JP2010131531A - Air cleaning catalyst and its manufacturing method - Google Patents
Air cleaning catalyst and its manufacturing method Download PDFInfo
- Publication number
- JP2010131531A JP2010131531A JP2008310391A JP2008310391A JP2010131531A JP 2010131531 A JP2010131531 A JP 2010131531A JP 2008310391 A JP2008310391 A JP 2008310391A JP 2008310391 A JP2008310391 A JP 2008310391A JP 2010131531 A JP2010131531 A JP 2010131531A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- manganese
- oxide
- cerium
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 122
- 238000004140 cleaning Methods 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000000126 substance Substances 0.000 claims abstract description 28
- 239000011572 manganese Substances 0.000 claims abstract description 16
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims abstract description 10
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- WYCDUUBJSAUXFS-UHFFFAOYSA-N [Mn].[Ce] Chemical compound [Mn].[Ce] WYCDUUBJSAUXFS-UHFFFAOYSA-N 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 25
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 19
- 239000002131 composite material Substances 0.000 claims description 17
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 14
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 14
- 150000002697 manganese compounds Chemical class 0.000 claims description 13
- 238000002156 mixing Methods 0.000 claims description 11
- 239000010936 titanium Substances 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 10
- 229910052697 platinum Inorganic materials 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 238000004887 air purification Methods 0.000 claims description 8
- 229910052809 inorganic oxide Inorganic materials 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- 238000010304 firing Methods 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 6
- 229910021536 Zeolite Inorganic materials 0.000 claims description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 5
- 239000010457 zeolite Substances 0.000 claims description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 2
- LQWKWJWJCDXKLK-UHFFFAOYSA-N cerium(3+) manganese(2+) oxygen(2-) Chemical compound [O--].[Mn++].[Ce+3] LQWKWJWJCDXKLK-UHFFFAOYSA-N 0.000 claims 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 abstract description 19
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 18
- 238000002441 X-ray diffraction Methods 0.000 abstract description 9
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 abstract description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract description 6
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 5
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 abstract description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 20
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 15
- 239000013078 crystal Substances 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000008188 pellet Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 239000012855 volatile organic compound Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 229910004339 Ti-Si Inorganic materials 0.000 description 4
- 229910010978 Ti—Si Inorganic materials 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000003365 glass fiber Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 150000003464 sulfur compounds Chemical class 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 3
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011973 solid acid Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- JCYPECIVGRXBMO-UHFFFAOYSA-N 4-(dimethylamino)azobenzene Chemical compound C1=CC(N(C)C)=CC=C1N=NC1=CC=CC=C1 JCYPECIVGRXBMO-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910008341 Si-Zr Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910006682 Si—Zr Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007084 catalytic combustion reaction Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 231100000206 health hazard Toxicity 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- -1 oxygen hydrocarbons Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 208000008842 sick building syndrome Diseases 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 1
- PMTRSEDNJGMXLN-UHFFFAOYSA-N titanium zirconium Chemical compound [Ti].[Zr] PMTRSEDNJGMXLN-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、例えば一酸化炭素、オゾンや揮発性有機化合物などの空気中に存在する有害物質を50℃以下の低温で除去できる空気清浄化用触媒に関するものである。 The present invention relates to an air cleaning catalyst capable of removing harmful substances existing in the air such as carbon monoxide, ozone and volatile organic compounds at a low temperature of 50 ° C. or lower.
自動車等の内燃機関や工場からの大気中に排出された窒素酸化物や揮発性有機化合物、炭化水素などが太陽光中の紫外線と反応して、オゾンなどの過酸化物、二酸化窒素、ホルムアルデヒドなどの生成が光化学スモッグの原因となる。そこで工場や自動車などの排ガス出口に排ガス処理触媒を設置することにより大気汚染は大幅に改善されている。ただし排ガス温度を300℃以上にしないと排ガス処理触媒は機能しないため、工場の排ガス温度が低い場合は燃料費が必要となり維持費が高くなること、自動車の始動時やアイドリング時などのガス温が低い際は有害物質を十分処理されないままで排出されるという問題があった。 Nitrogen oxides, volatile organic compounds, hydrocarbons, etc. discharged into the atmosphere from internal combustion engines and factories such as automobiles react with ultraviolet rays in sunlight to generate peroxides such as ozone, nitrogen dioxide, formaldehyde, etc. The generation of odor causes photochemical smog. Therefore, air pollution has been greatly improved by installing an exhaust gas treatment catalyst at the exhaust gas outlet of factories and automobiles. However, since the exhaust gas treatment catalyst does not function unless the exhaust gas temperature is set to 300 ° C. or higher, the fuel cost is required when the exhaust gas temperature in the factory is low, the maintenance cost becomes high, and the gas temperature at the time of starting or idling the automobile When it is low, there is a problem that harmful substances are discharged without being sufficiently treated.
またオフィスや住居の気密性の向上により、複写機からオゾンや窒素酸化物、暖房機器からの未燃炭化水素や一酸化炭素の排出やタバコの煙に含まれるアセトアルデヒドなどの有害物質による健康被害が心配されている。更には壁材、床材、カーテン、カーペットなどの内装材からシックハウス症候群の原因となるホルムアルデヒド、トルエン、キシレン等の有害物質が発生することが知られている。 In addition, due to the improved airtightness of offices and homes, health hazards caused by harmful substances such as ozone and nitrogen oxides from copiers, unburned hydrocarbons and carbon monoxide from heating equipment, and acetaldehyde contained in cigarette smoke. I'm worried. Furthermore, it is known that interior materials such as wall materials, floor materials, curtains, and carpets generate harmful substances such as formaldehyde, toluene, and xylene that cause sick house syndrome.
常温での有害物質の除去に関しては、活性炭、ゼオライト、モレキュラシープ、多孔質粘土、活性アルミナおよびシリカゲルなどの吸着剤が用いる方法が知られている。しかし、吸着剤は寿命があり、定期的に、例えば数ヶ月毎に吸着剤を交換する必要があり、その性能を維持するのに過大な労力や費用を要する。 For removal of harmful substances at room temperature, methods using an adsorbent such as activated carbon, zeolite, molecular sheep, porous clay, activated alumina, and silica gel are known. However, the adsorbent has a lifetime, and it is necessary to replace the adsorbent regularly, for example, every few months, and excessive labor and cost are required to maintain its performance.
また有害物質を触媒で除去する方法として光触媒を用いることが提案されている。光触媒として酸化チタンが一般的に使用されているが、酸化チタンは紫外線によって励起して生成するラジカルなどにより有害物質を常温で酸化分解することができる。しかし太陽光や室内照明に紫外線は僅かしか含まれていないため、処理速度が遅く実用的な効果が得られるには至っていない。 It has also been proposed to use a photocatalyst as a method for removing harmful substances with a catalyst. Titanium oxide is generally used as a photocatalyst, but titanium oxide can oxidize and decompose harmful substances at room temperature by radicals generated by excitation with ultraviolet rays. However, since sunlight and indoor lighting contain only a small amount of ultraviolet rays, the processing speed is slow and practical effects have not been obtained.
そこで、特許文献1ではマンガン、鉄およびセリウムの複合酸化物よりなる脱臭触媒が開示されている。複合酸化物はMnCeFe2O4のみで構成されていると記載されており、X線回折による結晶構造が二酸化セリウムの蛍石型構造であるかの記載はない。また反応温度は150℃でアセトアルデヒド、トリメチルアミンなど臭気物質を処理する例が示されており50℃以下の低温での処理効果には言及されていない。 Therefore, Patent Document 1 discloses a deodorization catalyst made of a complex oxide of manganese, iron and cerium. The composite oxide is described as being composed only of MnCeFe 2 O 4 , and there is no description as to whether the crystal structure by X-ray diffraction is a fluorite structure of cerium dioxide. In addition, an example of treating odorous substances such as acetaldehyde and trimethylamine at a reaction temperature of 150 ° C. is shown, and the treatment effect at a low temperature of 50 ° C. or less is not mentioned.
また、酸化セリウムにパラジウムまたは白金を担持した一酸化炭素酸化触媒が特許文献2に開示されており、成形体の表面から深さ0.8mmまでの表層にパラジウムまたは白金を担持することで一酸化炭素を15〜40℃の常温処理ができると記載されている。
さらに、還元処理によってセリウム酸化物などに酸素欠陥が導入された酸化物に貴金属を担持した常温浄化触媒が特許文献3で開示されており、一酸化炭素、ホルムアルデヒドなどの環境負荷物質を常温で効率よく除去できると記載されている。ただし実施例に示される試験結果ではいずれのガスに対しても処理速度が経時により急速に低下する傾向が見られる。これは、完全酸化されずに副生物が生成することで反応により酸素欠陥が構造が維持されずに性能低下を招いている可能性が考えられる。また水素を5%含む窒素中にて500℃で1時間還元する方法が例示されており、触媒の製造方法が複雑となっている。
一方、特許文献4では比表面積が150m2/g以上のマンガン化合物を自動車のラジエータなど表面に塗布して、走行することによって道路などの環境中のオゾン、一酸化炭素、不飽和炭化水素、含酸素炭化水素などの汚染物質を浄化する方法が開示されている。オゾン以外に一酸化炭素や炭化水素を処理する場合は白金やパラジウムと組み合わせて使用することも記載されている。マンガン化合物としてαMnO2が好ましいとされており、より好ましい酸化マンガンの結晶構造としてX線回折で測定されるクリプトメレン(KMn8O16・xH2O)構造が開示されている。
Further, a carbon monoxide oxidation catalyst in which palladium or platinum is supported on cerium oxide is disclosed in Patent Document 2, and monoxide is oxidized by supporting palladium or platinum on a surface layer having a depth of 0.8 mm from the surface of the molded body. It is described that carbon can be treated at a room temperature of 15 to 40 ° C.
Furthermore, Patent Document 3 discloses a room temperature purification catalyst in which a noble metal is supported on an oxide in which oxygen defects are introduced into cerium oxide or the like by reduction treatment, and an environmental load substance such as carbon monoxide or formaldehyde is efficiently produced at room temperature. It is described that it can be removed well. However, in the test results shown in the examples, the processing speed tends to decrease rapidly with time for any gas. This is considered to be due to the fact that by-products are generated without being completely oxidized, the structure of oxygen defects is not maintained by the reaction, and the performance is lowered. Further, a method of reducing at 500 ° C. for 1 hour in nitrogen containing 5% of hydrogen is exemplified, and the method for producing the catalyst is complicated.
On the other hand, in Patent Document 4, a manganese compound having a specific surface area of 150 m 2 / g or more is applied to the surface of an automobile radiator or the like, and by running, it contains ozone, carbon monoxide, unsaturated hydrocarbons, etc. A method for purifying contaminants such as oxygen hydrocarbons is disclosed. In addition to ozone, the use of carbon monoxide and hydrocarbons in combination with platinum or palladium is also described. ΑMnO 2 is said to be preferable as the manganese compound, and a cryptomelane (KMn 8 O 16 · xH 2 O) structure measured by X-ray diffraction is disclosed as a more preferable crystal structure of manganese oxide.
本発明は、上述のような問題点を解決するためになされたものであり、空気中の一酸化炭素やホルムアルデヒドなどの低濃度の有害物質を50℃以下の低温で効率良く処理する空気清浄化用触媒を提供することである。また本触媒の製造方法は簡単であり、複雑な製造設備を必要としない。 The present invention has been made to solve the above-described problems, and is an air purifier that efficiently treats low-concentration harmful substances such as carbon monoxide and formaldehyde in air at a low temperature of 50 ° C. or lower. It is to provide a catalyst for use. Moreover, the manufacturing method of this catalyst is simple and does not require complicated manufacturing equipment.
上記課題を解決するために、本発明の空気清浄化用触媒は、触媒A成分としてマンガン−セリウムの均密混合酸化物と触媒B成分として周期律表8〜11族に属する元素の中から選ばれる少なくとも一種以上の金属元素を含有しており、前記マンガン−セリウム均密混合酸化物はマンガンを二酸化マンガン換算で10〜60質量%含有しており、かつ粉末X線回折測定にて二酸化セリウムの蛍石型構造を有していると同定されることを特徴とするものである。 In order to solve the above-mentioned problems, the catalyst for air purification of the present invention is selected from the elements belonging to Group 8 to 11 of the periodic table as the catalyst A component and the manganese-cerium homogeneous mixed oxide and the catalyst B component. At least one metal element, and the manganese-cerium dense mixed oxide contains 10 to 60% by mass of manganese in terms of manganese dioxide. It is identified as having a fluorite structure.
本発明の空気清浄化用触媒は触媒A成分であるマンガン−セリウム均密混合酸化物を30〜99.95質量%含有し、触媒B成分としてパラジウム、白金、銀および金から選ばれる少なくとも1種の金属元素を0.05〜20質量%含有していることが好ましい。
また空気清浄化用触媒は触媒A成分と触媒B成分に加えて、さらに触媒C成分として酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトおよびチタン系複合酸化物からなる群から選ばれる少なくとも1種の耐火性無機酸化物を含有することができる。
また本発明の空気清浄化用触媒の製造方法において、触媒A成分として酸化セリウムまたは酸化セリウムの前駆体と、マンガン化合物溶液を混合して乾燥後に空気中300〜900℃で焼成してマンガン−セリウム均密混合酸化物を調製する工程を有していることを特徴とする。この際、マンガン化合物1モルに対して0.1〜2モルの有機酸をマンガン化合物溶液に添加することが好ましい。
The air cleaning catalyst of the present invention contains 30 to 99.95% by mass of a manganese-cerium homogeneous mixed oxide as a catalyst A component, and at least one selected from palladium, platinum, silver and gold as a catalyst B component. It is preferable to contain 0.05-20 mass% of metal elements.
In addition to the catalyst A component and the catalyst B component, the air cleaning catalyst further includes at least one refractory selected from the group consisting of aluminum oxide, titanium oxide, zirconium oxide, zeolite, and titanium-based composite oxide as the catalyst C component. An inorganic oxide can be contained.
In the method for producing an air cleaning catalyst of the present invention, manganese-cerium is prepared by mixing cerium oxide or a precursor of cerium oxide as a catalyst A component and a manganese compound solution, drying the mixture, and firing in air at 300 to 900 ° C. It has the process of preparing an intimate mixed oxide. Under the present circumstances, it is preferable to add 0.1-2 mol organic acid with respect to 1 mol of manganese compounds to a manganese compound solution.
本発明の空気清浄化用触媒は50℃以下の低温で空気中の有害物質を効率的に除去することができる。上記有害物質としてはオゾン、一酸化炭素、揮発性有機化合物(VOC)、炭化水素、硫黄系化合物や窒素系化合物等が上げられる。 The air cleaning catalyst of the present invention can efficiently remove harmful substances in the air at a low temperature of 50 ° C. or lower. Examples of the harmful substances include ozone, carbon monoxide, volatile organic compounds (VOC), hydrocarbons, sulfur compounds and nitrogen compounds.
本発明の空気清浄化用触媒に用いる触媒A成分であるマンガン−セリウム均密混合酸化物は安価な原料、簡便な製造設備や製造方法で製造可能であり、触媒B成分と組み合わせることにより一酸化炭素、ホルムアルデヒドなどの有害物質を50℃以下の低温で完全酸化して室内空気を清浄化することができる。 The manganese-cerium dense mixed oxide, which is the catalyst A component used in the catalyst for air purification of the present invention, can be produced with an inexpensive raw material, simple production equipment and production method, and is combined with the catalyst B component to be oxidized. It is possible to clean indoor air by completely oxidizing harmful substances such as carbon and formaldehyde at a low temperature of 50 ° C. or lower.
本発明の空気清浄化用触媒は触媒A成分としてマンガン−セリウム均密混合酸化物と触媒B成分として周期律表8〜11族に属する元素の中から選ばれる少なくとも一種以上の金属元素を含有するものであって、前記マンガン−セリウム均密混合酸化物はマンガンを二酸化マンガン換算で10〜60質量%含有しており、かつ粉末X線回折測定にて二酸化セリウムの蛍石型構造を有していることを特徴とする。 The air cleaning catalyst of the present invention contains a manganese-cerium dense mixed oxide as a catalyst A component and at least one metal element selected from elements belonging to groups 8 to 11 of the periodic table as a catalyst B component. The manganese-cerium dense mixed oxide contains 10 to 60% by mass of manganese in terms of manganese dioxide, and has a fluorite structure of cerium dioxide by powder X-ray diffraction measurement. It is characterized by being.
本発明の触媒A成分のマンガン−セリウム均密混合酸化物とは、粉末X線回折にて測定した際に、酸化マンガンに由来する回折ピークは見られず、蛍石型の二酸化セリウムの結晶ピークを主ピークとして得られるものを表している。粉末試料の結晶構造は格子面間隔(d値)を測定することにより確認することが可能である。X線回折の測定条件は、CuKα線源、電圧45KV、電流40mA、走査範囲10〜90°、走査速度0.198°/minで実施した。本願発明により得られたマンガン−セリウム均密混合酸化物のX線回折の測定結果において主ピークのd値は3.07〜3.15の範囲にあり、JCPDS(Joint Committee of Powder Diffraction Standarts)カードに記載された二酸化セリウムの蛍石型構造のd値である3.12とほぼ一致する。またカードに記載されている二酸化セリウムのd値は相対強度が高い順に、3.12、1.91、1.63、2.71等であり、主ピーク以外もほぼ一致した位置(d値±0.05)に結晶ピークが検出され、マンガン−セリウム均密混合酸化物の結晶構造は二酸化セリウム蛍石型構造にほぼ類似していると考えられる。 The manganese-cerium homogeneous mixed oxide of the catalyst A component of the present invention does not show a diffraction peak derived from manganese oxide when measured by powder X-ray diffraction, and is a crystal peak of fluorite-type cerium dioxide Is obtained as a main peak. The crystal structure of the powder sample can be confirmed by measuring the lattice spacing (d value). The measurement conditions for X-ray diffraction were a CuKα radiation source, a voltage of 45 KV, a current of 40 mA, a scanning range of 10 to 90 °, and a scanning speed of 0.198 ° / min. In the X-ray diffraction measurement results of the manganese-cerium dense mixed oxide obtained by the present invention, the d value of the main peak is in the range of 3.07 to 3.15, and the JCPDS (Joint Committee of Powder Diffraction Standards) card. This is almost the same as 3.12 which is the d value of the fluorite structure of cerium dioxide described in 1). The d value of cerium dioxide described on the card is 3.12, 1.91, 1.63, 2.71, etc. in descending order of relative intensity, and the positions (d value ± 0.05) a crystal peak was detected, and the crystal structure of the manganese-cerium dense mixed oxide is considered to be almost similar to the cerium dioxide fluorite structure.
触媒A成分であるマンガン−セリウム均密混合酸化物はマンガンを二酸化マンガン換算で10〜60質量%、好ましくは15〜50質量%、より好ましくは20〜40質量%の範囲で含有する。このように高い含有率でマンガンを含有するにも係らず、酸化マンガンに由来する回折ピークが見られないことから酸化マンガンはアモルファスな状態で酸化セリウム上に高分散されていると推定される。 The manganese-cerium homogeneous mixed oxide which is the catalyst A component contains 10 to 60% by mass, preferably 15 to 50% by mass, more preferably 20 to 40% by mass in terms of manganese dioxide. In spite of containing manganese at such a high content, no diffraction peak derived from manganese oxide is observed, and therefore it is estimated that manganese oxide is highly dispersed on cerium oxide in an amorphous state.
マンガン−セリウム均密混合酸化物における二酸化マンガン換算の含有率が10質量%未満である場合は、有害物質の酸化速度が不十分となり効率的な触媒処理ができなくなり、60質量%を超える場合は酸化マンガンが結晶化しやすくなり耐熱性や耐被毒性の低下を招くので好ましくない。 When the manganese dioxide-certain mixed oxide content in the manganese-cerium dense mixed oxide is less than 10% by mass, the oxidation rate of harmful substances becomes insufficient and efficient catalyst treatment cannot be performed. Manganese oxide tends to crystallize, leading to a decrease in heat resistance and poisoning resistance.
一般に酸化マンガンの結晶構造としてはMnO、MnO2、Mn2O3、Mn3O4などの形態があり、特にMnO2は活性二酸化マンガンと呼ばれ強い酸化力を有していることが知られている。しかしながらMnO2は熱処理により相変化しやすいため触媒燃焼法に使用することは困難であった。本願の製造方法により得られるマンガン−セリウム均密混合酸化物は900℃の高温で熱処理してもX線回折測定において、ほとんど二酸化セリウムの蛍石型の結晶ピークが検出されるのみであり熱的安定性に関しても大幅な改善効果が得られることが判っている。また酸化マンガンは反応性が高く処理ガス中に硫黄化合物が存在すると硫化マンガンや硫酸マンガンに変質して性能低下を招きやすいことが判っているが、本発明のマンガン−セリウム均密混合酸化物は酸化マンガンが安定化されており耐硫黄被毒性に対しても改善効果が得られる。 In general, the crystal structure of manganese oxide includes MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 and the like, and especially MnO 2 is known as active manganese dioxide and has a strong oxidizing power. ing. However, MnO 2 is difficult to use in the catalytic combustion method because it easily undergoes a phase change by heat treatment. The manganese-cerium homogeneous mixed oxide obtained by the production method of the present application can only detect a fluorite-type crystal peak of cerium dioxide in the X-ray diffraction measurement even when heat-treated at a high temperature of 900 ° C. It has been found that a significant improvement effect can be obtained with respect to stability. Manganese oxide is highly reactive, and it is known that when sulfur compounds are present in the processing gas, it will be transformed into manganese sulfide or manganese sulfate, which tends to cause performance degradation. Manganese oxide is stabilized, and an improvement effect is obtained with respect to sulfur poisoning resistance.
マンガン−セリウム均密混合酸化物は固相混合法、固液混合法、液相共沈法、アルコキシドを用いたゾルゲル法等により製造することができる。特に安価な原料を用いて簡便な製造装置用いて高活性な均密混合酸化物を製造することができる固液混合法が好ましい製造方法として挙げられる。固液混合法とはマンガンまたはセリウムとどちらかを使用する溶媒に不溶な固体原料として用いて、もう一方に金属塩を水などの溶媒に溶解した溶液として混合して調製するものである。好ましくはセリウム源を固体原料としてマンガン源を溶液で使用することが好ましい。具体的にはアモルファスな酸化セリウムまたは炭酸セリウム、水酸化セリウム等の酸化セリウムの前駆体に硝酸マンガン等のマンガン化合物溶液を含浸して、乾燥、焼成することが挙げられる。空気中で300〜900℃で焼成することで、20〜100m2/gの比表面積を有したマンガン−セリウム均密混合酸化物を調製することができる。 The manganese-cerium homogeneous mixed oxide can be produced by a solid phase mixing method, a solid-liquid mixing method, a liquid phase coprecipitation method, a sol-gel method using an alkoxide, or the like. A particularly preferable production method is a solid-liquid mixing method that can produce a highly active homogeneous mixed oxide by using a simple production apparatus using an inexpensive raw material. The solid-liquid mixing method is prepared by using a solid raw material insoluble in a solvent that uses either manganese or cerium, and mixing it as a solution in which a metal salt is dissolved in a solvent such as water. Preferably, a cerium source is used as a solid raw material and a manganese source is used in a solution. Specifically, amorphous cerium oxide or a precursor of cerium oxide such as cerium carbonate or cerium hydroxide is impregnated with a manganese compound solution such as manganese nitrate, followed by drying and firing. By firing at 300 to 900 ° C. in the air, a manganese-cerium homogeneous mixed oxide having a specific surface area of 20 to 100 m 2 / g can be prepared.
触媒B成分の周期律表8〜11族に属する金属元素としては、8族の鉄、ルテニウム、オスミウム、9族のコバルト、ロジウム、イリジウム、10族のニッケル、パラジウム、白金および11族の銅、銀、金などが使用可能である。好ましい触媒B成分としてパラジウム、白金、銀および金から選ばれる少なくとも1種の元素を用いることが好ましい。
本発明の空気清浄化用触媒は前記触媒A成分としてマンガン−セリウム均密混合酸化物を30〜99.5質量%、触媒B成分として周期律表8〜11族の金属元素を0.05〜20質量%含有していることが好ましい。触媒A成分であるマンガン−セリウム均密混合酸化物が30質量%未満である場合は有害物質の酸化速度が遅くなり高い処理効率が得られ難く、好ましくは50質量%以上、より好ましくは70質量%以上である。また触媒B成分である周期律表8〜11族の金属元素が0.05質量%より少ない場合は低温での酸化性能が不十分となり、20質量%を超えても性能向上効果はほとんど得られず分散性が低下して粒子成長する可能性があるので好ましくない。尚、触媒B成分は各元素の金属または金属の酸化物として含有されることが好ましい。
The metal elements belonging to groups 8 to 11 of the periodic table of catalyst B component include group 8 iron, ruthenium, osmium, group 9 cobalt, rhodium, iridium, group 10 nickel, palladium, platinum, and group 11 copper, Silver, gold, etc. can be used. It is preferable to use at least one element selected from palladium, platinum, silver and gold as the preferred catalyst B component.
The catalyst for air purification of the present invention comprises 30 to 99.5% by mass of a manganese-cerium homogeneous mixed oxide as the catalyst A component, and 0.05 to 0.05% of a metal element of Group 8 to 11 of the periodic table as the catalyst B component. It is preferable to contain 20 mass%. When the manganese-cerium homogeneous mixed oxide, which is the catalyst A component, is less than 30% by mass, the oxidation rate of harmful substances becomes slow and high treatment efficiency is difficult to obtain, preferably 50% by mass or more, more preferably 70% by mass. % Or more. In addition, when the amount of the metal element of Group 8 to 11 of the periodic table as the catalyst B component is less than 0.05% by mass, the oxidation performance at low temperature becomes insufficient, and even if it exceeds 20% by mass, the performance improvement effect is almost obtained. Therefore, it is not preferable because the dispersibility may decrease and the particles may grow. The catalyst B component is preferably contained as a metal of each element or a metal oxide.
また触媒B成分としてはパラジウム、白金、銀および金から選ばれる少なくとも1種の元素を使用することが好ましく、これら元素使用することにより一酸化炭素やVOCの除去性能の向上が得られる。特に好ましくは触媒B成分としてパラジウムと銀を組み合わせて使用することにより低温での酸化性能が著しく向上し、Pd/Agの原子比を50/50〜1/99の範囲とすることが好ましい。 Moreover, it is preferable to use at least one element selected from palladium, platinum, silver and gold as the catalyst B component, and the use of these elements can improve the removal performance of carbon monoxide and VOC. It is particularly preferable that the oxidation performance at low temperature is remarkably improved by using a combination of palladium and silver as the catalyst B component, and the atomic ratio of Pd / Ag is preferably in the range of 50/50 to 1/99.
本発明の空気清浄化用触媒は前述の触媒A成分および触媒B成分に加えて、さらに触媒C成分として酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトおよびチタン系複合酸化物からなる群から選ばれる少なくとも1種の耐火性無機酸化物を含有することができる。耐火性無機酸化物は0〜69.95質量%含有することが好ましい。耐火性無機酸化物を添加することにより空気中に低濃度で存在する有害物質に対する吸着特性や触媒の機械的強度の向上が得られる。耐火性無機酸化物が69.95質量%を超える場合は触媒A成分および触媒B成分の含有量が少なくなり、十分な触媒活性が得られなくなるので好ましくない。 The air cleaning catalyst of the present invention is at least selected from the group consisting of aluminum oxide, titanium oxide, zirconium oxide, zeolite, and titanium-based composite oxide as catalyst C component in addition to the above-mentioned catalyst A component and catalyst B component. One kind of refractory inorganic oxide can be contained. It is preferable to contain 0-69.95 mass% of refractory inorganic oxides. By adding a refractory inorganic oxide, it is possible to obtain an improvement in adsorption characteristics for harmful substances present in a low concentration in the air and mechanical strength of the catalyst. When the refractory inorganic oxide exceeds 69.95% by mass, the contents of the catalyst A component and the catalyst B component are decreased, and sufficient catalytic activity cannot be obtained, which is not preferable.
前記耐火性無機酸化物はチタン系複合酸化物を使用することが好ましい。チタン系複合酸化物が優れている理由は明らかではないが、顕著な固体酸性を有していることで低温での有害物質の酸化が促進する効果が得られていると考えられる。チタン系複合酸化物としてはTi−Si複合酸化物、Ti−Zr複合酸化物およびTi−Si−Zr複合酸化物から選ばれる1種を使用することが好ましい。特にTi−Si複合酸化物は高比表面積を有しており化学的および熱的に安定であり、触媒A成分および触媒B成分と組み合わせ使用することにより吸着性に優れた空気清浄化用触媒を構成することができる。特に低温での酸化処理で問題となる硫黄系化合物を含有するガスを処理するのに好適である。室内の低濃度の有害ガスを処理するに際してチタン系複合酸化物の比表面積は100m2/g以上、好ましくは150m2/g以上であることが好ましい。またチタン系複合酸化物はpKa≦+3.3の酸強度を有する固体酸量が0.3mmol/g以上であることが好ましい。
次に空気清浄化用触媒の製造方法について記載する。前述のように触媒A成分であるマンガン−セリウム均密混合酸化物は液相共沈法やゾルゲル法によっても製造することができるが、以下に示す簡便な固液混合法で製造することが好ましい。
The refractory inorganic oxide is preferably a titanium composite oxide. The reason why the titanium-based composite oxide is excellent is not clear, but it is considered that the effect of promoting the oxidation of harmful substances at a low temperature is obtained by having a remarkable solid acidity. As the titanium-based composite oxide, it is preferable to use one selected from a Ti—Si composite oxide, a Ti—Zr composite oxide, and a Ti—Si—Zr composite oxide. In particular, Ti-Si composite oxide has a high specific surface area, is chemically and thermally stable, and is used in combination with the catalyst A component and the catalyst B component to provide an air purification catalyst having excellent adsorptivity. Can be configured. In particular, it is suitable for treating a gas containing a sulfur compound that causes a problem in oxidation treatment at a low temperature. When treating a low concentration harmful gas in the room, the specific surface area of the titanium-based composite oxide is preferably 100 m 2 / g or more, and preferably 150 m 2 / g or more. The titanium-based composite oxide preferably has a solid acid amount having an acid strength of pKa ≦ + 3.3 of 0.3 mmol / g or more.
Next, a method for producing an air cleaning catalyst will be described. As described above, the manganese-cerium dense mixed oxide which is the component of catalyst A can be produced by a liquid phase coprecipitation method or a sol-gel method, but is preferably produced by a simple solid-liquid mixing method shown below. .
本発明の空気清浄化用触媒の具体的な製造方法は酸化セリウム、または酸化セリウムの前駆体と、マンガン化合物溶液を十分に混合し乾燥後に空気中300〜900℃で焼成して触媒A成分であるマンガン−セリウム均密混合酸化物を調製する工程を有していることを特徴とする。セリウム源としてはアモルファスな酸化セリウムまたは炭酸セリウム、水酸化セリウム等の酸化セリウムの前駆体が使用可能であり特に多孔質で高比表面積な均密混合酸化物を得ることができる炭酸セリウムをセリウム源として用いることが好ましい。またマンガン源としては硝酸マンガン、塩化マンガン、酢酸マンガン等の水などの溶媒に溶解可能なマンガン化合物の溶液を使用することができ、特に硝酸マンガン水溶液を使用することが好ましい。水などの溶媒の添加量は固液の均質な混合が可能な範囲とし、混合装置や乾燥装置の仕様に合わせて適宜変更できる。乾燥は水などの溶媒を除去するものであり80〜200℃の範囲で1〜24時間実施し、その後空気中で300〜900℃、好ましくは500〜700℃で焼成することでマンガン−セリウム均密混合酸化物を調製することができる。 The specific method for producing the air cleaning catalyst of the present invention is to mix cerium oxide or a precursor of cerium oxide and a manganese compound solution sufficiently, and after drying, calcining in air at 300 to 900 ° C. It has the process of preparing a certain manganese-cerium homogeneous mixed oxide. As the cerium source, amorphous cerium oxide or a precursor of cerium oxide such as cerium carbonate and cerium hydroxide can be used. It is preferable to use as. As the manganese source, a solution of a manganese compound that can be dissolved in a solvent such as water such as manganese nitrate, manganese chloride, and manganese acetate can be used, and an aqueous manganese nitrate solution is particularly preferable. The addition amount of a solvent such as water is within a range in which solid and liquid can be homogeneously mixed, and can be appropriately changed according to the specifications of the mixing apparatus and the drying apparatus. Drying is performed to remove a solvent such as water, and is carried out in the range of 80 to 200 ° C. for 1 to 24 hours, and then calcined in air at 300 to 900 ° C., preferably 500 to 700 ° C. Close mixed oxides can be prepared.
また上記マンガン化合物溶液に酢酸、クエン酸、マレイン酸、リンゴ酸、コハク酸等の有機酸を添加することにより、さらに高活性で微細構造を有したマンガン−セリウム均密混合酸化物を得ることができる。有機酸の添加量としてはマンガン化合物1モルに対して0.1〜2モル、好ましくは0.3〜1.5モル、より好ましくは0.5〜1モル添加することが好ましい。有機酸の添加量が0.1モルより少ない場合は添加効果が得られず、2モルを超える場合は焼成時に還元雰囲気となり均密混合酸化物の性状に悪影響を与える可能性があるため好ましくない。 Further, by adding an organic acid such as acetic acid, citric acid, maleic acid, malic acid, and succinic acid to the manganese compound solution, a manganese-cerium homogeneous mixed oxide having a higher activity and a fine structure can be obtained. it can. The addition amount of the organic acid is preferably 0.1 to 2 mol, preferably 0.3 to 1.5 mol, more preferably 0.5 to 1 mol, per 1 mol of the manganese compound. When the addition amount of the organic acid is less than 0.1 mol, the addition effect cannot be obtained, and when it exceeds 2 mol, it is not preferable because it may be a reducing atmosphere during firing and adversely affect the properties of the dense mixed oxide. .
本発明の空気清浄化用触媒の製造方法において触媒B成分の添加方法は特に限定されるものではなく例えば(1)〜(3)の方法が例示される。(1)触媒A成分の粉体に、触媒B成分の金属元素の硝酸塩、硫酸塩などの水溶液を噴霧や浸漬して乾燥焼成して担持してから、これら触媒組成物を成形して乾燥焼成して製造する。(2)触媒A成分の粉末と触媒B成分の金属化合物塩溶液と混練して成形してから乾燥焼成して製造する。(3)触媒A成分を含有する触媒組成物を、成形して乾燥焼成後に触媒B成分の金属化合物塩溶液に含浸担持し乾燥焼成する。特に(3)の製造方法で触媒B成分を成形体の表層部に担持することが好ましく、これにより触媒B成分の含有率を少なくすることができる。前記触媒の焼成温度としては300〜900℃、好ましくは400〜600℃にて空気中で焼成することができる。空気清浄化用触媒は顆粒状、ペレット状、ハニカム状等の形状とすることができる。必要により成形助剤として澱粉等の有機バインダー、シリカゾルやアルミナゾル等の無機バインダーやガラス繊維等のセラミック繊維を添加することができる。成形助剤は触媒組成物の15%以下、好ましくは10%以下で添加することが好ましい。なお触媒C成分である酸化アルミニウム、酸化チタン、酸化ジルコニウム、ゼオライトまたはチタン系複合酸化物などの耐火性無機酸化物は前記(1)〜(3)の製造方法のいずれの工程において添加しても良い。 In the method for producing an air cleaning catalyst of the present invention, the method for adding the catalyst B component is not particularly limited, and examples thereof include the methods (1) to (3). (1) The catalyst A component powder is sprayed or dipped in an aqueous solution of a metal element of the catalyst B component, such as nitrate or sulfate, dried and fired, supported, and then molded and dried and fired. To manufacture. (2) A catalyst A component powder and a catalyst B component metal compound salt solution are kneaded and molded, followed by drying and firing. (3) A catalyst composition containing the catalyst A component is molded, dried and fired, impregnated and supported on a metal compound salt solution of the catalyst B component, and dried and fired. In particular, it is preferable to support the catalyst B component on the surface layer portion of the molded body by the production method (3), whereby the content of the catalyst B component can be reduced. The catalyst may be calcined in air at 300 to 900 ° C., preferably 400 to 600 ° C. The air cleaning catalyst may have a granular shape, a pellet shape, a honeycomb shape, or the like. If necessary, an organic binder such as starch, an inorganic binder such as silica sol or alumina sol, or a ceramic fiber such as glass fiber can be added as a molding aid. The molding aid is preferably added at 15% or less, preferably 10% or less of the catalyst composition. The catalyst C component, which is a refractory inorganic oxide such as aluminum oxide, titanium oxide, zirconium oxide, zeolite, or titanium-based composite oxide, may be added in any step of the production methods (1) to (3). good.
本発明の空気清浄化方法は50℃以下の低温で有害物質を含有する空気と前記空気清浄化用触媒を接触させるだけで有害物質を効率的に除去することができる。また触媒の空間速度は1,000〜1,000,000hr−1で処理可能であり、好ましくは10,000〜200,000hr−1の範囲で処理することが好ましい。本発明の空気清浄化用触媒により室内空気中に存在する低濃度のオゾン、一酸化炭素、VOC、硫黄系化合物や窒素系化合物等の有害物質や臭気物質を処理することができる。なお温度が高くなるほど空気清浄化用触媒による有害成分の除去速度は速まるため、50℃を超える温度で使用することもできる。 The air cleaning method of the present invention can efficiently remove harmful substances only by bringing the air cleaning catalyst into contact with air containing harmful substances at a low temperature of 50 ° C. or lower. The space velocity of the catalyst is processable in 1,000~1,000,000hr -1, preferably it is preferred to treat a range of 10,000~200,000hr -1. The catalyst for air purification of the present invention can treat harmful substances and odorous substances such as low concentration ozone, carbon monoxide, VOC, sulfur-based compounds and nitrogen-based compounds present in indoor air. In addition, since the removal rate of the harmful component by the air cleaning catalyst increases as the temperature increases, it can be used at a temperature exceeding 50 ° C.
また空気清浄化用触媒の形状は成形品に限定されるものではない。例えば自動車のラジエータなどの放熱フィンの表面に、触媒A成分および触媒B成分を含有する本発明の空気清浄化用触媒を被覆せしめることによって空気中に含まれる有害物質を効果的に除去することができる。この際、前記触媒組成物を湿式粉砕して水性スラリーとして、放熱フィンに塗布したり吹き付けて、表面に接着せしめる。自動車のラジエータの放熱フィンは表面温度が70℃近くまで上昇するため、余剰熱を利用して空気中の有害物質を高効率で除去することができる。余剰熱を利用できるものはラジエータ以外に、例えばカーエアコン、家庭用や業務用エアコンの室外機、パソコンなどの放熱フィンに適用することが可能であり、自動車の走行や空冷ファンにより強制的に空気と接触する部分に空気清浄化用触媒を被覆せしめることで室内外の空気を効率的に処理することができる。水性スラリーの平均粒子径は10μm以下が好ましく、平均粒子径が10μmより大きい場合は接着性が不十分となるため好ましくない。放熱フィンの材質はアルミニウムまたはアルミニウム合金が使用されているが、接着性を高めるために金属表面処理を実施しても良い。また必要により無機または有機のバインダーを水性スラリーに添加することでより接着性を高めることができる。無機バインダーとしてはシリカゾル、アルミナゾル、ジルコニアゾル、セメント、水ガラスなどが挙げられ、有機バインダーとしては塗料やコーティング剤として一般的に使用されている各種ポリマーが使用可能である。 The shape of the air cleaning catalyst is not limited to a molded product. For example, it is possible to effectively remove harmful substances contained in the air by coating the surface of a radiating fin such as a radiator of an automobile with the air cleaning catalyst of the present invention containing the catalyst A component and the catalyst B component. it can. At this time, the catalyst composition is wet-pulverized to form an aqueous slurry, which is applied to or sprayed on the heat dissipating fins to adhere to the surface. Since the surface temperature of the radiator fin of an automobile radiator rises to nearly 70 ° C., it is possible to efficiently remove harmful substances in the air using surplus heat. In addition to radiators, those that can use surplus heat can be applied to, for example, car air conditioners, outdoor units for home and commercial air conditioners, and heat radiating fins for personal computers. The indoor and outdoor air can be efficiently treated by covering the portion in contact with the air cleaning catalyst. The average particle diameter of the aqueous slurry is preferably 10 μm or less, and when the average particle diameter is larger than 10 μm, the adhesiveness becomes insufficient, which is not preferable. Aluminum or aluminum alloy is used as the material of the heat dissipating fins, but metal surface treatment may be performed in order to improve adhesion. Moreover, adhesiveness can be improved more by adding an inorganic or organic binder to an aqueous slurry if necessary. Examples of the inorganic binder include silica sol, alumina sol, zirconia sol, cement, and water glass. As the organic binder, various polymers generally used as a paint or a coating agent can be used.
以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
(実施例1〜4)
固液混合法により触媒A成分であるマンガン−セリウム均密混合酸化物を以下の方法で調製した。粉末状の炭酸セリウムおよび硝酸マンガンの水溶液を計量して、マンガン−セリウム均密混合酸化物中の酸化マンガンの含有率がMnO2換算で30質量%となるように十分に混合して、混合物を150℃で一晩乾燥して500℃で5時間焼成して、ハンマ−ミルで粉砕してマンガン−セリウム均密混合酸化物MC−1粉体を得た。得られたマンガン−セリウム均密混合酸化物をCuKα線源、電圧45KV、電流40mA、走査範囲10〜90°、走査速度0.198°/minでX線回折の測定した結果、二酸化セリウムの蛍石型結晶構造を示す位置に主ピークが検出されマンガン由来の結晶ピークは観察されなかった。またBET法で測定した比表面積は45m2/gであった。
(Examples 1-4)
Manganese-cerium homogeneous mixed oxide as the catalyst A component was prepared by the following method by the solid-liquid mixing method. Weigh the aqueous solution of powdered cerium carbonate and manganese nitrate and mix well so that the manganese oxide content in the manganese-cerium homogeneous mixed oxide is 30% by mass in terms of MnO 2. It was dried at 150 ° C. overnight, calcined at 500 ° C. for 5 hours, and pulverized with a hammer mill to obtain a manganese-cerium homogeneous mixed oxide MC-1 powder. The obtained manganese-cerium homogeneous mixed oxide was measured for X-ray diffraction by a CuKα ray source, a voltage of 45 KV, a current of 40 mA, a scanning range of 10 to 90 °, and a scanning speed of 0.198 ° / min. A main peak was detected at a position showing a stone-type crystal structure, and no manganese-derived crystal peak was observed. The specific surface area measured by the BET method was 45 m 2 / g.
上記で得られたMC−1粉体94.5質量部、ガラス繊維5.0質量部と澱粉3.0質量部に適当量の水を添加してニーダーで混合し押出成形機にて5mmΦ長さ7mmの円柱状ペレットに成形し、乾燥後に500℃で5時間空気中にて焼成してペレット成形体を得た。このようにして得られたペレット成形体に触媒B成分として表1に示す金属元素の硝酸塩水溶液を噴霧してロータリーエバポレータで100℃に加熱しながら攪拌し、十分に乾燥してから空気中で500℃2時間焼成して表1に示す組成の実施例1〜4の完成触媒を得た。 An appropriate amount of water was added to 94.5 parts by mass of the MC-1 powder obtained above, 5.0 parts by mass of glass fiber and 3.0 parts by mass of starch, mixed with a kneader, and 5 mmΦ long by an extruder. It was molded into a cylindrical pellet having a thickness of 7 mm, dried, and then fired in air at 500 ° C. for 5 hours to obtain a pellet molded body. The pellet molded body thus obtained was sprayed with a nitrate aqueous solution of metal elements shown in Table 1 as the catalyst B component, stirred while heating to 100 ° C. with a rotary evaporator, sufficiently dried, and then heated to 500 in air. C. for 2 hours to obtain finished catalysts of Examples 1 to 4 having the compositions shown in Table 1.
(実施例5〜7)
実施例1〜4のマンガン−セリウム均密混合酸化物の調製において硝酸マンガンの添加量を変更し、かつマンガン1モルに対してクエン酸を1.0モル添加した以外は実施例1〜4と同様にして酸化マンガンの含有率が50質量%のマンガン−セリウム均密混合酸化物MC−2を得た。得られたMC−2粉体はX線回折測定において二酸化セリウムの蛍石型結晶構造を示す位置に主ピークが検出されマンガン由来の結晶ピークは観察されなかった。またBET法で測定したMC−2粉体の比表面積は55m2/gであった。以下、実施例1〜4と同様にして表1に示す組成の実施例5〜7の完成触媒を得た。
(Examples 5-7)
Examples 1-4 except that the addition amount of manganese nitrate was changed in the preparation of the manganese-cerium homogeneous mixed oxide of Examples 1 to 4 and 1.0 mol of citric acid was added to 1 mol of manganese. Similarly, manganese-cerium homogeneous mixed oxide MC-2 having a manganese oxide content of 50% by mass was obtained. In the obtained MC-2 powder, a main peak was detected at a position showing a fluorite-type crystal structure of cerium dioxide in X-ray diffraction measurement, and a crystal peak derived from manganese was not observed. The specific surface area of the MC-2 powder measured by the BET method was 55 m 2 / g. Thereafter, in the same manner as in Examples 1 to 4, finished catalysts of Examples 5 to 7 having the compositions shown in Table 1 were obtained.
(実施例8〜9)
まず触媒C成分となるTi−Si複合酸化物(Ti/Siモル比=85/15)を以下の方法で調製した。10重量%アンモニア水700リットルにスノーテックス−20(日産化学(株)製シリカゾル、約20重量%のSiO2含有)21.3kgを加え、攪拌、混合した後、硫酸チタニルの硫酸溶液(TiO2として125g/リットル、硫酸濃度550g/リットル)340リットルを攪拌しながら徐々に滴下した。得られたゲルを3時間放置した後、ろ過、水洗し、続いて150℃で10時間乾燥した。これを500℃で焼成し、更にハンマーミルを用いて粉砕してTi−Si複合酸化物粉体TS−1を得た。
TS−1粉体の比表面積が162m2/gであり、X線回折測定ではTiO2やSiO2の明らかな固有ピークは認められず、ブロードな回折ピークによって非晶質な微細構造を有するTi−Si複合酸化物が形成されていることが確認された。またp−ジメチルアミノアゾベンゼンを指示薬として用いてn−ブチルアミン滴定法によりTS−1の固体酸量を測定した結果、pKa≦+3.3の酸強度の固体酸量は0.48mmol/gであった。
(Examples 8 to 9)
First, a Ti—Si composite oxide (Ti / Si molar ratio = 85/15) serving as a catalyst C component was prepared by the following method. After adding 21.3 kg of SNOWTEX-20 (silica sol manufactured by Nissan Chemical Co., Ltd., containing about 20% by weight of SiO 2 ) to 700 liters of 10% by weight aqueous ammonia, stirring and mixing, a sulfuric acid solution of titanyl sulfate (TiO 2) (125 g / liter, sulfuric acid concentration 550 g / liter) was gradually added dropwise with stirring. The obtained gel was allowed to stand for 3 hours, filtered, washed with water, and then dried at 150 ° C. for 10 hours. This was fired at 500 ° C. and further pulverized using a hammer mill to obtain Ti—Si composite oxide powder TS-1.
The specific surface area of the TS-1 powder is 162 m 2 / g, and X-ray diffraction measurement does not show any obvious intrinsic peaks of TiO 2 or SiO 2 , and Ti has an amorphous microstructure due to a broad diffraction peak. It was confirmed that a —Si composite oxide was formed. Moreover, as a result of measuring the solid acid amount of TS-1 by n-butylamine titration method using p-dimethylaminoazobenzene as an indicator, the solid acid amount of acid strength of pKa ≦ + 3.3 was 0.48 mmol / g. .
次に実施例5〜7にて得られた触媒A成分であるマンガン−セリウム均密混合酸化物MC−2粉体に触媒B成分として硝酸銀と硝酸パラジウムの混合水溶液を含浸して乾燥し空気中500℃で2時間焼成して表1に示す比率で触媒A成分に触媒B成分を担持した粉体を得た。以下、表1に示す組成で触媒A成分、触媒B成分、触媒C成分およびガラス繊維よりなる触媒組成物をニーダーで混練して押出成形機にてペレット形状に成形し、乾燥して、500℃にて5時間空気中で焼成して実施例8〜9の完成触媒を得た。 Next, the manganese-cerium homogeneous mixed oxide MC-2 powder, which is the catalyst A component obtained in Examples 5 to 7, was impregnated with a mixed aqueous solution of silver nitrate and palladium nitrate as the catalyst B component and dried, and then in the air. Calcination was carried out at 500 ° C. for 2 hours to obtain a powder having the catalyst B component supported on the catalyst A component at the ratio shown in Table 1. Hereinafter, a catalyst composition composed of a catalyst A component, a catalyst B component, a catalyst C component and glass fibers with the composition shown in Table 1 is kneaded with a kneader, formed into a pellet shape with an extruder, dried, and 500 ° C. And calcined in air for 5 hours to obtain finished catalysts of Examples 8-9.
(比較例1)
市販の球状アルミナペレット(比表面積90m2/g、直径5mm)にジニトロジアミン白金硝酸水溶液を噴霧し、ロータリーエバポレータで回転させながら100℃で加熱して乾燥させて取り出し、空気中にて400℃で2時間焼成して白金が0.1質量%担持された白金触媒を得た。
(Comparative Example 1)
Commercially available spherical alumina pellets (specific surface area 90 m 2 / g, diameter 5 mm) are sprayed with a dinitrodiamine platinum nitrate aqueous solution, heated at 100 ° C. while rotating on a rotary evaporator, dried and taken out at 400 ° C. in air. A platinum catalyst carrying 0.1% by mass of platinum was obtained by firing for 2 hours.
(比較例2)
市販の酸化セリウム(比表面積168m2/g)94.5質量部、ガラス繊維5.0質量部と澱粉3.0質量部に適当量の水を添加してニーダーで混合し、押出成形機にて5mmΦ長さ7mmの円柱状ペレットに成形し、乾燥後に500℃で5時間空気中にて焼成してペレット成形体を得た。このようにして得られたペレット成形体に硝酸パラジウム水溶液を噴霧してロータリーエバポレータで100℃に加熱しながら攪拌し、十分に乾燥してから空気中で500℃2時間焼成して表1に示す組成の比較例2の比較触媒を得た。
(Comparative Example 2)
An appropriate amount of water was added to 94.5 parts by mass of commercially available cerium oxide (specific surface area of 168 m 2 / g), 5.0 parts by mass of glass fiber and 3.0 parts by mass of starch, and mixed with a kneader. Were formed into cylindrical pellets having a diameter of 5 mm and a length of 7 mm, dried, and then fired in air at 500 ° C. for 5 hours to obtain a pellet molded body. The pellet shaped body thus obtained was sprayed with an aqueous solution of palladium nitrate, stirred while being heated to 100 ° C. with a rotary evaporator, sufficiently dried and then fired in air at 500 ° C. for 2 hours, as shown in Table 1. A comparative catalyst of Comparative Example 2 having a composition was obtained.
実施例1〜9および比較例1〜2で得られた各触媒を用いて、以下の手順で一酸化炭素の酸化分解試験を実施した。
ペレット触媒75ccを内径25mmのガラス管の充填し、一酸化炭素が1,000ppm、水分2.5%を含有する空気を空間速度10,000hr−1で通ガスし出口の二酸化炭素濃度を測定して二酸化炭素転化率により一酸化炭素酸化性能をもとめた。反応温度20および50℃の各温度で測定した性能試験結果を表1に示した。
Using each catalyst obtained in Examples 1 to 9 and Comparative Examples 1 and 2, an oxidative decomposition test of carbon monoxide was performed according to the following procedure.
A glass tube with an inner diameter of 25 mm was filled with 75 cc of the pellet catalyst, air containing 1,000 ppm of carbon monoxide and 2.5% of water was passed at a space velocity of 10,000 hr −1 , and the carbon dioxide concentration at the outlet was measured. The carbon monoxide oxidation performance was determined by the carbon dioxide conversion rate. The performance test results measured at each reaction temperature of 20 and 50 ° C. are shown in Table 1.
(各種有害物質除去試験)
実施例5〜8および比較例1〜2で得られた各触媒を用いて、以下の手順で一酸化炭素、オゾンおよびホルムアルデヒドの除去性能試験を実施した。反応温度50℃で空間速度10,000hr−1にて入口ガス濃度が一酸化炭素20ppm、オゾン10ppm、ホルムアルデヒド20ppm及び水分2.5%の条件で通ガスして、各成分に対する処理効率を求めて性能試験結果を表2に示した。
(Various hazardous substance removal test)
Using each of the catalysts obtained in Examples 5 to 8 and Comparative Examples 1 and 2, a carbon monoxide, ozone and formaldehyde removal performance test was performed according to the following procedure. The reaction temperature was 50 ° C., the space velocity was 10,000 hr −1, and the inlet gas concentration was 20 ppm of carbon monoxide, 10 ppm of ozone, 20 ppm of formaldehyde, and 2.5% of moisture, and the treatment efficiency for each component was determined. The performance test results are shown in Table 2.
本発明は、空気清浄化用触媒は空気中に存在する一酸化炭素やホルムアルデヒド等の有害物質を50℃以下の低温で処理できるものであり、室内外の空気清浄化に用いることができる。 In the present invention, the air cleaning catalyst can treat harmful substances such as carbon monoxide and formaldehyde present in the air at a low temperature of 50 ° C. or lower, and can be used for air cleaning indoors and outdoors.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008310391A JP2010131531A (en) | 2008-12-05 | 2008-12-05 | Air cleaning catalyst and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008310391A JP2010131531A (en) | 2008-12-05 | 2008-12-05 | Air cleaning catalyst and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010131531A true JP2010131531A (en) | 2010-06-17 |
Family
ID=42343409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008310391A Pending JP2010131531A (en) | 2008-12-05 | 2008-12-05 | Air cleaning catalyst and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010131531A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011224546A (en) * | 2010-03-31 | 2011-11-10 | Tokyo Metropolitan Industrial Technology Research Institute | Inorganic oxide molded catalyst and method for manufacturing the same |
JP2014036949A (en) * | 2012-07-18 | 2014-02-27 | Denso Corp | Air cleaning catalyst and method for manufacturing the same |
CN104874397A (en) * | 2015-04-02 | 2015-09-02 | 华南理工大学 | Preparation method and application of manganese dioxide silver-loaded nanoparticle material |
WO2016088780A1 (en) * | 2014-12-03 | 2016-06-09 | イビデン株式会社 | Honeycomb catalyst and method for manufacturing honeycomb catalyst |
CN111479630A (en) * | 2017-12-22 | 2020-07-31 | 亮锐控股有限公司 | Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof |
WO2022118986A1 (en) * | 2020-12-04 | 2022-06-09 | 三井化学株式会社 | Odor removal catalyst and use thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020114746A1 (en) * | 1999-12-20 | 2002-08-22 | Roark Shane E. | Selective removal of carbon monoxide |
JP2006007072A (en) * | 2004-06-24 | 2006-01-12 | Nippon Shokubai Co Ltd | Catalyst for treating low concentration co-containing exhaust gas and method for treating low concentration co-containing exhaust gas |
JP2006136776A (en) * | 2004-11-10 | 2006-06-01 | Toyota Central Res & Dev Lab Inc | Nox selection reduction catalyst |
JP2007160297A (en) * | 2005-11-21 | 2007-06-28 | Kumamoto Univ | Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same |
JP2008540126A (en) * | 2005-05-21 | 2008-11-20 | エボニック デグサ ゲーエムベーハー | Gold catalyst on ceria-containing support |
JP2010069418A (en) * | 2008-09-19 | 2010-04-02 | Nippon Shokubai Co Ltd | Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst |
-
2008
- 2008-12-05 JP JP2008310391A patent/JP2010131531A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020114746A1 (en) * | 1999-12-20 | 2002-08-22 | Roark Shane E. | Selective removal of carbon monoxide |
JP2006007072A (en) * | 2004-06-24 | 2006-01-12 | Nippon Shokubai Co Ltd | Catalyst for treating low concentration co-containing exhaust gas and method for treating low concentration co-containing exhaust gas |
JP2006136776A (en) * | 2004-11-10 | 2006-06-01 | Toyota Central Res & Dev Lab Inc | Nox selection reduction catalyst |
JP2008540126A (en) * | 2005-05-21 | 2008-11-20 | エボニック デグサ ゲーエムベーハー | Gold catalyst on ceria-containing support |
JP2007160297A (en) * | 2005-11-21 | 2007-06-28 | Kumamoto Univ | Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same |
JP2010069418A (en) * | 2008-09-19 | 2010-04-02 | Nippon Shokubai Co Ltd | Catalyst for oxidizing formaldehyde and method of manufacturing the catalyst |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011224546A (en) * | 2010-03-31 | 2011-11-10 | Tokyo Metropolitan Industrial Technology Research Institute | Inorganic oxide molded catalyst and method for manufacturing the same |
JP2014036949A (en) * | 2012-07-18 | 2014-02-27 | Denso Corp | Air cleaning catalyst and method for manufacturing the same |
WO2016088780A1 (en) * | 2014-12-03 | 2016-06-09 | イビデン株式会社 | Honeycomb catalyst and method for manufacturing honeycomb catalyst |
JP2016107184A (en) * | 2014-12-03 | 2016-06-20 | イビデン株式会社 | Honeycomb catalyst and production method of honeycomb catalyst |
CN104874397A (en) * | 2015-04-02 | 2015-09-02 | 华南理工大学 | Preparation method and application of manganese dioxide silver-loaded nanoparticle material |
CN111479630A (en) * | 2017-12-22 | 2020-07-31 | 亮锐控股有限公司 | Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof |
CN111479630B (en) * | 2017-12-22 | 2023-11-21 | 亮锐控股有限公司 | Manganese catalyst for catalyzing formaldehyde oxidation and preparation and application thereof |
WO2022118986A1 (en) * | 2020-12-04 | 2022-06-09 | 三井化学株式会社 | Odor removal catalyst and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5441380B2 (en) | Formaldehyde oxidation catalyst and method for producing the same | |
JP6486360B2 (en) | Carbon monoxide and / or oxidation catalyst for volatile organic compounds | |
JP4878141B2 (en) | Composite photocatalyst | |
CN104785302B (en) | Denitrifying catalyst with selective catalytic reduction and its preparation method and application | |
JP3326836B2 (en) | Catalyst body and method for producing catalyst body | |
EP1857179A1 (en) | Visible light-responsive photocatalyst composition and process for producing the same | |
JP6299049B2 (en) | Exhaust gas purification catalyst with excellent silicon poisoning resistance | |
JP2006187760A (en) | Catalyst for completely oxidizing and decomposing formaldehyde gas at room temperature and its using method | |
WO2010007978A1 (en) | Deodorizing catalyst, deodorizing method using same and method for regenerating the catalyst | |
JP2010131531A (en) | Air cleaning catalyst and its manufacturing method | |
JP2010058074A (en) | Catalyst for oxidizing formaldehyde, method of producing the same, and method of cleaning air using the same catalyst | |
KR101762718B1 (en) | Porous copper-manganese filter media and the preparation of the same | |
JP4293801B2 (en) | Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant | |
JP5892764B2 (en) | Crystalline silicoaluminophosphate molding and method for producing the same | |
JP2007098293A (en) | Visible light response type photocatalyst, visible light response type photocatalyst composition and its production method | |
JP2009119430A (en) | Low-temperature oxidation catalyst, its production method and exhaust-gas cleaning method using the catalyst | |
JP2007090331A (en) | Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas | |
KR20160073815A (en) | Heterogeneous catalysts and preparing method of the same | |
CN115722220B (en) | Catalytic oxidation catalyst and preparation method and application thereof | |
JP2916377B2 (en) | Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst | |
JP2006043683A (en) | Catalyst carrier and its manufacturing method and catalyst for cleaning exhaust gas | |
JP6225807B2 (en) | VOC decomposition removal catalyst, method for producing the same, and VOC decomposition removal method using the same | |
JP4283144B2 (en) | Exhaust gas treatment catalyst and exhaust gas treatment method | |
JP2010221091A (en) | Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter | |
JP5570122B2 (en) | Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111006 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121219 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130507 |