JP6549858B2 - Exhaust gas purification three-way catalyst - Google Patents

Exhaust gas purification three-way catalyst Download PDF

Info

Publication number
JP6549858B2
JP6549858B2 JP2015032739A JP2015032739A JP6549858B2 JP 6549858 B2 JP6549858 B2 JP 6549858B2 JP 2015032739 A JP2015032739 A JP 2015032739A JP 2015032739 A JP2015032739 A JP 2015032739A JP 6549858 B2 JP6549858 B2 JP 6549858B2
Authority
JP
Japan
Prior art keywords
catalyst
alumina
weight
exhaust gas
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015032739A
Other languages
Japanese (ja)
Other versions
JP2016155049A (en
Inventor
仲辻 忠夫
忠夫 仲辻
雅識 橋本
雅識 橋本
義明 松薗
義明 松薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Okayama University NUC
Original Assignee
Honda Motor Co Ltd
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Okayama University NUC filed Critical Honda Motor Co Ltd
Priority to JP2015032739A priority Critical patent/JP6549858B2/en
Publication of JP2016155049A publication Critical patent/JP2016155049A/en
Application granted granted Critical
Publication of JP6549858B2 publication Critical patent/JP6549858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、空気と燃料の量論混合比近傍において、燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物を含有する燃焼排ガスを接触させて、上記3成分を接触的に浄化するための排ガス浄化三元触媒に関する。   The present invention contacts the flue gas containing carbon monoxide, hydrocarbons and nitrogen oxides generated by the combustion of fuel in the vicinity of the stoichiometric mixing ratio of air and fuel, and purifies the above three components in a contact manner. Exhaust gas purification three-way catalyst for

詳しくは、本発明は、空気と燃料の量論混合比近傍において、燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物の3成分を含有する燃焼排ガスを接触させて、これら3成分を接触的に浄化するための排ガス浄化三元触媒であって、これまでの排ガス浄化三元触媒に比べて、ロジウムや白金等の高価な貴金属を用いることなく、広い温度ウィンドウ範囲で、上記3成分の浄化性能にすぐれる排ガス浄化三元触媒に関する。   More specifically, the present invention brings a flue gas containing three components of carbon monoxide, hydrocarbons and nitrogen oxides generated by fuel combustion into contact with each other in the vicinity of the stoichiometric mixing ratio of air and fuel. It is an exhaust gas purification three-way catalyst for catalytically purifying components, and compared with the conventional exhaust gas purification three-way catalyst, without using expensive noble metals such as rhodium and platinum in the wide temperature window range, The present invention relates to an exhaust gas purification three-way catalyst which is excellent in purification performance of three components.

このような排ガス浄化三元触媒は、例えば、自動車等の移動発生源のエンジンからの排ガスに含まれる有害な一酸化炭素、炭化水素類及び窒素酸化物を低減し、除去するために用いるに適している。   Such an exhaust gas purification three-way catalyst is suitable, for example, for reducing and removing harmful carbon monoxide, hydrocarbons and nitrogen oxides contained in exhaust gas from a mobile source engine such as a car ing.

近年、自動車排出ガス規制は益々、厳しさを増しており、このような事情を背景として、排ガス浄化三元触媒は、そのような厳しい排出ガス規制に適合するために、高い三元浄化性能を有することが求められている。そこで、これまで、三元触媒において、アルミナ等の担体にロジウムや白金等の高価な貴金属を高担持させることによって、この問題に対する対応がなされてきた。   In recent years, automobile exhaust gas regulations have become increasingly severe, and against such a background, exhaust gas purification three-way catalysts have high three-way purification performance in order to comply with such severe exhaust gas regulations. It is required to have. Therefore, in the past, this problem has been addressed by highly supporting an expensive noble metal such as rhodium or platinum on a carrier such as alumina in a three-way catalyst.

しかし、明らかに、このような貴金属の高担持は、三元触媒の価格を非常に高めている大きい要因となっている。加えて、最近、世界的に貴金属の価格が高騰している結果、三元触媒のコストも益々高くなっており、触媒価格の低コスト化が急務とされている。   However, obviously, such high loading of precious metals is a major factor that greatly increases the price of three-way catalysts. In addition, as the price of precious metals has recently risen worldwide, the cost of three-way catalysts has become increasingly high, and the cost reduction of catalyst prices is urgently needed.

そこで、これまでの三元触媒に含まれるロジウムや白金等の高価な貴金属を用いることなく、三元浄化性能を可能な限りに損なわない触媒について、既に、幾つかが提案されている。例えば、金属酸化物と酸素発生源とを含む触媒組成物であって、前記金属酸化物の金属原子の周りを揺動可能な揺動性酸素を有し、前記酸素発生源から発生した酸素は、前記金属酸化物の方向に移動して、前記揺動性酸素として機能する触媒組成物が提案されている(特許文献1参照)。   Therefore, several catalysts have been proposed for catalysts that do not impair the three-way purification performance as much as possible without using expensive noble metals such as rhodium and platinum contained in the conventional three-way catalysts. For example, a catalyst composition comprising a metal oxide and an oxygen source, wherein the catalyst composition has oscillating oxygen capable of swinging around metal atoms of the metal oxide, and the oxygen generated from the oxygen source is A catalyst composition which moves in the direction of the metal oxide and functions as the oscillating oxygen has been proposed (see Patent Document 1).

また、リーン燃焼用三元触媒として、Cuと (a)Alと(b)周期表8族に属する元素又はTi、V 、Cr、Mn、Zn、Ga、Zr、Nb、Mo、Ag、W及びAuから選ばれる少なくとも1種の元素を含む触媒が提案されている(特許文献2参照)。   In addition, as a three-way catalyst for lean combustion, Cu and (a) Al and (b) elements belonging to Group 8 Periodic Table or Ti, V, Cr, Mn, Zn, Ga, Zr, Nb, Mo, Ag, W and A catalyst containing at least one element selected from Au has been proposed (see Patent Document 2).

上記以外にも、一般式CuBO(式中、BはAl、Cr、Ga、Fe及びMnよりなる群から選択される少なくとも1種を表す。)で示される3R型デラフォサイト型酸化物からなる化学量論燃焼のための貴金属フリー三元触媒も提案されている(特許文献3参照)。 In addition to the above, from the 3R delafossite-type oxide represented by the general formula CuBO x (wherein, B represents at least one selected from the group consisting of Al, Cr, Ga, Fe and Mn). Noble metal free three-way catalysts for stoichiometric combustion have also been proposed (see Patent Document 3).

更に、貴金属フリー三元触媒として、Cu−Cr/γ−アルミナ(但し、Cu/(Cu+Cr)=0〜0.66)なる組成を有する触媒も提案されている(非特許文献1参照)。   Furthermore, a catalyst having a composition of Cu-Cr / [gamma] -alumina (where Cu / (Cu + Cr) = 0 to 0.66) has been proposed as a noble metal-free three-way catalyst (see Non-Patent Document 1).

しかし、希少金属である高価な貴金属を用いることなく、広い温度ウィンドウ範囲で上記3成分の浄化性能にすぐれるという点において、上述した触媒のいずれもがこれまでの貴金属含有三元触媒に比べて、三元成分浄化性能が極めて低く、また、耐久性が低く、実用に供せられるレベルのものではなく、更なる改良が強く望まれている。   However, all of the above-mentioned catalysts are superior to conventional noble metal-containing three-way catalysts in that the above three components are superior in purification performance over a wide temperature window range without using expensive precious metals which are rare metals. The three-component purification performance is extremely low, the durability is low, and it is not at a level that can be put to practical use, and further improvement is strongly desired.

このような事情の下、空気と燃料の量論混合比近傍において、燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物を含有する燃焼排ガスを接触させて、上記3成分を接触的に浄化するための三元触媒であって、これまでの三元触媒に比べて、希少金属である高価な貴金属を用いることなく、それでいて、厳しい排出規制に適合し得て、広い温度ウィンドウ範囲ですぐれた三元浄化性能を有する高耐久性排ガス浄化三元触媒の開発が強く望まれている。   Under such circumstances, the three components are brought into contact by bringing the combustion exhaust gas containing carbon monoxide, hydrocarbons and nitrogen oxides generated by the combustion of the fuel into contact in the vicinity of the stoichiometric mixing ratio of air and fuel. Three-way catalyst for the purpose of purification, as compared with the three-way catalyst so far, without using expensive precious metals, which are rare metals, can still meet strict emission regulations, wide temperature window range There is a strong demand for the development of a highly durable exhaust gas purification three-way catalyst having excellent three-way purification performance.

特開2011−50926号公報JP, 2011-50926, A 特開平06−343865号公報Unexamined-Japanese-Patent No. 06-343865 特開2008−156130号公報JP 2008-156130 A

Catalsis Today,16(1993),273Catalsis Today, 16 (1993), 273

従って、本発明は、希少金属である高価な貴金属を用いることなく、低温域から高温域にわたって広い温度ウィンドウ範囲で三元浄化性能にすぐれる三元触媒を提供することを目的とする。   Therefore, an object of the present invention is to provide a three-way catalyst which is excellent in three-way purification performance over a wide temperature window range from a low temperature range to a high temperature range without using an expensive precious metal which is a rare metal.

本発明によれば、空気と燃料の量論比近傍における燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物を含有する燃焼排ガスを接触させて、上記3成分を接触的に浄化するための排ガス浄化三元触媒が提供される。   According to the present invention, the exhaust gas containing carbon monoxide, hydrocarbons and nitrogen oxides generated by the combustion of fuel in the vicinity of the stoichiometric ratio of air and fuel is brought into contact with each other to catalytically purify the above three components. An exhaust gas purification three-way catalyst is provided.

その第1の触媒は、触媒成分の全重量に基づいて、
(A)銅1〜20重量%、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む触媒である。
The first catalyst is based on the total weight of the catalyst components
(A) 1 to 20% by weight of copper,
(B) A catalyst comprising 0.1 to 10% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

上記第1の排ガス浄化三元触媒の好ましい態様の第1は、触媒成分の全重量に基づいて、(A)銅5〜15重量%、
(B)イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜2重量%及び
(C)γ−アルミナ
を含む触媒である。
The first of the preferred embodiments of the first exhaust gas purification three-way catalyst is (A) copper 5 to 15% by weight, based on the total weight of the catalyst components,
(B) A catalyst comprising 0.1 to 2% by weight of at least one element selected from yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

上記第1の排ガス浄化三元触媒の好ましい態様の第2は、触媒成分の全重量に基づいて、
(A)銅5〜15重量%、
(B)ジルコニウム、スズ及びケイ素から選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む触媒である。
A second of the preferred embodiments of the first exhaust gas purification three-way catalyst is based on the total weight of the catalyst components:
(A) 5 to 15% by weight of copper,
(B) A catalyst comprising 0.1 to 10% by weight of at least one element selected from zirconium, tin and silicon and (C) γ-alumina.

上記第1の排ガス浄化三元触媒の好ましい態様の第3は、触媒成分の全重量に基づいて、
(A)銅5〜15重量%、
(B)ジルコニウム、スズ及びケイ素から選ばれる少なくとも1種の元素0.1〜2重量%及び
(C)γ−アルミナ
を含む触媒である。
The third of the first preferred embodiment of the first exhaust gas purification three-way catalyst is based on the total weight of the catalyst components:
(A) 5 to 15% by weight of copper,
(B) A catalyst comprising 0.1 to 2% by weight of at least one element selected from zirconium, tin and silicon and (C) γ-alumina.

本発明によれば、上記第1の排ガス浄化三元触媒において、上記C成分であるγ−アルミナは、触媒成分の全重量に基づいて、好ましくは、60重量%以上であり、残部を占めてもよい。   According to the present invention, in the first exhaust gas purification three-way catalyst, the C component γ-alumina is preferably 60% by weight or more based on the total weight of the catalyst component, and occupies the balance It is also good.

本発明によれば、空気と燃料の量論比近傍における燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物を含有する燃焼排ガスを接触させて、上記3成分を接触的に浄化するための第2の排ガス浄化三元触媒が提供される。   According to the present invention, the exhaust gas containing carbon monoxide, hydrocarbons and nitrogen oxides generated by the combustion of fuel in the vicinity of the stoichiometric ratio of air and fuel is brought into contact with each other to catalytically purify the above three components. A second exhaust gas purification three-way catalyst is provided.

その第2の触媒は、触媒成分の全重量に基づいて、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である)、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む触媒である。
The second catalyst is based on the total weight of the catalyst component
(A) 5 to 20% by weight of copper and iron (provided that the iron content is within the range of 0.1 to 1 of Fe / Cu atomic ratio),
(B) A catalyst comprising 0.1 to 10% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

上記第2の排ガス浄化三元触媒の好ましい態様の第1は、触媒成分の全重量に基づいて、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である。)、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜2重量%及び
(C)γ−アルミナ
を含む触媒である。
The first of the preferred embodiments of the second exhaust gas purification three-way catalyst is based on the total weight of the catalyst components:
(A) 5 to 20% by weight of copper and iron (however, the iron content ratio is in the range of 0.1 to 1 of Fe / Cu atomic ratio),
(B) A catalyst comprising 0.1 to 2% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

上記第2の排ガス浄化三元触媒の好ましい態様の第2は、触媒成分の全重量に基づいて、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である)、
(B)プラセオジム0.1〜2重量%及び
(C)γ−アルミナ
を含み、Fe/Cu原子比が0.1〜1である触媒である。
A second of the preferred embodiments of the second exhaust gas purification three-way catalyst is based on the total weight of the catalyst components:
(A) 5 to 20% by weight of copper and iron (provided that the iron content is within the range of 0.1 to 1 of Fe / Cu atomic ratio),
It is a catalyst containing (B) 0.1 to 2% by weight of praseodymium and (C) γ-alumina and having an Fe / Cu atomic ratio of 0.1 to 1.

本発明によれば、上記第2の排ガス浄化三元触媒において、上記C成分であるγ−アルミナは、触媒成分の全重量に基づいて、好ましくは、40重量%以上であり、残部を占めてもよい。   According to the present invention, in the second exhaust gas purification three-way catalyst, the C component γ-alumina is preferably 40% by weight or more based on the total weight of the catalyst components, and occupies the balance It is also good.

また、本発明によれば、上記第2触媒において、Fe/Cu原子比は、好ましくは、0.15〜1であり、最も好ましくは0.25〜0.5である。   Further, according to the present invention, in the second catalyst, the Fe / Cu atomic ratio is preferably 0.15 to 1, and most preferably 0.25 to 0.5.

また、本発明によれば、上記第1及び第2の排ガス浄化三元触媒において、上記A成分である銅(及び鉄)はB成分と共にγ−アルミナにドープされていることが好ましい。   Further, according to the present invention, in the first and second exhaust gas purifying three-way catalysts, copper (and iron) which is the component A is preferably doped to γ-alumina together with the component B.

本発明による排ガス浄化三元触媒によれば、高価なロジウムを用いることなく、それでいて、厳しい排出規制に適合し得て、広い温度ウィンドウ範囲において、低い温度域から一酸化炭素、炭化水素類及び窒素酸化物の3成分の三元浄化性能にすぐれている。   The exhaust gas purification three-way catalyst according to the present invention can meet strict emission regulations without using expensive rhodium, and can cover carbon monoxide, hydrocarbons and nitrogen from a low temperature range in a wide temperature window range. It is excellent in the three-way purification performance of the three components of oxide.

本発明による排ガス浄化三元触媒の一例の昇温反応法による三元成分の浄化特性を示す。The purification characteristic of the ternary component by the temperature rising reaction method of an example of the exhaust gas purification three-way catalyst by this invention is shown.

本発明による第1の排ガス浄化三元触媒は、空気と燃料の量論比近傍における燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物を含有する燃焼排ガスを接触させて、上記3成分を接触的に浄化するための排ガス浄化三元触媒であって、触媒成分の全重量に基づいて、
(A)銅1〜20重量%、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む。
The first exhaust gas purification three-way catalyst according to the present invention is characterized in that the exhaust gas containing carbon monoxide, hydrocarbons and nitrogen oxides generated by the combustion of fuel in the vicinity of the stoichiometric ratio of air and fuel is brought into contact with each other. An exhaust gas purification three-way catalyst for catalytically purifying three components, based on the total weight of catalyst components,
(A) 1 to 20% by weight of copper,
(B) 0.1 to 10% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

本発明による上記第1の触媒において、銅含有率は、触媒成分の全重量に基づいて、好ましくは、5〜15重量%である。   In the above first catalyst according to the present invention, the copper content is preferably 5 to 15% by weight, based on the total weight of the catalyst components.

本発明による上記第1の触媒は、触媒成分として、A成分である銅とB成分であるジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素(以下、これらを単に、B成分ということがある。)を有し、これら成分は欠陥スピネル構造型であるγ−アルミナ構造体中にドープされている。   The first catalyst according to the present invention contains, as a catalyst component, at least one element selected from copper of component A and component B of zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium (hereinafter referred to as These components are doped in the γ-alumina structure which is a defect spinel structure type.

即ち、本発明による排ガス浄化三元触媒においては、B成分が銅と共にγ−アルミナ構造体中にドープされているので、900〜950℃の範囲の高温においても、γ−アルミナのα−アルミナへの相転移が抑制され、その結果、高温においても、γ−アルミナは高い比表面積を維持し、かくして、高い三元成分浄化性能を維持することができる。   That is, in the exhaust gas purification three-way catalyst according to the present invention, since the B component is doped in the γ-alumina structure together with copper, even to high temperatures in the range of 900 ° C. to 950 ° C. As a result, even at high temperatures, γ-alumina can maintain high specific surface area, thus maintaining high ternary purification performance.

しかし、上記B成分のうち、イットリウム、ランタン、プラセオジム及びガドリニウム(以下、これらの成分をB1成分ということがある。)は、アルミニウムに比べて電気陰性度が小さく、アルミナ中に存在するとき、アルミナの塩基性を高めて、炭化水素の燃焼性を低下させる問題を有する。そこで、触媒における上記B1成分の含有率は、γ−アルミナのα−アルミナへの相転移を抑制して、炭化水素の燃焼性を低下させない程度であることが必要である。従って、本発明によれば、上記B1成分の最適の含有率は、Cuの含有率や触媒の使用条件によっても異なるが、触媒成分の全重量に基づいて、通常、0.1〜10重量%の範囲であり、好ましくは、0.2〜2重量%の範囲であり、より好ましくは、0.2〜1重量%の範囲である。   However, among the B components, yttrium, lanthanum, praseodymium and gadolinium (hereinafter, these components may be referred to as component B1) have lower electronegativity than aluminum and when present in alumina, alumina And the problem of reducing the flammability of hydrocarbons. Therefore, the content of the component B1 in the catalyst needs to be such that the phase transition of γ-alumina to α-alumina is suppressed so as not to reduce the combustibility of hydrocarbons. Therefore, according to the present invention, the optimum content of the component B1 varies depending on the content of Cu and the conditions of use of the catalyst, but is usually 0.1 to 10% by weight based on the total weight of the catalyst components It is preferably in the range of 0.2 to 2% by weight, more preferably in the range of 0.2 to 1% by weight.

更に、本発明者らは、上記B1成分に比べて、電気陰性度が大きいと共に、Cuの存在する場合においても、γ−アルミナのα−アルミナへの相転移を抑制する元素を探索した結果、ジルコニウム、スズ及びケイ素から選ばれる少なくとも1種の元素(以下、これらの成分をB2成分ということがある。)についても、同様の効果、即ち、これらを予め、γ−アルミナ中にドープさせることによって、Cuを担持させた場合においても、γ−アルミナのα-アルミナへの相転移が抑制され、その結果、高温においても、高い比表面積を維持することができることを見出した。   Furthermore, as a result of searching for an element that suppresses the phase transition of γ-alumina to α-alumina even when Cu exists, the inventors of the present invention have higher electronegativity than the B1 component, and The same effect is also obtained for at least one element selected from zirconium, tin and silicon (hereinafter, these components may be referred to as component B2), ie, by doping these in γ-alumina beforehand. It was found that even when Cu is supported, the phase transition of γ-alumina to α-alumina is suppressed, and as a result, a high specific surface area can be maintained even at high temperatures.

また、上記B2成分は、アルミニウムに比べて固体酸性度が大きく、アルミナ中に存在するとき、アルミナの酸性度を高めて、炭化水素の燃焼性を促進する。しかし、γ−アルミナ中の上記B2成分の含有率が増えるとき、上記B2成分の酸化物が分相し、その結果、比表面積が低下して、Cuの分散性が低下するので、得られる触媒の三元成分浄化性能を低下させる問題がある。そこで、γ−アルミナのα−アルミナへの相転移を抑制し、上記B2成分の酸化物の分相が生じないない程度にアルミナ中に上記B2成分を含有させる必要がある。   The B2 component has a solid acidity greater than that of aluminum, and when present in alumina, enhances the acidity of alumina to promote the combustibility of hydrocarbons. However, when the content of the B2 component in γ-alumina increases, the oxide of the B2 component is phase separated, and as a result, the specific surface area decreases and the dispersibility of Cu decreases, so the obtained catalyst There is a problem that the three-component purification performance of Therefore, it is necessary to suppress the phase transition of γ-alumina to α-alumina and to contain the B2 component in alumina to such an extent that phase separation of the B2 component oxide does not occur.

そこで、本発明によれば、排ガス浄化三元触媒における上記B2成分の最適の含有率は、触媒成分の全重量に基づいて、通常、0.1〜10重量%の範囲であり、好ましくは、0.2〜5重量%の範囲であり、最も好ましくは、0.2〜2重量%の範囲である。   Therefore, according to the present invention, the optimum content of the B2 component in the exhaust gas purification three-way catalyst is usually in the range of 0.1 to 10% by weight based on the total weight of the catalyst component, and preferably It is in the range of 0.2 to 5% by weight, and most preferably in the range of 0.2 to 2% by weight.

従って、本発明による第1の排ガス浄化三元触媒の好ましい態様の第1は、触媒成分の全重量に基づいて、
(A)銅5〜15重量%、
(B)イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜2重量%及び
(C)γ−アルミナ
を含む。
Thus, the first of the preferred embodiments of the first exhaust gas purification three-way catalyst according to the present invention is based on the total weight of the catalyst components:
(A) 5 to 15% by weight of copper,
(B) 0.1 to 2% by weight of at least one element selected from yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

上記第1の排ガス浄化三元触媒の好ましい態様の第1において、特に、上記B成分の含有率は0.1〜1重量%の範囲が好ましい。   In the first preferred embodiment of the first exhaust gas purification three-way catalyst, in particular, the content of the component B is preferably in the range of 0.1 to 1% by weight.

また、本発明による第1の排ガス浄化三元触媒の好ましい態様の第2は、触媒成分の全重量に基づいて、
(A)銅5〜15重量%、
(B)ジルコニウム、スズ及びケイ素から選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む。
Also, a second of the preferred embodiments of the first exhaust gas purification three-way catalyst according to the present invention is based on the total weight of the catalyst components:
(A) 5 to 15% by weight of copper,
(B) 0.1 to 10% by weight of at least one element selected from zirconium, tin and silicon and (C) γ-alumina.

上記第1の排ガス浄化三元触媒の好ましい態様の第2において、B成分がジルコニウム及びケイ素から選ばれる少なくとも1種の元素であるとき、その含有率は0.1〜2重量%の範囲が好ましく、B成分がスズであるとき、その含有率は0.1〜5重量%の範囲であることが好ましい。   In the second preferred embodiment of the first exhaust gas purification three-way catalyst, when the component B is at least one element selected from zirconium and silicon, the content thereof is preferably in the range of 0.1 to 2% by weight. When the B component is tin, its content is preferably in the range of 0.1 to 5% by weight.

本発明による排ガス浄化三元触媒は、上述したように、上記B成分と共に銅がγ−アルミナ構造体中にドープされていることが好ましい。即ち、B成分をドープしたγ−アルミナ構造体中の銅の分散性が大きく向上し、その結果、得られる触媒の三元成分浄化性能が大きく向上する。   The exhaust gas purification three-way catalyst according to the present invention is preferably doped with copper in the γ-alumina structure together with the component B as described above. That is, the dispersibility of copper in the γ-alumina structure doped with the component B is greatly improved, and as a result, the ternary component purification performance of the obtained catalyst is greatly improved.

上述したような本発明による第1の触媒は、例えば、通常の含浸法によって、上記B成分の金属塩をγ−アルミナに担持させた後、空気中、700℃〜900℃で焼成して、上記B成分をγ−アルミナにドープし、次いで、上記γ−アルミナに通常の含浸法によってCu塩を担持させた後、空気中、800℃〜1000℃で焼成することによって、γ−アルミナ構造体中に銅とB成分がドープされている触媒を得ることができる。この製造方法を製造方法1という。   The first catalyst according to the present invention as described above is prepared, for example, by supporting the metal salt of the component B on γ-alumina by a conventional impregnation method, and calcining at 700 ° C. to 900 ° C. in air The γ-alumina structure is obtained by doping the above-mentioned component B into γ-alumina and then supporting the above-mentioned γ-alumina with a Cu salt by a conventional impregnation method, followed by calcination at 800 ° C. to 1000 ° C. in air. A catalyst in which copper and B components are doped can be obtained. This manufacturing method is referred to as manufacturing method 1.

特に、本発明によれば、より好ましい方法として、上述したように、B成分をドープしたγ−アルミナにCu塩を担持させた後、空気中、700℃〜900℃で焼成して、上記B成分をドープしたγ−アルミナ構造体中にCuをドープし、更に、このように、Cuをドープしたγ−アルミナ構造体を窒素等の不活性雰囲気中、800℃〜1000℃で焼成することによって、三元浄化性能に一層すぐれた触媒を得ることができる。このような触媒においては、ESR分析によれば、γ−アルミナ構造体中にドープされている銅は主としてCuとして存在する。以下、この製造方法を製造方法2という。 In particular, according to the present invention, as a more preferable method, as described above, after supporting a Cu salt on γ-alumina doped with the B component, it is fired at 700 ° C. to 900 ° C. in the air, Cu is doped into the component-doped γ-alumina structure, and furthermore, the Cu-doped γ-alumina structure is fired at 800 ° C. to 1000 ° C. in an inert atmosphere such as nitrogen. It is possible to obtain a catalyst superior in three-way purification performance. In such catalysts, according to ESR analysis, the copper doped in the γ-alumina structure is mainly present as Cu + . Hereinafter, this manufacturing method is referred to as manufacturing method 2.

本発明によれば、触媒の製造において、上記B成分の金属塩をγ−アルミナに含浸させ、また、銅塩をγ−アルミナに含浸させるに際して、例えば、よく知られている incipient wetness 含浸法(以下、IW法という。)が好ましく用いられる。
According to the present invention, for example, a well-known incipient wetness impregnation method (for impregnating γ-alumina with a metal salt of the component B and impregnating a copper salt with γ-alumina in the production of a catalyst) Hereinafter, the IW method is preferably used.

また、B成分の元素の塩とアルミニウム塩を含む水溶液にアンモニア水を加えて、上記塩を中和沈着させ、得られた生成物を乾燥し、空気中で焼成して、上記B成分をドープしたγ−アルミナを得、更にこれに銅をドープして、γ−アルミナ構造体中に銅とB成分がドープされている触媒を得ることができる。この製造方法を製造方法3という。   In addition, ammonia water is added to an aqueous solution containing a salt of an element B component and an aluminum salt to neutralize and deposit the above-mentioned salt, and the obtained product is dried and fired in air to dope the B component. Can be obtained and further doped with copper to obtain a catalyst in which the copper and B components are doped in the .gamma.-alumina structure. This manufacturing method is referred to as manufacturing method 3.

本発明によれば、上記第1の排ガス浄化三元触媒において、上記C成分は、触媒成分の全重量に基づいて、60重量%以上であることが好ましく、残部を占めてもよい。   According to the present invention, in the first exhaust gas purifying three-way catalyst, the C component is preferably 60% by weight or more based on the total weight of the catalyst component, and may occupy the remaining portion.

本発明による第2の排ガス浄化三元触媒は、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である。)、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む触媒である。
The second exhaust gas purification three-way catalyst according to the present invention is
(A) 5 to 20% by weight of copper and iron (however, the iron content ratio is in the range of 0.1 to 1 of Fe / Cu atomic ratio),
(B) A catalyst comprising 0.1 to 10% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.

本発明による上記第2の排ガス浄化三元触媒は、A成分として、銅5〜20重量%、好ましくは、5〜15重量%と共に、鉄を含み、ここに、Fe/Cu原子比は0.1〜1の範囲にあり、B成分は、好ましくは、0.1〜2重量%の範囲である。   The second exhaust gas purification three-way catalyst according to the present invention contains iron as the component A, with 5 to 20% by weight of copper, preferably 5 to 15% by weight, and the Fe / Cu atomic ratio is 0. The B component is preferably in the range of 0.1 to 2% by weight.

このような触媒は、銅に加えて鉄を含むので、触媒上での水性ガスシフト反応が銅のみが担持された場合に比べて、低温域において大きく促進される結果、低温域で水素が生成し、かくして、低温域でのNOx還元反応が促進されるという特徴を有する。   Since such a catalyst contains iron in addition to copper, the water gas shift reaction on the catalyst is greatly promoted in the low temperature region as compared with the case where only copper is supported, so that hydrogen is generated in the low temperature region. Thus, it is characterized in that the NOx reduction reaction in the low temperature range is promoted.

しかし、上記第2の触媒は、一方において、CuとFeが共存するので、900℃以上の温度下でγ−アルミナのα化が更に促進される問題を有している。この問題は、前述したように、その製造に際して、γ−アルミナに予め、前記B成分をドープし、その後に銅と鉄をγ−アルミナにドープすることによって解決される。   However, on the other hand, since Cu and Fe coexist, the second catalyst has a problem that the gelatinization of γ-alumina is further promoted at a temperature of 900 ° C. or more. This problem is solved, as described above, by doping the .gamma.-alumina with the B component and then doping the .gamma.-alumina with copper and iron.

特に、本発明によれば、
(A)銅5〜20重量%、好ましくは、5〜15重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である。)と共に、
(B)プラセオジム0.1〜2重量%、好ましくは、0.1〜1重量%及び
(C)γ−アルミナ
を含む触媒は、反応温度が950℃であっても、γ−アルミナのα化が殆ど進行せず、触媒の三元成分浄化性能が保持される。
In particular, according to the invention:
(A) 5 to 20% by weight, preferably 5 to 15% by weight of copper and iron (provided that the iron content is within the range of 0.1 to 1 of Fe / Cu atomic ratio).
A catalyst comprising (B) 0.1 to 2% by weight of praseodymium, preferably 0.1 to 1% by weight and (C) .gamma.-alumina has a reaction temperature of 950.degree. Hardly progress, and the three-component purification performance of the catalyst is maintained.

本発明によれば、上記第2の排ガス浄化三元触媒において、上記C成分は、触媒成分の全重量に基づいて、40重量%以上であることが好ましく、残部を占めてもよい。   According to the present invention, in the second exhaust gas purification three-way catalyst, the C component is preferably 40% by weight or more based on the total weight of the catalyst component, and may occupy the remaining portion.

本発明による第2の触媒も、上述した第1の触媒と同様にして製造することができる。即ち、通常の含浸法によって、上記B成分の金属塩をγ−アルミナに担持させた後、空気中、700℃〜900℃で焼成して、上記B成分をγ−アルミナにドープし、次いで、上記γ−アルミナに通常の含浸法によってCu塩とFe塩を担持させた後、空気中、800℃〜1000℃で焼成して、銅と鉄をγ−アルミナにドープし、好ましくは、更に、不活性雰囲気中、800℃〜1000℃で焼成することによって得ることができる。   The second catalyst according to the present invention can also be produced in the same manner as the first catalyst described above. That is, after the metal salt of the component B is supported on γ-alumina by a conventional impregnation method, it is fired at 700 ° C. to 900 ° C. in air to dope the component B onto γ-alumina, and After the Cu salt and Fe salt are supported on the above γ-alumina by a conventional impregnation method, they are calcined at 800 ° C. to 1000 ° C. in air to dope copper and iron into γ-alumina, preferably further It can be obtained by firing at 800 ° C. to 1000 ° C. in an inert atmosphere.

以上に説明した本発明による排ガス浄化三元触媒は、これを理論空燃比近傍条件下、950℃以下の温度で長時間にわたって使用しても、三元成分浄化性能が損なわれることがない。   Even if the exhaust gas purifying three-way catalyst according to the present invention described above is used for a long time at a temperature of 950 ° C. or less under the conditions near the stoichiometric air-fuel ratio, the ternary component purifying performance is not impaired.

本発明による排ガス浄化三元触媒に一酸化炭素、炭化水素類及び窒素酸化物を含有する排ガスを接触させて、前記3成分を接触的に浄化するためには、空気と燃料の量論混合比近傍で燃料を燃焼させることが好ましい。例えば、燃料がガソリンの場合であれば、排ガス中の成分が一酸化炭素0.2〜0.75%、水素0.1〜0.5%、炭化水素(C1換算)0.02〜0.1%及び酸素0.25〜0.75%の範囲となるように、エンジンの燃料燃焼室に燃料を供給し、燃焼させることが望ましい。   In order to contact the exhaust gas containing carbon monoxide, hydrocarbons and nitrogen oxides with the exhaust gas purification three-way catalyst according to the present invention to catalytically purify the three components, the stoichiometric mixture ratio of air and fuel It is preferable to burn the fuel in the vicinity. For example, if the fuel is gasoline, the components in the exhaust gas are 0.2 to 0.75% carbon monoxide, 0.1 to 0.5% hydrogen, and hydrocarbons (C1 equivalent) 0.02 to 0. It is desirable to fuel and burn the fuel combustion chamber of the engine to be in the range of 1% and oxygen 0.25 to 0.75%.

本発明による排ガス浄化触媒に排ガスを接触させる温度、即ち、反応温度は、排ガスの組成にもよるが、通常、300℃以上であり、好ましくは、400℃以上である。反応温度の上限は、特に限定されるものではないが、通常、950℃である。このような反応温度において、排ガスは、好ましくは、20000〜200000h-1の範囲の空間速度で処理される。 The temperature at which the exhaust gas purification catalyst according to the present invention is brought into contact with the exhaust gas, ie, the reaction temperature, is usually 300 ° C. or higher, preferably 400 ° C. or higher, although it depends on the composition of the exhaust gas. The upper limit of the reaction temperature is not particularly limited, but is usually 950 ° C. At such reaction temperatures, the offgas is preferably treated at a space velocity in the range of 20000 to 200 000 h −1 .

本発明による排ガス浄化三元触媒は、その効果が損われない範囲において、その他の金属成分や担体成分を含んでもよい。   The exhaust gas purification three-way catalyst according to the present invention may contain other metal components and a carrier component as long as the effects thereof are not impaired.

また、本発明による排ガス浄化三元触媒は、粉末や粒状物のような種々の形態にて得ることができる。従って、従来からよく知られている任意の方法によって、このような触媒を用いて、例えば、ハニカム、環状物、球状物等のような種々の形状の触媒構造体に成形することができる。また、このような触媒構造体の製造に際して、必要に応じて、適当の添加物、例えば、成形助剤、補強材、無機繊維、有機バインダー等を用いることができる。   In addition, the exhaust gas purification three-way catalyst according to the present invention can be obtained in various forms such as powder and particles. Thus, such catalysts can be used to form catalyst structures of various shapes, such as, for example, honeycombs, rings, spheres, etc., by any method well known in the art. In addition, in the production of such a catalyst structure, suitable additives such as a molding aid, a reinforcing material, an inorganic fiber, an organic binder and the like can be used, if necessary.

しかし、本発明によれば、触媒をバインダー成分と共にスラリーとし、これを任意の形状の支持用の不活性な基材の表面に、例えば、ウォッシュ・コート法によって塗布して、触媒層を有する触媒構造体として用いるのが有利である。   However, according to the present invention, the catalyst is made into a slurry together with the binder component, and this is applied to the surface of a supporting inert substrate of any shape, for example, by a wash coat method, and a catalyst having a catalyst layer It is advantageous to use as a structure.

基材上に形成すべき触媒層の厚み、即ち、基材への触媒のコーティング量は、排ガスを触媒層に接触させる際の温度、排ガス中の酸素濃度、排ガスを触媒層に接触させる際の空間速度(SV)等のような反応条件にもよるが、ハニカム基材1L当たり、通常、25〜200gの範囲であり、特に、50〜150gの範囲が好ましい。   The thickness of the catalyst layer to be formed on the substrate, that is, the coating amount of the catalyst on the substrate, is the temperature at which the exhaust gas is brought into contact with the catalyst layer, the oxygen concentration in the exhaust gas, and the exhaust gas is brought into contact with the catalyst layer. Although it depends on reaction conditions such as space velocity (SV), it is usually in the range of 25 to 200 g, and preferably in the range of 50 to 150 g, per 1 L of the honeycomb substrate.

上記不活性な基材は、例えば、コージーライトのような粘土鉱物や、また、ステンレス鋼のような金属、好ましくは、Fe−Cr−Alのような耐熱性の金属からなるものであってよく、また、その形状は、ハニカム、環状、球状構造等であってよい。このような触媒構造体はいずれも、ガソリンエンジン自動車排ガス中の一酸化炭素、炭化水素類及び窒素酸化物浄化のために好適である。   The inert substrate may be, for example, a clay mineral such as cordierite, or a metal such as stainless steel, preferably a heat resistant metal such as Fe-Cr-Al. Also, the shape may be a honeycomb, an annular shape, a spherical structure or the like. All such catalyst structures are suitable for the purification of carbon monoxide, hydrocarbons and nitrogen oxides in gasoline engine automotive exhaust gases.

以下に本発明による排ガス浄化触媒を担持した触媒構造体の製造と共に、そのような触媒構造体を用いる一酸化炭素、炭化水素類及び窒素酸化物の3成分の接触的浄化を実施例として挙げて本発明を詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   In the following, along with the production of a catalyst structure carrying an exhaust gas purification catalyst according to the present invention, the catalytic purification of three components of carbon monoxide, hydrocarbons and nitrogen oxides using such catalyst structure will be mentioned as an example The present invention will be described in detail, but the present invention is not limited by these examples.

I.触媒構造体の製造と性能評価
(1)触媒構造体の製造
実施例1
硝酸プラセオジム水溶液(Prとして26.17重量%)0.20gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)18gに練りながら加え、IW法にて硝酸プラセオジムを含浸させた。得られたγ−アルミナを100℃で12時間乾燥させ、空気中、800℃で10時間焼成して、γ−アルミナにPr0.25重量%をドープした後、粒径20μm以下になるまで乳鉢で粉砕して、Pr0.25重量%をドープしたγ−アルミナ粉体約18gを得た。
I. Production of Catalyst Structure and Performance Evaluation (1) Production of Catalyst Structure Example 1
An appropriate amount of ion exchanged water is added to 0.20 g of praseodymium nitrate aqueous solution (26.17% by weight as Pr 2 O 3 ), and the obtained aqueous solution is added while being kneaded to 18 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15) And impregnated with praseodymium nitrate by the IW method. The obtained γ-alumina is dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, doped with 0.25 wt% of Pr on γ-alumina, and then in a mortar until the particle size becomes 20 μm or less The resultant was pulverized to obtain about 18 g of γ-alumina powder doped with 0.25 wt% of Pr.

硝酸銅(Cu(NO・3HO)6.84gにイオン交換水を適量加え、得られた水溶液を上記粉体に練りながら加え、上記Prをドープしたγ−アルミナにIW法にて硝酸銅を含浸させた。 An appropriate amount of ion-exchanged water is added to 6.84 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added while being kneaded to the above powder, and IW method is applied to the above Pr-doped γ-alumina. It was impregnated with copper nitrate.

このようにして得られたγ−アルミナ粉体を100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、これを4分割して、それぞれの粉体を窒素気流で800℃で12時間、950℃で7時間、950℃で14時間、及び空気気流中で950℃で7時間焼成して、それぞれPr0.25重量%とCu10重量%をドープした触媒粉体を得た。   The γ-alumina powder thus obtained is dried at 100 ° C. for 12 hours, and then fired in air at 800 ° C. for 10 hours, and further divided into four, each powder being a stream of nitrogen The catalyst powder is doped with 0.25 wt% of Pr and 10 wt% of Cu respectively by calcining at 800 ° C. for 12 hours, at 950 ° C. for 7 hours, at 950 ° C. for 14 hours, and in air stream at 950 ° C. for 7 hours. Obtained.

上記4種類の触媒粉体のそれぞれ3gとアルミナゾル3gと適量の水を混合し、ジルコニアボール数gを粉砕媒体として用いて手で振盪し、凝集粉体を解して、ウォッシュ・コート用スラリーを得た。   3 g of each of the above four types of catalyst powder, 3 g of alumina sol and an appropriate amount of water are mixed, hand shaken using several g of zirconia balls as a grinding medium to break up aggregated powder, and slurry for wash coat Obtained.

1平方インチ当りのセル数400のコージーライト製ハニカム基体(以下、同じ)に上記ウォッシュ・コート用スラリーを塗布し、乾燥させた後、空気中、500℃で1時間焼成して、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体1−1、1−2、1−3及び1−4を得た。   The above wash coat slurry is applied to a cordierite honeycomb substrate of 400 cells per square inch (hereinafter, the same), dried, and fired in air at 500 ° C. for 1 hour to form a honeycomb substrate 1 L. Honeycomb catalyst structures 1-1, 1-2, 1-3 and 1-4 carrying 100 g of catalyst per contact were obtained.

これらの1−1から1−4の触媒構造体のうち、触媒構造体1−1から1〜3の有する触媒は、Prをドープしたγ−アルミナに銅をドープした後、更に、不活性雰囲気中で焼成して得たものであって、不活性雰囲気中で焼成しなかったものに比べて、三元成分の浄化温度域が高い。   Among the catalyst structures 1-1 to 1-4, the catalysts possessed by the catalyst structures 1-1 to 1-3 further have an inert atmosphere after doping Pr on γ-alumina with copper. The purification temperature range of the ternary component is higher than that obtained by firing in air and not firing in an inert atmosphere.

実施例2
硝酸プラセオジム水溶液(Prとして26.17重量%)0.80gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)18gに練りながら加えて、IW法にて硝酸プラセオジムを含浸させた。得られたγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、Pr1.0重量%をドープしたγ−アルミナ粉体を得た。
Example 2
An appropriate amount of ion exchange water is added to 0.80 g of praseodymium nitrate aqueous solution (26.17% by weight as Pr 2 O 3 ), and the obtained aqueous solution is added while being kneaded to 18 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15) Then, praseodymium nitrate was impregnated by the IW method. The obtained γ-alumina was dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, and pulverized to obtain a γ-alumina powder doped with 1.0 wt% of Pr.

以下、実施例1と同様にして、上記Prをドープしたγ−アルミナ粉体にCuをドープし、更に、これを窒素気流中、950℃14時間焼成して、Pr1.0重量%とCu10重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。   Thereafter, in the same manner as in Example 1, Cu is added to the Pr-doped γ-alumina powder, and this is further fired in a nitrogen stream at 950 ° C. for 14 hours to obtain 1.0 wt% of Pr and 10 wt% of Cu. % -Doped γ-alumina powder was obtained as a catalyst powder.

上記触媒粉体を用いて、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体2を得た。   Using the catalyst powder, in the same manner as in Example 1, a honeycomb catalyst structure 2 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained.

実施例3
硝酸プラセオジム水溶液(Prとして26.17重量%)1.60gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)18gに練りながら加え、γ−アルミナにIW法にて硝酸プラセオジムを含浸させた。得られたγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、Pr2.0重量%をドープしたγ−アルミナ粉体を得た。
Example 3
An appropriate amount of ion exchange water is added to 1.60 g of praseodymium nitrate aqueous solution (26.17% by weight as Pr 2 O 3 ), and the obtained aqueous solution is added while being kneaded to 18 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15) Γ-alumina was impregnated with praseodymium nitrate by the IW method. The obtained γ-alumina was dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, and pulverized to obtain γ-alumina powder doped with 2.0 wt% of Pr.

以下、実施例1と同様にして、上記Prをドープしたγ−アルミナ粉体に硝酸銅を含浸させ、100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、950℃で14時間焼成して、Pr2.0重量%とCu10重量%をドープした触媒粉体を得た。   Thereafter, in the same manner as in Example 1, the Pr-doped γ-alumina powder is impregnated with copper nitrate, dried at 100 ° C. for 12 hours, and fired in air at 800 ° C. for 10 hours; The catalyst powder was calcined at 950 ° C. for 14 hours in a nitrogen stream to obtain a catalyst powder doped with 2.0 wt% of Pr and 10 wt% of Cu.

上記触媒粉体を用いて、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体3を得た。   Using the catalyst powder, in the same manner as in Example 1, a honeycomb catalyst structure 3 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained.

実施例4
実施例1と同様にして、Pr0.5重量%をドープしたγ−アルミナ粉体約18gを得た。硝酸銅(Cu(NO・3HO)8.89gにイオン交換水を適量加え、得られた水溶液をこの粉体に練りながら加え、Pr0.5重量%をドープしたγ−アルミナにIW法にて硝酸銅を含浸させた。得られたγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成して、上記Prをドープしたγ−アルミナに銅をドープし、更に、窒素気流中、950℃で14時間焼成して、Pr0.5重量%とCu11重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。
Example 4
In the same manner as in Example 1, about 18 g of γ-alumina powder doped with 0.5 wt% of Pr was obtained. An appropriate amount of ion-exchanged water is added to 8.89 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added to this powder while being kneaded, to 0.5 wt% of Pr doped γ-alumina Copper nitrate was impregnated by the IW method. The obtained γ-alumina is dried at 100 ° C. for 12 hours and then fired in air at 800 ° C. for 10 hours to dope the above Pr-doped γ-alumina with copper, and then 950 in a nitrogen stream C. for 14 hours to obtain .gamma.-alumina powder doped with 0.5 wt.% Of Pr and 11 wt.% Of Cu as catalyst powder.

以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体4−1を得た。このハニカム触媒構造体について、昇温法による三元成分の浄化特性を図1に示す。   Thereafter, in the same manner as in Example 1, a honeycomb catalyst structure 4-1 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained. With respect to this honeycomb catalyst structure, the purification characteristics of the ternary component by the temperature rising method are shown in FIG.

別に、実施例1と同様にして、Pr0.25重量%をドープしたγ−アルミナ粉体約18gを得た。硝酸銅(Cu(NO・3HO)8.89gにイオン交換水を適量加え、得られた水溶液をこの粉体に練りながら加え、上記Pr0.25重量%をドープしたγ−アルミナにIW法にて硝酸銅を含浸させた。得られたγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成して、上記Prをドープしたγ−アルミナに銅をドープし、更に、窒素気流中、950℃で14時間焼成して、Pr0.25重量%とCu13重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。 Separately, in the same manner as in Example 1, about 18 g of γ-alumina powder doped with 0.25 wt% of Pr was obtained. An appropriate amount of ion-exchanged water is added to 8.89 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added while being kneaded to this powder, and γ-alumina doped with the above 0.25 wt% Was impregnated with copper nitrate by the IW method. The obtained γ-alumina is dried at 100 ° C. for 12 hours and then fired in air at 800 ° C. for 10 hours to dope the above Pr-doped γ-alumina with copper, and then 950 in a nitrogen stream C. for 14 hours to obtain .gamma.-alumina powder doped with 0.25 wt.% Of Pr and 13 wt.% Of Cu as a catalyst powder.

以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体4−2を得た。   Thereafter, in the same manner as in Example 1, a honeycomb catalyst structure 4-2 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained.

実施例5
硝酸ネオジム水溶液(Ndとして21.58重量%)1.04gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)45gに練りながら加え、γ−アルミナに硝酸ネオジムをIW法にて含有させた後、100℃で12時間乾燥させ、更に、空気中、800℃で10時間焼成して、γ−アルミナにNd0.5重量%をドープした。
Example 5
An appropriate amount of ion-exchanged water is added to 1.04 g of an aqueous solution of neodymium nitrate (21.58% by weight as Nd), and the obtained aqueous solution is added while being kneaded into 45 g of γ-alumina (AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. After incorporating neodymium nitrate into alumina by IW method, it was dried at 100 ° C. for 12 hours, and further baked in air at 800 ° C. for 10 hours to dope γ-alumina with 0.5 wt% of Nd.

以下、実施例1と同様にして、上記Ndをドープしたγ−アルミナに硝酸銅を含浸させ、100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、これを更に窒素気流中、950℃で14時間焼成して、Nd0.5重量%とCu10重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。   Thereafter, in the same manner as in Example 1, the above Nd-doped γ-alumina is impregnated with copper nitrate, dried at 100 ° C. for 12 hours, and then fired in air at 800 ° C. for 10 hours. The mixture was calcined at 950 ° C. for 14 hours in an air stream to obtain γ-alumina powder doped with 0.5% by weight of Nd and 10% by weight of Cu as a catalyst powder.

上記触媒粉体を用いて、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体5を得た。   Using the catalyst powder, in the same manner as in Example 1, a honeycomb catalyst structure 5 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained.

実施例6
硝酸ランタン水溶液(Laとして19.03重量%)0.56gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)36gに練りながら加え、γ−アルミナに硝酸ランタンをIW法にて含浸させた。このγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃10時間焼成して、γ−アルミナ中にランタン0.25重量%をドープした。
Example 6
An appropriate amount of ion exchanged water is added to 0.56 g of an aqueous solution of lanthanum nitrate (19.03% by weight as La 2 O 3 ), and the obtained aqueous solution is added while being kneaded to 36 g of γ-alumina (AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. And .gamma.-alumina were impregnated with lanthanum nitrate by the IW method. The .gamma.-alumina was dried at 100.degree. C. for 12 hours and then fired in air at 800.degree. C. for 10 hours to dope 0.25% by weight of lanthanum in .gamma.-alumina.

以下、実施例1と同様にして、ランタン0.25重量%をドープしたγ−アルミナに銅含有率がそれぞれ5重量%%、10重量%及び13重量%となるように硝酸銅を含浸させ、次いで、100℃で12時間乾燥させ、空気中、800℃で10時間焼成した後、更に窒素気流中、950℃で14時間焼成して、La0.25重量%とCuをそれぞれ5重量%、10重量%及び13重量%ドープしたγ−アルミナ粉体を触媒粉体として得た。   Thereafter, in the same manner as in Example 1, copper nitrate is impregnated in γ-alumina doped with 0.25 wt% of lanthanum so that the copper content becomes 5 wt%, 10 wt% and 13 wt%, respectively. Next, the resultant is dried at 100 ° C. for 12 hours, calcined at 800 ° C. in air for 10 hours, and further calcined at 950 ° C. for 14 hours in a nitrogen stream to obtain 5 wt. Weight% and 13 weight% doped γ-alumina powder was obtained as catalyst powder.

上記触媒粉体を用いて、実施例1と同様にして、それぞれハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体6−1、6−2及び6−3を得た。   Using the catalyst powder, honeycomb catalyst structures 6-1, 6-2, and 6-3 supporting 100 g of catalyst per 1 L of honeycomb substrate were obtained in the same manner as Example 1.

実施例7
硝酸ガドリニウム水溶液(Gdとして17.07重量%)1.05gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)36gに練りながら加え、γ−アルミナに硝酸ガドリニウムをIW法にて含浸させた。このγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、γ−アルミナ中にGd0.5重量%をドープしたγ−アルミナ粉体を得た。
Example 7
An appropriate amount of ion exchanged water is added to 1.05 g of a gadolinium nitrate aqueous solution (17.07% by weight as Gd), and the obtained aqueous solution is added while being kneaded to 36 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15), Alumina was impregnated with gadolinium nitrate by the IW method. The γ-alumina is dried at 100 ° C. for 12 hours, fired in air at 800 ° C. for 10 hours, and pulverized to obtain γ-alumina powder doped with 0.5% by weight of Gd in γ-alumina. The

以下、硝酸銅(Cu(NO・3HO)8.892gを用いた以外は、実施例1と同様にして、上記Gdをドープしたγ−アルミナに粉体に触媒中の銅含有率が13%となるように硝酸銅を含浸させ、これを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に窒素気流中、950℃で14時間焼成して、Gd0.5重量%とCu13重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。 Thereafter, in the same manner as in Example 1 except that 8.892 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O) was used, the above-mentioned Gd-doped γ-alumina was mixed with copper in the catalyst in the powder. The copper nitrate is impregnated so as to be 13%, dried at 100 ° C. for 12 hours, then fired in air at 800 ° C. for 10 hours, and further fired in nitrogen stream at 950 ° C. for 14 hours A γ-alumina powder doped with 0.5% by weight of Gd and 13% by weight of Cu was obtained as a catalyst powder.

上記触媒粉体を用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体7を得た。   Using the catalyst powder, a honeycomb catalyst structure 7 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained in the same manner as in Example 1 below.

実施例8
オキシ硝酸ジルコニル水溶液(Zrとして17.04重量%)1.17g及び2.34gのそれぞれにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)40gに練りながら加え、γ−アルミナにオキシ硝酸ジルコニルをそれぞれIW法にて、Zrとして0.5重量%%及び1.0重量%含浸させた。このように、オキシ硝酸ジルコニルを含浸させたγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、γ−アルミナ中にZrをそれぞれ0.5重量%及び1.0重量%ドープしたγ−アルミナ粉体を得た。
Example 8
An appropriate amount of ion exchanged water is added to each of 1.17 g and 2.34 g of zirconyl oxynitrate aqueous solution (17.04% by weight as Zr), and the obtained aqueous solution is 40 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15). The mixture was impregnated with 0.5 wt% and 1.0 wt% of Zr as zirconyl oxynitrate by the IW method, respectively. Thus, the γ-alumina impregnated with zirconyl oxynitrate is dried at 100 ° C. for 12 hours, then fired in air at 800 ° C. for 10 hours, and pulverized to obtain Zr in the γ-alumina of 0. 5 wt% and 1.0 wt% doped γ-alumina powder was obtained.

硝酸銅(Cu(NO・3HO)7.60gにイオン交換水を適量加え、得られた水溶液を上記γ−アルミナ粉体にそれぞれ練りながら加え、硝酸銅をIW法にて含浸させた。得られたγ−アルミナ粉体をそれぞれ、100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、950℃で14時間焼成して、Zr0.5重量%及び1.0重量%とCu10重量%をドープした2種類の触媒粉体を得た。 An appropriate amount of ion-exchanged water is added to 7.60 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added to each of the above γ-alumina powders while being kneaded, and copper nitrate is impregnated by IW method. I did. The obtained γ-alumina powder is dried at 100 ° C. for 12 hours, fired in air at 800 ° C. for 10 hours, and further fired in nitrogen stream at 950 ° C. for 14 hours, Zr0.5 Two types of catalyst powders doped with wt% and 1.0 wt% and 10 wt% of Cu were obtained.

上記触媒粉体をそれぞれ用いて、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体8−1及び8−2を得た。   Honeycomb catalyst structures 8-1 and 8-2 carrying 100 g of catalyst per 1 L of honeycomb substrate were obtained in the same manner as in Example 1 using the above-mentioned catalyst powder.

実施例9
イオン交換水500mLに塩化スズ(SnCl・ 2HO)水溶液(Snとして12.00重量%)16.65gと硝酸アルミニウム(Al(NO)・ 9HO)264.89gを溶解させて水溶液を調製した。この水溶液に0.1規定のアンモニア水を加え、上記塩を中和加水分解した後、1時間熟成した。得られたスラリーから生成物を濾取し、これを120℃で24時間乾燥した後、空気中、800℃で10時間焼成し、粉砕して、スズ5.0重量%をドープしたγ−アルミナ粉体を得た。
Example 9
Dissolve 16.65 g of tin chloride (SnCl 2 · 2 H 2 O) aqueous solution (12.00 wt% as Sn) and 264.89 g of aluminum nitrate (Al (NO 3 ) 3 · 9 H 2 O) in 500 mL of ion-exchanged water An aqueous solution was prepared. 0.1 N ammonia water was added to this aqueous solution to neutralize and hydrolyze the above salt, followed by aging for 1 hour. The product is collected by filtration from the resulting slurry, dried at 120 ° C. for 24 hours, calcined in air at 800 ° C. for 10 hours, pulverized, and 5.0 wt% tin-doped γ-alumina I got a powder.

硝酸銅(Cu(NO・3HO)7.60gにイオン交換水を適量加え、得られた水溶液を上記Snをドープしたγ−アルミナ粉体に練りながら加え、Sn5.0重量%をドープさせたγ−アルミナにIW法にて硝酸銅を含有させた。このように処理したγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、950℃で14時間焼成して、Sn5.0重量%とCu10重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。 An appropriate amount of ion-exchanged water is added to 7.60 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added to the above-described Sn-doped γ-alumina powder while being kneaded. Copper nitrate was contained in the γ-alumina doped with I by the IW method. The thus-treated γ-alumina is dried at 100 ° C. for 12 hours, then fired in air at 800 ° C. for 10 hours, and further fired in nitrogen stream at 950 ° C. for 14 hours to obtain 5.0 wt% Sn And .gamma.-alumina powder doped with 10% by weight of Cu was obtained as a catalyst powder.

上記触媒粉体を用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体9を得た。   Using the catalyst powder, a honeycomb catalyst structure 9 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained in the same manner as in Example 1 below.

実施例10
シリカゾル溶液(SiO2として20重量%)1.93gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)36gに練りながら加え、γ−アルミナにIW法にてSiOをSiとして0.5重量%含有させた。このように、SiOを含有させたγ−アルミナを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、ケイ素0.5重量%をドープしたγ−アルミナ粉体を得た。
Example 10
An appropriate amount of ion exchange water is added to 1.93 g of a silica sol solution (20% by weight as SiO 2 ), and the obtained aqueous solution is added while being kneaded into 36 g of γ-alumina (AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. SiO 2 was contained in an amount of 0.5% by weight as Si by the IW method. Thus, after γ-alumina containing SiO 2 was dried at 100 ° C. for 12 hours, it was calcined at 800 ° C. in air for 10 hours and pulverized to give 0.5% by weight of silicon-doped γ- Alumina powder was obtained.

硝酸銅(Cu(NO・3HO)7.60gにイオン交換水を適量加え、得られた水溶液を上記ケイ素をドープしたγ−アルミナ粉体に練りながら加え、IW法によって硝酸銅を含有させた。これを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、950℃で14時間焼成して、Si0.5重量%と同0重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。 An appropriate amount of ion-exchanged water is added to 7.60 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added to the silicon-doped γ-alumina powder while being kneaded, and copper nitrate is obtained by the IW method. Contained. This is dried at 100 ° C. for 12 hours, then fired in air at 800 ° C. for 10 hours, and further fired in nitrogen stream at 950 ° C. for 14 hours to dope 0.5 wt% Si and 0 wt% The obtained γ-alumina powder was obtained as a catalyst powder.

上記触媒粉体を用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体10を得た。   Using the catalyst powder, a honeycomb catalyst structure 10 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained in the same manner as in Example 1 below.

実施例11
硝酸イットリウム溶液(Yとして12.12重量%)1.49gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)36gに練りながら加え、IW法にてγ−アルミナにYをYとして0.5重量%含有させた。これを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、Y0.5重量%をドープしたγ−アルミナ粉体を得た。
Example 11
An appropriate amount of ion exchanged water is added to 1.49 g of yttrium nitrate solution (12.12% by weight as Y), and the obtained aqueous solution is added while being kneaded into 36 g of γ-alumina (AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. And 0.5 wt% of Y 2 O 3 as Y in γ-alumina. The resultant was dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, and pulverized to obtain γ-alumina powder doped with Y 0.5% by weight.

硝酸銅(Cu(NO・3HO)7.60gにイオン交換水を適量加え、得られた水溶液を上記Yをドープしたγ−アルミナ粉体に練りながら加え、IW法にて硝酸銅を含浸させた。 An appropriate amount of ion-exchanged water is added to 7.60 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O), and the obtained aqueous solution is added to the above Y-doped γ-alumina powder while being kneaded. It was impregnated with copper.

これを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、950℃で14時間焼成して、Y0.5重量%とCu10重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。   This was dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, and further calcined in nitrogen stream at 950 ° C. for 14 hours to dope 0.5 wt% of Y and 10 wt% of Cu. γ-alumina powder was obtained as a catalyst powder.

上記触媒粉体を用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体10を得た。   Using the catalyst powder, a honeycomb catalyst structure 10 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained in the same manner as in Example 1 below.

実施例12
オキシ硝酸ジルコニル水溶液(Zrとして17.04重量%)1.17gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)40gに練りながら加え、IW法にてオキシ硝酸ジルコニルをZrとして0.5%重量%含浸させた。これを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、ジルコニウム0.5重量%をドープしたγ−アルミナ粉体を得た。
Example 12
An appropriate amount of ion-exchanged water is added to 1.17 g of zirconyl oxynitrate aqueous solution (17.04% by weight as Zr), and the obtained aqueous solution is added while being kneaded to 40 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15), IW In the method, 0.5% by weight of zirconyl oxynitrate as Zr was impregnated. The resultant was dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, and pulverized to obtain γ-alumina powder doped with 0.5 wt% of zirconium.

次いで、上記Zrをドープしたγ−アルミナ粉体6gのそれぞれに
(1)硝酸銅(Cu(NO・3HO)2.28gと硝酸鉄(Fe(NO・9HO)3.81gを含む水溶液、
(2)硝酸銅(Cu(NO・3HO)2.51gと硝酸鉄(Fe(NO・9HO)2.86gを含む水溶液、
(3)硝酸銅(Cu(NO・3HO)2.74gと硝酸鉄(Fe(NO・9HO)1.91gを含む水溶液、及び
(4)硝酸銅(Cu(NO・3HO)2.97gと硝酸鉄(Fe(NO・9HO)0.95gを含む水溶液
を練りながら加え、それぞれにIW法にて硝酸銅及び硝酸鉄を含浸させた4種類のペーストを得た。
Next, (1) 2.28 g of copper nitrate (Cu (NO 3 ) 2 · 3 H 2 O) and iron nitrate (Fe (NO 3 ) 2 · 9 H 2 O were added to each of the 6 g of the Zr-doped γ-alumina powder. ) An aqueous solution containing 3.81 g,
(2) An aqueous solution containing 2.51 g of copper nitrate (Cu (NO 3 ) 2 .3H 2 O) and 2.86 g of iron nitrate (Fe (NO 3 ) 2 .9H 2 O),
(3) copper nitrate (Cu (NO 3) 2 · 3H 2 O) 2.74g and iron nitrate (Fe (NO 3) 2 · 9H 2 O) aqueous solution containing 1.91g and, (4) copper nitrate (Cu (NO 3) 2 · 3H 2 O) 2.97g and iron nitrate (Fe (NO 3) 2 · 9H 2 O) was added while kneading an aqueous solution containing 0.95 g, copper nitrate and iron nitrate at IW method respectively Obtained four types of paste impregnated with

これらの4種類のペーストをそれぞれ、100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、800℃で12時間焼成して、Zr0.5重量%と、
(1)Cu10重量%とFe(但し、Fe/Cu=1)、
(2)Cu10重量%とFe(但し、Fe/Cu=0.75)、
(3)Cu10重量%とFe(但し、Fe/Cu=0.5)
(4)Cu10重量%とFe(但し、Fe/Cu=0.25)をそれぞれドープしたγ−アルミナ粉体を触媒粉体として得た。
Each of these four pastes is dried at 100 ° C. for 12 hours, then fired in air at 800 ° C. for 10 hours, and further fired in nitrogen stream at 800 ° C. for 12 hours, and Zr 0.5 wt% When,
(1) Cu 10% by weight and Fe (however, Fe / Cu = 1),
(2) 10% by weight of Cu and Fe (provided that Fe / Cu = 0.75),
(3) Cu 10% by weight and Fe (however, Fe / Cu = 0.5)
(4) A γ-alumina powder doped with 10% by weight of Cu and Fe (wherein Fe / Cu = 0.25) was respectively obtained as a catalyst powder.

上記触媒粉体それぞれを用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体12−1、12−2、12−3及び12−4を得た。   Honeycomb catalyst structures 12-1, 12-2, 12-3 and 12-4 carrying 100 g of catalyst per 1 L of honeycomb substrate are obtained in the same manner as in Example 1 using each of the above catalyst powders. The

実施例13
硝酸プラセオジム水溶液(Prとして26.17重量%)0.80gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)18gに練りながら加え、IW法にて硝酸プラセオジムを含浸させた。得られたγ−アルミナを100℃で12時間乾燥させ、空気中、800℃で10時間焼成して、γ−アルミナにPr1重量%をドープした後、粒径20μm以下になるまで乳鉢で粉砕して、Pr0.5重量%をドープしたγ−アルミナ粉体約18gを得た。
Example 13
An appropriate amount of ion exchange water is added to 0.80 g of praseodymium nitrate aqueous solution (26.17% by weight as Pr 2 O 3 ), and the obtained aqueous solution is added while being kneaded to 18 g of Sumitomo Chemical Co., Ltd. γ-alumina (AKP-G15) And impregnated with praseodymium nitrate by the IW method. The obtained γ-alumina is dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, doped with 1 wt% of Pr to γ-alumina, and ground in a mortar to a particle size of 20 μm or less Thus, about 18 g of γ-alumina powder doped with 0.5 wt% of Pr was obtained.

Pr1重量%をドープしたγ−アルミナ粉体6gに硝酸銅(Cu(NO・3HO)2.97gと硝酸鉄(Fe(NO・9HO)0.95gを含む水溶液を練りながら加え、IW法にて硝酸銅及び硝酸鉄を含浸させたペーストを得た。このペーストを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、更に、窒素気流中、950℃で14時間焼成し、粉砕して、Pr1重量%とCu10重量%とFe2.5重量%(Fe/Cu=0.25)をドープした触媒粉体を得た。 Including Pr1 copper nitrate wt% doped γ- alumina powder 6g (Cu (NO 3) 2 · 3H 2 O) 2.97g and iron nitrate (Fe (NO 3) 2 · 9H 2 O) 0.95g The aqueous solution was added while being kneaded, and a paste impregnated with copper nitrate and iron nitrate was obtained by the IW method. The paste is dried at 100 ° C. for 12 hours, fired in air at 800 ° C. for 10 hours, further fired in nitrogen stream at 950 ° C. for 14 hours, and pulverized to 1 wt% Pr and 10 wt% Cu. A catalyst powder doped with 2.5 wt% Fe (Fe / Cu = 0.25) was obtained.

上記触媒粉体を用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体13を得た。   Using the catalyst powder, a honeycomb catalyst structure 13 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained in the same manner as in Example 1 below.

実施例14
オキシ硝酸ジルコニル水溶液(Zrとして17.04重量%)0.13gと硝酸プラセオジム水溶液((Prとして26.17重量%))0.20gにイオン交換水を適量加え、得られた水溶液を住友化学(株)製γ−アルミナ(AKP−G15)9gに練りながら加え、IW法にてオキシ硝酸ジルコニル及び硝酸プラセオジムをそれぞれ、Zr及びPrとして0.25重量%及び0.5重量%含有させた。これを100℃で12時間乾燥させた後、空気中、800℃で10時間焼成し、粉砕して、Zr及びPrをそれぞれ0.25重量%及び0.5重量%ドープしたγ−アルミナ粉体を得た。
Example 14
An appropriate amount of ion exchanged water is added to 0.13 g of zirconyl oxynitrate aqueous solution (17.04% by weight as Zr) and 0.20 g of praseodymium nitrate aqueous solution (26.17% by weight as Pr 2 O 3 ), and the obtained aqueous solution is added While adding to 9 g of γ-alumina (AKP-G15) manufactured by Sumitomo Chemical Co., Ltd. while being kneaded, zirconyl oxynitrate and praseodymium nitrate are respectively contained in an amount of 0.25 wt% and 0.5 wt% as Zr and Pr by IW method The It is dried at 100 ° C. for 12 hours, calcined in air at 800 ° C. for 10 hours, pulverized, and doped with 0.25 wt% and 0.5 wt% of Zr and Pr, respectively. I got

硝酸銅(Cu(NO・3HO)3.42gにイオン交換水を適量加え、得られた水溶液を上記Zr及びPrをドープしたγ−アルミナ粉体約9gにそれぞれ、練りながら加え、IW法にて硝酸銅を含有させたペーストを得た。 An appropriate amount of ion-exchanged water is added to 3.42 g of copper nitrate (Cu (NO 3 ) 2 3 H 2 O), and the obtained aqueous solution is added while being kneaded to about 9 g of the above-described Zr and Pr doped γ-alumina powder. A paste containing copper nitrate was obtained by the IW method.

これを100℃で12時間乾燥させた後、空気中、800℃10時間焼成し、更に、窒素気流中、950℃で14時間焼成して、Zr0.25重量%とPr0.5重量%とCu10重量%をドープしたγ−アルミナ粉体を触媒粉体として得た。   This is dried at 100 ° C. for 12 hours, then fired in air at 800 ° C. for 10 hours, and further fired in nitrogen stream at 950 ° C. for 14 hours to obtain 0.25 wt% of Zr, 0.5 wt% of Pr and Cu10. % By weight of γ-alumina powder was obtained as a catalyst powder.

上記触媒粉体を用いて、以下、実施例1と同様にして、ハニカム基体1L当たりに触媒100gを担持したハニカム触媒構造体14を得た。   Using the catalyst powder, a honeycomb catalyst structure 14 supporting 100 g of catalyst per 1 L of honeycomb substrate was obtained in the same manner as in Example 1 below.

(2)窒素酸化物、一酸化炭素及びプロピレンの浄化試験
上記実施例1〜14において得られた触媒構造体をそれぞれ用いて、以下の窒素酸化物(NOx)、一酸化炭素(CO)及びプロピレン(C36)の浄化試験を行った。即ち、触媒構造体を100℃から600℃まで昇温速度10℃/分の割合にて昇温させながら、空間速度50,000h-1にて下記組成の混合ガスを通じて浄化試験を行った。測定温度域は1000℃から600℃とした。窒素酸化物、一酸化炭素及びプロピレンの変換率(除去率)は、ガスメット社製FTTRガス分析計にて一酸化炭素、プロピレン、NO及びNO2の濃度分析を行い、これに基づいて算出した。三元成分の浄化性能は、窒素酸化物、一酸化炭素及びプロピレンの変換率がそれぞれ50%を示す温度T50にて評価した。結果を表1に示す。
(2) Purification test of nitrogen oxide, carbon monoxide and propylene The following nitrogen oxides (NOx), carbon monoxide (CO) and propylene were obtained using the catalyst structures obtained in Examples 1 to 14 respectively. A purification test of (C 3 H 6 ) was performed. That is, while raising the temperature of the catalyst structure from 100 ° C. to 600 ° C. at a heating rate of 10 ° C./min, a purification test was conducted through a mixed gas of the following composition at a space velocity of 50,000 h −1 . The measurement temperature range was from 1000 ° C. to 600 ° C. The conversion rates (removal rates) of nitrogen oxides, carbon monoxide, and propylene were calculated based on the concentration analysis of carbon monoxide, propylene, NO, and NO 2 with a Gasmet FTTR gas analyzer. The purification performance of the ternary component was evaluated at a temperature T50 at which the conversion rates of nitrogen oxide, carbon monoxide and propylene were 50%, respectively. The results are shown in Table 1.

(混合ガス組成)
NO:500ppm
2:0.5%
CO:5000ppm
2:1700ppm
36:400ppm(C1換算)
CO2:14%
2O:6%
(Mixed gas composition)
NO: 500 ppm
O 2 : 0.5%
CO: 5000 ppm
H 2 : 1700 ppm
C 3 H 6 : 400 ppm (C1 conversion)
CO 2 : 14%
H 2 O: 6%

Figure 0006549858
Figure 0006549858

表1において、触媒構造体のうち、触媒構造体1−4は製造方法1によって、また、触媒構造体9は製造方法3によって製造されたものであり、その他はすべて前記製造方法2によって製造されたものである。   In Table 1, among the catalyst structures, catalyst structure 1-4 is produced by production method 1, and catalyst structure 9 is produced by production method 3, and all other components are produced by the above production method 2. It is

本発明による触媒は、表1に示すように、希少金属である高価な貴金属を用いることなく、それでいて、広い温度ウィンドウ範囲において、低い温度域から一酸化炭素、炭化水素類及び窒素酸化物の3成分の三元浄化性能にすぐれている。   The catalyst according to the present invention, as shown in Table 1, does not use expensive precious metals which are rare metals, and therefore, in a wide temperature window range, from carbon monoxide, hydrocarbons and nitrogen oxides from a low temperature range. Excellent three-way purification performance of the ingredients.

また、例えば、触媒構造体13は、窒素気流中、950℃で14時間の焼成を経て製造されたものであるが、一酸化炭素、炭化水素類及び窒素酸化物の3成分の三元浄化性能にすぐれており、かくして、触媒反応の温度が950℃のような高温環境においても、γ−アルミナのα化が殆ど進まず、三元成分の有効な浄化性能を有することが示される。
In addition, for example, the catalyst structure 13 is manufactured through calcination at 950 ° C. for 14 hours in a nitrogen stream, but the three-way purification performance of three components of carbon monoxide, hydrocarbons and nitrogen oxides Thus, even in a high temperature environment where the temperature of the catalytic reaction is 950 ° C., it is shown that the gelatinization of γ-alumina hardly progresses and that it has an effective purification performance of ternary components.

Claims (4)

空気と燃料の量論比近傍における燃料の燃焼によって生成する一酸化炭素、炭化水素類及び窒素酸化物を含有する燃焼排ガスを接触させて、上記3成分を接触的に浄化するための排ガス浄化三元触媒であって、触媒成分の全重量に基づいて、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である。)、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜10重量%及び
(C)γ−アルミナ
を含む排ガス浄化三元触媒。
An exhaust gas purification method for catalytically purifying the above three components by bringing a combustion exhaust gas containing carbon monoxide, hydrocarbons and nitrogen oxides generated by the combustion of fuel in the vicinity of the stoichiometric ratio of air and fuel into contact with each other Ex-catalyst, based on the total weight of the catalyst components,
(A) 5 to 20% by weight of copper and iron (however, the iron content ratio is in the range of 0.1 to 1 of Fe / Cu atomic ratio),
An exhaust gas purification three-way catalyst comprising (B) 0.1 to 10% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina.
触媒成分の全重量に基づいて、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である。)、
(B)ジルコニウム、スズ、ケイ素、イットリウム、ランタン、プラセオジム及びガドリニウムから選ばれる少なくとも1種の元素0.1〜2重量%及び
(C)γ−アルミナ
を含む請求項1に記載の排ガス浄化三元触媒。
Based on the total weight of the catalyst components
(A) 5 to 20% by weight of copper and iron (however, the iron content ratio is in the range of 0.1 to 1 of Fe / Cu atomic ratio),
The exhaust gas purification ternary material according to claim 1 , comprising (B) 0.1 to 2% by weight of at least one element selected from zirconium, tin, silicon, yttrium, lanthanum, praseodymium and gadolinium and (C) γ-alumina. catalyst.
触媒成分の全重量に基づいて、
(A)銅5〜20重量%と鉄(但し、鉄の含有率はFe/Cu原子比が0.1〜1の範囲内である。)、
(B)プラセオジム0.1〜2重量%及び
(C)γ−アルミナ
を含む請求項1に記載の排ガス浄化三元触媒。
Based on the total weight of the catalyst components
(A) 5 to 20% by weight of copper and iron (however, the iron content ratio is in the range of 0.1 to 1 of Fe / Cu atomic ratio),
An exhaust gas purification three-way catalyst according to claim 1 , comprising (B) 0.1 to 2% by weight of praseodymium and (C) γ-alumina.
銅及び鉄が前記B成分と共にγ−アルミナにドープされている請求項1から3のいずれかに記載の排ガス浄化三元触媒。
The exhaust gas purification three-way catalyst according to any one of claims 1 to 3 , wherein copper and iron are doped to γ-alumina together with the component B.
JP2015032739A 2015-02-23 2015-02-23 Exhaust gas purification three-way catalyst Expired - Fee Related JP6549858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015032739A JP6549858B2 (en) 2015-02-23 2015-02-23 Exhaust gas purification three-way catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032739A JP6549858B2 (en) 2015-02-23 2015-02-23 Exhaust gas purification three-way catalyst

Publications (2)

Publication Number Publication Date
JP2016155049A JP2016155049A (en) 2016-09-01
JP6549858B2 true JP6549858B2 (en) 2019-07-24

Family

ID=56824421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032739A Expired - Fee Related JP6549858B2 (en) 2015-02-23 2015-02-23 Exhaust gas purification three-way catalyst

Country Status (1)

Country Link
JP (1) JP6549858B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210033A (en) * 1987-12-30 1989-08-23 Allied Signal Inc Base metal catalyst for automatic exhaust gas treatment
JPH0663404A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Catalyst for exhaust gas cleaning
JPH0780310A (en) * 1993-06-29 1995-03-28 Idemitsu Kosan Co Ltd Production of perovskite or perovskite-like structure oxide carrying catalyst
JPH0859236A (en) * 1994-08-19 1996-03-05 Toyota Motor Corp Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3408905B2 (en) * 1995-12-06 2003-05-19 株式会社アイシーティー Diesel engine exhaust gas purification catalyst and diesel engine exhaust gas purification method

Also Published As

Publication number Publication date
JP2016155049A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP4956130B2 (en) Exhaust gas purification catalyst
JP5422087B2 (en) Low noble metal supported three way catalyst
JP3185448B2 (en) Exhaust gas purification catalyst
JP5816648B2 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
JP2018528847A (en) Nitrous oxide removal catalyst for exhaust system
JP6087362B2 (en) Platinum-based oxidation catalyst and exhaust gas purification method using the same
JP5938515B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP5754691B2 (en) Exhaust gas purification three-way catalyst
JP2006326478A (en) Oxygen absorbing and releasing material for cleaning emission gas, and catalyst for cleaning emission gas
JP6538053B2 (en) Oxygen storage material
JP2023162315A (en) Improved twc catalyst-containing high dopant support
JPH05237390A (en) Catalyst for purification of exhaust gas
JP6339013B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst structure
JP5375595B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst using the same
JP2017189761A (en) Method for producing catalyst for exhaust purification
JP4852595B2 (en) Exhaust gas purification catalyst
JP6216234B2 (en) Exhaust gas purification catalyst
JP5396118B2 (en) Internal combustion engine exhaust gas purification catalyst material and internal combustion engine exhaust gas purification catalyst
JP6549858B2 (en) Exhaust gas purification three-way catalyst
JP7262975B2 (en) Ceria-Zirconia Composite Oxygen Absorption-Desorption Material and Exhaust Gas Purification Catalyst
JP2007289913A (en) Exhaust gas purifying catalyst and process for producing it
JP2006341152A (en) Catalyst carrier manufacturing method and manufacturing method of exhaust gas purifying catalyst
JPS61209045A (en) Catalyst for purifying exhaust gas
JPH07136512A (en) Catalyst for purifying exhaust gas from engine and production thereof
JPH06296869A (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190628

R150 Certificate of patent or registration of utility model

Ref document number: 6549858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees