JPH06262089A - Catalyst for exhaust gas purification - Google Patents

Catalyst for exhaust gas purification

Info

Publication number
JPH06262089A
JPH06262089A JP5050869A JP5086993A JPH06262089A JP H06262089 A JPH06262089 A JP H06262089A JP 5050869 A JP5050869 A JP 5050869A JP 5086993 A JP5086993 A JP 5086993A JP H06262089 A JPH06262089 A JP H06262089A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
coat layer
gas purification
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5050869A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanesaka
浩行 金坂
Naoki Kachi
直樹 可知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5050869A priority Critical patent/JPH06262089A/en
Publication of JPH06262089A publication Critical patent/JPH06262089A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a catalyst for exhaust gas purification which is capable of removing a nitrogen oxide by reduction from a lower temperature range in the atmosphere of lean burn. CONSTITUTION:The subject catalyst for exhaust gas purification comprises a first coat layer of an inorganic substance based on a blend of cerium oxide and activated alumina without a precious metal component, and a second coat layer of an inorganic substance based on zeolite powder with an ion-exchanged metal, e.g. Cu or Co on the first coat layer, both layers being formed on a honeycomb carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車などの内燃機関
から排出される排気ガス浄化用触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

【0002】[0002]

【従来の技術】従来のゼオライトを用いる排気ガス浄化
用触媒としては、例えば特開平1−127044号公報
に開示されているようなものがある。この触媒では、触
媒の構成としてハニカム担体にCuをイオン交換したゼ
オライト層をコーティングしたことにより、排気ガス中
の酸素濃度が理論値より大きくなった状態(リーン・バ
ーン雰囲気)において排気中の窒素酸化物(NOX )を
還元除去しリーン・バーン雰囲気でも効率よくNOX
浄化している。
2. Description of the Related Art As a conventional exhaust gas purifying catalyst using zeolite, there is, for example, one disclosed in Japanese Patent Application Laid-Open No. 1-127044. In this catalyst, the honeycomb carrier is coated with a zeolite layer in which Cu is ion-exchanged as the structure of the catalyst, so that the nitrogen oxidation in the exhaust gas is performed in a state where the oxygen concentration in the exhaust gas is higher than the theoretical value (lean burn atmosphere) The substance (NO x ) is reduced and removed, and the NO x is efficiently purified even in a lean burn atmosphere.

【0003】[0003]

【発明が解決しようとする課題】しかし、ただ単にハニ
カム担体にCuをイオン交換したゼオライトをコーティ
ングした触媒では、リーン・バーン雰囲気でのNOX
還元除去される温度が比較的高温であり、実際の車両の
走行モードで使用される温度領域では充分なNO X 浄化
活性が得られない。また、内層に貴金属成分を含む無機
物を用いて酸化触媒層をコーティングした触媒は、耐久
後の性能が内層を持たない触媒よりも劣化し、充分な浄
化活性が得られない。本発明の目的は、このような従来
の触媒に対して、リーンバーン雰囲気下のより低い温度
領域からNOX を還元除去し、耐久後にも充分な浄化活
性を有する排ガス浄化用触媒を提供することにある。
[Problems to be Solved by the Invention]
Coated with zeolite with ion exchanged Cu for cam carrier
NO in a lean burn atmosphere with burnt catalystXBut
The temperature of reduction and removal is relatively high, and
Sufficient NO in the temperature range used in running mode Xpurification
No activity is obtained. In addition, the inner layer contains an inorganic material containing a precious metal component.
A catalyst coated with an oxidation catalyst layer is durable
The performance afterwards deteriorates more than the catalyst without the inner layer,
Chemical activity cannot be obtained. The purpose of the present invention is
Lower temperature in lean-burn atmosphere for other catalysts
NO from areaXIs reduced and removed, and sufficient purification activity is achieved even after endurance.
To provide a catalyst for purifying exhaust gas having properties.

【0004】[0004]

【課題を解決するための手段】本発明の排気ガス浄化用
触媒は、ハニカム担体上に、酸化セリウムと活性アルミ
ナを主成分とし貴金属成分を含まない無機物から成る第
1コート層と、このコート層上の金属、例えばCu又は
Coをイオン交換したゼオライト粉末を主成分とする無
機物から成る第2コート層とを備えてなることを特徴と
する。
The exhaust gas purifying catalyst of the present invention comprises, on a honeycomb carrier, a first coat layer made of an inorganic substance containing cerium oxide and activated alumina as main components and containing no precious metal component, and this coat layer. It is characterized by comprising a second coat layer made of an inorganic material whose main component is a zeolite powder ion-exchanged with the above metal, for example, Cu or Co.

【0005】[0005]

【作用】本発明の排気ガス浄化用触媒において、酸化セ
リウムを主成分とした無機物をコーティングした第1コ
ート層の触媒層は、酸素が多量に含まれるエンジン排気
ガスのリーン領域において低い温度から酸化触媒反応を
起こし反応熱を発生する。この第1コート層の上にコー
ティングしたCuまたはCoをイオン交換したゼオライ
ト粉末を主成分とする第2コート層は、酸素が多量に含
まれるエンジン排気ガスのリーン領域においてNOX
転化性能を有している。しかし、この触媒層が高い触媒
反応を示すのは350℃以上の温度領域である。本発明
においては、第1コート層の触媒層において酸化反応に
よる反応熱が発生し、その熱が第2コート層の触媒層に
伝わり温度を上昇させることにより、350℃以下の低
い温度領域でも高いNOX 浄化活性を示し、実際の走行
モードで使用される温度領域で高いNOX 浄化活性を有
している。
In the exhaust gas purifying catalyst of the present invention, the catalyst layer of the first coat layer coated with the inorganic substance containing cerium oxide as a main component is oxidized from a low temperature in a lean region of engine exhaust gas containing a large amount of oxygen. It causes a catalytic reaction to generate reaction heat. The second coating layer the coated Cu or Co on the first coating layer composed mainly of zeolite powder ion exchange, have a NO X conversion performance in the lean region of the engine exhaust gas oxygen is contained in a large amount is doing. However, this catalyst layer shows a high catalytic reaction in the temperature range of 350 ° C. or higher. In the present invention, the reaction heat due to the oxidation reaction is generated in the catalyst layer of the first coat layer, and the heat is transferred to the catalyst layer of the second coat layer to increase the temperature, so that the temperature is high even in a low temperature range of 350 ° C. or lower. shows the NO X purification activity, has a high NO X purification activity in the temperature range used in the actual running mode.

【0006】また、貴金属成分を第1コート層に含む場
合には、第1コート層での触媒反応が促進され反応熱に
よる発熱が過大になり、第2コート層の触媒劣化の進行
が進むため、貴金属成分を含まない触媒組成とすること
が必要である。
When the noble metal component is contained in the first coat layer, the catalytic reaction in the first coat layer is promoted and the heat generated by the reaction heat becomes excessive, so that the deterioration of the catalyst in the second coat layer progresses. It is necessary to have a catalyst composition containing no precious metal component.

【0007】[0007]

【実施例】以下本発明を実施例、比較例および試験例に
より説明する。 実施例1 γ−アルミナを主たる成分とする活性アルミナ粉末10
00g、酸化セリウム1000g、10重量%HNO3
400gおよび水1600gをボールミルポットに投入
し、8時間粉砕してスラリーを得た。得られたスラリー
をハニカム担体基材(1.3L,400セル)に塗布し
乾燥した後、400℃で2時間、空気雰囲気中で焼成し
た。この時の塗布量は、焼成後に65g/個になるよう
に設定した。
EXAMPLES The present invention will be described below with reference to Examples, Comparative Examples and Test Examples. Example 1 Activated alumina powder 10 containing γ-alumina as a main component 10
00g, cerium oxide 1000g, 10% by weight HNO 3
400 g and 1600 g of water were put into a ball mill pot and pulverized for 8 hours to obtain a slurry. The obtained slurry was applied to a honeycomb carrier base material (1.3 L, 400 cells), dried, and then fired at 400 ° C. for 2 hours in an air atmosphere. The coating amount at this time was set to be 65 g / piece after firing.

【0008】さらに、0.2モル/Lの硝酸銅または酢
酸銅溶液を5.2kgとゼオライト粉末2kgとを混合
しかきまぜた後、濾過した。これを3回繰り返した後、
乾燥および焼成を行いCuをイオン交換したゼオライト
粉末を調製した。このCuをイオン交換したゼオライト
粉末1890g、シリカゾル(固形分20%)1150
gおよび水1100gを磁性ボールミルに投入し、粉砕
して得たスラリーを上記担体に焼成後に塗布量が260
g/個になるように塗布し乾燥した後、400℃で2時
間空気中で焼成し触媒No.1を得た。
Further, a 0.2 mol / L copper nitrate or copper acetate solution was mixed with 5.2 kg and 2 kg of zeolite powder, and the mixture was filtered. After repeating this 3 times,
A zeolite powder in which Cu was ion-exchanged was prepared by drying and firing. This Cu ion-exchanged zeolite powder 1890 g, silica sol (solid content 20%) 1150
g and 1100 g of water were put into a magnetic ball mill, and the slurry obtained by pulverizing was pulverized on the above carrier to give a coating amount of 260.
After coating so as to be g / piece and drying, it was calcined in air at 400 ° C. for 2 hours to obtain a catalyst No.1.

【0009】実施例2 実施例1において、イオン交換金属としてCuの代わり
にCoを用いた以外は実施例1と同様にし、触媒No.2
を得た。 実施例3 実施例1において、用いた酸化セリウムおよび活性アル
ミナの量をそれぞれ1500gおよび500gとした以
外は実施例1と同様にし、触媒 No.3を得た。 実施例4 実施例1において、用いた酸化セリウムおよび活性アル
ミナの量をそれぞれ500gおよび1500gとした以
外は実施例1と同様にし、触媒No.4を得た。 実施例5 実施例1において、用いた酸化セリウムを含む触媒層の
塗布量を130g/個とした以外は実施例1と同様に
し、触媒No.5を得た。なお、ここで用いるゼオライト
粉末としてはZSM−5ゼオライト、モルデナイトおよ
びフェリエライト等を用いることができる。
Example 2 A catalyst No. 2 was prepared in the same manner as in Example 1 except that Co was used as the ion exchange metal instead of Cu.
Got Example 3 A catalyst No. 3 was obtained in the same manner as in Example 1 except that the amounts of cerium oxide and activated alumina used were 1500 g and 500 g, respectively. Example 4 A catalyst No. 4 was obtained in the same manner as in Example 1 except that the amounts of cerium oxide and activated alumina used were 500 g and 1500 g, respectively. Example 5 A catalyst No. 5 was obtained in the same manner as in Example 1 except that the coating amount of the catalyst layer containing cerium oxide used was 130 g / piece. The zeolite powder used here may be ZSM-5 zeolite, mordenite, ferrierite, or the like.

【0010】比較例1 実施例1において、酸化セリウムおよび活性アルミナを
含む触媒層の塗布を省略した以外は実施例1と同様に
し、触媒No.101を得た。 比較例2 実施例1において、酸化セリウムを用いず、活性アルミ
ナを2000g用いた以外は実施例1と同様にし、触媒
No.102を得た。 比較例3 貴金属としてPdを含むアルミナを実施例1と同様にコ
ーティングし、乾燥し、焼成して調製した触媒No.10
3を比較例3とする。γ−アルミナを主たる成分とする
活性アルミナ粉末1000gに対して硝酸パラジウム溶
液を用いてパラジウム2.0重量%になるように加えよ
く攪拌した後、オーブン中150℃で3時間乾燥し、4
00℃で2時間空気気流中で焼成を行った。このパラジ
ウム担持活性アルミナ1500g、γ−アルミナを主た
る成分とする活性アルミナ800g、10重量%HNO
3 460g、水1840gをボールミルポットに投入
し、8時間粉砕してスラリーを得た。得られたスラリー
をモノリス担体基材(1.3L、400セル)に塗布し
乾燥した後、400℃で2時間、空気雰囲気中で焼成し
た。この時の塗布量は、焼成後に65g/個になるよう
に設定した。さらに、0.2モル/Lの硝酸銅または酢
酸銅溶液5.2kgとゼオライト粉末2kgを混合し攪
拌した後、濾過を行った。これを3回繰り返した後、乾
燥および焼成を行いCuをイオン交換したゼオライト粉
末を調製した。このCuをイオン交換したゼオライト粉
末1890g、シリカゾル(固形分20%)1150g
および水1100gを磁性ボールミルに投入し、粉砕し
て得たスラリーを上記担体に焼成後に塗布量260g/
個になるように塗布し乾燥した後、400℃で2時間空
気中で焼成し触媒No.103を調製した。
Comparative Example 1 A catalyst No. 101 was obtained in the same manner as in Example 1 except that the coating of the catalyst layer containing cerium oxide and activated alumina was omitted. Comparative Example 2 A catalyst No. 102 was obtained in the same manner as in Example 1, except that 2000 g of activated alumina was used without using cerium oxide. Comparative Example 3 Catalyst No. 10 prepared by coating alumina containing Pd as a noble metal in the same manner as in Example 1, drying and firing.
3 is Comparative Example 3. Palladium nitrate solution was added to 1000 g of activated alumina powder containing γ-alumina as a main component so that the amount of palladium was 2.0% by weight, and the mixture was stirred well and dried in an oven at 150 ° C. for 3 hours.
Firing was performed at 00 ° C for 2 hours in an air stream. 1500 g of this palladium-supported activated alumina, 800 g of activated alumina containing γ-alumina as a main component, 10% by weight of HNO
3 460 g, water 1840g were charged into a ball mill pot to obtain a slurry for 8 hr. The obtained slurry was applied to a monolith carrier substrate (1.3 L, 400 cells), dried, and then fired at 400 ° C. for 2 hours in an air atmosphere. The coating amount at this time was set to be 65 g / piece after firing. Further, 5.2 kg of 0.2 mol / L copper nitrate or copper acetate solution and 2 kg of zeolite powder were mixed and stirred, and then filtered. After repeating this 3 times, it dried and baked and the zeolite powder which ion-exchanged Cu was prepared. This Cu ion-exchanged zeolite powder 1890 g, silica sol (solid content 20%) 1150 g
Then, 1100 g of water and 1100 g of water were charged into a magnetic ball mill, and the slurry obtained by pulverizing was calcinated on the above-mentioned carrier, and then a coating amount of 260 g /
After being coated so as to form individual pieces and dried, the catalyst No. 103 was prepared by baking in air at 400 ° C. for 2 hours.

【0011】試験例 上記の各実施例および比較例において得られた触媒を実
験用のコンバーターに充填し、エンジン排気ガスにより
表1に示した条件で、性能評価試験を行った。
Test Example The catalyst obtained in each of the above Examples and Comparative Examples was filled in an experimental converter, and a performance evaluation test was conducted under the conditions shown in Table 1 with engine exhaust gas.

【0012】[0012]

【表1】耐久条件 エンジン 排気量2000cc 耐久温度:550℃ 耐久時間:50時間 耐久中入口エミッション CO =0.4〜0.6% O2 =0.5±0.1% NOX =1500ppm HC =1000ppm CO2 =14.9±0.1% 性能評価条件 触媒容量:0.12L 評価装置:排気モデルガス評価装置(ガスは、ボンベガ
スを使用) 触媒入口温度 初期 300℃,耐久後 400℃ 空間速度 約20000h-1 平均空燃比(A/F)=18.0相当モデルガス HC =2500ppm(C1換算) NOX =500ppm CO =1200ppm CO2 =14.0% O2 =4.5% H2 O=10% N2 バランス
[Table 1] Durability conditions Engine displacement 2000 cc Durability temperature: 550 ° C Durability time: 50 hours In-durability inlet emission CO = 0.4-0.6% O 2 = 0.5 ± 0.1% NO X = 1500 ppm HC = 1000ppm CO 2 = 14.9 ± 0.1% Performance evaluation condition Catalyst capacity: 0.12L Evaluation device: Exhaust model gas evaluation device (gas used is cylinder gas) Catalyst inlet temperature initial 300 ° C, endurance 400 ° C space Speed Approx. 20000 h -1 Average air-fuel ratio (A / F) = 18.0 Equivalent model gas HC = 2500 ppm (C1 conversion) NO X = 500 ppm CO = 1200 ppm CO 2 = 14.0% O 2 = 4.5% H 2 O = 10% N 2 balance

【0013】上記試験の結果を表2および表3に示す。The results of the above tests are shown in Tables 2 and 3.

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【発明の効果】以上説明してきたように、本発明の排気
ガス浄化用触媒は、ハニカム担体上に、酸化セリウムと
活性アルミナとを主成分とし、貴金属成分を含まない無
機物から成る第1コート層と、このコート層上の金属、
例えばCuまたはCoをイオン交換したゼオライト粉末
を主成分とする無機物から成る第2コート層とを備えて
なることにより、リーン・バーン雰囲気下のより低い温
度領域からNOX を還元除去することができるという効
果を有する。
As described above, the exhaust gas purifying catalyst of the present invention has the first coat layer made of an inorganic material containing cerium oxide and activated alumina as main components and no precious metal component on the honeycomb carrier. And the metal on this coat layer,
For example, by including the second coating layer made of an inorganic material whose main component is zeolite powder in which Cu or Co is ion-exchanged, NO X can be reduced and removed from a lower temperature region in a lean burn atmosphere. Has the effect.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ハニカム担体上に、酸化セリウムと活性
アルミナとの混合物を主成分とし貴金属成分を含まない
無機物から成る第1コート層と、このコート層上の金属
をイオン交換したゼオライト粉末を主成分とする無機物
から成る第2コート層とを備えてなることを特徴とする
排気ガス浄化用触媒。
1. A first coat layer made of an inorganic substance containing a mixture of cerium oxide and activated alumina as a main component and not containing a noble metal component on a honeycomb carrier, and a zeolite powder in which the metal on the coat layer is ion-exchanged. An exhaust gas purifying catalyst comprising a second coat layer made of an inorganic material as a component.
【請求項2】 イオン交換金属としてCuまたはCoを
用いたことを特徴とする請求項1記載の排気ガス浄化用
触媒。
2. The exhaust gas purifying catalyst according to claim 1, wherein Cu or Co is used as the ion exchange metal.
JP5050869A 1993-03-11 1993-03-11 Catalyst for exhaust gas purification Pending JPH06262089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5050869A JPH06262089A (en) 1993-03-11 1993-03-11 Catalyst for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5050869A JPH06262089A (en) 1993-03-11 1993-03-11 Catalyst for exhaust gas purification

Publications (1)

Publication Number Publication Date
JPH06262089A true JPH06262089A (en) 1994-09-20

Family

ID=12870736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5050869A Pending JPH06262089A (en) 1993-03-11 1993-03-11 Catalyst for exhaust gas purification

Country Status (1)

Country Link
JP (1) JPH06262089A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
US20100260652A1 (en) * 2007-10-29 2010-10-14 Ict Co., Ltd. Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
JP2014012267A (en) * 2012-06-07 2014-01-23 Toyota Central R&D Labs Inc Catalyst for reforming hydrocarbon, exhaust gas cleaning apparatus using the same and manufacturing method of catalyst for reforming hydrocarbon
US9833771B2 (en) 2013-11-28 2017-12-05 Cataler Corporation Exhaust gas purifying catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314989A (en) * 2005-04-11 2006-11-24 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytically reducing nitrogen oxide and catalyst structure
US20100260652A1 (en) * 2007-10-29 2010-10-14 Ict Co., Ltd. Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
US8318630B2 (en) * 2007-10-29 2012-11-27 Ict Co., Ltd. Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the same
JP2014012267A (en) * 2012-06-07 2014-01-23 Toyota Central R&D Labs Inc Catalyst for reforming hydrocarbon, exhaust gas cleaning apparatus using the same and manufacturing method of catalyst for reforming hydrocarbon
US9833771B2 (en) 2013-11-28 2017-12-05 Cataler Corporation Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
JP3185448B2 (en) Exhaust gas purification catalyst
JPH05184876A (en) Catalyst for purifying exhaust gas
JPH08281107A (en) Catalyst for purifying exhaust gas
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JPH0568877A (en) Hydrocarbon adsorbent
JPH01127044A (en) Catalyst for clarifying exhaust gas
JPH06378A (en) Catalyst for purification of exhaust gas
JPH06262089A (en) Catalyst for exhaust gas purification
JP3498753B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
JPH05285391A (en) Catalyst for purification of exhaust gas
JPH06190282A (en) Catalyst for purification of exhaust gas
JP3596043B2 (en) Exhaust gas purification catalyst
JPH05184935A (en) Catalyst for purifying exhaust gas
JPH09141106A (en) Exhaust gas purifying catalyst
JP2993297B2 (en) Exhaust gas purification catalyst
JP2848175B2 (en) Automotive exhaust purification system
JPH06170235A (en) Catalyst for purification of exhaust gas
JPH08215574A (en) Catalyst for purification of exhaust gas
JPH06190246A (en) Exhaust gas purifying device for automobile
JP3097363B2 (en) Exhaust gas purification catalyst
KR100384015B1 (en) Improved NOx conversion and thermal durable Pd only three way catalyst
JP3341432B2 (en) Exhaust gas purification catalyst
JPH07256113A (en) Catalyst for purification of exhaust gas