12 which added the element M has the outstanding heat resistance similarly to the catalyst material of Examples 1-3 which does not add the element M. In Table 1, the difference ΔT between the carbon black combustion start temperatures of the “800 ° C. heat-treated product” and the “baked product” is displayed. However, by adding the element M, ΔT tends to be reduced. Is considered to contribute to the improvement of heat resistance.

《粒状試料によるPM燃焼開始温度評価》
実施例2、実施例4および比較例3で得られた「焼成品」を、それぞれ金型プレスにより100kg/cm2で圧縮成形した後、粉砕して、粒子径0.5〜1.0mmの粒状試料を作製した。この粒状試料にカーボンブラックを5質量%となるように添加し、ガラス瓶中で回転することによりこれらを混合した。
<< Evaluation of PM combustion start temperature by granular sample >>
The “baked products” obtained in Example 2, Example 4 and Comparative Example 3 were each compression-molded at 100 kg / cm 2 with a mold press and then pulverized to obtain particles having a particle diameter of 0.5 to 1.0 mm. A granular sample was prepared. Carbon black was added to this granular sample so that it might become 5 mass%, and these were mixed by rotating in a glass bottle.

カーボンブラックを混合した上記粒状試料を流通式固定床に充填した状態にし、「500ppmNO+10%O2+残部N2」の模擬ディーゼルエンジン排ガスを空間速度SV75000/hで流通し、昇温速度10℃/minで常温から800℃まで昇温しながら、流通式固定床から排出されるCO2、NOおよびNO2濃度を連続的に測定した。測定にはNICOLET製Nicolet4700FT−IRを用いた。
図3に、実施例4について、排出されるCO2、NOおよびNO2濃度の変化を表す曲線を例示する。流通式固定床から排出されたCO2の総発生量に対して、CO2の合計排出量が10%となる時点の温度をここでのカーボンブラック燃焼開始温度T10として求めた。
結果を表2に示す。
The granular sample mixed with carbon black is filled in a flow-type fixed bed, and a simulated diesel engine exhaust gas of “500 ppm NO + 10% O 2 + remaining N 2 ” is circulated at a space velocity of SV75000 / h, and the temperature rising rate is 10 ° C. / The CO 2 , NO, and NO 2 concentrations discharged from the flow-through fixed bed were continuously measured while raising the temperature from room temperature to 800 ° C. in min. For measurement, Nicolet 4700FT-IR manufactured by NICOLET was used.
FIG. 3 illustrates a curve representing changes in the CO 2 , NO and NO 2 concentrations discharged for Example 4. The temperature at which the total amount of CO 2 emitted becomes 10% of the total amount of CO 2 emitted from the flow-through fixed bed was determined as the carbon black combustion start temperature T 10 here.
The results are shown in Table 2.

Figure 0004768475
Figure 0004768475

表2からわかるように、実施例2および実施例4の複合酸化物は、CO2排出量から見たカーボンブラック燃焼開始温度T10が低く、高い活性を示した。この場合もTG曲線による前述の評価と同様、複合酸化物の見かけ上の陽イオンの価数変化、またはイオン半径が異なる元素置換による格子の歪みが起こったため、格子中の酸素が格子外に放出されやすくなり、この酸素の酸化力によりカーボンブラックの燃焼が低温域から起こったものと考えられる。 As can be seen from Table 2, the composite oxides of Example 2 and Example 4 had a low carbon black combustion start temperature T 10 as viewed from the CO 2 emission, and exhibited high activity. In this case as well, as in the previous evaluation using a TG curve, the apparent cation valence change of the composite oxide or lattice distortion due to element substitution with different ionic radii occurred, so oxygen in the lattice was released out of the lattice. It is considered that the combustion of carbon black occurred from a low temperature range due to the oxidizing power of oxygen.

また、図3に見られるように、上記の製法によって得られた、酸化セリウム構造の一部をCoで置換した複合酸化物は、200〜500℃の温度域において模擬ディーゼル排ガス中のNOをNO2に変換することができる構造を有しており、NO2の酸化力を利用してカーボンブラックの燃焼が生じるものと考えられる。このタイプの複合酸化物により生成したNO2はカーボンブラックの燃焼によりNOとなるため、500℃以上の温度においてNO2の排出量は非常に低くなる。
Coを含まない酸化セリウム(比較例3)では200〜500℃の温度域におけるNO→NO2の変換が十分に起こらないことが考えられ、結果的にCO2排出量から見たカーボンブラック燃焼開始温度T10は実施例のものより高かった。本発明に従う実施例のものでは雰囲気によらず高い活性が得られ、それに加えて排ガス中のNOをカーボンブラックの燃焼に利用できるものである。
In addition, as seen in FIG. 3, the composite oxide obtained by the above-described manufacturing method in which a part of the cerium oxide structure is replaced with Co is NO in the simulated diesel exhaust gas in the temperature range of 200 to 500 ° C. It has a structure that can be converted to 2 , and it is considered that combustion of carbon black occurs using the oxidizing power of NO 2 . Since NO 2 produced by this type of complex oxide becomes NO due to the combustion of carbon black, the emission amount of NO 2 becomes very low at temperatures of 500 ° C. or higher.
In the case of cerium oxide containing no Co (Comparative Example 3), it is considered that NO → NO 2 conversion does not occur sufficiently in the temperature range of 200 to 500 ° C., and as a result, carbon black combustion starts from the viewpoint of CO 2 emission. temperature T 10 was higher than that of example. In the example according to the present invention, high activity is obtained regardless of the atmosphere, and in addition, NO in the exhaust gas can be used for combustion of carbon black.

実施例1で得られた複合酸化物(耐熱処理前)についてのX線回折パターン。The X-ray-diffraction pattern about complex oxide (before heat-resistant process) obtained in Example 1. FIG. TG曲線を模式的に示した図。The figure which showed the TG curve typically. 実施例4の触媒物質について、模擬ディーゼル排ガスを用いたカーボンブラック燃焼試験における排出CO2、NOおよびNO2濃度の変化を例示したグラフ。The catalytic material of Example 4, a graph illustrating a change in the discharge CO 2, NO and NO 2 concentration in the carbon black combustion test using simulated diesel exhaust.

Claims (8)

CeおよびCoと、酸素で構成される酸化セリウム構造を有し、CeおよびCoのモル比が下記[a]を満たし、当該酸化セリウム構造における結晶子径Dxが20nm以下であるPM燃焼触媒用複合酸化物。
[a]CeおよびCoのモル比を、Ce:Co=(1−x):xとするとき、0<x≦0.5が成立する。
And Ce and Co, having a cerium oxide structure that consists of oxygen, the molar ratio of Ce and Co meets following [a], a PM combustion catalyst crystallite diameter Dx of the cerium oxide structure is 20nm or less Complex oxide.
[A] When the molar ratio of Ce and Co is Ce: Co = (1-x): x, 0 <x ≦ 0.5 is established.
Ce、Coおよび1種以上の下記元素Mと、酸素で構成される酸化セリウム構造を有し、Ce、Coおよび元素Mのモル比が下記[b]を満たし、当該酸化セリウム構造における結晶子径Dxが20nm以下であるPM燃焼触媒用複合酸化物。
[b]Ce、Coおよび元素Mのモル比を、Ce:Co:M=(1−x−y):x:yとするとき、0<x≦0.5、0<y≦0.4、x+y<1が成立する。
ただし元素Mは、Ce以外の希土類元素(Yも希土類元素として扱う)およびアルカリ土類金属元素からなる元素群から選ばれる元素である。
Ce, has a Co and one or more of the following elements M, cerium oxide structure that consists of oxygen, Ce, the molar ratio of Co and the element M is less than the following [b], the crystallite in the cerium oxide structure A composite oxide for PM combustion catalyst having a diameter Dx of 20 nm or less .
[B] When the molar ratio of Ce, Co and element M is Ce: Co: M = (1-xy): x: y, 0 <x ≦ 0.5, 0 <y ≦ 0.4 , X + y <1 holds.
However, the element M is an element selected from the group consisting of rare earth elements other than Ce (Y is also treated as a rare earth element) and alkaline earth metal elements.
前記元素Mは、Y、La、Pr、Nd、Sm、Gd、Tb、Dy、BaおよびSrからなる元素群から選ばれる元素である請求項2に記載のPM燃焼触媒用複合酸化物。   The composite oxide for PM combustion catalyst according to claim 2, wherein the element M is an element selected from the group consisting of Y, La, Pr, Nd, Sm, Gd, Tb, Dy, Ba, and Sr. 大気中800℃×2hの加熱処理に供した後に、酸化セリウム構造における結晶子径Dxが20nm以下を維持する性質を有する請求項1〜3のいずれかに記載のPM燃焼触媒用複合酸化物。   The composite oxide for PM combustion catalyst according to any one of claims 1 to 3, which has a property that a crystallite diameter Dx in a cerium oxide structure is maintained at 20 nm or less after being subjected to a heat treatment at 800 ° C for 2 hours in the air. BET比表面積が5〜70m2/gである請求項1〜のいずれかに記載のPM燃焼触媒用複合酸化物。 The composite oxide for PM combustion catalyst according to any one of claims 1 to 4 , which has a BET specific surface area of 5 to 70 m 2 / g. 200〜500℃の温度域で雰囲気ガス中のNOをNO2に変換することができる性質を有する請求項1〜のいずれかに記載のPM燃焼触媒用複合酸化物。 The composite oxide for PM combustion catalyst according to any one of claims 1 to 5 , which has a property capable of converting NO in the atmospheric gas into NO 2 in a temperature range of 200 to 500 ° C. 請求項1〜のいずれかに記載の複合酸化物を触媒物質として用いたPM燃焼触媒。 A PM combustion catalyst using the composite oxide according to any one of claims 1 to 6 as a catalyst substance. 請求項に記載の触媒を用いたディーゼル排ガス浄化用フィルター。 A diesel exhaust gas purification filter using the catalyst according to claim 7 .
JP2006054383A 2006-03-01 2006-03-01 Composite oxide and filter for PM combustion catalyst Expired - Fee Related JP4768475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054383A JP4768475B2 (en) 2006-03-01 2006-03-01 Composite oxide and filter for PM combustion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054383A JP4768475B2 (en) 2006-03-01 2006-03-01 Composite oxide and filter for PM combustion catalyst

Publications (2)

Publication Number Publication Date
JP2007229619A JP2007229619A (en) 2007-09-13
JP4768475B2 true JP4768475B2 (en) 2011-09-07

Family

ID=38550746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054383A Expired - Fee Related JP4768475B2 (en) 2006-03-01 2006-03-01 Composite oxide and filter for PM combustion catalyst

Country Status (1)

Country Link
JP (1) JP4768475B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422320B2 (en) * 2008-09-22 2014-02-19 地方独立行政法人東京都立産業技術研究センター Catalyst for decomposing volatile organic compounds and method for decomposing volatile organic compounds
JP5754351B2 (en) * 2011-11-10 2015-07-29 トヨタ自動車株式会社 Hydrocarbon oxidation catalyst
JP5660006B2 (en) * 2011-11-10 2015-01-28 トヨタ自動車株式会社 Method for producing Co3O4 / CeO2 composite catalyst for exhaust gas purification and catalyst obtained thereby
JP7013361B2 (en) 2018-11-15 2022-02-15 株式会社キャタラー Particulate filter
US11478784B2 (en) * 2020-02-04 2022-10-25 Saudi Arabian Oil Company Catalyst compositions for ammonia decomposition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629543B2 (en) * 1987-12-01 1994-04-20 トヨタ自動車株式会社 Filter for collecting particulates
JPH01307452A (en) * 1988-06-06 1989-12-12 Matsushita Electric Ind Co Ltd Waste gas purification catalyst
JPH09271665A (en) * 1996-04-04 1997-10-21 Nippon Soken Inc Exhaust gas purifying catalyst
US5977017A (en) * 1996-04-10 1999-11-02 Catalytic Solutions, Inc. Perovskite-type metal oxide compounds
JP2004019534A (en) * 2002-06-14 2004-01-22 Toyota Motor Corp Exhaust emission control device

Also Published As

Publication number Publication date
JP2007229619A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5391408B2 (en) PM combustion catalyst manufacturing method and PM combustion method
US9006131B2 (en) Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification
JP5063980B2 (en) Composite oxide and filter for exhaust gas purification catalyst
JP5190196B2 (en) Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter
JPWO2003022740A1 (en) Cerium oxide, its production method and exhaust gas purifying catalyst
JP4904458B2 (en) Composite oxide and filter for PM combustion catalyst
JP2003277059A (en) Ceria-zirconia compound oxide
KR101574553B1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP4768475B2 (en) Composite oxide and filter for PM combustion catalyst
JP2013129554A (en) Composite oxide, method for producing the same, and catalyst for exhaust gas purification
JP2007160297A (en) Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JP2010069471A (en) Compound oxide catalyst for burning pm, slurry prepared by using the same, and filter for cleaning exhaust gas
JP5915520B2 (en) Exhaust gas purification catalyst
JP2013129553A (en) Compound oxide, production method thereof and exhaust gas purification catalyst
JP2007216150A (en) Composite oxide for oxidation catalysts, and filter
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
CN111278555A (en) Composition for exhaust gas purification
JP5427443B2 (en) Composite oxide for exhaust gas purification catalyst, paint for exhaust gas purification catalyst and filter for diesel exhaust gas purification
JP5973914B2 (en) Method for producing catalyst composition for exhaust gas treatment
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same
JPWO2009044736A1 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
JP5154890B2 (en) Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine
JP2006240923A (en) Perovskite type multiple oxide and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees