JP2017144423A - Catalyst for exhaust purification and method for producing the same - Google Patents

Catalyst for exhaust purification and method for producing the same Download PDF

Info

Publication number
JP2017144423A
JP2017144423A JP2016174516A JP2016174516A JP2017144423A JP 2017144423 A JP2017144423 A JP 2017144423A JP 2016174516 A JP2016174516 A JP 2016174516A JP 2016174516 A JP2016174516 A JP 2016174516A JP 2017144423 A JP2017144423 A JP 2017144423A
Authority
JP
Japan
Prior art keywords
catalyst
particles
mol
mno
ceo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016174516A
Other languages
Japanese (ja)
Inventor
憲治 古井
Kenji Furui
憲治 古井
南 圭一
Keiichi Minami
圭一 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US15/404,871 priority Critical patent/US20170232424A1/en
Priority to EP17151836.8A priority patent/EP3207986A1/en
Priority to CN201710084814.1A priority patent/CN107088408A/en
Publication of JP2017144423A publication Critical patent/JP2017144423A/en
Priority to US15/911,662 priority patent/US20180193819A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst that has an improved NO selective reduction ability at low temperature and offers an improved NOpurification rate.SOLUTION: A catalyst for exhaust purification carries a CeOparticle on the surface of an MnOparticle. In the catalyst, a Ce content relative to a total content of Mn and Ce (Ce/(Mn+Ce)) is more than 0 mol% and 40 mol% or less.SELECTED DRAWING: None

Description

本発明は、排ガス浄化用触媒に関し、詳細にはNO選択還元触媒に関する。 The present invention relates to an exhaust gas purification catalyst, and more particularly to a NO x selective reduction catalyst.

近年、地球環境保護の観点から、排ガス規制が世界的に年々強化されている。この対応策として、内燃機関においては、排ガス浄化用触媒が用いられる。この排ガス浄化用触媒において、排ガス中のハイドロカーボン(以下、HCと略記することもある。)、CO及び窒素酸化物(以下、NOと略記することもある。)を効率的に除去するために、触媒成分としてPt、Pd、Rh等の貴金属などが使用されている。 In recent years, exhaust gas regulations have been strengthened worldwide year by year from the viewpoint of protecting the global environment. As a countermeasure, an exhaust gas purifying catalyst is used in an internal combustion engine. In this exhaust gas purifying catalyst, hydrocarbon (hereinafter also abbreviated as HC), CO and nitrogen oxides (hereinafter also abbreviated as NO x ) in the exhaust gas are efficiently removed. In addition, noble metals such as Pt, Pd, and Rh are used as catalyst components.

この排ガス浄化用触媒を用いた自動車、例えばガソリンエンジン車あるいはジーゼルエンジン車では触媒活性とともに燃費の向上を図るために種々のシステムが用いられている。例えば、燃費を上げるために定常運転中では空燃比(A/F)がリーン(酸素過剰)の条件で燃焼させ、触媒活性を向上させるために一時的にストイキ(理論空燃比、A/F=14.7)〜リッチ(燃料過剰)の条件で燃焼させている。   Various systems are used to improve fuel efficiency as well as catalyst activity in automobiles using the exhaust gas-purifying catalyst, such as gasoline engine cars or diesel engine cars. For example, in order to improve fuel efficiency, combustion is performed under conditions where the air-fuel ratio (A / F) is lean (excess oxygen) during steady operation, and stoichiometric (theoretical air-fuel ratio, A / F = 14.7) Burning under rich (fuel excess) conditions.

これは、従来公知のPt、Pd、Rh等の貴金属などの触媒は酸化条件でのNO浄化性能が低く、浄化性能を高めるためにHCまたはCO等を加えることによる還元雰囲気を必要とするためである。この触媒活性への影響から、定常運転中でも空燃比(A/F)を大きくできず、前記貴金属などの触媒では燃費の向上に限界がある。 This is known Pt, Pd, catalysts such as noble metals Rh, etc. have low the NO x purification performance in an oxidizing conditions, it requires a reducing atmosphere by the addition of HC or CO, etc. in order to improve the purification performance It is. Because of this influence on the catalyst activity, the air-fuel ratio (A / F) cannot be increased even during steady operation, and there is a limit to the improvement of fuel consumption with catalysts such as the noble metals.

このように従来公知の貴金属などの触媒では、浄化用触媒を一時的に還元雰囲気にするための燃料と、エンジンでの空燃比(A/F)を低くすることとが必要であった。そして、自動車用エンジンをはじめ内燃機関の燃費を向上するために、例えば、リーン雰囲気下でNO浄化性能を発揮することのできる新たな浄化用触媒が求められていた。 As described above, conventionally known catalysts such as precious metals require a fuel for temporarily setting the purification catalyst in a reducing atmosphere and a low air-fuel ratio (A / F) in the engine. In order to improve the fuel efficiency of internal combustion engines including automobile engines, there has been a demand for new purification catalysts that can exhibit NO x purification performance in a lean atmosphere, for example.

NO浄化用触媒の性能向上について種々の改良の試みがなされている。 Attempts various improvements have been made for the improvement in performance of the NO x purifying catalyst.

特許文献1には、アンモニア等の還元剤の存在下で、比較的低温で窒素酸化物を還元除去する、二酸化マンガンが活性炭素繊維に担持されている低温脱硝触媒が記載されている。   Patent Document 1 describes a low-temperature denitration catalyst in which manganese dioxide is supported on activated carbon fibers, which reduces and removes nitrogen oxides at a relatively low temperature in the presence of a reducing agent such as ammonia.

特許文献2には、酸化セリウムからなる、窒素酸化物用吸着材が記載されている。   Patent Document 2 describes an adsorbent for nitrogen oxide made of cerium oxide.

特許文献3には、酸化セリウムに少量のマンガンを担持した窒素酸化物除去用触媒が記載されている。   Patent Document 3 describes a nitrogen oxide removing catalyst in which a small amount of manganese is supported on cerium oxide.

特許文献4には、マンガンとセリウムの複合酸化物からなる窒素酸化物除去触媒が記載されている。   Patent Document 4 describes a nitrogen oxide removal catalyst comprising a complex oxide of manganese and cerium.

特開平10−225641号公報JP-A-10-225641 特開平07−163871号公報Japanese Patent Laid-Open No. 07-163871 特開平05−184922号公報JP 05-184922 A 特開平10−128118号公報JP-A-10-128118

しかし、上記の従来の発明では、低温領域でのNO浄化能が不充分であった。こうしたことから、低温においてより優れたNO選択還元能を有し、よりNO浄化率の高い触媒が求められている。 However, in the above-described conventional invention, the NO x purification ability in the low temperature region is insufficient. For these reasons, there is a demand for a catalyst having a superior NO selective reduction ability at a low temperature and having a higher NO x purification rate.

本発明者らは、鋭意努力した結果、MnO2粒子の表面上にCeO2粒子を、MnとCeの合計量に対してCeの量(Ce/(Mn+Ce))を0モル%超、40モル%以下として担持させてなる排ガス浄化用触媒が、NO選択還元能において優れた特性を示すことを見いだし、本発明に至ったものである。 As a result of diligent efforts, the inventors have made CeO 2 particles on the surface of MnO 2 particles, and the amount of Ce (Ce / (Mn + Ce)) is more than 0 mol% and 40 mol with respect to the total amount of Mn and Ce. It has been found that an exhaust gas purifying catalyst that is supported in an amount of less than or equal to% exhibits excellent characteristics in NO x selective reduction ability, leading to the present invention.

本発明の態様は、以下のようである。
(1)MnO2粒子の表面上にCeO2粒子を担持した排ガス浄化用触媒であって、この触媒中のMnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が0モル%超、40モル%以下である排ガス浄化用触媒。
Aspects of the present invention are as follows.
(1) A catalyst for exhaust gas purification in which CeO 2 particles are supported on the surface of MnO 2 particles, and the amount of Ce (Ce / (Mn + Ce)) with respect to the total amount of Mn and Ce in the catalyst exceeds 0 mol% An exhaust gas purifying catalyst that is 40 mol% or less.

(2)CeO2の一次粒子がMnO2の一次粒子上に担持され、このMnO2の一次粒子が凝集して二次粒子の形態として存在する、(1)の排ガス浄化用触媒。 (2) primary particles of CeO 2 is supported on the primary particles of MnO 2, the primary particles of the MnO 2 is present in the form of aggregate into secondary particles, the catalyst for purification of exhaust gas (1).

(3)X線回折により測定し、MnO2に起因するピークとCeO2に起因するピークの両者を有する、(1)又は(2)に記載の排ガス浄化用触媒。 (3) The exhaust gas purifying catalyst according to (1) or (2), which has both a peak due to MnO 2 and a peak due to CeO 2 as measured by X-ray diffraction.

(4)さらにタングステン酸化物粒子が担持されている、(1)〜(3)のいずれかに記載の排ガス浄化用触媒。 (4) The exhaust gas purifying catalyst according to any one of (1) to (3), further supporting tungsten oxide particles.

(5)マンガンイオンとセリウムイオンを、MnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が0モル%超、40モル%以下の比で含む水溶液と、炭酸イオンを含む還元剤を溶解した水溶液とを混合して粒子を析出させた後、焼成することを含む、(1)〜(3)のいずれかに記載の排ガス浄化用触媒の製造方法。 (5) An aqueous solution containing manganese ions and cerium ions with a ratio of Ce (Ce / (Mn + Ce)) of more than 0 mol% and 40 mol% or less with respect to the total amount of Mn and Ce, and a reducing agent containing carbonate ions The method for producing an exhaust gas purifying catalyst according to any one of (1) to (3), which comprises mixing particles with an aqueous solution in which particles are precipitated to deposit particles, followed by firing.

本発明の態様により、より優れたNO選択還元能を有し、よりNO浄化率が高く、NO浄化開始温度を低下させた排ガス浄化触媒を提供することが可能となる。 According to the aspect of the present invention, it is possible to provide an exhaust gas purification catalyst having a superior NO selective reduction ability, a higher NO x purification rate, and a reduced NO x purification start temperature.

本発明の触媒が関与する、Fast-SCR反応の素反応を説明する図である。It is a figure explaining the elementary reaction of Fast-SCR reaction in which the catalyst of the present invention is involved. 実施例及び比較例の各サンプルについて、触媒中のMnとCeの合計量に対するCeの量(Ce/(Mn+Ce))xに対して、200℃でのNO浄化率(左縦軸)をプロットしたグラフである。For each sample of Examples and Comparative Examples, the NO x purification rate (left vertical axis) at 200 ° C. is plotted against the amount of Ce (Ce / (Mn + Ce)) x with respect to the total amount of Mn and Ce in the catalyst. It is a graph. 実施例1において得られた触媒についてのXRD分析の結果を示す図である。2 is a graph showing the results of XRD analysis for the catalyst obtained in Example 1. FIG. 比較例3において作製したサンプルのTEM像である。10 is a TEM image of a sample produced in Comparative Example 3. 比較例2において作製したサンプルのTEM像である。4 is a TEM image of a sample produced in Comparative Example 2. 実施例1において作製したサンプルのTEM像である。2 is a TEM image of a sample produced in Example 1. 図4〜6に示す部位1〜7における元素分析結果を示すグラフである。It is a graph which shows the elemental analysis result in the site | parts 1-7 shown to FIGS. 実施例において作製したサンプルの触媒床温に対するNOx浄化率の測定結果を示すグラフである。It is a graph which shows the measurement result of the NOx purification rate with respect to the catalyst bed temperature of the sample produced in the Example. 実施例4及び5における、NOx浄化率の測定結果を示すグラフである。It is a graph which shows the measurement result of the NOx purification rate in Examples 4 and 5.

本発明に係る触媒は、MnO2粒子の表面上にCeO2粒子を担持した排ガス浄化用触媒である。 The catalyst according to the present invention is an exhaust gas purifying catalyst in which CeO 2 particles are supported on the surface of MnO 2 particles.

この触媒中のCeの含有量は、MnとCeの合計量を基準として(Ce/(Mn+Ce))、0モル%超、40モル%以下である。Ce含有量が40モル%を超えると、相対的にMnO2の含有量が少なくなり、NOx浄化能が低下してしまう。 The Ce content in the catalyst is more than 0 mol% and 40 mol% or less based on the total amount of Mn and Ce (Ce / (Mn + Ce)). If the Ce content exceeds 40 mol%, the content of MnO 2 is relatively reduced, and the NOx purification ability is lowered.

本発明に係る触媒においては、1つの結晶格子内にMnとCeが混在する複合体ではなく、MnO2粒子とCeO2粒子が別個の粒子として存在し、MnO2の粒子表層にCeO2粒子が高分散な状態で担持されている。このことは、本発明に係る触媒をX線回折により測定した場合に、MnO2に起因するピーク(2θ=27.236付近)とCeO2に起因するピーク(2θ=47.479付近)の両者が観察されることからも裏付けられる。 In the catalyst according to the present invention, rather than the complex Mn and Ce are mixed in a single crystal lattice, present as discrete particles MnO 2 particles and CeO 2 particles, the CeO 2 particles in the particle surface layer of MnO 2 It is supported in a highly dispersed state. This means that when the catalyst according to the present invention is measured by X-ray diffraction, both a peak due to MnO 2 (around 2θ = 27.236) and a peak due to CeO 2 (around 2θ = 47.479). This is supported by the observation.

また、本発明に係る触媒においては、CeO2の一次粒子がMnO2の一次粒子上に担持され、このMnO2の一次粒子が凝集して二次粒子の形態として存在していると考えられる。このように、CeO2の一次粒子がMnO2の一次粒子上に担持されているため、二次粒子の表面に微細なCeO2の一次粒子が分散して露出しており、本発明に係る触媒においては、MnO2粒子とCeO2粒子の物理混合物と比較して、比表面積が大きくなっている。 In the catalyst according to the present invention, primary particles of CeO 2 is supported on the primary particles of MnO 2, the primary particles of the MnO 2 is considered to be present in the form of aggregate into secondary particles. Thus, since the primary particles of CeO 2 are supported on the primary particles of MnO 2 , fine primary particles of CeO 2 are dispersedly exposed on the surface of the secondary particles, and the catalyst according to the present invention. , The specific surface area is larger than that of a physical mixture of MnO 2 particles and CeO 2 particles.

MnO2粒子とCeO2粒子の平均粒径は、十分な活性を発揮するため、当該分野において一般的な測定方法により測定し、1〜100nmであることが好ましい。また、その製造工程において、Ceの使用量を、MnとCeの合計量を基準として(Ce/(Mn+Ce))、0モル%超、40モル%以下とすることにより、相対的にMnの量が多く、結果として得られるMnO2粒子の大きさ(粒径)はCeO2粒子の大きさ(粒径)よりも大きくなっていると考えられる。 The average particle diameter of the MnO 2 particles and CeO 2 particles exhibits sufficient activity, and is preferably measured by a general measurement method in the field and is preferably 1 to 100 nm. Further, in the production process, the amount of Ce used is relatively greater than 0 mol% and not more than 40 mol% based on the total amount of Mn and Ce (Ce / (Mn + Ce)). It is considered that the size (particle size) of the resulting MnO 2 particles is larger than the size (particle size) of the CeO 2 particles.

エンジン始動時などの低温においては、下式で示されるFast-SCR反応が進行する。
2NH3+NO+NO2→2N2+3H2
図1に、本発明の触媒が関与する、Fast-SCR反応の素反応を示す。図1に示す反応において、NO2がMnの再酸化を担っているが、通常の反応系ではNO2は存在しない。ところが、本発明の触媒においては、微細に分散担持されたCeO2が存在することにより、下式
2CeO2→Ce23+O2
により表されるセリアのレドックスに伴い、移動するO2がNOを酸化してNO2を供給し、Mnn+→Mn4+というMnの再酸化を促進し、結果として上記のFast-SCR反応を促進することになり、低温におけるNOx浄化率を向上させることができる。
At a low temperature such as when the engine is started, the Fast-SCR reaction shown by the following formula proceeds.
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O
FIG. 1 shows an elementary reaction of the Fast-SCR reaction involving the catalyst of the present invention. In the reaction shown in FIG. 1, NO 2 is responsible for reoxidation of Mn, but NO 2 does not exist in a normal reaction system. However, in the catalyst of the present invention, the presence of CeO 2 which is finely dispersed and supported, the following formula 2CeO 2 → Ce 2 O 3 + O 2
With the ceria redox represented by the formula, the moving O 2 oxidizes NO to supply NO 2 , and promotes the Mn n + → Mn 4+ Mn reoxidation, resulting in the above Fast-SCR reaction. Therefore, the NOx purification rate at a low temperature can be improved.

本発明に係る触媒においては、上記のCeO2の一次粒子とMnO2の一次粒子からなる二次粒子上にタングステン酸化物が担持されていることが好ましい。触媒中にCeO2が存在すると、高温において、CeによるNH3の酸化によってNOx化が生ずるおそれがあるが、タングステン酸化物を触媒表面に担持させておくことによって、高温におけるCeのNH3酸化活性を抑制することができ、高温におけるNOx浄化率低下を抑制することができる。タングステン酸化物の担持量は、多すぎるとCeO2及びMnO2の相対量が低下し、触媒活性の低下につながるため、CeO2及びMnO2の合計量に対して5〜10重量%であることが好ましい。このタングステン酸化物としては、酸化タングステン(III)、酸化タングステン(IV)、酸化タングステン(V)などを用いることができる。 In the catalyst according to the present invention, it is preferable that tungsten oxide is supported on secondary particles composed of the primary particles of CeO 2 and the primary particles of MnO 2 . When CeO 2 is present in the catalyst, there is a possibility that NO x conversion may occur due to the oxidation of NH 3 by Ce at high temperature. However, by supporting tungsten oxide on the catalyst surface, the NH 3 oxidation activity of Ce at high temperature Can be suppressed, and a reduction in the NOx purification rate at high temperatures can be suppressed. If the supported amount of tungsten oxide is too large, the relative amount of CeO 2 and MnO 2 will decrease, leading to a decrease in catalytic activity, so it should be 5 to 10% by weight based on the total amount of CeO 2 and MnO 2. Is preferred. As the tungsten oxide, tungsten (III) oxide, tungsten (IV) oxide, tungsten oxide (V), or the like can be used.

本発明に係る触媒においては、MnO2粒子とCeO2粒子以外の他の成分を含んでいてもよい。この他の成分としては、排ガス浄化用触媒に用いられる公知の成分を制限なく用いることができる。 The catalyst according to the present invention may contain components other than MnO 2 particles and CeO 2 particles. As the other components, known components used for exhaust gas purification catalysts can be used without limitation.

例えば、本発明に係る触媒は、不純物として、触媒中に、Mn、Ti以外の貴金属および/または卑金属を、触媒全体に基づいて、約1モル%以下の量含んでいてもよい。また、本発明に係る触媒は、触媒上に、Pt、Rh、Pd、Fe,Cuなどの貴金属および/または卑金属を、触媒全体の質量に基づいて、約0.01wt%〜約1wt%の量で担持することができる。   For example, the catalyst according to the present invention may contain noble metals and / or base metals other than Mn and Ti as impurities in an amount of about 1 mol% or less based on the whole catalyst. Further, the catalyst according to the present invention contains noble metals such as Pt, Rh, Pd, Fe, Cu and / or base metals on the catalyst in an amount of about 0.01 wt% to about 1 wt% based on the mass of the entire catalyst. Can be supported.

本発明に係る触媒の製造方法としては、一般的な逆共沈法を用いることができる。具体的には、セリウムの塩(例えば硝酸セリウム等)とマンガンの塩(例えば酢酸マンガン4水和物等)を所望の比率となるよう、すなわちマンガンイオンとセリウムイオンが、MnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が0モル%超、40モル%以下の比となる割合で水に加えて水溶液を調製し、この水溶液を、炭酸イオンを含む還元剤(例えば炭酸アンモニウム等)を溶解した水溶液と混合して沈殿を生成させ、乾燥後、得られた粉末を焼成することにより製造することができる。本発明の方法においては、炭酸イオンを含む還元剤を用いることにより、4価のマンガンの塩(炭酸マンガン)を生成し、その後焼成するため、酸素放出能の高いMnO2を含む触媒材料を製造することができる。 As a method for producing the catalyst according to the present invention, a general reverse coprecipitation method can be used. Specifically, a cerium salt (for example, cerium nitrate) and a manganese salt (for example, manganese acetate tetrahydrate) have a desired ratio, that is, manganese ions and cerium ions are the total amount of Mn and Ce. An aqueous solution was prepared by adding water to the mixture such that the amount of Ce to Ce (Ce / (Mn + Ce)) was in a ratio of more than 0 mol% and 40 mol% or less. Etc.) are mixed with an aqueous solution in which the solution is dissolved to produce a precipitate, and after drying, the obtained powder is fired. In the method of the present invention, by using a reducing agent containing carbonate ions, a tetravalent manganese salt (manganese carbonate) is produced and then calcined, so that a catalyst material containing MnO 2 having a high oxygen releasing ability is produced. can do.

また、こうして得られたCeO2/MnO2触媒を、タングステンの塩(例えばメタタングステン酸アンモニウム水和物)を含む水溶液に分散させ、逆共沈法によりタングステンの酸化物をCeO2/MnO2触媒上に担持させることができる。 The CeO 2 / MnO 2 catalyst thus obtained is dispersed in an aqueous solution containing a tungsten salt (for example, ammonium metatungstate hydrate), and the tungsten oxide is converted into a CeO 2 / MnO 2 catalyst by a reverse coprecipitation method. It can be carried on top.

実施例1
2Lのビーカーにイオン交換水を300ml加え、プロペラ攪拌機を用いて400rpmで撹拌しながら炭酸アンモニウム(0.4mol)を加えて溶解させ、炭酸アンモニウム水溶液を調製した。別の500mlのビーカーにイオン交換水を300ml加え、0.18モルの酢酸マンガン四水和物と0.02モルの硝酸セリウムを加え、スターラーで撹拌して溶解させた。この水溶液を、上記の炭酸アンモニウム水溶液中に一気に添加することにより沈殿を生成させた。この沈殿をイオン交換水で洗浄後、120℃で蒸発乾固させることによって粉末を得た。得られた粉末を500℃で2時間昇温、2時間焼成することによって本発明の触媒(90Mn−10Ce)を作製した。
Example 1
300 mL of ion exchange water was added to a 2 L beaker, and ammonium carbonate (0.4 mol) was added and dissolved while stirring at 400 rpm using a propeller stirrer to prepare an aqueous ammonium carbonate solution. To another 500 ml beaker, 300 ml of ion-exchanged water was added, 0.18 mol of manganese acetate tetrahydrate and 0.02 mol of cerium nitrate were added and dissolved by stirring with a stirrer. This aqueous solution was added all at once to the above aqueous ammonium carbonate solution to form a precipitate. The precipitate was washed with ion-exchanged water and evaporated to dryness at 120 ° C. to obtain a powder. The obtained powder was heated at 500 ° C. for 2 hours and calcined for 2 hours to prepare a catalyst (90Mn-10Ce) of the present invention.

実施例2
酢酸マンガン四水和物を0.16モル用い、硝酸セリウムを0.04モル用いることを除き、実施例1と同様にして触媒を作製した。
Example 2
A catalyst was prepared in the same manner as in Example 1 except that 0.16 mol of manganese acetate tetrahydrate was used and 0.04 mol of cerium nitrate was used.

実施例3
酢酸マンガン四水和物を0.12モル用い、硝酸セリウムを0.08モル用いることを除き、実施例1と同様にして触媒を作製した。
Example 3
A catalyst was prepared in the same manner as in Example 1 except that 0.12 mol of manganese acetate tetrahydrate was used and 0.08 mol of cerium nitrate was used.

比較例1
硝酸セリウムを用いることなく、酢酸マンガン四水和物のみを0.2モル用いることを除き、実施例1と同様にして触媒を作製した。
Comparative Example 1
A catalyst was prepared in the same manner as in Example 1 except that 0.2 mol of manganese acetate tetrahydrate alone was used without using cerium nitrate.

比較例2
酢酸マンガン四水和物を0.1モル用い、硝酸セリウムを0.1モル用いることを除き、実施例1と同様にして触媒を作製した。
Comparative Example 2
A catalyst was prepared in the same manner as in Example 1 except that 0.1 mol of manganese acetate tetrahydrate was used and 0.1 mol of cerium nitrate was used.

比較例3
比較例1に記載の方法によって製造した二酸化マンガン粒子及び酸化セリウムを、MnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が10モル%となるような比で混合することにより、二酸化マンガン粒子及び酸化セリウムの物理混合物を作製した。
Comparative Example 3
By mixing the manganese dioxide particles and cerium oxide produced by the method described in Comparative Example 1 at a ratio such that the amount of Ce (Ce / (Mn + Ce)) with respect to the total amount of Mn and Ce is 10 mol%, A physical mixture of manganese dioxide particles and cerium oxide was prepared.

比較例4
比較例1に記載の方法によって製造した二酸化マンガン粒子及び酸化セリウムを、MnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が50モル%となるような比で混合することにより、二酸化マンガン粒子及び酸化セリウムの物理混合物を作製した。
Comparative Example 4
By mixing manganese dioxide particles and cerium oxide produced by the method described in Comparative Example 1 at a ratio such that the amount of Ce (Ce / (Mn + Ce)) with respect to the total amount of Mn and Ce is 50 mol%, A physical mixture of manganese dioxide particles and cerium oxide was prepared.

比較例5
酢酸マンガン四水和物を用いることなく、硝酸セリウムのみを0.2モル用いることを除き、実施例1と同様にして触媒を作製した。
Comparative Example 5
A catalyst was prepared in the same manner as in Example 1 except that 0.2 mol of cerium nitrate alone was used without using manganese acetate tetrahydrate.

評価試験
(NO浄化率評価)
5ccの触媒サンプルについて,NH:400ppm、NO:300ppm,HO:5%,O:10%、CO2:10%、残余:窒素(窒素で100%とした)(体積%)の試験ガスを用いて、毎時空間速度:180000h−1、50℃から20℃/分の連続昇温しながら150℃〜500℃の温度で、触媒活性評価装置(メーカー名:ベスト測器(株)))を用いてNOの浄化率を測定することにより行った。
Evaluation test (NO x purification rate evaluation)
For a 5 cc catalyst sample, NH 3 : 400 ppm, NO: 300 ppm, H 2 O: 5%, O 2 : 10%, CO 2 : 10%, the remainder: nitrogen (100% with nitrogen) (volume%) Using test gas, hourly space velocity: 180,000 h −1 , while continuously raising the temperature from 50 ° C. to 20 ° C./min, at a temperature of 150 ° C. to 500 ° C., a catalytic activity evaluation apparatus (manufacturer name: Best Sokki Co., Ltd. )) To measure the NO x purification rate.

実施例1〜3及び比較例1〜5のサンプルを用いて、浄化温度に対する(NO浄化率評価)を行った。この結果を以下の表1に示す。 Using the samples of Examples 1 to 3 and Comparative Examples 1 to 5, (NO x purification rate evaluation) with respect to the purification temperature was performed. The results are shown in Table 1 below.

Ceモル量x(Ce/(Mn+Ce))に対し浄化率(%)をプロットしたグラフ(図1)に示すように、200℃において、Ce非置換のMnのみからなる触媒(比較例1)に比して、Ceをわずかでも添加すれば活性が向上し、最大40モル%のCe添加率まで活性が向上した。また、MnO2粒子とCeO2粒子の単なる物理混合物では、CeとMnを所定のモル比としても、活性を向上させることはできなかった。 As shown in the graph (FIG. 1) in which the purification rate (%) is plotted against the Ce molar amount x (Ce / (Mn + Ce)), at 200 ° C., the catalyst composed only of Ce-unsubstituted Mn (Comparative Example 1). On the other hand, the activity was improved by adding even a small amount of Ce, and the activity was improved up to a maximum Ce addition rate of 40 mol%. Moreover, in a simple physical mixture of MnO 2 particles and CeO 2 particles, the activity could not be improved even when Ce and Mn were set to a predetermined molar ratio.

(XRD測定)
XRD(メーカー名:(株)リガク、型番:RINT)を用いて、結晶析出相の組成依存性を測定した。そうすると、図2に示すように、実施例1のサンプルでは、MnO2に起因するピーク(2θ=27.329付近)とCeO2に起因するピーク(2θ=47.479付近)の両者が観察されることから、MnとCeが固溶しておらず、MnO2+CeO2として存在していることが観察された。MnO2が90モル%と多い領域で活性が向上していることから、MnO2粒子の表面に高分散な状態でCeO2が担持されており、これにより低温域でのNO酸化活性が向上し、低温域でのNO浄化活性が向上したと考えられる。
(XRD measurement)
Using XRD (manufacturer name: Rigaku Corporation, model number: RINT), the composition dependence of the crystal precipitation phase was measured. Then, as shown in FIG. 2, in the sample of Example 1, both a peak due to MnO 2 (near 2θ = 27.329) and a peak due to CeO 2 (near 2θ = 47.479) are observed. Therefore, it was observed that Mn and Ce were not dissolved but existed as MnO 2 + CeO 2 . Since the activity is improved in a region where MnO 2 is as high as 90 mol%, CeO 2 is supported in a highly dispersed state on the surface of MnO 2 particles, thereby improving the NO oxidation activity in a low temperature region. It is considered that the NO x purification activity in the low temperature range has been improved.

参考までに、従来用いられているNOx浄化用触媒と、本発明の触媒(実施例1)との150℃及び200℃におけるNOx浄化率の測定結果を以下の表に示す。   For reference, the measurement results of the NOx purification rate at 150 ° C. and 200 ° C. of the conventionally used NOx purification catalyst and the catalyst of the present invention (Example 1) are shown in the following table.

この表2に示す結果からも、従来用いられてきたNOx浄化用触媒と比較しても、200℃以下の低温域で非常に高いNO浄化活性を示すことから、有望な触媒であると考えられる。 From the results shown in Table 2, thought to be compared with a conventionally used NOx purifying catalyst, since a very high the NO x purification activity in a low temperature range of 200 ° C. or less, is a promising catalyst It is done.

比較例3(MnO2粒子とCeO2粒子の9:1物理混合物)、比較例2(Ce/(Mn+Ce)=0.5)及び実施例1(Ce/(Mn+Ce)=0.1)のサンプルについてTEM観察を行い、そのTEM画像を図4、図5及び図6に示す。また、これらの図中の符号1〜7で示した部位における元素分析を行い、結果を以下の表3及び図7に示す。 Samples of Comparative Example 3 (9: 1 physical mixture of MnO 2 particles and CeO 2 particles), Comparative Example 2 (Ce / (Mn + Ce) = 0.5) and Example 1 (Ce / (Mn + Ce) = 0.1) TEM observation was carried out, and the TEM images are shown in FIG. 4, FIG. 5 and FIG. Moreover, the elemental analysis in the site | part shown with the codes | symbols 1-7 in these figures was performed, and a result is shown in the following Table 3 and FIG.

図4に示すMnO2粒子とCeO2粒子の物理混合物では、観察部位によっては、CeのみもしくはMnのみが観察され、CeとMnが別々の粒子として存在していることが認められた。一方、逆共沈法によって製造したサンプルでは、1つの粒子上にCeとMnが共存していることが観察された。 In the physical mixture of MnO 2 particles and CeO 2 particles shown in FIG. 4, only Ce or only Mn was observed depending on the observation site, and it was recognized that Ce and Mn existed as separate particles. On the other hand, in the sample manufactured by the reverse coprecipitation method, it was observed that Ce and Mn coexist on one particle.

また、上記実施例1並びに比較例1,2、3及び5のサンプルについて、BEL JAPAN INC.製のBELsorp maxを用い、一般的なBET法により比表面積を測定し、その結果を以下の表4に示す。   For the samples of Example 1 and Comparative Examples 1, 2, 3 and 5, BEL JAPAN INC. The specific surface area was measured by a general BET method using BELsorp max made by the manufacturer, and the results are shown in Table 4 below.

実施例1のサンプルでは、MnO2粒子とCeO2粒子の物理混合物と比較して、比表面積が大きくなっている。これは、粒子の表面に微細なCeO2の一次粒子が分散して露出しているためであると考えられる。 In the sample of Example 1, the specific surface area is larger than that of the physical mixture of MnO 2 particles and CeO 2 particles. This is considered to be because fine primary particles of CeO 2 are dispersed and exposed on the surface of the particles.

以下の表5及び図8に、実施例1で得たサンプルについて、150℃〜500℃の触媒床温におけるNOx浄化率の測定結果を示す。   Table 5 and FIG. 8 below show the measurement results of the NOx purification rate at the catalyst bed temperature of 150 ° C. to 500 ° C. for the sample obtained in Example 1.

この結果から明らかなように、本発明の触媒は、低温において高活性を示すが、昇温に伴い、還元剤であるNH3が酸化してNOx化することにより浄化率低下が生ずるようになる。 As is apparent from the results, the catalyst of the present invention exhibits high activity at low temperatures, but as the temperature rises, the reducing agent, NH 3 oxidizes and becomes NOx, resulting in a reduction in purification rate. .

実施例4及び5
実施例1と同様にして触媒を作製し、この触媒に対して酸化タングステン量が5〜10wt%となるようにメタタングステン酸アンモニウムを計量し、イオン交換水(200g程度)に溶解した。例えば、W=10wt%であれば、MnCe触媒20.0gに対してメタタングステン酸アンモニウムを2.50g用いた。このメタタングステン酸アンモニウム水溶液にMnCe触媒を投入し、80〜90℃程度に加熱し、水分を蒸発させた。得られた沈殿を120℃の乾燥炉に入れ、完全に乾燥させた後、500℃×2時間で焼成することによって、上記触媒に酸化タングステンを担持させた。
Examples 4 and 5
A catalyst was produced in the same manner as in Example 1, and ammonium metatungstate was weighed so that the amount of tungsten oxide was 5 to 10 wt% with respect to this catalyst, and dissolved in ion-exchanged water (about 200 g). For example, when W = 10 wt%, 2.50 g of ammonium metatungstate was used with respect to 20.0 g of MnCe catalyst. MnCe catalyst was added to this ammonium metatungstate aqueous solution and heated to about 80 to 90 ° C. to evaporate water. The obtained precipitate was put in a drying furnace at 120 ° C. and completely dried, and then calcined at 500 ° C. for 2 hours, whereby tungsten oxide was supported on the catalyst.

これらのサンプルについて、上記と同様にして、200℃及び300℃におけるNOx浄化率を測定した。この結果を、以下の表6及び図9に示す。これらの結果より、タングステン酸化物を、触媒に対して5wt%及び10wt%担持させることにより、低温活性(80%@200℃)を維持しつつ、高温活性(80%@300℃)を達成することができた。   About these samples, the NOx purification rate in 200 degreeC and 300 degreeC was measured like the above. The results are shown in Table 6 below and FIG. From these results, by supporting 5 wt% and 10 wt% of tungsten oxide with respect to the catalyst, high temperature activity (80% @ 300 ° C) is achieved while maintaining low temperature activity (80% @ 200 ° C). I was able to.

上記のように本発明に係る排ガス浄化用触媒によれば、所定の比率でMnO2粒子の表面上にCeO2粒子を担持させた酸化物を用いることによって、より高いNO浄化率を有し、より低温でNOを浄化できる。これにより、加熱温度を従来のように高い温度にする必要がなく、幅広い排ガス組成において高いNO浄化性能を提供することができる。 As described above, the exhaust gas purifying catalyst according to the present invention has a higher NO x purification rate by using an oxide in which CeO 2 particles are supported on the surface of MnO 2 particles at a predetermined ratio. , NO x can be purified at a lower temperature. Accordingly, the heating temperature as conventionally is not necessary to high temperature, it is possible to provide a high the NO x purification performance in a wide range of exhaust gas composition.

Claims (5)

MnO2粒子の表面上にCeO2粒子を担持した排ガス浄化用触媒であって、この触媒中のMnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が0モル%超、40モル%以下である排ガス浄化用触媒。 An exhaust gas purifying catalyst having CeO 2 particles supported on the surface of MnO 2 particles, wherein the amount of Ce (Ce / (Mn + Ce)) with respect to the total amount of Mn and Ce in the catalyst is more than 0 mol%, 40 mol % Exhaust gas purification catalyst. CeO2の一次粒子がMnO2の一次粒子上に担持され、このMnO2の一次粒子が凝集して二次粒子の形態として存在する、請求項1記載の排ガス浄化用触媒。 Primary particles of CeO 2 is supported on the primary particles of MnO 2, the primary particles of the MnO 2 is present in the form of aggregate into secondary particles, according to claim 1, wherein the exhaust gas purifying catalyst. X線回折により測定し、MnO2に起因するピークとCeO2に起因するピークの両者を有する、請求項1又は2に記載の排ガス浄化用触媒。 The exhaust gas purifying catalyst according to claim 1 or 2, which has both a peak attributed to MnO 2 and a peak attributed to CeO 2 as measured by X-ray diffraction. さらにタングステン酸化物粒子が担持されている、請求項1〜3のいずれか1項に記載の排ガス浄化用触媒。   The exhaust gas purifying catalyst according to any one of claims 1 to 3, further comprising tungsten oxide particles supported thereon. マンガンイオンとセリウムイオンを、MnとCeの合計量に対するCeの量(Ce/(Mn+Ce))が0モル%超、40モル%以下の比で含む水溶液と、炭酸イオンを含む還元剤を溶解した水溶液とを混合して粒子を析出させた後、焼成することを含む、請求項1〜3のいずれか1項に記載の排ガス浄化用触媒の製造方法。   An aqueous solution containing manganese ions and cerium ions with a ratio of Ce to the total amount of Mn and Ce (Ce / (Mn + Ce)) of more than 0 mol% and 40 mol% or less, and a reducing agent containing carbonate ions were dissolved. The method for producing a catalyst for exhaust gas purification according to any one of claims 1 to 3, comprising calcining the particles after mixing with an aqueous solution to deposit the particles.
JP2016174516A 2016-02-17 2016-09-07 Catalyst for exhaust purification and method for producing the same Pending JP2017144423A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/404,871 US20170232424A1 (en) 2016-02-17 2017-01-12 Exhaust gas purification catalyst and production method thereof
EP17151836.8A EP3207986A1 (en) 2016-02-17 2017-01-17 Exhaust gas purification catalyst and production method thereof
CN201710084814.1A CN107088408A (en) 2016-02-17 2017-02-17 Exhaust gas purification catalyst and its manufacture method
US15/911,662 US20180193819A1 (en) 2016-02-17 2018-03-05 Exhaust gas purification catalyst and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016027628 2016-02-17
JP2016027628 2016-02-17

Publications (1)

Publication Number Publication Date
JP2017144423A true JP2017144423A (en) 2017-08-24

Family

ID=59681927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016174516A Pending JP2017144423A (en) 2016-02-17 2016-09-07 Catalyst for exhaust purification and method for producing the same

Country Status (1)

Country Link
JP (1) JP2017144423A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160297A (en) * 2005-11-21 2007-06-28 Kumamoto Univ Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
US20080095682A1 (en) * 2006-10-19 2008-04-24 Kharas Karl C Ce-Zr-R-O CATALYSTS, ARTICLES COMPRISING THE Ce Zr R O CATALYSTS AND METHODS OF MAKING AND USING THE Ce-Zr-R-O CATALYSTS
US8057767B1 (en) * 2010-08-10 2011-11-15 GM Global Technology Operations LLC Base metal oxides oxidation catalyst
US20120201732A1 (en) * 2011-02-07 2012-08-09 Millennium Inorganic Chemicals, Inc. Ce containing, v-free mobile denox catalyst
WO2014141198A1 (en) * 2013-03-14 2014-09-18 Johnson Matthey Public Limited Company Cerium-modified manganese octahedral molecular sieves as catalysts for selective catalytic reduction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160297A (en) * 2005-11-21 2007-06-28 Kumamoto Univ Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
US20080095682A1 (en) * 2006-10-19 2008-04-24 Kharas Karl C Ce-Zr-R-O CATALYSTS, ARTICLES COMPRISING THE Ce Zr R O CATALYSTS AND METHODS OF MAKING AND USING THE Ce-Zr-R-O CATALYSTS
JP2010506724A (en) * 2006-10-19 2010-03-04 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Ce-Zr-R-O catalyst, article containing Ce-Zr-R-O catalyst, and method for producing and using the Ce-Zr-R-O catalyst
US8057767B1 (en) * 2010-08-10 2011-11-15 GM Global Technology Operations LLC Base metal oxides oxidation catalyst
US20120201732A1 (en) * 2011-02-07 2012-08-09 Millennium Inorganic Chemicals, Inc. Ce containing, v-free mobile denox catalyst
WO2014141198A1 (en) * 2013-03-14 2014-09-18 Johnson Matthey Public Limited Company Cerium-modified manganese octahedral molecular sieves as catalysts for selective catalytic reduction
JP2016515922A (en) * 2013-03-14 2016-06-02 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Cerium-modified manganese octahedral molecular sieve as a catalyst for selective catalytic reduction

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ADRIAN M.T. SILVA ET AL.: "Catalysts based in cerium oxide for wet oxidation of acrylic acid in the prevention of environmental", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 47, JPN6018050584, 1 February 2004 (2004-02-01), NL, pages 269 - 279, XP055390041, ISSN: 0003945130, DOI: 10.1016/j.apcatb.2003.09.019 *
FRANCESCO ARENA ET AL.: "Nanosize effects, Physiochemical properties and catalytic oxidation pattern of the redox-precipitate", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 113, JPN6018050580, 1 January 2009 (2009-01-01), US, pages 2822 - 2829, XP002666680, ISSN: 0004065128, DOI: 10.1021/JP8068249 *
HAIYAN CHEN ET AL.: "Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 32, JPN6018050586, 1 August 2001 (2001-08-01), NL, pages 195 - 204, XP002423743, ISSN: 0003945131, DOI: 10.1016/S0926-3373(01)00136-9 *
HUA LI ET AL.: "Low-temperature catalytic oxidation of NO over Mn-Ce-Ox catalyst", JOURNAL OF RARE EARTHS, vol. 28, JPN6018050583, 1 February 2010 (2010-02-01), NL, pages 64 - 68, XP055390250, ISSN: 0003945129, DOI: 10.1016/S1002-0721(09)60052-1 *
YUE PENG ET AL.: "Manganese doped CeO2-WO3 catalysts for the selective catalytic reduction of NOx with NH3: An experim", CATALYSIS COMMUNICATIONS, vol. 19, JPN6018050582, 1 March 2012 (2012-03-01), NL, pages 127 - 131, XP055390245, ISSN: 0004065129, DOI: 10.1016/j.catcom.2011.12.034 *

Similar Documents

Publication Publication Date Title
JP5216189B2 (en) Exhaust gas purification catalyst
JP5459927B2 (en) Exhaust gas purification catalyst
JP3429967B2 (en) Oxygen storage cerium-based composite oxide
JP5506292B2 (en) Exhaust gas purification catalyst
WO2006049042A1 (en) Exhaust gas purification catalyst
JP4979900B2 (en) Exhaust gas purification catalyst
JP6187770B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
US8357626B2 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
US20180193819A1 (en) Exhaust gas purification catalyst and production method thereof
JP3956733B2 (en) Cerium-zirconium composite metal oxide for exhaust gas purification catalyst
JP4435750B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2017189761A (en) Method for producing catalyst for exhaust purification
EP2155365B1 (en) Oxygen storage/release material and exhaust gas purifying catalyst comprising the same
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5943041B2 (en) Exhaust gas purification catalyst
JP5019019B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst and exhaust gas purification method using the same
JP2017144423A (en) Catalyst for exhaust purification and method for producing the same
JP6889012B2 (en) Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this
JP6217423B2 (en) Method for producing exhaust gas purification catalyst
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP5607891B2 (en) Exhaust gas purification catalyst
JP2000051698A (en) Exhaust emission purifying catalyst and its use
JP2010029772A (en) Compound oxide and exhaust gas cleaning catalyst containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190702