JP4904458B2 - Composite oxide and filter for PM combustion catalyst - Google Patents

Composite oxide and filter for PM combustion catalyst Download PDF

Info

Publication number
JP4904458B2
JP4904458B2 JP2006054372A JP2006054372A JP4904458B2 JP 4904458 B2 JP4904458 B2 JP 4904458B2 JP 2006054372 A JP2006054372 A JP 2006054372A JP 2006054372 A JP2006054372 A JP 2006054372A JP 4904458 B2 JP4904458 B2 JP 4904458B2
Authority
JP
Japan
Prior art keywords
composite oxide
temperature
catalyst
combustion
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006054372A
Other languages
Japanese (ja)
Other versions
JP2007237005A (en
Inventor
拓哉 矢野
優樹 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2006054372A priority Critical patent/JP4904458B2/en
Publication of JP2007237005A publication Critical patent/JP2007237005A/en
Application granted granted Critical
Publication of JP4904458B2 publication Critical patent/JP4904458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、自動車等のディーゼルエンジンから排出されるPM(粒子状物質)を燃焼するための触媒に適した複合酸化物、並びにそれを用いた触媒およびディーゼル排ガス浄化用フィルターに関する。   The present invention relates to a composite oxide suitable for a catalyst for burning PM (particulate matter) discharged from a diesel engine such as an automobile, and a catalyst and a diesel exhaust gas purification filter using the same.

ディーゼルエンジンの排ガスに関しては、特に窒素酸化物(NOx)とPMが問題となっている。このうちPMはカーボンを主体とする微粒子であり、その除去方法として排気ガス流路にパーティキュレート・フィルター(DPF)を設置してPMをトラップする方法が一般化されつつある。トラップされたPMは間欠的または連続的に燃焼され、当該DPFは再生される。 Nitrogen oxides (NO x ) and PM are particularly problematic with regard to exhaust gas from diesel engines. Among these, PM is fine particles mainly composed of carbon, and a method for trapping PM by installing a particulate filter (DPF) in an exhaust gas flow path is becoming common as a method for removing the particulate matter. The trapped PM is burned intermittently or continuously, and the DPF is regenerated.

このDPF再生処理には、電気ヒーターやバーナー等を用いて外部加熱によりPMを燃焼させる方法、DPFよりもエンジン側に酸化触媒を設置し、排ガス中のNOを酸化触媒によりNO2にし、NO2の酸化力によりPMを燃焼させる方法などがある。しかし、電気ヒーターやバーナーなどは外部からエネルギーを加える必要があり、システムが複雑化する。また、酸化触媒については触媒活性が十分発揮されるほど排ガス温度が高くないことや、ある一定の運転状況下でなければPM燃焼に必要なNOが排ガス中に含まれてこないことなど、種々の問題がある。そのような中、DPFに触媒を担持させ、その触媒作用によりPMの燃焼温度を低下させ、排ガス温度にて連続的に燃焼させる触媒方式が望ましいとされている。 In this DPF regeneration process, a method of burning PM by external heating using an electric heater, a burner or the like, an oxidation catalyst is installed on the engine side of the DPF, NO in the exhaust gas is changed to NO 2 by the oxidation catalyst, and NO 2 There is a method of burning PM by the oxidizing power of the. However, electric heaters and burners need to be externally applied, which complicates the system. In addition, regarding the oxidation catalyst, the exhaust gas temperature is not so high that the catalytic activity is sufficiently exhibited, and NO necessary for PM combustion is not contained in the exhaust gas unless under certain operating conditions. There's a problem. Under such circumstances, a catalyst system in which a catalyst is supported on a DPF, the PM combustion temperature is lowered by the catalytic action, and combustion is continuously performed at the exhaust gas temperature is desirable.

特許文献1には触媒金属としてPtを担持したものが開示されている。しかし、排ガス温度レベルではPtはPMを燃焼させる触媒作用が低いため、燃料排ガス温度にてPMを連続的に燃焼させるのは困難と考えられる。また、貴金属を使用しているためコストの増大が避けられない。   Patent Document 1 discloses a material carrying Pt as a catalyst metal. However, since Pt has a low catalytic action for burning PM at the exhaust gas temperature level, it is considered difficult to continuously burn PM at the fuel exhaust gas temperature. Further, since noble metals are used, an increase in cost is inevitable.

特開平11−253757号公報Japanese Patent Laid-Open No. 11-253757

本出願人は、貴金属元素を使用しない触媒として、Ceと遷移金属元素の複合酸化物を含むPM燃焼触媒を特願2005−336408号にて提案し、これによりPM燃焼温度の大幅な低温化が実現されている。しかし、この技術ではPM燃焼触媒の耐熱性については特段の配慮がなされておらず、PM燃焼時の発熱により触媒温度が急激に上昇した場合を考慮すると、高温の熱履歴を受けた場合にも触媒活性が高く維持できる耐熱性を具備した触媒物質の開発が待たれている。   The present applicant has proposed a PM combustion catalyst containing a composite oxide of Ce and a transition metal element in Japanese Patent Application No. 2005-336408 as a catalyst that does not use a noble metal element, thereby significantly reducing the PM combustion temperature. It has been realized. However, in this technology, no special consideration is given to the heat resistance of the PM combustion catalyst. Considering the case where the catalyst temperature suddenly rises due to the heat generated during PM combustion, Development of a catalytic material having heat resistance that can maintain high catalytic activity is awaited.

本発明は、貴金属元素を含まずにディーゼルエンジン排ガスのPMを低温で燃焼させることができる触媒活性を有し、かつPM燃焼時の発熱に耐えうる耐熱性を備えた複合酸化物を開発し提供しようというものである。   The present invention develops and provides composite oxides that have catalytic activity that can burn PM of diesel engine exhaust gas at low temperatures without containing precious metal elements, and that have heat resistance that can withstand the heat generated during PM combustion. It is to try.

上記目的は、Ce、遷移金属元素Tおよび1種以上の元素Mと、酸素で構成される複合酸化物によって達成される。より具体的には、Ce、遷移金属元素Tおよび元素Mのモル比が下記[a]を満たす組成のPM燃焼触媒用複合酸化物が提供される。
[a]Ce、遷移金属元素Tおよび元素Mのモル比を、Ce:T:M=(1−x−y):x:yとするとき、0<x≦0.6、0<y≦0.4、x+y<1が成立する
The above object is achieved, Ce, and a transition metal element T, and one or more elemental M, is achieved by oxygen composite oxide composed. More specifically, a composite oxide for PM combustion catalyst having a composition in which the molar ratio of Ce, transition metal element T and element M satisfies the following [a] is provided.
[A] When the molar ratio of Ce, transition metal element T and element M is Ce: T: M = (1-xy): x: y, 0 <x ≦ 0.6, 0 <y ≦ 0.4, x + y <1 holds .

前記遷移金属元素Tとして、ここではFeを採用する。すなわち、下記[a]’を満たす組成を有するものが対象となる。
[a]’Ce、Feおよび元素Mのモル比を、Ce:Fe:M=(1−x−y):x:yとするとき、0<x≦0.6、0<y≦0.4、x+y<1が成立する。
ただしこの場合、元素MはLa、Y、Co、Baからなる元素群から選ばれる元素である。
As the transition metal element T, here we adopt Fe. That is, it is the Target those having a composition satisfying the following [a] '.
[A] When the molar ratio of Ce, Fe and element M is Ce: Fe: M = (1-xy): x: y, 0 <x ≦ 0.6, 0 <y ≦ 0. 4, x + y <1 holds.
However, in this case, the element M is an element selected from the element group consisting of La, Y, Co, and Ba .

この複合酸化物は酸化セリウム(CeO2)構造を主体とするものであり、Ce、Feおよび1種以上の前記元素Mと、酸素で構成され、下記組成式(1)において、0<x≦0.6、0<y≦0.4、x+y<1を満たす組成の複合酸化物として捉えることもできる。
Ce(1-x-y)Fexyδ ……(1)
ここで、δ>0であり、代表的にはδ=2あるいはそれに近い値、例えば1≦δ≦3、あるいは1.3≦δ≦2.5が挙げられる。すなわち、下記組成式(1)’に近い組成を有するものが例示できる。
Ce(1-x-y)Fexy2 ……(1)’
この複合酸化物はX線回折によれば酸化セリウム構造のピークが認められ、また、ミクロ的な分析手段から、酸化セリウム相の他に、鉄酸化物相が検出される場合がある。
This composite oxide is mainly composed of a cerium oxide (CeO 2 ) structure, and is composed of Ce , Fe, one or more elements M, and oxygen. In the following composition formula (1), 0 <x It can also be regarded as a composite oxide having a composition satisfying ≦ 0.6, 0 <y ≦ 0.4, and x + y <1.
Ce (1-xy) Fe x M y O δ ...... (1)
Here, δ> 0, and typically δ = 2 or a value close thereto, for example, 1 ≦ δ ≦ 3, or 1.3 ≦ δ ≦ 2.5. That is, what has a composition close | similar to following composition formula (1) 'can be illustrated.
Ce (1-xy) Fe x M y O 2 ...... (1) '
According to X-ray diffraction, this composite oxide has a peak of a cerium oxide structure, and an iron oxide phase may be detected in addition to a cerium oxide phase from a microscopic analysis means.

これらの複合酸化物は、高温の熱履歴を受けたときにも熱劣化が生じにくい優れた耐熱性を有する。すなわち、当該複合酸化物を大気中800℃で2h加熱処理した後にカーボンブラックと乳鉢で混合して、(加熱処理した複合酸化物):(カーボンブラック)=6:1の質量比とした粉体試料において、下記[b]で定義されるカーボンブラック燃焼温度T90が520℃以下となる優れた耐熱性を有する。
[b]カーボンブラック燃焼温度T90は、粉体試料をTG/DTA装置により常温から10℃/minで昇温したときの粉体試料の重量変化において、50℃から700℃までの重量減少量に対し、50℃からの重量減少量が90%となる時点の温度と定義する(後述図2参照)。
These composite oxides have excellent heat resistance that hardly causes thermal degradation even when subjected to a high-temperature thermal history. That is, the composite oxide was heat-treated at 800 ° C. for 2 hours in the atmosphere, and then mixed with carbon black and a mortar to obtain a powder having a mass ratio of (heat-treated composite oxide) :( carbon black) = 6: 1 The sample has excellent heat resistance such that the carbon black combustion temperature T 90 defined by the following [b] is 520 ° C. or less.
[B] carbon black combustion temperature T 90 is a powder sample in the weight change of the powder sample upon heating at 10 ° C. / min from room temperature by TG / DTA apparatus, weight loss from 50 ° C. to 700 ° C. On the other hand, it is defined as the temperature at which the weight loss from 50 ° C. becomes 90% (see FIG. 2 described later).

このような複合酸化物は、ディーゼルエンジン排ガス中のPMを燃焼させる触媒(PM燃焼触媒)として極めて好適である。この複合酸化物を触媒物質として用いた酸化触媒を、例えばSiC、コージェライト、ムライト、アルミナなどの多孔質物質からなるDPFに担持させることにより、捕集されたPMを排ガスの熱を有効利用して燃焼除去することのできるディーゼル排ガス浄化用フィルターが構築される。   Such a complex oxide is extremely suitable as a catalyst (PM combustion catalyst) for burning PM in exhaust gas from a diesel engine. By supporting an oxidation catalyst using this composite oxide as a catalyst material on a DPF made of a porous material such as SiC, cordierite, mullite, alumina, etc., the collected PM can be effectively used for the heat of exhaust gas. Thus, a diesel exhaust gas purification filter that can be burned and removed is constructed.

本発明の複合酸化物は比較的低温から高い触媒活性を発揮するので、これを触媒物質として用いるとPM燃焼温度を低下させることができ、排ガス温度を有効利用してPMを燃焼除去することのできるディーゼル排ガス浄化フィルターを構築することが可能になる。また、本発明の複合酸化物は耐熱性に優れるため、PM燃焼による急激な発熱が生じた場合でも、高い触媒活性が維持される。さらに、貴金属元素を必要としないのでDPFの材料コスト低減にも寄与できる。   Since the composite oxide of the present invention exhibits high catalytic activity from a relatively low temperature, when it is used as a catalyst substance, the PM combustion temperature can be lowered, and the exhaust gas temperature can be effectively used to burn and remove PM. It is possible to construct a diesel exhaust gas purification filter that can be used. Moreover, since the composite oxide of the present invention is excellent in heat resistance, high catalytic activity is maintained even when sudden heat generation due to PM combustion occurs. Furthermore, since no precious metal element is required, it can contribute to the reduction of the material cost of DPF.

本発明の複合酸化物では、Ce、遷移金属元素T(具体的にはFe)、および前記の元素Mを必須成分として含有する。この複合酸化物は、酸化セリウム構造体にFeあるいはさらに元素Mが複合化した形態を有する酸化物相が主体となっている。代表的な組成式は前述の(1)式のように表示される。 The composite oxide of the present invention contains Ce, a transition metal element T ( specifically, Fe), and the element M as essential components. This composite oxide is mainly composed of an oxide phase having a form in which Fe or an element M is combined with a cerium oxide structure. A typical composition formula is represented as the above-mentioned formula (1).

この酸化セリウム構造体のセリウム原子の一部は遷移金属元素T(具体的にはFe)の原子で置換されている。このとき、セリウム原子を主とする複合酸化物の陽イオンの見かけ上の価数変化が起こり、また、イオン半径が異なる元素同士の置換による格子の歪のため、格子中の酸素が格子外に放出されやすい状態となり、これによって比較的低温の温度域からPMの燃焼に必要な活性酸素がPMに供給され、PM燃焼温度の低下が実現されるものと考えられる。遷移金属元素Tを含有しない、従来知られている単なる酸化セリウム(CeO2)の場合は、格子中の酸素の放出が起こりにくい安定な構造をとるものと考えられるため、PMの燃焼に対する高い触媒活性を得ることは困難である。 A part of the cerium atom of this cerium oxide structure is substituted with an atom of the transition metal element T ( specifically, Fe). At this time, the apparent valence change of the cation of the complex oxide mainly composed of cerium atoms occurs, and the lattice distortion due to substitution of elements having different ionic radii causes oxygen in the lattice to move out of the lattice. It is considered that the active oxygen necessary for PM combustion is supplied to the PM from a relatively low temperature range, and the PM combustion temperature is lowered. In the case of the conventional mere cerium oxide (CeO 2 ) that does not contain the transition metal element T, it is considered that it has a stable structure in which the release of oxygen in the lattice is unlikely to occur. It is difficult to obtain activity.

発明者らの検討によれば、酸化セリウム構造体において遷移金属元素T(具体的にはFe)との複合体を形成した複合酸化物は、PMに対する高い触媒活性が得られるものの、800℃といった高温に加熱される熱履歴を一旦受けると、本来の高い触媒活性が十分維持できない(熱劣化が生じる)ことがわかった。そこで詳細な研究を進めた結果、前記元素Mを添加した複合酸化物構造とすることによって、熱劣化の問題は大幅に改善されることが明らかになった。すなわち元素Mを複合させることにより、遷移金属元素T(例えばFe)で一部を置換した酸化セリウム構造の複合酸化物の耐熱性が向上し、高温の熱履歴を受けてもPM燃焼温度の優れた低減効果が維持される。その理由については現時点で十分解明されていないが、元素Mの添加によって熱による複合酸化物粒子の粗大化が抑制されることが影響しているものと推察される。 According to the study by the inventors, a complex oxide formed with a transition metal element T ( specifically, Fe) in a cerium oxide structure can obtain a high catalytic activity for PM, but 800 ° C. It was found that once a thermal history heated to a high temperature was received, the original high catalytic activity could not be sufficiently maintained (thermal degradation occurred). Therefore, as a result of detailed studies, it has been clarified that the problem of thermal degradation is greatly improved by using the complex oxide structure to which the element M is added. That is, by combining the element M, the heat resistance of the composite oxide having a cerium oxide structure partially substituted with the transition metal element T (for example, Fe) is improved, and the PM combustion temperature is excellent even when subjected to a high temperature thermal history. The reduction effect is maintained. The reason for this is not fully understood at the present time, but it is presumed that the addition of the element M has the effect of suppressing the coarsening of the composite oxide particles due to heat.

遷移金属元素T(具体的にはFe)のモル比を表すxは、前記[a]で示されるように、0<x≦0.6の範囲にあることが望ましい。x=0、すなわち遷移金属元素Tが存在しない場合は前述のように高い触媒活性が得られない。xが0.6より大きくなると遷移金属元素T(具体的にはFe)が酸化セリウム構造体のCeを置換する形で存在する以外に、酸化セリウム構造の相と遷移金属元素Tの酸化物相(具体的には酸化鉄相)との混合相が形成されやすいと考えられる。そうなると、遷移金属元素Tの酸化物相(具体的には酸化鉄相)はPMの燃焼に対する触媒活性が低いため、そのような異相の存在が複合酸化物の触媒活性点を低減させ、触媒活性が低下すると考えられる。xの範囲は0.05≦x≦0.6であることがより好ましく、0.05≦x≦0.5が一層好ましい。 X representing the molar ratio of the transition metal element T ( specifically Fe) is preferably in the range of 0 <x ≦ 0.6, as indicated by [a] above. When x = 0, that is, when the transition metal element T is not present, high catalytic activity cannot be obtained as described above. When x is larger than 0.6, the transition metal element T ( specifically, Fe) exists in the form of replacing Ce in the cerium oxide structure, and the phase of the cerium oxide structure and the oxide phase of the transition metal element T It is considered that a mixed phase with ( specifically, iron oxide phase) is likely to be formed. Then, since the oxide phase of the transition metal element T ( specifically, the iron oxide phase) has a low catalytic activity for PM combustion, the presence of such a different phase reduces the catalytic activity point of the composite oxide, and the catalytic activity. Is expected to decrease. The range of x is more preferably 0.05 ≦ x ≦ 0.6, and more preferably 0.05 ≦ x ≦ 0.5.

元素Mのモル比を表すyは、前記[a]で示されるように、0<y≦0.4の範囲にあることが望ましい。y=0、すなわち元素Mが存在しない場合は熱劣化を抑止する効果が生じない。yが0.4を超えて元素M含有量が多くなると、複合酸化物粒子の粗大化は抑制されるが、粒子同士のネッキングが過剰に起こりやすくなり、PM燃焼の活性点減少によって触媒活性の低下が生じやすくなると考えられる。yの範囲は0<y≦0.3であることがより好ましく、0.01≦y≦0.15が一層好ましい。   Y representing the molar ratio of the element M is preferably in the range of 0 <y ≦ 0.4, as indicated by the above [a]. When y = 0, that is, when the element M does not exist, the effect of suppressing thermal degradation does not occur. When y exceeds 0.4 and the content of element M increases, the coarsening of the composite oxide particles is suppressed, but the particles tend to be excessively necked, and the catalytic activity is reduced by reducing the active point of PM combustion. It is thought that the reduction tends to occur. The range of y is more preferably 0 <y ≦ 0.3, and more preferably 0.01 ≦ y ≦ 0.15.

本発明の複合酸化物は、例えば、通常の共沈法、有機錯体法、非晶質前駆体を用いた製法などによって製造することができる。以下、各製法について説明する。
〔共沈法〕
共沈法では、複合酸化物を構成する各元素の塩を、Ce、遷移金属元素T(具体的にはFe)、および元素Mのモル比が前述のようになる複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、この水溶液と中和剤を混合して共沈させた後、得られた共沈物を乾燥後、熱処理する。各元素の塩としては特に限定されないが、例えば硫酸塩、硝酸塩、リン酸塩、塩化物などの無機塩、酢酸塩、シュウ酸塩などの有機酸塩などが使用できる。中でも酢酸塩、硝酸塩が好適に使用できる。原料塩水溶液は、上記の各元素の塩を目的の化学量論比となるように水に加えて、撹拌することにより調製することができる。
The composite oxide of the present invention can be produced, for example, by a usual coprecipitation method, an organic complex method, a production method using an amorphous precursor, or the like. Hereinafter, each manufacturing method will be described.
[Co-precipitation method]
In the coprecipitation method, a salt of each element constituting the composite oxide is formed to produce a composite oxide in which the molar ratio of Ce, transition metal element T ( specifically, Fe), and element M is as described above. A raw salt aqueous solution containing an appropriate stoichiometric ratio is prepared, this aqueous solution and a neutralizing agent are mixed and coprecipitated, and the obtained coprecipitate is dried and then heat-treated. Although it does not specifically limit as a salt of each element, For example, organic acid salts, such as inorganic salts, such as a sulfate, nitrate, phosphate, and chloride, acetate, oxalate, etc. can be used. Of these, acetates and nitrates can be preferably used. The raw salt aqueous solution can be prepared by adding the salt of each of the above elements to water so as to achieve the desired stoichiometric ratio and stirring.

そして、この原料塩水溶液と中和剤を混合し、共沈させる。中和剤としては特に限定されないが、例えばアンモニア、苛性ソーダ、苛性カリなどの無機塩基、トリエチルアミン、ピリジンなどの有機塩基が使用できる。また中和剤は、その中和剤を加えた後に生成されるスラリーのpHが6〜14となるように混合する。このように混合することにより、結晶性のよい各元素の水酸化物の共沈物を得ることができる。   Then, this raw salt aqueous solution and a neutralizing agent are mixed and coprecipitated. The neutralizing agent is not particularly limited, and for example, inorganic bases such as ammonia, caustic soda and caustic potash, and organic bases such as triethylamine and pyridine can be used. Moreover, a neutralizing agent is mixed so that the pH of the slurry produced | generated after adding the neutralizing agent may be 6-14. By mixing in this way, it is possible to obtain a coprecipitate of a hydroxide of each element having good crystallinity.

得られた共沈物は必要に応じて水洗され、例えば、真空乾燥や通風乾燥などにより乾燥させた後、例えば500〜1200℃、好ましくは550〜1000℃で熱処理することにより、目的とする組成の複合酸化物を得ることができる。この際、熱処理時の雰囲気は上記複合酸化物が生成される範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組み合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組み合わせた雰囲気が使用できる。   The obtained coprecipitate is washed with water as necessary. For example, the coprecipitate is dried by, for example, vacuum drying or ventilation drying, and then heat-treated at, for example, 500 to 1200 ° C., preferably 550 to 1000 ° C. The composite oxide can be obtained. At this time, the atmosphere during the heat treatment is not particularly limited as long as the above complex oxide is generated. For example, in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with them, preferably in air. In addition, an atmosphere in nitrogen and a combination thereof with water vapor can be used.

〔有機錯体法〕
有機錯体法では、例えばクエン酸、リンゴ酸、エチレンジアミン4酢酸ナトリウムなどの有機錯体を形成する塩と、前述の各元素の塩とを目的の化学量論比となるように水に加えて、攪拌することにより調製することができる。
この原料水溶液を乾固させ、前述の各元素の有機錯体を形成させた後、仮焼成・熱処理することにより目的とする組成の複合酸化物を得ることができる。
[Organic complex method]
In the organic complex method, for example, a salt that forms an organic complex such as citric acid, malic acid, sodium ethylenediaminetetraacetate, and the salt of each of the aforementioned elements is added to water so as to achieve the desired stoichiometric ratio, and stirred. Can be prepared.
After this raw material aqueous solution is dried to form an organic complex of each of the aforementioned elements, a composite oxide having a desired composition can be obtained by pre-baking and heat treatment.

各元素の塩としては、共沈法の場合と同様の塩が使用でき、また原料塩水溶液は各元素の原料塩を目的の化学量論比に混合して水に溶解した後、有機錯体を形成する塩の水溶液と混合することにより、調製することができる。なお、有機錯体を形成する塩の配合比率は得られる複合酸化物1モルに対して1.2〜3モル程度であることが好ましい。
その後、この原料溶液を乾固させて、前述の有機錯体を得る。乾固は有機錯体が分解しない温度であれば特に限定されず、例えば室温〜150℃程度、好ましくは室温〜110℃で、速やかに水分を除去する。これにより前述の有機錯体が得られる。
As the salt of each element, the same salt as in the coprecipitation method can be used. The raw salt aqueous solution is prepared by mixing the raw salt of each element in the desired stoichiometric ratio and dissolving it in water. It can be prepared by mixing with an aqueous solution of the salt that forms. In addition, it is preferable that the mixture ratio of the salt which forms an organic complex is about 1.2-3 mol with respect to 1 mol of complex oxides obtained.
Thereafter, this raw material solution is dried to obtain the aforementioned organic complex. Drying is not particularly limited as long as it is a temperature at which the organic complex does not decompose. Thereby, the above-mentioned organic complex is obtained.

得られた有機錯体は仮焼成後に熱処理される。仮焼成は、例えば真空または不活性ガス雰囲気下において250℃以上で加熱すればよい。その後、例えば500〜1000℃、好ましくは550〜950℃で熱処理することにより、目的とする組成の複合酸化物を得ることができる。この際、熱処理時の雰囲気は上記複合酸化物が生成される範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組み合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組み合わせた雰囲気が使用できる。   The obtained organic complex is heat-treated after calcination. Pre-baking may be performed at 250 ° C. or higher, for example, in a vacuum or an inert gas atmosphere. Thereafter, for example, a heat treatment is performed at 500 to 1000 ° C., preferably 550 to 950 ° C., to obtain a composite oxide having a target composition. At this time, the atmosphere during the heat treatment is not particularly limited as long as the above complex oxide is generated. For example, in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with them, preferably in air. In addition, an atmosphere in nitrogen and a combination thereof with water vapor can be used.

〔非晶質前駆体を用いた製法〕
非晶質前駆体を用いた製法では、目的とする組成の複合酸化物を生成するにふさわしい化学量論比で前述の各元素を含む、粉状の非晶質からなる前駆体物質を、低温で熱処理することによって得ることができる。
[Production method using amorphous precursor]
In the production method using an amorphous precursor, a powdery amorphous precursor material containing the above-described elements at a stoichiometric ratio suitable for forming a composite oxide having a target composition is formed at a low temperature. Can be obtained by heat treatment.

このような非晶質の前駆体は、前述の各元素の塩を目的とする組成の複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、それと炭酸アルカリまたはアンモニウムイオンを含む炭酸塩などの沈殿剤とを、反応温度60℃以下、pH6以上で反応させて沈殿生成物を作り、その濾過物を乾燥させて得ることができる。   Such an amorphous precursor is prepared by preparing a raw salt aqueous solution containing a salt of each element described above in a stoichiometric ratio suitable for forming a composite oxide having a desired composition, and an alkali carbonate or ammonium ion. It can be obtained by reacting with a precipitating agent such as carbonate containing at a reaction temperature of 60 ° C. or lower and a pH of 6 or higher to produce a precipitated product, and drying the filtrate.

より具体的には、まず、各元素の硝酸塩、硫酸塩、塩化物等の水溶性鉱酸塩を目的とする組成のモル比となるように溶解させた水溶液を用意する。沈殿を生成させる液中の構成元素のイオン濃度は、用いる塩類の溶解度によって上限が決まるが、構成元素の結晶性化合物が析出しない状態が望ましく、通常は、前述の各元素の合計イオン濃度が0.01〜0.60mol/L程度の範囲であるのが望ましいが、場合によっては、0.60mol/Lを超えてもよい。   More specifically, first, an aqueous solution in which water-soluble mineral salts such as nitrates, sulfates, and chlorides of each element are dissolved so as to have a molar ratio of a target composition is prepared. The upper limit of the ion concentration of the constituent element in the liquid for generating the precipitate is determined by the solubility of the salt used, but it is desirable that the crystalline compound of the constituent element does not precipitate. Usually, the total ion concentration of each of the above elements is 0. The range of about 0.01 to 0.60 mol / L is desirable, but in some cases, it may exceed 0.60 mol / L.

この液から非晶質の沈殿を得るには、炭酸アルカリまたはアンモニウムイオンを含む炭酸塩からなる沈殿剤を用いるのがよく、このような沈殿剤としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等を使用することができ、必要に応じて、水酸化ナトリウム、アンモニア等の塩基を加えることも可能である。また、水酸化ナトリウム、アンモニア等を用いて沈殿を形成した後、炭酸ガスを吹き込むことによっても本発明の複合酸化物を得るための前駆体物質に適した非晶質を得ることができる。非晶質の沈殿を得る際、液のpHを6〜11の範囲に制御するのがよい。pHが6未満の領域では、希土類元素類が沈殿を形成しない場合があるので不適切である。他方、pHが11を超える領域では、沈殿剤単独の場合には生成する沈殿の非晶質化が十分に進行せずに、水酸化物などの結晶性の沈殿を形成する場合がある。また、反応温度は60℃以下にするのがよい。60℃を超える温度で反応を開始した場合、構成元素の結晶性の化合物粒子が生成する場合があり、前駆体物質の非晶質化を妨げるので好ましくない。   In order to obtain an amorphous precipitate from this liquid, it is preferable to use a precipitating agent composed of a carbonate containing an alkali carbonate or ammonium ion. Examples of such a precipitating agent include sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, Ammonium hydrogen carbonate or the like can be used, and a base such as sodium hydroxide or ammonia can be added as necessary. Further, after forming a precipitate using sodium hydroxide, ammonia or the like, an amorphous suitable for the precursor material for obtaining the composite oxide of the present invention can be obtained by blowing carbon dioxide gas. When obtaining an amorphous precipitate, the pH of the liquid should be controlled in the range of 6-11. In the region where the pH is less than 6, rare earth elements may not form a precipitate, which is inappropriate. On the other hand, in the region where the pH exceeds 11, in the case of the precipitating agent alone, the generated precipitate may not be sufficiently amorphized and a crystalline precipitate such as a hydroxide may be formed. The reaction temperature is preferably 60 ° C. or lower. When the reaction is started at a temperature exceeding 60 ° C., crystalline compound particles of the constituent elements may be formed, which is not preferable because it prevents the precursor material from becoming amorphous.

得られた非晶質前駆体は必要に応じて水洗され、真空乾燥や通風乾燥などにより乾燥させた後、例えば500〜1000℃、好ましくは500〜800℃で熱処理することにより、目的とする複合酸化物を得ることができる。この際、熱処理時の雰囲気は上記複合酸化物が生成される範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組合わせた雰囲気が使用できる。   The obtained amorphous precursor is washed with water as necessary, dried by vacuum drying or ventilation drying, and then heat treated at, for example, 500 to 1000 ° C., preferably 500 to 800 ° C. An oxide can be obtained. At this time, the atmosphere during the heat treatment is not particularly limited as long as the above complex oxide is generated. For example, in air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined, preferably air. Medium, nitrogen, and an atmosphere that combines them with water vapor can be used.

《触媒物質の作製》
各実施例、比較例の触媒物質を以下のようにして作製した。
〔実施例1〜7〕
硝酸セリウム、硝酸鉄および硝酸ランタンを、Ce:Fe:Laのモル比が表1に示す値になるように混合した。この混合物を、Ce、Fe、元素M(ここではLa)の液中合計モル濃度が0.2mol/Lとなるように水を添加して原料溶液を得た。この溶液を撹拌しながら溶液の温度を15℃に調整し、温度が15℃に達した段階で、沈殿剤として炭酸アンモニウムを添加しながら、pH=8に調整した。得られた沈殿物を濾過して回収した後、水洗し、125℃で乾燥した。得られた粉末を前駆体粉という。
<Production of catalyst material>
The catalyst materials of each Example and Comparative Example were prepared as follows.
[Examples 1-7]
Cerium nitrate, iron nitrate, and lanthanum nitrate were mixed so that the molar ratio of Ce: Fe: La was as shown in Table 1. Water was added to this mixture so that the total molar concentration of Ce, Fe, and element M (here, La) in the liquid was 0.2 mol / L to obtain a raw material solution. While stirring this solution, the temperature of the solution was adjusted to 15 ° C., and when the temperature reached 15 ° C., the pH was adjusted to 8 while adding ammonium carbonate as a precipitant. The resulting precipitate was collected by filtration, washed with water, and dried at 125 ° C. The obtained powder is called precursor powder.

次に、この前駆体粉を大気雰囲気下において600℃で2h熱処理して焼成した。耐熱性を評価するために、焼成後の上記粉体を大気雰囲気下において800℃で2h加熱処理することにより、高温の熱履歴を受けた粉体からなる触媒物質を得た。以下この加熱処理を「耐熱処理」という。
耐熱処理は、アルミナ製るつぼ(容量50cc、外径54mm、高さ43mm)に粉体3gを入れ、そのるつぼを炉内温度800℃のマッフル炉に入れて2h保持し、その後炉外の大気中で急冷する方法で行った。
Next, the precursor powder was heat-treated at 600 ° C. for 2 hours in an air atmosphere and fired. In order to evaluate the heat resistance, the powder after firing was heat-treated at 800 ° C. for 2 hours in an air atmosphere to obtain a catalyst material composed of powder that received a high-temperature heat history. Hereinafter, this heat treatment is referred to as “heat-resistant treatment”.
In the heat-resistant treatment, 3 g of powder was put in an alumina crucible (capacity 50 cc, outer diameter 54 mm, height 43 mm), the crucible was put in a muffle furnace having a furnace temperature of 800 ° C. and held for 2 hours, and then in the atmosphere outside the furnace It was done by the method of rapid cooling.

〔実施例8、9〕
硝酸セリウム、硝酸鉄および硫酸イットリウムを、Ce:Fe:Yのモル比が表1に示す値になるように混合した以外は、実施例1〜7と同様の条件で作製した。ここではYが元素Mとなる。
[Examples 8 and 9]
It was produced under the same conditions as in Examples 1 to 7, except that cerium nitrate, iron nitrate and yttrium sulfate were mixed so that the molar ratio of Ce: Fe: Y would be the value shown in Table 1. Here, Y is the element M.

〔実施例10〜12〕
硝酸セリウム、硝酸鉄および硝酸コバルトを、Ce:Fe:Coのモル比が表1に示す値になるように混合した以外は、実施例1と同様の条件で作製した。ここではCoが元素Mとなる。
[Examples 10 to 12]
It was produced under the same conditions as in Example 1 except that cerium nitrate, iron nitrate and cobalt nitrate were mixed so that the molar ratio of Ce: Fe: Co would be the value shown in Table 1. Here, Co becomes the element M.

〔実施例13〕
硝酸セリウム、硝酸鉄および硝酸バリウムを、Ce:Fe:Baのモル比が表1に示す値になるように混合した以外は、実施例1〜7と同様の条件で作製した。ここではBaが元素Mとなる。
Example 13
It was produced under the same conditions as in Examples 1 to 7, except that cerium nitrate, iron nitrate, and barium nitrate were mixed so that the molar ratio of Ce: Fe: Ba was a value shown in Table 1. Here, Ba is the element M.

〔実施例14〕
硝酸セリウム、硝酸鉄、硝酸ランタンおよび硝酸コバルトを、Ce:Fe:La:Coのモル比が表1に示す値になるように混合した以外は、実施例1〜7と同様の条件で作製した。ここではLaとCoが元素Mとなる。
Example 14
It was produced under the same conditions as in Examples 1 to 7, except that cerium nitrate, iron nitrate, lanthanum nitrate, and cobalt nitrate were mixed so that the molar ratio of Ce: Fe: La: Co was the value shown in Table 1. . Here, La and Co become the element M.

〔実施例15〕
硝酸セリウム、硝酸鉄、硝酸ランタンおよび硝酸バリウムを、Ce:Fe:La:Baのモル比が表1に示す値になるように混合した以外は、実施例1〜7と同様の条件で作製した。ここではLaとBaが元素Mとなる。
Example 15
Prepared under the same conditions as in Examples 1 to 7 except that cerium nitrate, iron nitrate, lanthanum nitrate and barium nitrate were mixed so that the molar ratio of Ce: Fe: La: Ba was the value shown in Table 1. . Here, La and Ba are the elements M.

〔比較例1〕
市販のγアルミナ(比表面積250m2/g)に、ジニトロジアミン白金水溶液を用いてPtを含浸させた後、90℃で12h通風乾燥を行った。得られた含浸物を大気雰囲気下で500℃×1h熱処理して、Pt担持アルミナを得た。これを実施例1〜7と同様の耐熱処理に供して、試験用の触媒物質とした。耐熱処理後の触媒物質は、アルミナ中におけるPt含有量が3.42質量%であった。
[Comparative Example 1]
Commercially available γ-alumina (specific surface area 250 m 2 / g) was impregnated with Pt using a dinitrodiamine platinum aqueous solution, and then air-dried at 90 ° C. for 12 hours. The obtained impregnated product was heat-treated at 500 ° C. for 1 hour in an air atmosphere to obtain Pt-supported alumina. This was subjected to the same heat treatment as in Examples 1 to 7 to obtain a test catalyst material. The catalyst material after the heat resistance treatment had a Pt content in alumina of 3.42% by mass.

〔比較例2、3〕
硝酸セリウムと硝酸鉄を、Ce:Feのモル比が表1に示す値になるように混合した以外は、実施例1〜7と同様の条件で作製した。ここでは元素Mとなる元素を添加していない。
[Comparative Examples 2 and 3]
It was produced under the same conditions as in Examples 1 to 7 except that cerium nitrate and iron nitrate were mixed so that the molar ratio of Ce: Fe was the value shown in Table 1. Here, an element to be the element M is not added.

以上のようにして得られた触媒物質を用いて以下の実験を行った。
《X線回折測定》
各実施例、比較例で得られた触媒物質(比較例1を除く)について、X線回折測定を行った。測定条件は以下のとおりである。
・X線回折装置: 株式会社リガク製、RINT−2100
・測定範囲: 2θ=10〜90°
・管球: Co管球
・管電圧: 40kV
・管電流: 30mA
測定の結果、比較例1を除く各例で得られた触媒物質(耐熱処理後のもの)はいずれもCeO2構造をもつ複合酸化物であることが確かめられた。
図1に実施例1の触媒物質についてのX線回折パターンを例示する。
The following experiment was conducted using the catalyst material obtained as described above.
<< X-ray diffraction measurement >>
X-ray diffraction measurement was performed on the catalyst materials (except for Comparative Example 1) obtained in each Example and Comparative Example. The measurement conditions are as follows.
X-ray diffractometer: RINT-2100 manufactured by Rigaku Corporation
・ Measurement range: 2θ = 10-90 °
-Tube: Co tube-Tube voltage: 40 kV
・ Tube current: 30mA
As a result of the measurement, it was confirmed that all of the catalyst materials (after heat-resistant treatment) obtained in each example except Comparative Example 1 were complex oxides having a CeO 2 structure.
FIG. 1 illustrates an X-ray diffraction pattern for the catalyst material of Example 1.

《粉体試料によるPM燃焼温度評価》
各実施例、比較例で得られた触媒物質について、カーボンブラックとの混合粉を作り、カーボンブラック燃焼温度T90を求めることによってPM燃焼温度を評価した。具体的には以下のようにした。
模擬PMとして市販のカーボンブラック(三菱化学製)を用い、触媒物質の粉体とカーボンブラックの質量比が6:1になるように秤量し、自動乳鉢機(石川工場製AGA型)で20分混合し、カーボンブラックと各粉体の混合粉体を得た。この混合粉体について熱重量測定(TG)を行い、カーボンブラックの燃焼に伴う重量減少からカーボンブラックの燃焼温度を求めた。評価方法はTG/DTA装置(セイコーインスツルメンツ社製、TG/DTA6300型)を用い、混合粉体20mgを50℃の一定温度にしたのち昇温速度10℃/minにて50℃から700℃まで大気中で昇温し、重量測定を行った。図2に、重量変化曲線(TG曲線)を模式的に示す。カーボンブラック燃焼温度T90は、TG曲線の50℃から700℃までの重量変化に対して重量変化が90%起こったときの温度と定める。燃焼温度を90%の重量変化が起こる時点とすることにより、カーボンブラックがおおよそ全量燃焼する温度が評価できる。
結果を表1に示す。
《PM combustion temperature evaluation using powder sample》
Each embodiment, for the catalyst material obtained in Comparative Example, create a mixed powder of carbon black were evaluated PM combustion temperature by determining the carbon black combustion temperature T 90. Specifically, it was as follows.
Commercially available carbon black (Mitsubishi Chemical) was used as a simulated PM, weighed so that the mass ratio of the catalyst material powder to carbon black would be 6: 1, and 20 minutes with an automatic mortar machine (AGA type manufactured by Ishikawa Factory). Mixing was performed to obtain a mixed powder of carbon black and each powder. The mixed powder was subjected to thermogravimetry (TG), and the combustion temperature of carbon black was determined from the weight loss associated with the combustion of carbon black. The evaluation method uses a TG / DTA device (TG / DTA 6300 type, manufactured by Seiko Instruments Inc.), and after 20 mg of the mixed powder is brought to a constant temperature of 50 ° C., the temperature is increased from 50 ° C. to 700 ° C. at a temperature rising rate of 10 ° C./min. The temperature was raised and the weight was measured. FIG. 2 schematically shows a weight change curve (TG curve). Carbon black combustion temperature T 90 is defined as the temperature at which the weight change occurs 90% change in weight from 50 ° C. of the TG curve up to 700 ° C.. By setting the combustion temperature at the time when a weight change of 90% occurs, it is possible to evaluate the temperature at which almost the entire amount of carbon black burns.
The results are shown in Table 1.

表1に示した実験結果から、Ceと遷移金属元素Feの複合酸化物(比較例2、3)はPt触媒(比較例1)と比較してカーボンブラック燃焼温度T90を大幅に低下させている。すなわちCeと遷移金属元素Feの複合酸化物によればPM燃焼温度の大幅な低下が実現できる。ところが、本発明の対象である各実施例の複合酸化物を用いた場合には、更に顕著なT90の低下が認められる。 From the test results shown in Table 1, the composite oxide of Ce and a transition metal element Fe (Comparative Examples 2 and 3) is significantly reduced the carbon black combustion temperature T 90 as compared to a Pt catalyst (Comparative Example 1) Yes. That is, according to the composite oxide of Ce and the transition metal element Fe, the PM combustion temperature can be significantly reduced. However, in the case of using a composite oxide of each example having the subject of the present invention is seen more reduction in significant T 90.

各実施例の複合酸化物はCeと遷移金属元素Feの他に前記元素Mを含有させたものである。この元素Mの含有が複合酸化物の耐熱性を向上させ、結果としてカーボンブラック燃焼温度が大きく低減したと考えられる。
図3には実施例1で得られた複合酸化物のTEM写真を示す。また図4には比較例2で得られた複合酸化物のTEM写真を示す。これらの複合酸化物は、焼成後の粉体を800℃×2h加熱する耐熱処理に供したものである。元素Mを添加した図3のものは、元素Mを添加していない図4のものに比べ粒子の粗大化が抑制されていることがわかる。このことから、元素Mを添加すると高温の熱履歴による粗大化が防止され、カーボンブラックの燃焼に対する活性点の減少が抑制されたことにより、耐熱処理後においても優れた触媒活性が維持されたものと考えられる。
The composite oxide of each example contains the element M in addition to Ce and the transition metal element Fe. It is considered that the inclusion of this element M improved the heat resistance of the composite oxide, and as a result, the carbon black combustion temperature was greatly reduced.
FIG. 3 shows a TEM photograph of the composite oxide obtained in Example 1. FIG. 4 shows a TEM photograph of the composite oxide obtained in Comparative Example 2. These composite oxides are subjected to a heat-resistant treatment in which the fired powder is heated at 800 ° C. for 2 hours. It can be seen that the particles in FIG. 3 to which the element M is added are suppressed from coarsening as compared to those in FIG. 4 to which the element M is not added. From this, when element M is added, coarsening due to high-temperature thermal history is prevented, and the reduction of active sites for combustion of carbon black is suppressed, so that excellent catalytic activity is maintained even after heat treatment. it is conceivable that.

前述のように、Ceと遷移金属元素Feの複合酸化物では、酸化セリウム構造体のセリウム原子の一部を鉄原子で置換することにより、セリウムを主とする複合酸化物の陽イオンの見かけ上の価数変化が起こり、またはイオン半径が異なる元素置換による格子の歪みが起こることにより、格子中の酸素が格子外に放出されやすくなり、この酸素の酸化力によりPM燃焼に対する触媒活性が向上するものと考えられる。本発明の対象である複合酸化物にはさらに元素Mが添加されており、元素Mもセリウム原子の一部を置換して上記の見かけの価数変化や格子歪みに寄与していると考えられ、このこともカーボンブラック燃焼温度T90の一層の低下をもたらしている要因になりうると考えられる。 As described above, in the composite oxide of Ce and the transition metal element Fe, by replacing a part of the cerium atom of the cerium oxide structure with an iron atom, the appearance of the cation of the composite oxide mainly containing cerium is apparent. As a result, the oxygen in the lattice is easily released out of the lattice, and the catalytic activity for PM combustion is improved by the oxidizing power of the oxygen. It is considered a thing. It is thought that the element M is further added to the complex oxide which is the object of the present invention, and the element M also substitutes a part of the cerium atom and contributes to the above apparent valence change and lattice distortion. this is also considered can be a factor that led to further reduction of the carbon black combustion temperature T 90.

《粒状試料によるPM燃焼温度評価》
実施例4、実施例11および比較例2で得られた各触媒物質の粉体(耐熱処理後のもの)を、それぞれ金型プレスにより100kg/cm2で圧縮成形した後、粉砕して、粒子径0.5〜1.0mmの粒状試料を作製した。この粒状試料にカーボンブラックを5質量%となるように添加し、ガラス瓶中で回転することによりこれらを混合した。
<< Evaluation of PM combustion temperature by granular sample >>
The powder of each catalyst material obtained in Example 4, Example 11 and Comparative Example 2 (after heat-resistant treatment) was compression molded at 100 kg / cm 2 by a mold press and then pulverized to produce particles. A granular sample having a diameter of 0.5 to 1.0 mm was produced. Carbon black was added to this granular sample so that it might become 5 mass%, and these were mixed by rotating in a glass bottle.

カーボンブラックを混合した上記粒状試料を流通式固定床に充填した状態にし、「500ppmNO+10%O2+残部N2」の模擬ディーゼルエンジン排ガスを空間速度SV75000/hで流通し、昇温速度10℃/minで常温から800℃まで昇温しながら、流通式固定床から排出されるCO2濃度を連続的に測定した。CO2濃度の測定はNICOLET製Nicolet4700FT−IRを用いて行った。
図5に、排出されるCO2濃度の変化を表す曲線を模式的に示す。流通式固定床から排出されたCO2の総発生量に対して、CO2の合計排出量が90%となる時点(図5の斜線域)の温度をここでのカーボンブラック燃焼温度として求めた。
結果を表2に示す。
The granular sample mixed with carbon black is filled in a flow-type fixed bed, and a simulated diesel engine exhaust gas of “500 ppm NO + 10% O 2 + remaining N 2 ” is circulated at a space velocity of SV75000 / h, and the temperature rising rate is 10 ° C. / The CO 2 concentration discharged from the flow-through fixed bed was continuously measured while the temperature was raised from room temperature to 800 ° C. in min. The measurement of the CO 2 concentration was performed using Nicolet 4700FT-IR manufactured by NICOLET.
FIG. 5 schematically shows a curve representing changes in the CO 2 concentration discharged. The temperature at the time when the total emission amount of CO 2 becomes 90% (the hatched area in FIG. 5) with respect to the total generation amount of CO 2 emitted from the flow-through fixed bed was obtained as the carbon black combustion temperature here. .
The results are shown in Table 2.

表2に示されるように、元素Mを添加した複合酸化物からなる実施例の触媒物質を使用した場合には、粒状化した状態においても、元素Mを添加していない比較例の触媒物質を使用した場合に比べ、CO2の排出量から見たカーボンブラック燃焼温度が低下した。このことから、実施例の触媒物質は元素Mを添加しないものに比べ実用的性能が高いと言える。 As shown in Table 2, when the catalyst material of the example made of the composite oxide to which the element M was added was used, the catalyst material of the comparative example to which the element M was not added even in the granulated state. compared with the case of using carbon black combustion temperature as seen from the emission of CO 2 is decreased. From this, it can be said that the catalyst material of the example has high practical performance compared to the catalyst material to which the element M is not added.

実施例1で得られた複合酸化物(耐熱処理後)についてのX線回折パターン。The X-ray-diffraction pattern about complex oxide (after heat-resistant process) obtained in Example 1. FIG. TG曲線を模式的に示した図。The figure which showed the TG curve typically. 実施例1で得られた複合酸化物(耐熱処理後)のTEM写真。4 is a TEM photograph of the complex oxide (after heat treatment) obtained in Example 1. 比較例2で得られた複合酸化物(耐熱処理後)のTEM写真。4 is a TEM photograph of the composite oxide (after heat treatment) obtained in Comparative Example 2. 模擬ディーゼル排ガス中におけるカーボンブラック燃焼時の排出CO2濃度の変化を模式的に示したグラフ。Graph schematically showing the change in emission CO 2 concentration at the time of the carbon black combustion in a simulated diesel exhaust gas.

Claims (3)

Ce、遷移金属元素Tおよび1種以上の元素Mと、酸素で構成され、Ce、遷移金属元素Tおよび元素Mのモル比が下記[a]を満たすPM燃焼触媒用複合酸化物。
[a]Ce、遷移金属元素Tおよび元素Mのモル比を、Ce:T:M=(1−x−y):x:yとするとき、0<x≦0.6、0<y≦0.4、x+y<1が成立する。
ただし、前記遷移金属元素TはFeであり、前記元素MはLa、Y、Co、Baからなる元素群から選ばれる元素である。
Ce, a transition metal element T, and one or more elemental M, is composed of oxygen, Ce, the molar ratio of the transition metal elements T and the element M satisfies the following [a] PM combustion catalyst composite oxide.
[A] When the molar ratio of Ce, transition metal element T and element M is Ce: T: M = (1-xy): x: y, 0 <x ≦ 0.6, 0 <y ≦ 0.4, x + y <1 holds.
However , the transition metal element T is Fe, and the element M is an element selected from an element group consisting of La, Y, Co, and Ba .
請求項1に記載の複合酸化物を触媒物質として用いたPM燃焼触媒。 A PM combustion catalyst using the composite oxide according to claim 1 as a catalyst material. 請求項に記載の触媒を用いたディーゼル排ガス浄化用フィルター。 A diesel exhaust gas purification filter using the catalyst according to claim 2 .
JP2006054372A 2006-02-07 2006-03-01 Composite oxide and filter for PM combustion catalyst Expired - Fee Related JP4904458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054372A JP4904458B2 (en) 2006-02-07 2006-03-01 Composite oxide and filter for PM combustion catalyst

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006030355 2006-02-07
JP2006030355 2006-02-07
JP2006054372A JP4904458B2 (en) 2006-02-07 2006-03-01 Composite oxide and filter for PM combustion catalyst

Publications (2)

Publication Number Publication Date
JP2007237005A JP2007237005A (en) 2007-09-20
JP4904458B2 true JP4904458B2 (en) 2012-03-28

Family

ID=38583077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054372A Expired - Fee Related JP4904458B2 (en) 2006-02-07 2006-03-01 Composite oxide and filter for PM combustion catalyst

Country Status (1)

Country Link
JP (1) JP4904458B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5332556B2 (en) * 2008-11-28 2013-11-06 日産自動車株式会社 Purification catalyst
JP5287358B2 (en) * 2009-03-03 2013-09-11 日産自動車株式会社 Oxidation catalyst
JP5427443B2 (en) * 2009-03-19 2014-02-26 Dowaエレクトロニクス株式会社 Composite oxide for exhaust gas purification catalyst, paint for exhaust gas purification catalyst and filter for diesel exhaust gas purification
JP5549453B2 (en) * 2010-07-21 2014-07-16 マツダ株式会社 Exhaust gas purification catalyst
CN102335606B (en) * 2011-07-19 2013-02-06 华中师范大学 Biomass tar cracking catalyst
CN108137943B (en) * 2015-08-14 2020-09-15 欧励隆工程炭公司 Method and system for removing particulate matter from a process exhaust stream
JP7358157B2 (en) 2019-09-27 2023-10-10 日本碍子株式会社 Complex oxide catalyst, porous composite, and method for producing complex oxide catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629542B2 (en) * 1987-11-30 1994-04-20 トヨタ自動車株式会社 Diesel particulate collection filter
JPH0629543B2 (en) * 1987-12-01 1994-04-20 トヨタ自動車株式会社 Filter for collecting particulates
JP2825420B2 (en) * 1993-09-02 1998-11-18 株式会社アイシーティー Diesel engine exhaust gas purification catalyst
JP2002322907A (en) * 2001-04-26 2002-11-08 Nissan Diesel Motor Co Ltd Exhaust emission catalyst purifier of cylinder injection system engine and exhaust emission purifying method
JP3528839B2 (en) * 2002-05-15 2004-05-24 トヨタ自動車株式会社 Particulate oxidizer and oxidation catalyst
FR2875149B1 (en) * 2004-09-15 2006-12-15 Rhodia Chimie Sa PROCESS FOR MANUFACTURING A CATALYSIS PARTICLE FILTER AND FILTER THUS OBTAINED
US20090232714A1 (en) * 2005-10-06 2009-09-17 Akira Abe Particulate combustion catalyst, particulate filter, and exhaust gas clean-up system
JP5119508B2 (en) * 2005-11-21 2013-01-16 国立大学法人 熊本大学 PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same

Also Published As

Publication number Publication date
JP2007237005A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP5391408B2 (en) PM combustion catalyst manufacturing method and PM combustion method
JP4904458B2 (en) Composite oxide and filter for PM combustion catalyst
JP5063980B2 (en) Composite oxide and filter for exhaust gas purification catalyst
JP5190196B2 (en) Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter
US9006131B2 (en) Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification
KR101574553B1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP5119508B2 (en) PM combustion oxidation catalyst, diesel engine exhaust gas purification method, filter and purification apparatus using the same
WO2007113981A1 (en) Catalyst composition
JP2013129554A (en) Composite oxide, method for producing the same, and catalyst for exhaust gas purification
JP4768475B2 (en) Composite oxide and filter for PM combustion catalyst
JP2013129553A (en) Compound oxide, production method thereof and exhaust gas purification catalyst
JP2007216150A (en) Composite oxide for oxidation catalysts, and filter
JP2012217931A (en) Catalyst for cleaning exhaust gas
JP5427443B2 (en) Composite oxide for exhaust gas purification catalyst, paint for exhaust gas purification catalyst and filter for diesel exhaust gas purification
JP5449924B2 (en) Oxygen storage / release material
JP5345063B2 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
KR101566688B1 (en) Method for preparing ceria-zirconia complex oxide and catalyst containing a ceria-zirconia complex oxid
JP5154890B2 (en) Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same
JP5541843B2 (en) Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same
JPWO2012017718A1 (en) Method for producing catalyst composition, catalyst composition, diesel particulate filter using the same, and exhaust gas purification system
JP2011152529A (en) Exhaust gas purifying filter
JP2010240645A (en) Catalyst for combustion of ammonia, process for producing the same, and method for combustion of ammonia using the same
JP2010194437A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees