JP5154890B2 - Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine - Google Patents

Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine Download PDF

Info

Publication number
JP5154890B2
JP5154890B2 JP2007286547A JP2007286547A JP5154890B2 JP 5154890 B2 JP5154890 B2 JP 5154890B2 JP 2007286547 A JP2007286547 A JP 2007286547A JP 2007286547 A JP2007286547 A JP 2007286547A JP 5154890 B2 JP5154890 B2 JP 5154890B2
Authority
JP
Japan
Prior art keywords
exhaust gas
composite oxide
gas purification
diesel engine
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007286547A
Other languages
Japanese (ja)
Other versions
JP2009112906A (en
Inventor
拓哉 矢野
達郎 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007286547A priority Critical patent/JP5154890B2/en
Publication of JP2009112906A publication Critical patent/JP2009112906A/en
Application granted granted Critical
Publication of JP5154890B2 publication Critical patent/JP5154890B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自動車用途を始めとした、ディーゼル機関等から排出される粒子状物質(以下、「PM」(Particulate Matter)と記載する場合がある。)を燃焼するための排気ガス浄化用複合酸化物、およびそれを用いたディーゼル機関の排気ガス浄化用フィルターに関する。   The present invention relates to a composite oxidation for purifying exhaust gas for burning particulate matter (hereinafter sometimes referred to as “PM” (Particulate Matter)) discharged from a diesel engine or the like for use in automobiles. And a filter for purifying exhaust gas of a diesel engine using the same.

ディーゼルエンジンの排気ガスに関しては、特に、窒素酸化物(NO)とPMとが問題となっている。このうちPMは、カーボンを主体とする微粒子である。そして、当該PMの除去方法として排気ガス流路にディーゼル・パーティキュレート・フィルター(以下、DPFと記載する場合がある。)を設置して、これをトラップする方法が一般化されつつある。DPFにトラップされたPMは、間欠的または連続的に燃焼される。そして、当該PMが燃焼除去されることで当該DPFは再生される。これが、DPF再生処理である。 Regarding exhaust gas from diesel engines, nitrogen oxide (NO x ) and PM are particularly problematic. Among these, PM is fine particles mainly composed of carbon. As a method for removing the PM, a method of installing a diesel particulate filter (hereinafter sometimes referred to as DPF) in an exhaust gas flow path and trapping the diesel particulate filter is being generalized. PM trapped in the DPF is burned intermittently or continuously. Then, the DPF is regenerated by burning and removing the PM. This is the DPF regeneration process.

このDPF再生処理には、電気ヒーターやバーナー等を設置して外部加熱によりPMを燃焼させる方法、DPFから向かってエンジン側に酸化触媒を設置し、排気ガス中のNOを当該酸化触媒によりNOとし、当該NOの酸化力によりPMを燃焼させる方法、DPFにNO吸蔵触媒を共存し、空燃比によるNOの吸放出の際生じる活性酸素によりPMを燃焼させる方法など、がある。 In this DPF regeneration process, an electric heater, a burner or the like is installed and PM is burned by external heating, an oxidation catalyst is installed on the engine side from the DPF, and NO in the exhaust gas is converted to NO 2 by the oxidation catalyst. and to a method for combusting PM by oxidizing power of the NO 2, and coexist the NO X storage catalyst DPF, the active oxygen produced during the absorption and desorption of the NO X by the air-fuel ratio and a method for combusting PM, there is.

ところが、電気ヒーターやバーナー等を設置する方法は、外部からエネルギーを加える必要がありシステムおよびDPFの再生が煩雑化するという問題があった。一方、酸化触媒を設置する方法については、排気ガス温度が低いため酸化触媒の活性が低い。その為、ある一定の運転状況下でなければ、NOを酸化してPM燃焼に必要な量のNOを排気ガス中に確保出来ないという問題があった。また、今後NOに対する排出ガス規制強化により排ガス中のNOは削減され、十分なNOが得られないという問題も予測される。他方、NO吸蔵触媒を共存させる方法では、排気ガス中に含まれる硫黄により当該NO吸蔵放出能が低下し、PM燃焼活性も低下するという問題があった。 However, the method of installing an electric heater, a burner or the like has a problem that it is necessary to apply energy from the outside, and the regeneration of the system and the DPF becomes complicated. On the other hand, the method of installing the oxidation catalyst has a low activity of the oxidation catalyst because the exhaust gas temperature is low. For this reason, there is a problem that, unless the operating condition is constant, it is not possible to oxidize NO and secure the amount of NO 2 required for PM combustion in the exhaust gas. Further, the reduction NO X in the exhaust gas by the exhaust gas regulations enhancement to NO X future, sufficient NO 2 is also expected not be obtained. On the other hand, in the method in which the NO X storage catalyst coexists, there is a problem that the NO X storage and release ability is reduced by the sulfur contained in the exhaust gas, and the PM combustion activity is also reduced.

以上説明したように、いずれの方法も種々の問題がある。そのような中、DPFに触媒を担持し、その触媒作用によりPMの燃焼開始温度を低下させ、燃料排気ガス温度にて連続的にPMを燃焼し、硫黄などの被毒性物質に対して耐久性のある触媒方式が考えられている。   As described above, each method has various problems. Under such circumstances, the catalyst is supported on the DPF, and the catalytic combustion lowers the combustion start temperature of PM, and the PM is continuously burned at the fuel exhaust gas temperature, and is durable against toxic substances such as sulfur. A certain catalyst system is considered.

この方向に沿った方法として、特許文献1には、触媒としてPtを担持したDPFが開示されている。
また、特許文献2には、触媒として白金族金属元素を含まないジルコニウム系複合酸化物やセリウム系複合酸化物が開示されている。これらの複合酸化物は酸素イオン導電性により、活性酸素(O2−)を放出するため、この活性酸素がPMを低温で燃焼するとされている。
As a method along this direction, Patent Document 1 discloses a DPF carrying Pt as a catalyst.
Patent Document 2 discloses a zirconium-based composite oxide or a cerium-based composite oxide that does not contain a platinum group metal element as a catalyst. Since these complex oxides release active oxygen (O 2− ) due to oxygen ion conductivity, this active oxygen is supposed to burn PM at a low temperature.

特開平11−253757号公報Japanese Patent Laid-Open No. 11-253757 特開2007−54713号公報JP 2007-54713 A

これらの特許文献の記載によれば、特許文献1、2に記載されているPM燃焼触媒は、比較的低い温度でPMを燃焼することができるとされている。
しかし、本発明者らの検討によると、特許文献1に記載された方法では、排気ガスの温度水準が低いため、Ptを担持してはいるものの、当該担持されたPtがPMを燃焼させる触媒作用が高まらない。また、Ptを担持したものは、NOをNOに酸化する能力が高く、NOを利用したPMの燃焼作用も期待できるが、前述したように、後はNOに対する排出ガス規制強化により排ガス中のNOは削減される為、十分なNOが得られないという問題も予測される。従って、燃料排気ガス温度においてPMを連続的に燃焼させるのは困難と考えられた。また、Ptは貴金属であるため、これを使用することに起因するコストアップも解決すべき課題となっていた。
According to the description of these patent documents, the PM combustion catalysts described in Patent Documents 1 and 2 are said to be able to burn PM at a relatively low temperature.
However, according to the study by the present inventors, in the method described in Patent Document 1, although the temperature level of the exhaust gas is low, Pt is supported but the supported Pt burns PM. The effect does not increase. Moreover, those carrying Pt has a high ability to oxidize NO to NO 2, but the combustion action of the PM using NO 2 can be expected, as described above, the exhaust gas by the exhaust gas regulations enhancement to NO X after since the nO X in which is reduced, a sufficient nO 2 is also expected not be obtained. Therefore, it was considered difficult to continuously burn PM at the fuel exhaust gas temperature. Moreover, since Pt is a noble metal, the cost increase resulting from the use of Pt has also been a problem to be solved.

一方、特許文献2に記載されているPM燃焼触媒は、比較的低い温度でPMを燃焼することができるとされている。しかしながら、当該触媒は、燃料中さらには排気ガス中に、一般的に含まれる硫黄成分により被毒劣化し易く、PM燃焼活性が低下してしまうことが見出された。   On the other hand, the PM combustion catalyst described in Patent Document 2 is supposed to be able to burn PM at a relatively low temperature. However, it has been found that the catalyst is liable to be poisoned and deteriorated by sulfur components generally contained in the fuel and also in the exhaust gas, and the PM combustion activity is lowered.

本発明は、上述の状況下でなされたものであり、解決しようとする課題は、Pt等の貴金属を用いることなく、ディーゼルエンジン排気ガス中に含まれる硫黄による被毒のためのPM燃焼活性の低下が抑制され、PMを低温で燃焼させることができる触媒、および当該触媒を用いたディーゼル機関の排気ガスの浄化用フィルターを提供することをその課題とする。   The present invention has been made under the above-described circumstances, and the problem to be solved is that PM combustion activity for poisoning by sulfur contained in exhaust gas of a diesel engine can be solved without using a noble metal such as Pt. It is an object of the present invention to provide a catalyst capable of suppressing the decrease and burning PM at a low temperature, and a filter for purifying exhaust gas from a diesel engine using the catalyst.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、アルカリ土類の少なくとも1つの元素と、酸性元素または両性元素とを含む排気ガス浄化用複合酸化物が、ディーゼルエンジン排気ガス中に含まれる硫黄による被毒のためのPM燃焼活性の低下が抑制され、PMを低温で燃焼させることができる触媒の条件を満たしていることを知見し、本発明を完成した。
尚、酸性元素とは、当該元素の酸化物が酸性を示す元素のことであり、両性元素とは、当該元素の酸化物が酸性とアルカリ性との両方を示す元素のことである。
The present inventors have found that the results of intensive studies in order to solve the above problems, and at least one element of A alkaline earth, composite oxide for exhaust gas purification comprising an acidic element or amphoteric element, diesel The present invention was completed by discovering that the decrease in PM combustion activity due to poisoning by sulfur contained in engine exhaust gas is suppressed, and that the conditions for a catalyst capable of burning PM at a low temperature are satisfied.
In addition, an acidic element is an element in which the oxide of the said element shows acidity, and an amphoteric element is an element in which the oxide of the said element shows both acidity and alkalinity.

即ち、上述の課題を解決するための第1の発明は、
ディーゼルエンジンから排出される粒子状物質を燃焼し除去する排気ガス浄化用複合酸化物であって、
アルカリ土類金属であるバリウム、ストロンチウムから選択される少なくとも1種の元素Aと、
酸性元素であるビスマス、または、酸性元素であるビスマスと両性元素から選択される少なくとも1種の元素と、である元素Bとからなり、
前記元素Aと、元素Bとが、一般式、
(1−x)δ(但し、式中のx、δは、0<x≦0.9、0<δ<10を示す。)
を満たすことを特徴とする排気ガス浄化用複合酸化物である。
That is, the first invention for solving the above-described problem is
A complex oxide for purifying exhaust gas that burns and removes particulate matter discharged from a diesel engine,
At least one element A selected from the alkaline earth metals barium and strontium;
Bismuth being an acidic element, or at least one element selected from bismuth being an acidic element and an amphoteric element, and an element B being
The element A and the element B are represented by the general formula:
A (1-x) B x O δ (where, x and δ in the formula indicate 0 <x ≦ 0.9 and 0 <δ <10).
It is a complex oxide for exhaust gas purification characterized by satisfying the above.

第2の発明は、
前記両性元素は、チタン、ジルコニウム、アルミニウム、ガリウム、インジウムおよびスズからなる群より選ばれた少なくとも1種のものであることを特徴とする第1の発明に記載の排気ガス浄化用複合酸化物である。
The second invention is
The amphoteric element is at least one selected from the group consisting of titanium, zirconium, aluminum, gallium, indium and tin. The exhaust gas purifying composite oxide according to the first aspect of the invention is there.

第3の発明は、
前記両性元素は、ジルコニウムおよび/またはアルミニウムであることを特徴とする第1の発明に記載の排気ガス浄化用複合酸化物である。
The third invention is
The amphoteric element is zirconium and / or aluminum. The composite oxide for purifying exhaust gas according to the first aspect of the invention .

第4の発明は、
前記粒子状物質に対して燃焼活性が高く、亜硫酸ガスに対する酸化活性が低いことを特徴とする第1から3の発明のいずれかに記載の排気ガス浄化用複合酸化物である。
The fourth invention is:
The composite oxide for purifying exhaust gas according to any one of the first to third inventions, wherein the combustion activity is high with respect to the particulate matter and the oxidation activity with respect to sulfurous acid gas is low.

第5の発明は、
第1から第4の発明のいずれかに記載の排気ガス浄化用複合酸化物を用いたことを特徴とするディーゼル機関の排気ガス浄化用フィルターである。
The fifth invention is:
An exhaust gas purifying filter for a diesel engine, characterized in that the composite oxide for purifying exhaust gas according to any one of the first to fourth inventions is used.

第6の発明は、
さらに、Pt、RhおよびPdからなる群より選ばれた元素の少なくとも1つを含有することを特徴とする第5の発明に記載のディーゼル機関の排気ガス浄化用フィルターである。
The sixth invention is:
The diesel engine exhaust gas purifying filter according to the fifth aspect of the present invention further contains at least one element selected from the group consisting of Pt, Rh and Pd.

本発明に係る排気ガス浄化用複合酸化物は、Pt等の貴金属を含有することなくPMを低温で燃焼させることができ、かつ、ディーゼルエンジン排気ガス中に含まれる硫黄被毒によるPM燃焼活性の低下が抑制されている。   The composite oxide for purifying exhaust gas according to the present invention can combust PM at a low temperature without containing a noble metal such as Pt, and exhibits PM combustion activity due to sulfur poisoning contained in diesel engine exhaust gas. The decrease is suppressed.

本発明に係る排気ガス浄化用複合酸化物は、アルカリ金属、アルカリ土類金属の少なくとも一つと、酸性元素、両性元素の少なくとも一つとを含む複合酸化物で構成できる。   The composite oxide for purifying exhaust gas according to the present invention can be composed of a composite oxide containing at least one of an alkali metal and an alkaline earth metal and at least one of an acidic element and an amphoteric element.

ここで、アルカリ金属としては、カリウム、セシウムのいずれか一方または双方を用いることが好ましい。アルカリ土類金属元素としては、バリウム、ストロンチウム、カルシウムまたはマグネシウム、およびこれらの任意の組合せに係るものを用いることが好ましく、さらにはストロンチウム、バリウムのいずれか一方またはこれらの混合物がより好ましい。
一方、酸性元素としては、ビスマスを用いるのが好ましい。また、両性元素としては、チタン、ジルコニウム、アルミニウム、ガリウム、インジウムまたはスズ、およびこれらを任意の組合せに係るものを用いることが好ましく、更にはジルコニウム、アルミニウムのいずれか一方またはこれらの混合物がより好ましい。
Here, it is preferable to use one or both of potassium and cesium as the alkali metal. As the alkaline earth metal element, it is preferable to use barium, strontium, calcium or magnesium, and any combination thereof, and more preferably one of strontium and barium, or a mixture thereof.
On the other hand, bismuth is preferably used as the acidic element. Further, as the amphoteric element, it is preferable to use titanium, zirconium, aluminum, gallium, indium or tin, and those related to any combination thereof, and more preferably one of zirconium and aluminum or a mixture thereof. .

そして、本排気ガス浄化用複合酸化物においては、アルカリ金属およびアルカリ土類金属から選択される少なくとも1種以上の元素Aと、酸性元素および両性元素から選択される少なくとも1種以上の元素Bとが、次の一般式、A(1−x)δ(但し、式中のx、δは、0<x≦0.9、0<δ<10を示す。)を満たす複合酸化物であることがさらに好ましい。 In the exhaust gas purifying composite oxide, at least one element A selected from alkali metals and alkaline earth metals, and at least one element B selected from acidic elements and amphoteric elements; Is a composite oxide satisfying the following general formula: A (1-x) B x O δ (where x and δ represent 0 <x ≦ 0.9 and 0 <δ <10) More preferably.

本発明者らの検討によると、0<x≦0.9の範囲で、AとBとが共存することで、Pt等の貴金属を用いることなく、ディーゼルエンジン排気ガス中に含まれる硫黄による被毒を受け難く、PMを低温で燃焼させることができることを知見したものである。0<x≦0.8の範囲であればさらに好ましいことも知見した。   According to the study by the present inventors, the coexistence of A and B in the range of 0 <x ≦ 0.9 allows the coverage by sulfur contained in the exhaust gas of diesel engine without using noble metals such as Pt. It has been found that it is difficult to be poisoned and that PM can be burned at a low temperature. It was also found that the range of 0 <x ≦ 0.8 is more preferable.

一方、x=0、すなわちアルカリ、アルカリ土類金属元素の酸化物の場合、当該酸化物の酸性ガスへの親和性は強い。その為、当該酸化物が、ディーゼルエンジンの排気ガスに長時間曝されると被毒劣化が進み易くPM燃焼活性が低下する恐れがある。その為、x≠0であることが好ましい。   On the other hand, when x = 0, that is, an oxide of an alkali or alkaline earth metal element, the affinity of the oxide to an acidic gas is strong. Therefore, when the oxide is exposed to the exhaust gas of a diesel engine for a long time, the poisoning deterioration is likely to proceed, and the PM combustion activity may be lowered. Therefore, it is preferable that x ≠ 0.

本発明に係る排気ガス浄化用複合酸化物は、前記元素からなる複合酸化物の作用によりPMの酸化活性が優れており、PM燃焼温度の低減が図れることが見出された。このPMに対する優れた酸化活性のメカニズムは必ずしも明らかではないが、当該複合酸化物表面における酸素の吸蔵・放出能が優れている為であると考えられる。   It has been found that the complex oxide for purifying exhaust gas according to the present invention has excellent PM oxidation activity due to the action of the complex oxide composed of the above elements, and can reduce the PM combustion temperature. Although the mechanism of this excellent oxidation activity for PM is not necessarily clear, it is considered that this is because the oxygen storage / release ability on the surface of the composite oxide is excellent.

一方、本発明に係る排気ガス浄化用複合酸化物は、亜硫酸ガスに対する酸化活性が低いことが見出された。後述の実験データで明らかになるように、当該複合酸化物表面では硫黄の吸着が非常に起こりにくい。従って、本発明に係る排気ガス浄化用複合酸化物は、亜硫酸ガスに対する酸化活性が低いことが分かる。
これは、亜硫酸ガス(SO)の吸着が起こるメカニズムが、含酸素雰囲気下において、SOが酸化されSOとなり、当該SOが不安定の故、安定化するために硫酸塩などの形状をとって吸着するものであると考えられることによる。
On the other hand, it has been found that the complex oxide for purifying exhaust gas according to the present invention has low oxidation activity with respect to sulfurous acid gas. As will be apparent from the experimental data described later, sulfur adsorption is very difficult to occur on the surface of the composite oxide. Therefore, it can be seen that the exhaust gas purifying composite oxide according to the present invention has low oxidation activity with respect to sulfurous acid gas.
This is because the mechanism of the adsorption of sulfurous acid gas (SO 2 ) is that, in an oxygen-containing atmosphere, SO 2 is oxidized to SO 3 , and the SO 3 is unstable. It is because it is considered that it is what adsorbs by taking.

本発明に係る排気ガス浄化用複合酸化物を、DPFに適用する方法について説明する。
まず、当該複合酸化物の粒度を調整し、コージェライトやSiC等の、DPF基材の細孔径やDPFの内壁表面の粗さに適した粒度とする。次に、粒度を調整した当該複合酸化物を、純水などの溶媒に分散しスラリーを製造する。当該スラリーを、含浸などの一般的な方法を用いてDPF内壁と接触させる。当該接触の後、溶媒である水分を、ガスによるブローなどで除去し、その後、当該スラリーを乾燥および焼成するが、当該焼成は必ずしも行わなくてよい。
A method of applying the exhaust gas purifying composite oxide according to the present invention to a DPF will be described.
First, the particle size of the composite oxide is adjusted to a particle size suitable for the pore diameter of the DPF base material and the roughness of the inner wall surface of the DPF, such as cordierite and SiC. Next, the composite oxide with adjusted particle size is dispersed in a solvent such as pure water to produce a slurry. The slurry is brought into contact with the DPF inner wall using a general method such as impregnation. After the contact, water as a solvent is removed by blowing with gas or the like, and then the slurry is dried and fired. However, the firing is not necessarily performed.

本発明に係るDPFが、さらに白金族元素を含むことも好ましい構成である。
当該白金族元素は、白金、ロジウム、パラジウムの少なくとも1種であることが好ましい。
これは、DPFの再生やNO吸蔵触媒の再生の際、排気ガス中に燃料を噴射し、燃料を燃焼させる操作がおこなわれ、通常の運転と比較して排気ガス中の一酸化炭素、炭化水素の比率が高くなる。また、浄化触媒成分によりPMが燃焼するとき、不完全燃焼により一酸化炭素が発生する恐れがある。そこで、これら一酸化炭素や炭化水素を浄化するための白金族元素を備える構成が好ましいと考えられる為である。
It is also preferable that the DPF according to the present invention further contains a platinum group element.
The platinum group element is preferably at least one of platinum, rhodium, and palladium.
This is because when DPF regeneration or NO X storage catalyst regeneration, fuel is injected into the exhaust gas and the fuel is combusted. Compared to normal operation, carbon monoxide, carbonization in the exhaust gas is performed. The ratio of hydrogen increases. Further, when PM is burned by the purification catalyst component, carbon monoxide may be generated due to incomplete combustion. Therefore, it is considered that a structure including a platinum group element for purifying these carbon monoxide and hydrocarbon is considered preferable.

用いられる白金族元素は、DPFから向かってエンジン側、DPF内、DPFから向かって大気開放側のどの位置に存在してもよいが、好ましくはDPF内、DPFから向かって大気開放側である。白金族元素は一酸化炭素や炭化水素の気体への浄化作用が求められるので、高分散状態で担持されていることが好ましい。この高分散状態の担持方法は蒸発
乾固、含浸など一般的な方法でよく、担持方法に特に制限はない。
The platinum group element used may be present at any position on the engine side, in the DPF from the DPF, or on the atmosphere release side from the DPF, but preferably in the DPF or on the atmosphere release side from the DPF. Since the platinum group element is required to purify carbon monoxide or hydrocarbon gas, it is preferably supported in a highly dispersed state. The supporting method in the highly dispersed state may be a general method such as evaporation to dryness or impregnation, and the supporting method is not particularly limited.

本発明に係る排気ガス浄化用複合酸化物は、例えば、通常の共沈法、有機錯体法、非晶質前駆体、固相法を用いた製法などによって製造することができる。以下、各製法について説明する。   The composite oxide for purifying exhaust gas according to the present invention can be produced by, for example, a usual coprecipitation method, an organic complex method, an amorphous precursor, a production method using a solid phase method, or the like. Hereinafter, each manufacturing method will be described.

〔共沈法〕
共沈法では、まず、所望の複合酸化物を生成するにふさわしい各元素を、化学量論比で含む原料塩水溶液を調整し、この水溶液と中和剤を混合して共沈物を生成させる。そして、得られた共沈物を乾燥後、熱処理する。
このとき、原料となる各元素の塩の形は特に限定されないが、例えば、硫酸塩、硝酸塩、リン酸塩、塩化物などの無機塩、酢酸塩、シュウ酸塩などの有機酸塩などが使用できる。中でも酢酸塩、硝酸塩が好適に使用できる。原料塩水溶液は、上記の各元素の塩が、目的の化学量論比となるように秤量、混合されたものを水に加えて、撹拌することにより調製することができる。
[Co-precipitation method]
In the coprecipitation method, first, a raw salt aqueous solution containing each element suitable for producing a desired composite oxide in a stoichiometric ratio is prepared, and this aqueous solution and a neutralizing agent are mixed to produce a coprecipitate. . And the obtained coprecipitate is heat-processed after drying.
At this time, the form of the salt of each element used as a raw material is not particularly limited. For example, inorganic salts such as sulfates, nitrates, phosphates and chlorides, and organic acid salts such as acetates and oxalates are used. it can. Of these, acetates and nitrates can be preferably used. The raw salt aqueous solution can be prepared by adding and stirring the above-mentioned salt of each element that has been weighed and mixed so that the desired stoichiometric ratio is obtained.

次に、この原料塩水溶液と中和剤とを混合し、共沈させる。中和剤としては特に限定されないが、例えばアンモニア、苛性ソーダ、苛性カリなどの無機塩基、トリエチルアミン、ピリジンなどの有機塩基が使用できる。また添加混合する中和剤量は、その中和剤を加えた後に生成されるスラリーのpHが6〜14となるように調整する。このように混合することにより共沈物を得ることができる。   Next, this raw material salt aqueous solution and a neutralizing agent are mixed and coprecipitated. The neutralizing agent is not particularly limited, and for example, inorganic bases such as ammonia, caustic soda and caustic potash, and organic bases such as triethylamine and pyridine can be used. The amount of the neutralizing agent to be added and mixed is adjusted so that the pH of the slurry produced after adding the neutralizing agent is 6 to 14. A coprecipitate can be obtained by mixing in this way.

得られた共沈物は必要に応じて水洗し、真空乾燥や通風乾燥などを用いて乾燥させた後、例えば600〜1200℃、好ましくは800〜1000℃で2〜10時間、熱処理することにより、本発明に係る排気ガス浄化用複合酸化物を得ることができる。この際、熱処理時の雰囲気は共存物質の複合酸化物や浄化触媒成分を生成する範囲であれば特に制限されず、例えば空気中、窒素中、アルゴン中、水素中およびそれらに水蒸気を組み合わせた雰囲気、好ましくは空気中、窒素中およびそれらに水蒸気を組み合わせた雰囲気が使用できる。   The obtained coprecipitate is washed with water as necessary, dried using vacuum drying, ventilation drying or the like, and then heat-treated at, for example, 600 to 1200 ° C., preferably 800 to 1000 ° C. for 2 to 10 hours. Thus, the exhaust gas purifying composite oxide according to the present invention can be obtained. At this time, the atmosphere during the heat treatment is not particularly limited as long as it is within the range of generating the composite oxide of the coexisting substances and the purification catalyst component. For example, the atmosphere in air, nitrogen, argon, hydrogen, and a combination thereof Preferably, an atmosphere in air, nitrogen, and a combination thereof with water vapor can be used.

〔有機錯体法〕
有機錯体法では、まず、クエン酸、リンゴ酸、エチレンジアミン4酢酸ナトリウムなどの有機錯体を形成する塩と、上述の各元素の塩とを目的の化学量論比となるように水に加えて、攪拌することにより原料水溶液を調製する。
この原料水溶液を、加熱して乾固させ、上述の各元素の有機錯体を形成させた後、仮焼成・熱処理して、本発明に係る排気ガス浄化用複合酸化物を得ることができる。
[Organic complex method]
In the organic complex method, first, a salt that forms an organic complex such as citric acid, malic acid, sodium ethylenediaminetetraacetate, and the salt of each of the above elements is added to water so as to have a desired stoichiometric ratio, A raw material aqueous solution is prepared by stirring.
The aqueous raw material solution is heated to dryness to form an organic complex of each element described above, and then calcined and heat-treated to obtain the exhaust gas purifying composite oxide according to the present invention.

尚、各元素の塩としては、共沈法の場合と同様の塩が使用できる。
また、原料塩水溶液は、各元素の原料塩を目的の化学量論比に混合して水に溶解した後、有機錯体を形成する塩の水溶液と混合することにより、調製することができる。なお、有機錯体を形成する塩の配合比率は得られる複合酸化物1モルに対して1.2〜3モル程度であることが好ましい。
その後、この原料溶液を加熱、乾固させて、前述の有機錯体を得る。加熱は有機錯体が分解しない温度であれば特に限定されず、例えば室温〜150℃程度、好ましくは室温〜110℃で、速やかに水分を除去する。これにより上述の有機錯体が得られる。
In addition, as a salt of each element, the same salt as in the case of the coprecipitation method can be used.
The raw salt aqueous solution can be prepared by mixing the raw salt of each element in the desired stoichiometric ratio and dissolving it in water, and then mixing with an aqueous salt solution that forms an organic complex. In addition, it is preferable that the compounding ratio of the salt which forms an organic complex is about 1.2-3 mol with respect to 1 mol of complex oxides obtained.
Then, this raw material solution is heated and dried to obtain the aforementioned organic complex. Heating is not particularly limited as long as the organic complex is not decomposed. For example, the water is rapidly removed at room temperature to about 150 ° C., preferably at room temperature to 110 ° C. Thereby, the above-mentioned organic complex is obtained.

得られた有機錯体を、仮焼成後に熱処理する。
具体的には、仮焼成は、真空または不活性ガス雰囲気下において250℃以上で加熱することで行う。当該仮焼成後、600〜1000℃、好ましくは600〜950℃で2〜10時間、熱処理することにより、本発明に係る排気ガス浄化用複合酸化物を得ることが
できる。尚、熱処理時の雰囲気は、複合酸化物を生成出来る範囲のものであれば特に制限されず、例えば、空気、窒素、アルゴン、水素、およびそれらに水蒸気を組み合わせた雰囲気が、好ましくは空気、窒素、およびそれらに水蒸気を組み合わせた雰囲気が使用できる。
The obtained organic complex is heat-treated after pre-baking.
Specifically, the preliminary baking is performed by heating at 250 ° C. or higher in a vacuum or an inert gas atmosphere. After the preliminary calcination, the exhaust gas purifying composite oxide according to the present invention can be obtained by heat treatment at 600 to 1000 ° C., preferably 600 to 950 ° C. for 2 to 10 hours. The atmosphere at the time of heat treatment is not particularly limited as long as it is within a range that can produce a composite oxide. For example, an atmosphere in which air, nitrogen, argon, hydrogen, and water vapor are combined with these is preferably air, nitrogen. , And a combination of them with water vapor can be used.

〔非晶質前駆体を用いた製法〕
非晶質前駆体を用いた製法では、所望の複合酸化物を生成するにふさわしい化学量論比で前述の各元素を含み、非晶質の粉状体である前駆体を、低温の熱処理によって得ることができる。
[Production method using amorphous precursor]
In the production method using an amorphous precursor, each of the aforementioned elements is contained in a stoichiometric ratio suitable for forming a desired composite oxide, and the precursor that is an amorphous powder is subjected to low-temperature heat treatment. Can be obtained.

このような非晶質の前駆体は、前述の各元素の塩を、所望の複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調整し、当該原料塩水溶液と、炭酸アルカリまたはアンモニウムイオンを含む炭酸塩などの沈殿剤とを、反応温度60℃以下、pH6以上で反応させて沈殿生成物を生成させ、当該沈殿生成物の濾過物を乾燥させて得ることができる。   Such an amorphous precursor is prepared by preparing a raw salt aqueous solution containing a salt of each of the above elements in a stoichiometric ratio suitable for forming a desired composite oxide, Alternatively, it can be obtained by reacting with a precipitating agent such as carbonate containing ammonium ions at a reaction temperature of 60 ° C. or lower and a pH of 6 or higher to produce a precipitated product, and drying the filtered product of the precipitated product.

具体的には、まず、各元素の硝酸塩、硫酸塩、塩化物等の水溶性鉱酸塩を、所望の組成のモル比となるように溶解させた水溶液を調整する。沈殿を生成させる液中における各構成元素のイオン濃度は、用られている塩類の溶解度によって上限が決まるが、構成元素の結晶性化合物が析出しない濃度が望ましい。さらに、通常は、前述の各元素の合計イオン濃度が、0.01〜0.60mol/L程度の範囲内であるのが望ましいが、場合によっては、0.60mol/Lを超えてもよい。   Specifically, first, an aqueous solution in which water-soluble mineral salts such as nitrates, sulfates, and chlorides of each element are dissolved so as to have a desired composition molar ratio is prepared. The upper limit of the ion concentration of each constituent element in the liquid for generating the precipitate is determined by the solubility of the salt used, but a concentration at which the crystalline compound of the constituent element does not precipitate is desirable. Furthermore, it is usually desirable that the total ion concentration of each of the above-mentioned elements be in the range of about 0.01 to 0.60 mol / L, but in some cases it may exceed 0.60 mol / L.

上記液から非晶質の前駆体を得るには、炭酸アルカリまたはアンモニウムイオンを含む炭酸塩からなる沈殿剤を用いるのがよい。具体的な沈殿剤としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等を使用することができ、必要に応じて、水酸化ナトリウム、アンモニア等の塩基を加えることも可能である。   In order to obtain an amorphous precursor from the above solution, it is preferable to use a precipitating agent made of carbonate containing alkali carbonate or ammonium ion. As a specific precipitant, sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate, or the like can be used, and a base such as sodium hydroxide or ammonia can be added as necessary.

非晶質の前駆体を得る際、液のpHを6〜11の範囲に制御するのがよい。pHが6以上の領域では、希土類元素類も沈殿を形成するので好ましい。他方、pHが11以下の領域では、沈殿剤単独の場合であっても生成する沈殿の非晶質化が十分に進行し、好ましい。
ここで、水酸化ナトリウム、アンモニア等の塩基を用いて沈殿を形成した場合は、次に、炭酸ガスを吹き込むことにより、液のpHを6〜11の範囲に制御すればよい。
一方、反応温度は60℃以下にするのがよい。60℃を以下であれば、構成元素の結晶性の化合物粒子が生成する場合がなく、前駆体物質の非晶質化が妨げられることがなく好ましい。
When obtaining an amorphous precursor, the pH of the liquid is preferably controlled in the range of 6-11. In the region where the pH is 6 or more, rare earth elements also form a precipitate, which is preferable. On the other hand, in the region where the pH is 11 or less, even when the precipitating agent is used alone, the resulting precipitate is preferably amorphized sufficiently and is preferable.
Here, when a precipitate is formed using a base such as sodium hydroxide or ammonia, the pH of the liquid may be controlled in the range of 6 to 11 by blowing carbon dioxide gas.
On the other hand, the reaction temperature is preferably 60 ° C. or lower. If it is 60 degrees C or less, the crystalline compound particle | grains of a constituent element may not be produced | generated, and amorphousization of a precursor substance is not prevented, and it is preferable.

得られた非晶質前駆体は、必要に応じて水洗され、真空乾燥や通風乾燥などにより乾燥した後、500〜1000℃、好ましくは600〜900℃で2〜10時間、熱処理することにより、本発明に係る排気ガス浄化用複合酸化物を得ることができる。
尚、熱処理時の雰囲気は、複合酸化物を生成出来る範囲のものであれば特に制限されず、例えば、空気、窒素、アルゴン、水素、およびそれらに水蒸気を組み合わせた雰囲気が、好ましくは空気、窒素、およびそれらに水蒸気を組み合わせた雰囲気が使用できる。
The obtained amorphous precursor is washed with water as necessary, dried by vacuum drying or ventilation drying, and then heat-treated at 500 to 1000 ° C., preferably 600 to 900 ° C. for 2 to 10 hours, The composite oxide for purifying exhaust gas according to the present invention can be obtained.
The atmosphere at the time of heat treatment is not particularly limited as long as it is within a range that can produce a composite oxide. For example, an atmosphere in which air, nitrogen, argon, hydrogen, and water vapor are combined with these is preferably air, nitrogen. , And a combination of them with water vapor can be used.

〔固相法〕
固相法では、まず、所望の複合酸化物を生成するにふさわしい元素を化学量論比で含む原料塩を調製する。
原料塩は、硝酸塩、炭酸塩、酸化物、酢酸塩など種々のものがあるが、熱処理により目的とする共存物質の複合酸化物や浄化触媒成分の結晶化を生じるものであれば特に制限は
ない。混合は、乳鉢などの混合機を用いて行う。
[Solid phase method]
In the solid phase method, first, a raw material salt containing an element suitable for generating a desired composite oxide in a stoichiometric ratio is prepared.
There are various raw material salts such as nitrates, carbonates, oxides, and acetates, but there is no particular limitation as long as the heat treatment causes crystallization of the target coexisting complex oxide or purification catalyst component. . Mixing is performed using a mixer such as a mortar.

得られた原料塩を、500〜1000℃、好ましくは700〜900℃で2〜30時間、熱処理することにより、本発明に係る排気ガス浄化用複合酸化物を得ることができる。
尚、熱処理時の雰囲気は、複合酸化物を生成出来る範囲のものであれば特に制限されず、例えば、空気、窒素、アルゴン、水素、およびそれらに水蒸気を組み合わせた雰囲気が、好ましくは空気、窒素、およびそれらに水蒸気を組み合わせた雰囲気が使用できる。
By heat-treating the obtained raw material salt at 500 to 1000 ° C., preferably 700 to 900 ° C. for 2 to 30 hours, the composite oxide for exhaust gas purification according to the present invention can be obtained.
The atmosphere at the time of heat treatment is not particularly limited as long as it is within a range that can produce a composite oxide. For example, an atmosphere in which air, nitrogen, argon, hydrogen, and water vapor are combined with these is preferably air, nitrogen. , And a combination of them with water vapor can be used.

[測定・評価方法]
上述した本発明に係る排気ガス浄化用複合酸化物の物性、結晶構造、硫黄に対する耐久性、PMの燃焼性能について実施できる測定・評価方法を説明する。
[Measurement and evaluation method]
A measurement / evaluation method that can be carried out on the physical properties, crystal structure, durability against sulfur, and PM combustion performance of the above-described composite oxide for exhaust gas purification according to the present invention will be described.

<X線回折測定>
X線回折装置(株式会社リガク製・X線回折装置RINT−2100を用いて測定する。
測定条件は、測定範囲:2θ=20〜70度の範囲、管球:Co管球、管電圧:40kV・管電流:30mAとする。
<X-ray diffraction measurement>
X-ray diffractometer (measured using Rigaku Corporation, X-ray diffractometer RINT-2100.
The measurement conditions are: measurement range: 2θ = range of 20 to 70 degrees, tube: Co tube, tube voltage: 40 kV, tube current: 30 mA.

<硫黄被毒処理材>
金型プレスを用いて、複合酸化物を100kg/cmで圧縮成形後、粉砕して、粒子径1.0〜2.0mmの粒状試料を作製する。
当該粒状試料3gを縦型管状炉に設置し、300℃×10時間の処理条件下で、SO200ppm、O10%、HO10%、残部Nのガスを500cc/minの流量で流し、硫黄被毒処理を実施し硫黄被毒処理材を得た。硫黄被毒処理材は、乳鉢にて解粒する。
<Sulfur poisoning treatment material>
Using a mold press, the composite oxide is compression molded at 100 kg / cm 2 and then pulverized to produce a granular sample having a particle size of 1.0 to 2.0 mm.
3 g of the granular sample was placed in a vertical tubular furnace, and under a processing condition of 300 ° C. × 10 hours, SO 2 200 ppm, O 2 10%, H 2 O 10%, and the balance N 2 gas at a flow rate of 500 cc / min. The sulfur poisoning treatment was carried out to obtain a sulfur poisoning treatment material. The sulfur poisoning treatment material is pulverized in a mortar.

<複合酸化物試料、硫黄被毒処理材によるPM燃焼温度評価>
模擬のPMとして、市販のカーボンブラック(CB)(三菱化学(株)製)を用い、複
合酸化物、硫黄被毒処理の各試料と、カーボンブラックとの、質量比が6:1になるように秤量し、自動乳鉢機(石川工場製AGA型)で20分間混合し、カーボンブラックと各試料の混合粉体を得る。
次に、熱質量測定(TG)により、当該各混合粉体における、カーボンブラックの燃焼に伴う質量減少からカーボンブラックの燃焼開始温度を求める。当該TG測定には、TG/DTA装置(セイコーインスツルメンツ(株)製、TG/DTA6300型)を用い、混合粉体20mgを昇温速度10℃/分にて50℃から700℃まで大気中で昇温し、質量測定を行う。カーボンブラックの燃焼温度は、DTAのピーク強度が最大になる点とする。
<PM combustion temperature evaluation with composite oxide sample and sulfur poisoning treatment material>
As a simulated PM, commercially available carbon black (CB) (manufactured by Mitsubishi Chemical Corporation) is used, so that the mass ratio of each sample of composite oxide and sulfur poisoning treatment to carbon black is 6: 1. And mixed with an automatic mortar machine (AGA type manufactured by Ishikawa Factory) for 20 minutes to obtain a mixed powder of carbon black and each sample.
Next, the combustion start temperature of the carbon black is determined from the mass reduction associated with the combustion of the carbon black in each mixed powder by thermal mass measurement (TG). For the TG measurement, a TG / DTA apparatus (manufactured by Seiko Instruments Inc., TG / DTA6300 type) was used. Warm and measure mass. The combustion temperature of carbon black is the point at which the peak intensity of DTA is maximized.

<硫黄被毒処理材による吸着硫黄量分析>
上述した「複合酸化物試料、硫黄被毒処理材によるPM燃焼温度評価」に調製した硫黄被毒処理材の吸着硫黄量の定量分析を行う。
当該定量分析には炭素・硫黄分析装置((株)HORIBA製EMIA−220V)を用いることができる。
<Analysis of adsorbed sulfur amount by sulfur poisoning treatment material>
Quantitative analysis of the amount of adsorbed sulfur of the sulfur-poisoned treatment material prepared in the above-described “PM oxide temperature evaluation by composite oxide sample, sulfur-poisoned treatment material” is performed.
A carbon / sulfur analyzer (EMIA-220V manufactured by HORIBA) can be used for the quantitative analysis.

(実施例1)
硝酸バリウムと硝酸ビスマスとを、バリウム元素とビスマス元素のモル比が0.5:0.5となるように混合し、液中のモル濃度の合計が0.2mol/Lとなる原料水溶液を調製した。
この水溶液を撹拌しながら水溶液の温度を25℃に調整し、温度が25℃に達した段階
で、沈殿剤として炭酸アンモニウムを添加しpH=8として、沈殿を生成させた。得られた沈殿物を濾過して回収した後、水洗し、125℃で乾燥し前駆体粉を得た。次に、当該前駆体粉を、大気雰囲気下において800℃で5時間熱処理して焼成し、実施例1に係る排気ガス浄化用複合酸化物を得た。実施例1に係る複合酸化物のX線回折パターンを図1に示す。
Example 1
Barium nitrate and bismuth nitrate are mixed so that the molar ratio of barium element and bismuth element is 0.5: 0.5, and a raw material aqueous solution in which the total molar concentration in the liquid is 0.2 mol / L is prepared. did.
While stirring this aqueous solution, the temperature of the aqueous solution was adjusted to 25 ° C., and when the temperature reached 25 ° C., ammonium carbonate was added as a precipitating agent to adjust the pH to 8 to produce a precipitate. The obtained precipitate was collected by filtration, washed with water, and dried at 125 ° C. to obtain a precursor powder. Next, the precursor powder was baked by heat treatment at 800 ° C. for 5 hours in an air atmosphere to obtain an exhaust gas purifying composite oxide according to Example 1. The X-ray diffraction pattern of the composite oxide according to Example 1 is shown in FIG.

(実施例2)
硝酸バリウムを硝酸ストロンチウムに代替し、ストロンチウム元素とビスマス元素のモル比を0.2:0.8とした以外は、実施例1と同様の操作を行って、実施例2に係る複合酸化物を得た。実施例2に係る排気ガス浄化用複合酸化物のX線回折パターンを図2に示す。
(Example 2)
The composite oxide according to Example 2 was obtained by performing the same operation as in Example 1 except that barium nitrate was replaced with strontium nitrate and the molar ratio of the strontium element to the bismuth element was 0.2: 0.8. Obtained. FIG. 2 shows an X-ray diffraction pattern of the complex oxide for exhaust gas purification according to Example 2.

(実施例3)
硝酸バリウムを硝酸ストロンチウムに代替し、ストロンチウム元素とビスマス元素のモル比を0.3:0.7とした以外は、実施例1と同様の操作を行って、実施例3に係る排気ガス浄化用複合酸化物を得た。
(Example 3)
Exhaust gas purification according to Example 3, except that barium nitrate was replaced with strontium nitrate and the molar ratio of strontium and bismuth elements was 0.3: 0.7 A composite oxide was obtained.

(実施例4)
硝酸バリウムと、オキシ硝酸ジルコニウムと、硝酸ビスマスとを、バリウム元素と、ジルコニウム元素と、ビスマス元素とのモル比が1.0:0.8:0.2となるように混合し、液中のモル濃度の合計が0.2mol/Lとなる原料水溶液を調製した。
これ以降の工程は、実施例1と同様の操作を行って、実施例4に係る排気ガス浄化用複合酸化物を得た。
Example 4
Barium nitrate, zirconium oxynitrate, and bismuth nitrate are mixed so that the molar ratio of barium element, zirconium element, and bismuth element is 1.0: 0.8: 0.2. A raw material aqueous solution having a total molar concentration of 0.2 mol / L was prepared.
In the subsequent steps, the same operation as in Example 1 was performed to obtain a composite oxide for exhaust gas purification according to Example 4.

(比較例1)
硝酸セリウムの0.2mol/L料溶液を調製した。
この水溶液を撹拌しながら水溶液の温度を25℃に調整し、温度が25℃に達した段階で、沈殿剤として炭酸アンモニウムを添加しpH=8として、沈殿を生成させた。得られた沈殿物を濾過して回収した後、水洗し、125℃で乾燥し前駆体粉を得た。次に、当該前駆体粉を、大気雰囲気下において800℃で2時間熱処理して焼成し、比較例1に係る酸化セリウムを得た。
(Comparative Example 1)
A 0.2 mol / L feed solution of cerium nitrate was prepared.
While stirring this aqueous solution, the temperature of the aqueous solution was adjusted to 25 ° C., and when the temperature reached 25 ° C., ammonium carbonate was added as a precipitating agent to adjust the pH to 8 to produce a precipitate. The obtained precipitate was collected by filtration, washed with water, and dried at 125 ° C. to obtain a precursor powder. Next, the precursor powder was heat-treated at 800 ° C. for 2 hours in an air atmosphere and fired to obtain cerium oxide according to Comparative Example 1.

(比較例2)
市販のγアルミナ(比表面積250m/g)(SASOL社製PURALOX SCFa140)30gを、濃度8.5質量%ジニトロジアンミン白金水溶液(田中貴金属工業(株)社製)3.6gと純水285gとを混合したジニトロジアンミン白金水溶液へ、25℃にて15時間浸漬し、γアルミナにPtを含浸させた。当該γアルミナを回収した後、90℃で12時間、通風乾燥を行い、さらに大気雰囲気下で500℃、1時間熱処理して比較例2に係るPt含有量1.0質量%のPt担持アルミナを得た。
(Comparative Example 2)
30 g of commercially available γ-alumina (specific surface area 250 m 2 / g) (PURALOX SCFa140 manufactured by SASOL), 3.6 g of dinitrodiammine platinum aqueous solution (produced by Tanaka Kikinzoku Kogyo Co., Ltd.) and 285 g of pure water Was immersed in an aqueous solution of dinitrodiammine platinum mixed at 25 ° C. for 15 hours to impregnate γ-alumina with Pt. After collecting the γ-alumina, it was dried by ventilation at 90 ° C. for 12 hours, and further heat-treated at 500 ° C. for 1 hour in an air atmosphere to obtain a Pt-supported alumina having a Pt content of 1.0 mass% according to Comparative Example 2. Obtained.

(評価)
実施例1〜4に係る複合酸化物試料、および比較例1に係る酸化物試料に対し、上述した「複合酸化物、硫黄被毒処理材によるPM燃焼温度評価」を行い、さらに続けて「硫黄被毒処理材による吸着硫黄量分析」を行った。一方、比較例2に係るPt担持アルミナ試料に対し、上述した「複合酸化物、硫黄被毒処理材によるPM燃焼温度評価」を行った。
当該評価結果のうち、複合酸化物、硫黄被毒処理材によるPM燃焼温度評価結果および吸着硫黄量分析結果を、表1・図3に記載する。
但し、図3は、横軸に試料名、縦軸にカーボンブラック(CB)燃焼温度をとった棒グラフであり、硫黄被毒処理前を斜線、硫黄被毒処理後を無地で示した。
(Evaluation)
For the composite oxide samples according to Examples 1 to 4 and the oxide sample according to Comparative Example 1, the above-described “PM combustion temperature evaluation using a composite oxide and a sulfur poisoning treatment material” was performed, and subsequently “sulfur” Analysis of the amount of adsorbed sulfur by poisoning materials ”was performed. On the other hand, for the Pt-supported alumina sample according to Comparative Example 2, the above-described “PM combustion temperature evaluation using a composite oxide and sulfur poisoning treatment material” was performed.
Among the evaluation results, the PM combustion temperature evaluation results and the adsorbed sulfur amount analysis results of the composite oxide and sulfur poisoning treatment material are shown in Table 1 and FIG.
However, FIG. 3 is a bar graph in which the horizontal axis represents the sample name and the vertical axis represents the carbon black (CB) combustion temperature, with the diagonal line before the sulfur poisoning treatment and the solid color after the sulfur poisoning treatment.

Figure 0005154890
Figure 0005154890

表1・図3より、実施例1から4に係る複合酸化物は、各々、硫黄被毒処理前におけるPM燃焼温度は異なっている。しかし、硫黄被毒処理前後におけるPM燃焼温度の温度差は15℃以下である。すなわち、硫黄被毒処理によるPM燃焼温度の上昇が、殆ど見られないことが判明した。
一方、比較例1では、硫黄被毒処理によるPM燃焼温度の上昇が160℃を超えた。すなわち、硫黄被毒処理によるPM燃焼温度の上昇が、著しいことが判明した。さらに比較例2では、硫黄被毒処理前後ともPM燃焼温度が高く、硫黄被毒処理によるPM燃焼温度の上昇も65℃あった。
From Table 1 and FIG. 3, the complex oxides according to Examples 1 to 4 have different PM combustion temperatures before the sulfur poisoning treatment. However, the temperature difference between the PM combustion temperatures before and after the sulfur poisoning treatment is 15 ° C. or less. That is, it was found that the PM combustion temperature was hardly increased by the sulfur poisoning treatment.
On the other hand, in Comparative Example 1, the increase in PM combustion temperature due to sulfur poisoning treatment exceeded 160 ° C. That is, it was found that the increase in PM combustion temperature due to the sulfur poisoning treatment was remarkable. Furthermore, in Comparative Example 2, the PM combustion temperature was high both before and after the sulfur poisoning treatment, and the increase in the PM combustion temperature due to the sulfur poisoning treatment was 65 ° C.

以上説明したPM燃焼温度評価結果を、吸着硫黄量分析結果から検討してみる。
すると、実施例1〜4に係る複合酸化物では、硫黄の吸着量は最大でも0.27質量%であるのに対し、比較例1に係る酸化物では0.69質量%の硫黄を吸着したことが判明した。
The PM combustion temperature evaluation result explained above will be examined from the result of the adsorption sulfur amount analysis.
Then, in the composite oxides according to Examples 1 to 4, the maximum adsorption amount of sulfur was 0.27% by mass, whereas in the oxide according to Comparative Example 1, 0.69% by mass of sulfur was adsorbed. It has been found.

上述したように、亜硫酸ガス(SO)の吸着は、SOが触媒により酸化されSOとなり、当該硫酸塩として吸着することで進行すると考えられる。ここで、実施例1〜4に係る複合酸化物は、SOに対して酸化活性が低いため、硫黄被毒処理後の吸着硫黄量が低く、その結果として、硫黄被毒に強いと考えられる。これに対し、比較例1に係る酸化物は、SOに対する酸化力が高いため、硫黄を吸着し易いのであると考えられる。
当該データも、実施例1〜4に係る複合酸化物は、比較例1に係る複合酸化物より硫黄被毒に強いことを裏付けていると考えられる。
As described above, the adsorption of sulfurous acid gas (SO 2 ) is considered to proceed when SO 2 is oxidized by the catalyst to become SO 3 and adsorbed as the sulfate. Here, since the composite oxides according to Examples 1 to 4 have low oxidation activity with respect to SO 2 , the amount of adsorbed sulfur after the sulfur poisoning treatment is low, and as a result, it is considered strong against sulfur poisoning. . On the other hand, since the oxide according to Comparative Example 1 has high oxidizing power against SO 2 , it is considered that sulfur is easily adsorbed.
This data is also considered to support that the composite oxides according to Examples 1 to 4 are more resistant to sulfur poisoning than the composite oxide according to Comparative Example 1.

以上のことより、アルカリ、アルカリ土類の少なくとも1つと酸性元素または両性元素を含む複合酸化物である本発明に係る排気ガス浄化材は、高いPM燃焼活性を示し、且つ、排気ガス中の硫黄成分に対する酸化力が低く、硫黄の吸着を殆ど行わない為、硫黄被毒に伴うPM燃焼活性の低下がほとんど起こらないことが判明した。
さらに、本発明に係る排気ガス浄化材は、Pt担持アルミナ型の排気ガス浄化材に比較して、硫黄被毒処理前後ともPM燃焼温度が低く、硫黄被毒処理によるPM燃焼温度の上昇小さいことが判明した。
From the above, the exhaust gas purifying material according to the present invention which is a composite oxide containing at least one of alkali and alkaline earth and an acidic element or an amphoteric element exhibits high PM combustion activity, and sulfur in the exhaust gas. It has been found that since the oxidizing power for the components is low and sulfur is hardly adsorbed, the PM combustion activity is hardly reduced due to sulfur poisoning.
Furthermore, the exhaust gas purification material according to the present invention has a lower PM combustion temperature before and after the sulfur poisoning treatment and a smaller increase in PM combustion temperature due to the sulfur poisoning treatment than the Pt-supported alumina type exhaust gas purification material. There was found.

実施例1に係る複合酸化物のX線回折パターンである。2 is an X-ray diffraction pattern of a complex oxide according to Example 1. FIG. 実施例2に係る複合酸化物のX線回折パターンである。3 is an X-ray diffraction pattern of a composite oxide according to Example 2. FIG. 実施例および比較例に係る複合酸化物の硫黄処理前後におけるカーボンブラックの燃焼温度を示すグラフである。It is a graph which shows the combustion temperature of carbon black before and behind sulfur treatment of the complex oxide which concerns on an Example and a comparative example.

Claims (6)

ディーゼルエンジンから排出される粒子状物質を燃焼し除去する排気ガス浄化用複合酸化物であって、
アルカリ土類金属であるバリウム、ストロンチウムから選択される少なくとも1種の元素Aと、
酸性元素であるビスマス、または、酸性元素であるビスマスと両性元素から選択される少なくとも1種の元素と、である元素Bとからなり、
前記元素Aと、元素Bとが、一般式、
(1−x)δ(但し、式中のx、δは、0<x≦0.9、0<δ<10を示す。)
を満たすことを特徴とする排気ガス浄化用複合酸化物。
A complex oxide for purifying exhaust gas that burns and removes particulate matter discharged from a diesel engine,
At least one element A selected from the alkaline earth metals barium and strontium;
Bismuth being an acidic element, or at least one element selected from bismuth being an acidic element and an amphoteric element, and an element B being
The element A and the element B are represented by the general formula:
A (1-x) B x O δ (where, x and δ in the formula indicate 0 <x ≦ 0.9 and 0 <δ <10).
A composite oxide for exhaust gas purification characterized by satisfying
前記両性元素は、チタン、ジルコニウム、アルミニウム、ガリウム、インジウムおよびスズからなる群より選ばれた少なくとも1種のものであることを特徴とする請求項1に記載の排気ガス浄化用複合酸化物。 The exhaust gas purifying composite oxide according to claim 1, wherein the amphoteric element is at least one selected from the group consisting of titanium, zirconium, aluminum, gallium, indium and tin. 前記両性元素は、ジルコニウムおよび/またはアルミニウムであることを特徴とする請求項1に記載の排気ガス浄化用複合酸化物。 2. The composite oxide for exhaust gas purification according to claim 1, wherein the amphoteric element is zirconium and / or aluminum. 前記粒子状物質に対して燃焼活性が高く、亜硫酸ガスに対する酸化活性が低いことを特徴とする請求項1から3のいずれかに記載の排気ガス浄化用複合酸化物。 The composite oxide for exhaust gas purification according to any one of claims 1 to 3, wherein the particulate matter has high combustion activity and low oxidation activity to sulfurous acid gas. 請求項1から4のいずれかに記載の排気ガス浄化用複合酸化物を用いたことを特徴とするディーゼル機関の排気ガス浄化用フィルター。 An exhaust gas purification filter for a diesel engine, wherein the composite oxide for exhaust gas purification according to any one of claims 1 to 4 is used. さらに、Pt、RhおよびPdからなる群より選ばれた元素の少なくとも1つを含有することを特徴とする請求項5に記載のディーゼル機関の排気ガス浄化用フィルター。 The exhaust gas purification filter for a diesel engine according to claim 5, further comprising at least one element selected from the group consisting of Pt, Rh and Pd.
JP2007286547A 2007-11-02 2007-11-02 Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine Expired - Fee Related JP5154890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286547A JP5154890B2 (en) 2007-11-02 2007-11-02 Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286547A JP5154890B2 (en) 2007-11-02 2007-11-02 Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine

Publications (2)

Publication Number Publication Date
JP2009112906A JP2009112906A (en) 2009-05-28
JP5154890B2 true JP5154890B2 (en) 2013-02-27

Family

ID=40780648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286547A Expired - Fee Related JP5154890B2 (en) 2007-11-02 2007-11-02 Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine

Country Status (1)

Country Link
JP (1) JP5154890B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261511A (en) * 1989-03-31 1990-10-24 Komatsu Ltd Catalyst for removing fine grain in diesel exhaust and its filter
JP3900563B2 (en) * 1996-10-23 2007-04-04 松下電器産業株式会社 Exhaust gas purification catalyst and exhaust gas purification filter using the same
JP4057811B2 (en) * 2001-12-28 2008-03-05 独立行政法人科学技術振興機構 Engine exhaust gas purification catalyst
WO2006067887A1 (en) * 2004-12-24 2006-06-29 Dowa Mining Co., Ltd. Pm combustion catalyst and filter
JP2007054709A (en) * 2005-08-23 2007-03-08 Ngk Insulators Ltd Catalyst, its manufacturing method and ceramic structure
JP2007075783A (en) * 2005-09-16 2007-03-29 Denso Corp Catalyst and catalyst apparatus using the same
JP2007117918A (en) * 2005-10-28 2007-05-17 Ngk Insulators Ltd Catalysts and ceramic structural body
JP2007229643A (en) * 2006-03-02 2007-09-13 Denso Corp Catalytic body and catalyst device using the same
JP2008126103A (en) * 2006-11-17 2008-06-05 Hoko Koka Daigakko Oxidation catalyst for removing fine particulate substance in exhaust gas, and removing method of fine particulate substance using the same

Also Published As

Publication number Publication date
JP2009112906A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5391408B2 (en) PM combustion catalyst manufacturing method and PM combustion method
JP5190196B2 (en) Composite oxide for exhaust gas purification catalyst, exhaust gas purification catalyst, and diesel exhaust gas purification filter
US8053388B2 (en) Catalyst support particle, exhaust gas purifying catalyst, and production processes thereof
US9006131B2 (en) Composite oxide for exhaust gas purification catalyst, method for manufacturing the same, coating material for exhaust gas purification catalyst, and filter for diesel exhaust gas purification
JP5063980B2 (en) Composite oxide and filter for exhaust gas purification catalyst
JP2003277059A (en) Ceria-zirconia compound oxide
KR101574553B1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JP4904458B2 (en) Composite oxide and filter for PM combustion catalyst
JP2007160297A (en) Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
JP2010069471A (en) Compound oxide catalyst for burning pm, slurry prepared by using the same, and filter for cleaning exhaust gas
JP4768475B2 (en) Composite oxide and filter for PM combustion catalyst
JP2009125736A (en) Exhaust gas treatment catalyst and exhaust gas cleaner
JP5427443B2 (en) Composite oxide for exhaust gas purification catalyst, paint for exhaust gas purification catalyst and filter for diesel exhaust gas purification
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP5318396B2 (en) Exhaust gas purification material and exhaust gas purification filter
US20100016149A1 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP5154890B2 (en) Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine
JP5345063B2 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
JP5973914B2 (en) Method for producing catalyst composition for exhaust gas treatment
JP2009195891A (en) Exhaust gas cleaning material and exhaust gas cleaning filter
JPH11197507A (en) Catalyst for purification of exhaust gas
JP5541843B2 (en) Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same
JP2013203609A (en) Oxygen storable ceramic material, method for producing the same, and catalyst
JP2009240878A (en) Exhaust gas-purifying material and exhaust gas purification filter
JP2010194487A (en) Nitrogen oxides removal catalyst and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees