JPH0663404A - Catalyst for exhaust gas cleaning - Google Patents

Catalyst for exhaust gas cleaning

Info

Publication number
JPH0663404A
JPH0663404A JP4223957A JP22395792A JPH0663404A JP H0663404 A JPH0663404 A JP H0663404A JP 4223957 A JP4223957 A JP 4223957A JP 22395792 A JP22395792 A JP 22395792A JP H0663404 A JPH0663404 A JP H0663404A
Authority
JP
Japan
Prior art keywords
catalyst
silicon
exhaust gas
alumina
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4223957A
Other languages
Japanese (ja)
Inventor
Motohisa Kamijo
元久 上條
Hiroyuki Kanesaka
浩行 金坂
Goji Masuda
剛司 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4223957A priority Critical patent/JPH0663404A/en
Publication of JPH0663404A publication Critical patent/JPH0663404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide an exhaust gas cleaning catalyst having a high nitrogen oxide cleaning efficiency especially in lean burning atmosphere, wherein the catalyst is for cleaning an exhaust gas discharged out of an internal combustion engine of automobiles, etc. CONSTITUTION:A catalyst for cleaning an exhaust gas is a catalyst provided with a coating layer consisting of an inorganic material of mainly activated alumina which carries silicon and at least one kind of metal selected from the group consisting of active metals except silicon, preferably cobalt, copper, nickel, zinc, and iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車などの内燃機
関から排出される排気ガスの浄化用触媒に関する。特
に、リーンバーン雰囲気での窒素酸化物(NOx )浄化
率の優れた排気ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile. In particular, the present invention relates to an exhaust gas purification catalyst having an excellent purification rate of nitrogen oxides (NO x ) in a lean burn atmosphere.

【0002】[0002]

【従来の技術】自動車などの内燃機関から排出される排
気ガスを浄化する触媒は多数提案されているが、近年、
排気ガスのリーン雰囲気中でのNOx の浄化率が注目さ
れ、その改善が試みられており、学会等においてリーン
雰囲気中のNOx 除去触媒に、遷移金属の中から選ばれ
た活性金属を担持した活性アルミナが有効であると報告
されている(例えば、浜田ら第68回触媒討論会(A)講
演予稿集(1991)18)。
2. Description of the Related Art Many catalysts for purifying exhaust gas emitted from internal combustion engines of automobiles have been proposed.
The purification rate of NO x in a lean atmosphere of exhaust gas has attracted attention and attempts have been made to improve it. At academic societies, etc., an NO x removal catalyst in a lean atmosphere carries an active metal selected from transition metals. It has been reported that the activated alumina prepared is effective (for example, Hamada et al., 68th Proceedings of Catalytic Discussion Meeting (A) Proceedings (1991) 18).

【0003】[0003]

【発明が解決しようとする課題】上記報告中の排気ガス
浄化試験は反応系中に水分の入らない条件下で行なわれ
たものであり、水分が存在する実際の排ガス中で、上記
活性金属を担持した活性アルミナを排気ガス浄化用触媒
として用いると、排気ガス中に含まれる水の影響によ
り、NOx 転化活性が低下する。従って、この発明は排
気ガス中に含まれる水によりNOx 転化活性の低下しな
い排気ガス浄化用触媒を提供することにある。
The exhaust gas purification test in the above report is conducted under the condition that water does not enter the reaction system. When the supported activated alumina is used as an exhaust gas purifying catalyst, the NO x conversion activity decreases due to the influence of water contained in the exhaust gas. Therefore, the present invention is to provide an exhaust gas purifying catalyst whose NO x conversion activity does not decrease due to water contained in the exhaust gas.

【0004】[0004]

【課題を解決するための手段】上記目的を達成したこの
発明の排気ガス浄化用触媒は、ケイ素と、ケイ素以外の
活性金属を担持した活性アルミナを主成分とする無機物
から成るコート層を備えたことを特徴とする。上記活性
金属としては、コバルト(Co),銅(Cu),ニッケ
ル(Ni),亜鉛(Zn)および鉄(Fe)からなる群
から選ばれた1種以上の金属を用いるのが好ましい。ま
た、コート層のケイ素の配合量は、 0.5〜20重量%、好
ましくは 0.5〜15重量%とするのが好ましい。ケイ素の
量が20重量%を超えると、表面にSiO2 が析出し、性
能に悪影響を及ぼし、一方 0.5重量%未満ではその効果
が認められない。
The exhaust gas purifying catalyst of the present invention, which has achieved the above object, is provided with a coating layer composed of silicon and an inorganic material whose main component is activated alumina carrying an active metal other than silicon. It is characterized by As the active metal, it is preferable to use at least one metal selected from the group consisting of cobalt (Co), copper (Cu), nickel (Ni), zinc (Zn) and iron (Fe). Further, the blending amount of silicon in the coat layer is 0.5 to 20% by weight, preferably 0.5 to 15% by weight. When the amount of silicon exceeds 20% by weight, SiO 2 is deposited on the surface, which adversely affects the performance, while when it is less than 0.5% by weight, the effect is not recognized.

【0005】[0005]

【作用】次に作用を説明する。本発明の排気ガス浄化用
触媒においては、活性成分である上記金属の他に粉末段
階で固定されたケイ素が活性アルミナ上に存在する。従
来のケイ素が活性アルミナ上に存在しない触媒は、水の
影響によりNOx 選択還元反応が進まなくなる特性を持
つ。しかし、ケイ素の存在により、担持された上記活性
金属の配位環境が変わり、水を含むリーン雰囲気排気ガ
ス中のNOx 除去に有効な活性成分を得ることができ
る。
[Operation] Next, the operation will be described. In the exhaust gas purifying catalyst of the present invention, silicon fixed in the powder stage is present on the activated alumina in addition to the above-mentioned metal which is the active component. A conventional catalyst in which silicon is not present on activated alumina has a characteristic that the NO x selective reduction reaction does not proceed due to the influence of water. However, due to the presence of silicon, the coordination environment of the supported active metal is changed, and an active component effective for removing NO x in lean exhaust gas containing water can be obtained.

【0006】[0006]

【実施例】以下、この発明を実施例、比較例および試験
例により説明する。 実施例1 γ−アルミナを主たる成分とする活性アルミナ粉末1000
gに対してケイ酸テトラエチルアンモニウム水溶液をケ
イ素1重量%となるように加えよく攪拌し、オーブン中
150℃で3時間乾燥し、 400℃で2時間空気気流中で焼
成を行ないケイ素担持アルミナ粉末を作った。次いでこ
のケイ素担持アルミナ粉末のアルミナ1000gに対して硝
酸コバルト溶液を用いてコバルト3重量%になるように
加え同様に乾燥し、 750℃で2時間空気気流中で焼成を
行った。このコバルト−ケイ素担持アルミナ 900g、シ
リカゾル(固形分20%)1170g、水1170gをボールミル
ポットに投入し、8時間粉砕してスラリーを得た。得ら
れたスラリーを塗布量 340g/個になるようにモノリス
担体基材( 1.3L, 400セル)に塗布し乾燥した後、 4
00℃で2時間、空気雰囲気中で焼成し触媒No.1を調製し
た。 実施例2 担持金属としてコバルトの代わりに銅を用いた以外は実
施例1の触媒No.1と同様にして、触媒No.2を調製した。
γ−アルミナを主たる成分とする活性アルミナ粉末1000
gに対してケイ酸テトラエチルアンモニウム水溶液をケ
イ素1重量%となるように加えよく攪拌した後、オーブ
ン中 150℃で3時間乾燥し、 400℃で2時間空気気流中
で焼成を行ないケイ素担持アルミナ粉末を作った。次い
でこのシリカ担持アルミナ粉末のアルミナ1000gに対し
て硝酸銅溶液を用いて銅3重量%になるように加え同様
に乾燥し、 750℃で2時間空気気流中で焼成を行った。
この銅−ケイ素担持アルミナ 900g、シリカゾル(固形
分20%)1170g、水1170gをボールミルポットに投入
し、8時間粉砕してスラリーを得た。得られたスラリー
を塗布量 340g/個になるようにモノリス担体基材(
1.3L, 400セル)に塗布し乾燥した後、 400℃で2時
間、空気雰囲気中で焼成し触媒No.2を調製した。 実施例3 アルミナに担持する金属をコバルトとニッケルにした以
外は実施例1の触媒No.1と同様にして、触媒No.3を調製
した。γ−アルミナを主たる成分とする活性アルミナ粉
末1000gに対してケイ酸テトラエチルアンモニウム水溶
液をケイ素1重量%となるように加えよく攪拌した後、
オーブン中 150℃で3時間乾燥し、 400℃で2時間空気
気流中で焼成を行ないケイ素担持アルミナ粉末を作っ
た。次いでこのケイ素担持アルミナ粉末のアルミナ1000
gに対して硝酸コバルト溶液、硝酸ニッケル溶液を用い
て各コバルト3重量%、ニッケル3重量%になるように
同時に加え同様に乾燥し、 750℃で2時間空気気流中で
焼成を行った。このコバルト−ニッケル−ケイ素担持ア
ルミナ 900g、シリカゾル(固形分20%)1170g、水11
70gをボールミルポットに投入し、8時間粉砕してスラ
リーを得た。得られたスラリーを塗布量 340g/個にな
るようにモノリス担体基材( 1.3L, 400セル)に塗布
し乾燥した後、 400℃で2時間、空気雰囲気中で焼成し
触媒No.3調製した。 実施例4 アルミナに担持する金属をニッケルにした以外は実施例
1の触媒No.1と同様にして、触媒No.4を調製した。 実施例5 アルミナに担持する金属を亜鉛にした以外は実施例1の
触媒No.1と同様にして、触媒No.5を調製した。 実施例6 アルミナに担持するケイ素の量を 0.5重量%にした以外
は実施例1の触媒No.1と同様にして、触媒No.6を調製し
た。 実施例7 アルミナに担持するケイ素の量を5重量%にした以外は
実施例1の触媒No.1と同様にして、触媒No.7を調製し
た。 実施例8 アルミナに担持するケイ素の量を15重量%にした以外は
実施例1の触媒No.1と同様にして、触媒No.8を調製し
た。 実施例9 実施例1の触媒No.1のケイ酸テトラエチルアンモニウム
水溶液の代りにコロイダルシリカを使用した以外は同様
にして、触媒No.9を調製した。γ−アルミナを主たる成
分とする活性アルミナ粉末1000gに対して蒸留水に分散
させたコロイダルシリカをケイ素1重量%となるように
加えよく攪拌した後、オーブン中 150℃で3時間乾燥
し、 400℃で2時間空気気流中で焼成を行ないケイ素担
持アルミナ粉末を作った。次いでこのケイ素担持アルミ
ナ粉末のアルミナ1000gに対して硝酸コバルト溶液を用
いてコバルト3重量%になるように加え同様に乾燥し、
750℃で2時間空気気流中で焼成を行った。このコバル
ト−ケイ素担持アルミナ 900g、シリカゾル(固形分20
%)1170g、水1170gをボールミルポットに投入し、8
時間粉砕してスラリーを得た。得られたスラリーを塗布
量 340g/個になるようにモノリス担体基材( 1.3L,
400セル)に塗布し乾燥後、400℃で2時間、空気雰囲
気中で焼成し触媒No.9を調製した。 実施例10 アルミナに担持する金属をFeにした以外は実施例1の
触媒No.1と同様にして触媒No.10 を調製した。 実施例11 アルミナに担持するケイ素の量を20重量%にした以外は
実施例1の触媒No.1と同様にして触媒No.11 を調製し
た。このように、本発明で用いるケイ酸の出発物質は、
アルミナに担持できるものであればよい。
EXAMPLES The present invention will be described below with reference to Examples, Comparative Examples and Test Examples. Example 1 Activated alumina powder 1000 containing γ-alumina as a main component
Tetraethylammonium silicate aqueous solution was added to g so as to be 1% by weight of silicon and well stirred, and then placed in an oven
It was dried at 150 ° C. for 3 hours and calcined at 400 ° C. for 2 hours in an air stream to prepare a silicon-supported alumina powder. Next, a cobalt nitrate solution was added to 1000 g of alumina of the silicon-supported alumina powder so that the cobalt content was 3% by weight, and the mixture was similarly dried and calcined at 750 ° C. for 2 hours in an air stream. 900 g of this cobalt-silicon-supported alumina, 1170 g of silica sol (solid content 20%), and 1170 g of water were put into a ball mill pot and pulverized for 8 hours to obtain a slurry. The resulting slurry was applied to a monolith carrier base material (1.3 L, 400 cells) so that the applied amount was 340 g / piece, and dried.
Catalyst No. 1 was prepared by firing at 00 ° C. for 2 hours in an air atmosphere. Example 2 Catalyst No. 2 was prepared in the same manner as Catalyst No. 1 of Example 1 except that copper was used instead of cobalt as the supporting metal.
Activated alumina powder 1000 containing γ-alumina as the main component
Aqueous tetraethylammonium silicate solution was added to silicon so as to be 1% by weight of silicon, stirred well, dried in an oven at 150 ° C for 3 hours, and calcined at 400 ° C for 2 hours in an air stream. Silicon-supported alumina powder made. Then, a solution of copper nitrate was added to 1000 g of alumina of the silica-supported alumina powder so that the copper content was 3% by weight, and the mixture was similarly dried and calcined in an air stream at 750 ° C. for 2 hours.
900 g of this copper-silicon-supported alumina, 1170 g of silica sol (solid content 20%), and 1170 g of water were put into a ball mill pot and pulverized for 8 hours to obtain a slurry. Monolith carrier substrate (
1.3 L, 400 cells) and dried, and then calcined at 400 ° C. for 2 hours in an air atmosphere to prepare catalyst No. 2. Example 3 Catalyst No. 3 was prepared in the same manner as Catalyst No. 1 of Example 1 except that the metals supported on alumina were cobalt and nickel. To 1000 g of activated alumina powder containing γ-alumina as a main component, tetraethylammonium silicate aqueous solution was added so as to be 1% by weight of silicon and well stirred,
It was dried in an oven at 150 ° C. for 3 hours and calcined in an air stream at 400 ° C. for 2 hours to prepare a silicon-supported alumina powder. Then, this silicon-supported alumina powder, Alumina 1000
A cobalt nitrate solution and a nickel nitrate solution were simultaneously added to g so that each cobalt content was 3% by weight and nickel content was 3% by weight, and the mixture was similarly dried and calcined at 750 ° C. for 2 hours in an air stream. This cobalt-nickel-silicon supported alumina 900g, silica sol (solid content 20%) 1170g, water 11
70 g was put into a ball mill pot and pulverized for 8 hours to obtain a slurry. The resulting slurry was applied onto a monolith carrier substrate (1.3 L, 400 cells) so that the coating amount was 340 g / piece, dried, and then calcined at 400 ° C. for 2 hours in an air atmosphere to prepare catalyst No. 3. . Example 4 Catalyst No. 4 was prepared in the same manner as Catalyst No. 1 of Example 1 except that the metal supported on alumina was nickel. Example 5 Catalyst No. 5 was prepared in the same manner as Catalyst No. 1 of Example 1 except that zinc was used as the metal supported on alumina. Example 6 Catalyst No. 6 was prepared in the same manner as Catalyst No. 1 of Example 1 except that the amount of silicon supported on alumina was changed to 0.5% by weight. Example 7 Catalyst No. 7 was prepared in the same manner as Catalyst No. 1 of Example 1 except that the amount of silicon supported on alumina was changed to 5% by weight. Example 8 Catalyst No. 8 was prepared in the same manner as Catalyst No. 1 of Example 1 except that the amount of silicon supported on alumina was changed to 15% by weight. Example 9 A catalyst No. 9 was prepared in the same manner as in Example 1 except that colloidal silica was used instead of the tetraethylammonium silicate aqueous solution of the catalyst No. 1. To 1000 g of activated alumina powder containing γ-alumina as a main component, colloidal silica dispersed in distilled water was added so as to be 1% by weight of silicon, and the mixture was stirred well and dried in an oven at 150 ° C for 3 hours to 400 ° C. The powder was calcined in an air stream for 2 hours to prepare a silicon-supported alumina powder. Next, to 1000 g of alumina of this silicon-supported alumina powder, a cobalt nitrate solution was used to add 3% by weight of cobalt, and the mixture was dried in the same manner.
Firing was performed at 750 ° C. for 2 hours in an air stream. 900 g of this cobalt-silicon-supported alumina, silica sol (solid content 20
%) 1170 g and water 1170 g are put into a ball mill pot, and 8
The slurry was obtained by pulverizing for a time. The monolith carrier substrate (1.3 L,
(400 cells), dried, and calcined at 400 ° C. for 2 hours in an air atmosphere to prepare catalyst No. 9. Example 10 A catalyst No. 10 was prepared in the same manner as the catalyst No. 1 of Example 1 except that Fe was used as the metal supported on alumina. Example 11 A catalyst No. 11 was prepared in the same manner as the catalyst No. 1 of Example 1 except that the amount of silicon supported on alumina was set to 20% by weight. Thus, the starting material for silicic acid used in the present invention is
Any material can be used as long as it can be supported on alumina.

【0007】比較例1〜5 比較例として触媒No.1,2,3,4,5のケイ素を
担持しない以外は同様にして触媒A,B,C,D,Eを
調製した。 比較例6,7 比較例として触媒No.1のケイ素をそれぞれ 0.3重量%,
23重量%を担持した以外は同様にして触媒FおよびGを
調製した。
Comparative Examples 1 to 5 Catalyst No. Catalysts A, B, C, D and E were prepared in the same manner except that 1,2,3,4,5 was not loaded with silicon. Comparative Examples 6 and 7 As comparative examples, 0.3% by weight of catalyst No. 1 silicon,
Catalysts F and G were prepared in the same manner except that 23% by weight was loaded.

【0008】試験例 実施例1〜11および比較例1〜7の触媒について下記条
件で、性能評価試験を行い、その結果を表1に示す。
Test Example A performance evaluation test was conducted on the catalysts of Examples 1 to 11 and Comparative Examples 1 to 7 under the following conditions, and the results are shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】性能評価車両 車両 サニー 排気量 1600cc(SVC付き) HC:3000ppm,NO:500ppm,O2
6.0% H2 O:10%, CO2 :10%, CO:2
000ppm
Performance Evaluation Vehicle Vehicle Sunny Displacement 1600cc (with SVC) HC: 3000ppm, NO: 500ppm, O 2 :
6.0% H 2 O: 10% , CO 2: 10%, CO: 2
000ppm

【0011】[0011]

【発明の効果】以上説明してきたように、この発明によ
れば、その構成を担体の表面にケイ素と、ケイ素以外の
活性金属、好ましくはCo,Cu,,Ni,Znおよび
Feから成る群から選ばれた少なくとも1種類以上の金
属とを担持した活性アルミナを主成分とする無機物から
成るコート層を備えたことにより、水を含むリーン雰囲
気排気ガス中のNOx を除去する触媒活性が改善された
という効果を有する。
As described above, according to the present invention, the structure is composed of silicon on the surface of the carrier and an active metal other than silicon, preferably Co, Cu, Ni, Zn and Fe. By providing the coating layer made of an inorganic material mainly composed of activated alumina carrying at least one selected metal, the catalytic activity for removing NO x in the exhaust gas containing lean atmosphere is improved. Has the effect of

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/72 A 8017−4G ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B01J 23/72 A 8017-4G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 担体の表面に、ケイ素と、ケイ素以外の
活性金属を担持した活性アルミナを主成分とする無機物
から成るコート層を備えたことを特徴とする排気ガス浄
化用触媒。
1. An exhaust gas purifying catalyst comprising a carrier and a coating layer formed on the surface of the carrier, the coating layer being composed of silicon and an inorganic substance containing active metal other than silicon and having activated alumina as a main component.
【請求項2】 上記無機物中の活性アルミナに担持した
活性金属がコバルト、銅、ニッケル、亜鉛および鉄から
成る群から選ばれた1種類以上の金属であることを特徴
とする請求項1記載の排気ガス浄化用触媒。
2. The active metal supported on the activated alumina in the inorganic material is one or more kinds of metals selected from the group consisting of cobalt, copper, nickel, zinc and iron. Exhaust gas purification catalyst.
【請求項3】 ケイ素を 0.5〜20重量%含有したことを
特徴とする請求項1または2記載の排気ガス浄化用触
媒。
3. The exhaust gas purifying catalyst according to claim 1, which contains 0.5 to 20% by weight of silicon.
JP4223957A 1992-08-24 1992-08-24 Catalyst for exhaust gas cleaning Pending JPH0663404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223957A JPH0663404A (en) 1992-08-24 1992-08-24 Catalyst for exhaust gas cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223957A JPH0663404A (en) 1992-08-24 1992-08-24 Catalyst for exhaust gas cleaning

Publications (1)

Publication Number Publication Date
JPH0663404A true JPH0663404A (en) 1994-03-08

Family

ID=16806350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223957A Pending JPH0663404A (en) 1992-08-24 1992-08-24 Catalyst for exhaust gas cleaning

Country Status (1)

Country Link
JP (1) JPH0663404A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155049A (en) * 2015-02-23 2016-09-01 本田技研工業株式会社 Exhaust gas purification three-way catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155049A (en) * 2015-02-23 2016-09-01 本田技研工業株式会社 Exhaust gas purification three-way catalyst

Similar Documents

Publication Publication Date Title
JP3185448B2 (en) Exhaust gas purification catalyst
EP0142858B1 (en) Method of producing monolithic catalyst for purification of exhaust gas
JPH05184876A (en) Catalyst for purifying exhaust gas
US6245307B1 (en) Catalyst for purifying exhaust gas from lean burn engine and method for purification
JP4778682B2 (en) Catalyst composition for suppressing hydrogen sulfide
JPH05237390A (en) Catalyst for purification of exhaust gas
JPS60110335A (en) Catalyst for purifying exhaust gas
JPH0884911A (en) Catalyst for decomposing nitrogen oxide and method for purifying diesel engine exhaust using the same
JPH08131830A (en) Catalyst for purification of exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JPH06114264A (en) Production of catalyst for purification of exhaust gas
JPH09220470A (en) Catalyst for purification of exhaust gas
WO1992020445A1 (en) Re-catalyst and carrier
JPH0663404A (en) Catalyst for exhaust gas cleaning
JPH0554381B2 (en)
JPH06190282A (en) Catalyst for purification of exhaust gas
JP3341432B2 (en) Exhaust gas purification catalyst
JP2993297B2 (en) Exhaust gas purification catalyst
JP2948232B2 (en) Exhaust gas purification catalyst
JPH05184935A (en) Catalyst for purifying exhaust gas
JPH0361492B2 (en)
JPH05285391A (en) Catalyst for purification of exhaust gas
JPH06190246A (en) Exhaust gas purifying device for automobile
JPH08229350A (en) Catalyst for decomposing nitrogen oxide and purifying method of diesel engine exhaust gas using the same
JPH06170235A (en) Catalyst for purification of exhaust gas