JPH06170235A - Catalyst for purification of exhaust gas - Google Patents
Catalyst for purification of exhaust gasInfo
- Publication number
- JPH06170235A JPH06170235A JP4321924A JP32192492A JPH06170235A JP H06170235 A JPH06170235 A JP H06170235A JP 4321924 A JP4321924 A JP 4321924A JP 32192492 A JP32192492 A JP 32192492A JP H06170235 A JPH06170235 A JP H06170235A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- coating layer
- coat layer
- activated alumina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、自動車などの内燃機
関から排出される有害成分である炭化水素(HC)、一
酸化炭素(CO)および窒素酸化物(NOx )を浄化す
る排気ガス浄化用触媒に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to exhaust gas purification for purifying hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NO x ) which are harmful components emitted from internal combustion engines such as automobiles. For catalysts.
【0002】[0002]
【従来の技術】従来、排気ガス浄化用触媒としては多数
提案されており、特開平1-127044号公報にはゼオライト
を用いる排気ガス浄化用触媒が開示されている。この排
気ガス浄化用触媒では、触媒の構成としてハニカム担体
にアルミナに貴金属を担持した第1触媒層とその上にゼ
オライトに銅(Cu)をイオン交換した第2触媒層を設
けることにより排気中の酸素濃度が理論値より大きくな
った状態(リーン・バーン雰囲気)での排気中のNOx
を還元除去しリーン・バーン雰囲気でも効率よくN
Ox ,CO,HCを浄化することにより、触媒性能を向
上させている。2. Description of the Related Art Conventionally, a number of catalysts for purifying exhaust gas have been proposed, and Japanese Patent Laid-Open No. 1-127044 discloses a catalyst for purifying exhaust gas using zeolite. In this exhaust gas purifying catalyst, as a catalyst structure, a honeycomb carrier is provided with a first catalyst layer in which a noble metal is supported on alumina and a second catalyst layer in which copper (Cu) is ion-exchanged with zeolite is provided on the honeycomb catalyst, so that NO x in the exhaust gas when the oxygen concentration is higher than the theoretical value (lean-burn atmosphere)
Is reduced and removed efficiently even in a lean-burn atmosphere.
O x, CO, by purifying HC, thereby improving the catalyst performance.
【0003】[0003]
【発明が解決しようとする課題】しかし、このような触
媒層を貴金属を含むアルミナを用いて酸化反応に有利な
第1触媒層とCuをイオン交換したゼオライトを用いて
リーン・バーン雰囲気でのNOx 還元除去に有利な第2
触媒層とした触媒では、空燃比(A/F)が通常走行時
のストイキの条件での触媒活性が充分ではなく、空燃比
がストイキからリーン・バーン状態まで効率よくN
Ox ,CO,HCを浄化することができない。また、耐
久劣化後の性能劣化も大きく充分にNOx ,CO,HC
を浄化することができない。従って本発明の目的は、上
記従来の排気ガス浄化用触媒の問題点を解決しストイキ
からリーン・バーン状態まで効率よくNOx ,COおよ
びHCを浄化し得る排気ガス浄化用触媒を提供すること
にある。However, in such a catalyst layer, the first catalyst layer, which is advantageous for the oxidation reaction using alumina containing a noble metal, and the zeolite ion-exchanged with Cu are used, and NO in a lean burn atmosphere is used. the first in favor of x reduction removal 2
With the catalyst used as the catalyst layer, the air-fuel ratio (A / F) does not have sufficient catalyst activity under the conditions of stoichiometry during normal running, and the air-fuel ratio is efficiently changed from stoichiometric to lean-burn state with N
Ox , CO, HC cannot be purified. In addition, the performance deterioration after durability deterioration is large and sufficient NO x , CO, HC
Can not be purified. Therefore, an object of the present invention is to solve the problems of the conventional exhaust gas purifying catalyst and to provide an exhaust gas purifying catalyst capable of efficiently purifying NO x , CO and HC from a stoichiometric state to a lean burn state. is there.
【0004】[0004]
【課題を解決するための手段】上記目的を達成した本発
明の触媒は、ハニカム担体に、白金とパラジウムのうち
1種以上を含む活性アルミナを主成分とする無機物から
なる第1コート層とこのコート層上に設けたロジウムを
含む活性アルミナを主成分とする無機物からなる第2コ
ート層と、さらにこの上に設けた銅(Cu)またはコバ
ルト(Co)をイオン交換したゼオライト粉末と酸化セ
リウムとを主成分とする無機物から成る第3コート層を
備えたことを特徴とする。Means for Solving the Problems The catalyst of the present invention, which has achieved the above object, comprises a honeycomb carrier and a first coat layer made of an inorganic material containing activated alumina containing at least one of platinum and palladium as a main component. A second coating layer formed on the coating layer and made of an inorganic material containing activated alumina containing rhodium as a main component, and further provided thereon a zeolite powder ion-exchanged with copper (Cu) or cobalt (Co) and cerium oxide. And a third coat layer made of an inorganic material containing as a main component.
【0005】[0005]
【作用】次に作用を説明する。本発明の排気ガス浄化用
触媒においては、活性成分である貴金属を含む第1コー
ト層、第2コート層の表面にCuまたはCoをイオン交
換したゼオライト粉末と酸化セリウムを主成分とした無
機物からなる第3コート層を備えている。このCuまた
はCoをイオン交換したゼオライト粉末と酸化セリウム
を主成分とした無機物は酸素が多量に含まれるエンジン
排気ガスのリーン領域においてNOx の転化性能を有し
ている。また、貴金属を含む触媒層は第1コート層、第
2コート層をそれぞれPtおよび/またはPdを担持し
たアルミナを主成分とした活性アルミナとRhを担持し
たアルミナを主成分とした活性アルミナを用いており調
製段階および触媒の使用時にPtおよび/またはPdと
Rhの合金化等による活性の低下は見られず、ストイキ
領域で優れた触媒の転化性能を持っているためストイキ
領域から、リーン領域まで幅広い範囲で優れた排気ガス
浄化性能を有している。[Operation] Next, the operation will be described. In the exhaust gas purifying catalyst of the present invention, the surface of the first coating layer and the second coating layer containing a noble metal as an active component is composed of zeolite powder ion-exchanged with Cu or Co and an inorganic material containing cerium oxide as a main component. It has a third coat layer. The Cu or Co ion-exchanged zeolite powder and the inorganic substance containing cerium oxide as the main component have NO x conversion performance in the lean region of engine exhaust gas containing a large amount of oxygen. For the catalyst layer containing a noble metal, the first coat layer and the second coat layer are made of activated alumina mainly composed of Pt and / or Pd-supported alumina and activated alumina mainly composed of Rh-supported alumina. In the preparation stage and during use of the catalyst, there is no decrease in activity due to alloying of Pt and / or Pd with Rh, etc., and it has excellent catalyst conversion performance in the stoichiometric region, so from the stoichiometric region to the lean region It has excellent exhaust gas purification performance in a wide range.
【0006】また、第3コート層にはCuまたはCoを
イオン交換したゼオライト粉末と酸化セリウムとを主成
分とした無機物を用いるが、酸化セリウムには、酸素貯
蔵能力や水性ガスシフト反応を促進させる能力があり、
CuまたはCoをイオン交換したゼオライトの助触媒成
分として働く。その結果としてCuまたはCoをイオン
交換したゼオライトのNOx 浄化がより低温から働く作
用およびゼオライトの耐久劣化を抑制する作用が生じ、
耐久劣化後にも幅広い温度範囲で優れたNOx浄化を有
している。[0006] In addition, the third coat layer uses an inorganic material composed mainly of cerium oxide and zeolite powder ion-exchanged with Cu or Co. The cerium oxide has an oxygen storage capacity and an ability to promote a water gas shift reaction. There is
It functions as a co-catalyst component of zeolite that ion-exchanges Cu or Co. As a result, the action of NO x purification of the zeolite ion-exchanged with Cu or Co works from a lower temperature and the action of suppressing the durability deterioration of the zeolite occurs.
It has excellent NO x purification over a wide temperature range even after durability deterioration.
【0007】[0007]
【実施例】以下この発明を実施例、比較例および試験例
により説明する。 実施例1 γ−アルミナを主たる成分とする活性アルミナ粉末1000
gに対してジニトロジアンミン白金溶液を用いて白金
1.5重量%になるように加えよく攪拌した後、オーブン
中 150℃で3時間乾燥し、 400℃で2時間空気気流中で
焼成を行った。この白金担持活性アルミナ1400g,酸化
セリウムを 936g,γ−アルミナを主たる成分とする活
性アルミナ 320g,硝酸酸性ベーマイトゾル(ベーマイ
トアルミナ10重量%けん濁液に10重量%HNO3 を添加
することによって得られるゾル)2221gをボールミルポ
ットに投入し、8時間粉砕してスラリーを得た。得られ
たスラリーをモノリス担体基材(1.3L,400セル)に塗布
し乾燥した後、 400℃で2時間、空気雰囲気中で焼成し
第1コート層を形成した。この時の塗布量は、焼成後に
160g/個になるように設定した。EXAMPLES The present invention will be described below with reference to Examples, Comparative Examples and Test Examples. Example 1 Activated alumina powder 1000 containing γ-alumina as a main component
Platinum with dinitrodiammine platinum solution for g
The mixture was added to 1.5 wt% and stirred well, dried in an oven at 150 ° C for 3 hours, and calcined in an air stream at 400 ° C for 2 hours. 1400 g of this platinum-supported activated alumina, 936 g of cerium oxide, 320 g of activated alumina containing γ-alumina as the main component, nitric acid boehmite sol (obtained by adding 10 wt% HNO 3 to 10 wt% suspension of boehmite alumina) 2221 g of sol) was put into a ball mill pot and pulverized for 8 hours to obtain a slurry. The obtained slurry was applied to a monolith carrier substrate (1.3 L, 400 cells), dried, and then baked at 400 ° C. for 2 hours in an air atmosphere to form a first coat layer. The coating amount at this time is after firing
It was set to be 160 g / piece.
【0008】次に、γ−アルミナを主たる成分とする活
性アルミナ粉末1000gに対して硝酸ロジウム溶液をRh
1重量%となるように加えよくかくはんした後、同様に
して乾燥、焼成を行ないロジウム担持アルミナ粉末を作
った。このロジウム担持アルミナ粉末 500g,硝酸酸性
ベーマイトゾル 637g,γ−アルミナを主成分とする活
性アルミナ粉末 265gをボールミルポットに投入し、8
時間粉砕して得たスラリーを焼成後の塗布量40g/個に
なるように塗布し乾燥後、 400℃で2時間、空気雰囲気
中で焼成し第2コート層を形成した。Next, a solution of rhodium nitrate in Rh was added to 1000 g of activated alumina powder containing γ-alumina as a main component.
After adding 1% by weight and stirring well, it was dried and calcined in the same manner to prepare a rhodium-supporting alumina powder. 500 g of this rhodium-supported alumina powder, 637 g of nitric acid-acidified boehmite sol, and 265 g of activated alumina powder containing γ-alumina as a main component were put into a ball mill pot, and 8
The slurry obtained by pulverizing for an hour was applied so that the coating amount after baking was 40 g / piece, dried, and then baked in an air atmosphere at 400 ° C. for 2 hours to form a second coat layer.
【0009】さらに、 0.2モル/Lの硝酸銅または酢酸
銅溶液を用いてCuをイオン交換したゼオライト粉末18
20g,シリカゾル(固形分20%)1150gおよび、酸化セ
リウム粉末70g,水1100gを磁性ボールミルに投入し、
粉砕して得たスラリーを上記担体に焼成後に塗布量 160
g/個になるように塗布し乾燥した後、 400℃で2時間
空気中で焼成し第3コート層を形成し触媒No.1を調製
した。Further, Cu powder is ion-exchanged with a 0.2 mol / L copper nitrate or copper acetate solution to obtain a zeolite powder 18.
20 g, 1150 g of silica sol (solid content 20%), 70 g of cerium oxide powder, and 1100 g of water were charged into a magnetic ball mill,
The slurry obtained by crushing was applied to the above-mentioned carrier after the amount of coating 160
After coating so as to be g / piece and drying, it was baked in air at 400 ° C. for 2 hours to form a third coat layer to prepare catalyst No.1.
【0010】実施例2 第3コート層の酸化セリウムの添加量を触媒層中でCe
として3重量%の代りにCeとして15重量%として用い
た以外は実施例1の触媒No.1と同様にして、触媒No.
2を調製した。Example 2 The amount of cerium oxide added to the third coat layer was changed to Ce in the catalyst layer.
As catalyst No. 1 in the same manner as in Example 1 except that 15% by weight of Ce was used instead of 3% by weight of catalyst No.
2 was prepared.
【0011】実施例1と同様にモノリスハニカム担体
(1.3L,400セル)にPtを含む第1コート層、Rhを含
む第2コート層をコーティングした。さらに、第2コー
ト層上に0.2 モル/Lの硝酸銅または酢酸銅溶液を用い
てCuをイオン交換したゼオライト粉末1550g,シリカ
ゾル(固形分20%)1150gおよび、酸化セリウム(Ce
O2 )粉末 340g,水1100gを磁性ボールミルに投入
し、粉砕して得たスラリーを塗布量 130g/個になるよ
うに塗布し乾燥した後、 400℃で2時間空気中で焼成し
第3コート層を形成し触媒No.2を調製した。Monolith honeycomb carrier as in Example 1
(1.3 L, 400 cells) was coated with a first coat layer containing Pt and a second coat layer containing Rh. Further, 1550 g of zeolite powder ion-exchanged with Cu using a 0.2 mol / L copper nitrate or copper acetate solution on the second coat layer, 1150 g of silica sol (solid content 20%) and cerium oxide (Ce).
340 g of O 2 ) powder and 1100 g of water were put into a magnetic ball mill, and the slurry obtained by pulverizing was applied so that the applied amount was 130 g / piece, dried, and then baked in air at 400 ° C. for 2 hours to make the third coat. Layers were formed to prepare catalyst No.2.
【0012】実施例3 イオン交換金属種として銅の代りにコバルトを用いた以
外は実施例1の触媒No.1と同様にして、触媒No.3を
調製した。Example 3 A catalyst No. 3 was prepared in the same manner as the catalyst No. 1 of Example 1 except that cobalt was used instead of copper as the ion exchange metal species.
【0013】実施例1と同様にモノリスハニカム担体
(1.3L,400セル)にPtを含む第1コート層,Rhを含
む第2コート層をコーティングした。さらに、この第2
コート層上に 0.2モル/Lの硝酸コバルトまたは酢酸コ
バルト溶液を用いてCoをイオン交換したゼオライト粉
末1820g,シリカゾル(固形分20%)1150gおよび、酸
化セリウム(CeO2 )粉末70g、水1100gを磁性ボー
ルミルに投入し、粉砕して得たスラリーを塗布量 130g
/個になるように塗布し乾燥した後、 400℃で2時間空
気中で焼成し第3コート層を形成し触媒No.3を調製し
た。Monolith honeycomb carrier as in Example 1
(1.3 L, 400 cells) was coated with a first coat layer containing Pt and a second coat layer containing Rh. In addition, this second
1820 g of Co powder ion-exchanged with 0.2 mol / L cobalt nitrate or cobalt acetate solution on the coating layer, 1150 g of silica sol (solid content 20%), 70 g of cerium oxide (CeO 2 ) powder, and 1100 g of water are magnetic. Put in a ball mill and pulverize the resulting slurry to obtain a coating weight of 130 g.
Then, the catalyst No. 3 was prepared by coating and drying so that the number becomes 1 / piece, and baking in air at 400 ° C. for 2 hours to form a third coat layer.
【0014】実施例4 第1コート層の貴金属として白金の代りにパラジウムを
用いた以外は実施例1の触媒No.1と同様にして、触媒
No.4を調製した。Example 4 A catalyst No. 4 was prepared in the same manner as the catalyst No. 1 of Example 1 except that palladium was used instead of platinum as the noble metal of the first coat layer.
【0015】γ−アルミナを主たる成分とする活性アル
ミナ粉末1000gに対してジニトロジアンミンパラジウム
溶液を用いてパラジウム 1.5重量%になるように加え同
様に乾燥し、 400℃で2時間空気気流中で焼成を行っ
た。このパラジウム担持活性アルミナ1400g,酸化セリ
ウムを 936g,γ−アルミナを主たる成分とする活性ア
ルミナ 320g,硝酸酸性ベーマイトゾル(ベーマイトア
ルミナ10重量%けん濁液に10重量%HNO3 を添加する
ことによって得られるゾル)2221gをボールミルポット
に投入し、8時間粉砕してスラリーを得た。得られたス
ラリーをモノリス担体基材(1.3L,400セル)に塗布し乾
燥した後、 400℃で2時間、空気雰囲気中で焼成し第1
コート層を形成した。この時の塗布量は、 160g/個に
設定した。ロジウム担持粉末の調製、塗布および、ゼオ
ライト粉末のコート層の調製、塗布は実施例1と同様に
行い、触媒No.4を得た。Dinitrodiammine palladium solution was added to 1000 g of activated alumina powder containing γ-alumina as a main component so as to be 1.5% by weight of palladium, and the mixture was similarly dried and calcined at 400 ° C. for 2 hours in an air stream. went. 1400 g of this palladium-supported activated alumina, 936 g of cerium oxide, 320 g of activated alumina containing γ-alumina as a main component, and nitric acid boehmite sol (obtained by adding 10 wt% HNO 3 to 10 wt% boehmite alumina suspension) 2221 g of sol) was put into a ball mill pot and pulverized for 8 hours to obtain a slurry. The obtained slurry was applied to a monolith carrier substrate (1.3 L, 400 cells), dried, and then calcined at 400 ° C. for 2 hours in an air atmosphere.
A coat layer was formed. The coating amount at this time was set to 160 g / piece. Preparation and application of the rhodium-supported powder and preparation and application of the zeolite powder coating layer were carried out in the same manner as in Example 1 to obtain catalyst No. 4.
【0016】実施例5 実施例4の触媒No.4の第1コート層としてパラジウム
担持アルミナ層の代りに白金担持アルミナ及びパラジウ
ム担持アルミナ層を塗布した以外は同様にして、触媒N
o.5を調製した。Example 5 A catalyst N was prepared in the same manner as in Example 4, except that platinum-supported alumina and a palladium-supported alumina layer were applied as the first coat layer of the catalyst No. 4 in place of the palladium-supported alumina layer.
o.5 was prepared.
【0017】白金担持アルミナ及びパラジウム担持アル
ミナ層のスラリーとして、白金 2.1重量%,パラジウム
2.1重量%である白金担持活性アルミナとパラジウム担
持アルミナをそれぞれ 700g用いた以外は、触媒No.4
と同様に触媒No.5を調製した。なおここで用いる、ゼ
オライト粉末としてはZSM−5ゼオライト,モルデナ
イト,フェリエライト等を用いることができる。As a slurry of platinum-supported alumina and palladium-supported alumina layers, 2.1% by weight of platinum and palladium were used.
Catalyst No. 4 except that 2.1% by weight of platinum-supported activated alumina and 700 g of palladium-supported alumina were used, respectively.
Catalyst No. 5 was prepared in the same manner as in. As the zeolite powder used here, ZSM-5 zeolite, mordenite, ferrierite, or the like can be used.
【0018】比較例1,2 第1コート層、第2コート層の貴金属を含む触媒層のみ
を実施例1と同様にコーティングし、乾燥、焼成して触
媒No.101 を調製し比較例1の触媒とした。Comparative Examples 1 and 2 In Comparative Example 1, catalyst No. 101 was prepared by coating only the catalyst layers containing the noble metal of the first coat layer and the second coat layer in the same manner as in Example 1, followed by drying and firing. It was used as a catalyst.
【0019】Cuをイオン交換したゼオライト粉末のみ
をモノリス担体基材(1.3L,400セル)に 260g/個にな
るように塗布して触媒No.201 を調製し比較例2の触媒
とした。A catalyst No. 201 was prepared by applying only zeolite powder having Cu ion-exchanged to a monolith carrier substrate (1.3 L, 400 cells) at 260 g / unit, and used as a catalyst of Comparative Example 2.
【0020】試験例 各実施例、および比較例の触媒について、各触媒を実験
用のコンバーターに充填し、エンジン排気ガスにより下
記条件で耐久を行なった後に排気モデルガスを用いて下
記条件で、性能評価試験を行った。試験におけるA/F
=14.7での評価結果(耐久後)を表3に、A/F=18.0
での評価結果(耐久後)を表4に示す。Test Examples For the catalysts of the respective Examples and Comparative Examples, each catalyst was filled in an experimental converter, and after being subjected to durability under the following conditions with engine exhaust gas, performance was evaluated under the following conditions using an exhaust model gas. An evaluation test was conducted. A / F in the test
The evaluation results (after endurance) at = 14.7 are shown in Table 3, and A / F = 18.0.
Table 4 shows the evaluation results (after endurance).
【0021】[0021]
【表1】耐久条件 エンジン 排気量2000cc 耐久温度: 650℃ 耐久時間: 100時間 耐久中入口エミッション CO 0.4〜0.6% O2 0.5±0.1% NO 1500ppm HC 1000ppm CO2 14.9%±0.1%[Table 1] Durability condition engine Displacement 2000cc Durability temperature: 650 ° C Durability time: 100 hours Durability medium inlet emission CO 0.4-0.6% O 2 0.5 ± 0.1% NO 1500ppm HC 1000ppm CO 2 14 9.9% ± 0.1%
【0022】[0022]
【表2】性能評価条件 触媒容量:0.12L 評価装置:排気モデルガス評価装置(ガスは、ボンベガ
スを使用) 触媒入口温度 400℃ 空間速度 約20,000h-1 A/F=14.7相当のモデルガス HC=1600ppm(C1換算) NO=1000ppm CO=1.08% CO2 =14.0% O2 =0.9% H2 O=10% H2 =0.4% N2 残部 A/F=18.0相当のモデルガス HC=2500ppm(C1換算) NO= 500ppm CO2 =14.0% CO=1200ppm H2 O=10% O2 =4.5% N2 残部[Table 2] Performance evaluation conditions Catalyst capacity: 0.12L Evaluation device: Exhaust model gas evaluation device (gas used is cylinder gas) Catalyst inlet temperature 400 ° C Space velocity approx. 20,000h -1 A / F = 14.7 equivalent model gas HC = 1600 ppm (C1 converted) NO = 1000ppm CO = 1.08% CO 2 = 14.0% O 2 = 0.9% H 2 O = 10% H 2 = 0.4% N 2 balance a of Model gas equivalent to /F=18.0 HC = 2500 ppm (C1 conversion) NO = 500 ppm CO 2 = 14.0% CO = 1200 ppm H 2 O = 10% O 2 = 4.5% N 2 balance
【0023】[0023]
【表3】 [Table 3]
【0024】[0024]
【表4】 [Table 4]
【0025】[0025]
【発明の効果】以上説明してきたように、本発明の排気
ガス浄化用触媒はハニカム担体に、白金とパラジウムの
うち1種以上を含む活性アルミナを主成分とする無機物
からなる第1コート層と、このコート層上に設けたロジ
ウムを含む活性アルミナを主成分とする無機物からなる
第2コート層と、さらにこのコート層上に設けたCuま
たはCoをイオン交換したゼオライト粉末と酸化セリウ
ム粉末を主成分とする無機物から成る第3コート層を備
えてなることを特徴とすることにより、耐久劣化後もス
トイキ領域からリーン領域まで触媒活性を有する。As described above, the exhaust gas purifying catalyst of the present invention comprises a honeycomb carrier, and a first coat layer made of an inorganic material containing activated alumina containing at least one of platinum and palladium as a main component. A second coating layer made of an inorganic material containing activated alumina containing rhodium as a main component, which is provided on the coating layer, and a Cu or Co ion-exchanged zeolite powder and a cerium oxide powder which are further provided on the coating layer. By including the third coat layer made of an inorganic material as a component, the catalyst has a catalytic activity from the stoichiometric region to the lean region even after deterioration of durability.
フロントページの続き (72)発明者 可知 直樹 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内Front Page Continuation (72) Inventor Naoki Kachi 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd.
Claims (1)
1種以上を含む活性アルミナを主成分とする無機物から
なる第1コート層と、このコート層上に設けたロジウム
を含む活性アルミナを主成分とする無機物からなる第2
コート層と、さらにこのコート層上に設けた銅またはコ
バルトをイオン交換したゼオライト粉末と酸化セリウム
を主成分とする無機物からなる第3コート層を備えてな
ることを特徴とする排気ガス浄化用触媒。1. A first coat layer made of an inorganic material whose main component is activated alumina containing at least one of platinum and palladium on a honeycomb carrier, and a main component of activated alumina containing rhodium provided on the coating layer. 2nd consisting of inorganic material
An exhaust gas purifying catalyst comprising a coat layer and a third coat layer formed on the coat layer, the zeolite powder being ion-exchanged with copper or cobalt, and an inorganic substance containing cerium oxide as a main component. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4321924A JPH06170235A (en) | 1992-12-01 | 1992-12-01 | Catalyst for purification of exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4321924A JPH06170235A (en) | 1992-12-01 | 1992-12-01 | Catalyst for purification of exhaust gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06170235A true JPH06170235A (en) | 1994-06-21 |
Family
ID=18137937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4321924A Pending JPH06170235A (en) | 1992-12-01 | 1992-12-01 | Catalyst for purification of exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06170235A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1364981A1 (en) | 2002-05-25 | 2003-11-26 | Forschungszentrum Karlsruhe GmbH | Method for preparing polymer structures with bound transition metals |
KR20190087626A (en) * | 2016-12-05 | 2019-07-24 | 바스프 코포레이션 | 4-functional catalyst for the oxidation of NO, the oxidation of hydrocarbons, the oxidation of NH3 and the selective catalytic reduction of NOx |
-
1992
- 1992-12-01 JP JP4321924A patent/JPH06170235A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1364981A1 (en) | 2002-05-25 | 2003-11-26 | Forschungszentrum Karlsruhe GmbH | Method for preparing polymer structures with bound transition metals |
KR20190087626A (en) * | 2016-12-05 | 2019-07-24 | 바스프 코포레이션 | 4-functional catalyst for the oxidation of NO, the oxidation of hydrocarbons, the oxidation of NH3 and the selective catalytic reduction of NOx |
JP2020513300A (en) * | 2016-12-05 | 2020-05-14 | ビーエーエスエフ コーポレーション | Tetrafunctional catalysts for NO oxidation, hydrocarbon oxidation, NH3 oxidation and NOx selective catalytic reduction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3185448B2 (en) | Exhaust gas purification catalyst | |
JPH08281107A (en) | Catalyst for purifying exhaust gas | |
JPH05184876A (en) | Catalyst for purifying exhaust gas | |
JPH08281106A (en) | Catalyst for purifying exhaust gas and its production | |
JPH06378A (en) | Catalyst for purification of exhaust gas | |
JPH09220470A (en) | Catalyst for purification of exhaust gas | |
JPH10192713A (en) | Exhaust gas purifying catalyst and its use | |
JPH08281110A (en) | Catalyst for purifying exhaust gas and its production | |
JP3505739B2 (en) | Exhaust gas purification catalyst | |
JPH09253496A (en) | Catalyst for clarification of exhaust gas and method for clarification of exhaust gas | |
JPH06170235A (en) | Catalyst for purification of exhaust gas | |
JPH05285391A (en) | Catalyst for purification of exhaust gas | |
JPH06190282A (en) | Catalyst for purification of exhaust gas | |
JP2993297B2 (en) | Exhaust gas purification catalyst | |
JP2848175B2 (en) | Automotive exhaust purification system | |
JP3596043B2 (en) | Exhaust gas purification catalyst | |
JPH06262089A (en) | Catalyst for exhaust gas purification | |
JPH0957066A (en) | Catalyst for purification of exhaust gas | |
JP3097363B2 (en) | Exhaust gas purification catalyst | |
JP2948232B2 (en) | Exhaust gas purification catalyst | |
JP3477982B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JPH06190246A (en) | Exhaust gas purifying device for automobile | |
JPH09141106A (en) | Exhaust gas purifying catalyst | |
JPH08215574A (en) | Catalyst for purification of exhaust gas | |
JPH05285388A (en) | Catalyst for purification of exhaust gas |