JP5506292B2 - Exhaust gas purification catalyst - Google Patents
Exhaust gas purification catalyst Download PDFInfo
- Publication number
- JP5506292B2 JP5506292B2 JP2009197122A JP2009197122A JP5506292B2 JP 5506292 B2 JP5506292 B2 JP 5506292B2 JP 2009197122 A JP2009197122 A JP 2009197122A JP 2009197122 A JP2009197122 A JP 2009197122A JP 5506292 B2 JP5506292 B2 JP 5506292B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- catalyst
- spinel
- general formula
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003054 catalyst Substances 0.000 title claims description 39
- 238000000746 purification Methods 0.000 title description 10
- 229910052596 spinel Inorganic materials 0.000 claims description 19
- 239000011029 spinel Substances 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 description 64
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 45
- 239000000843 powder Substances 0.000 description 27
- 239000000203 mixture Substances 0.000 description 22
- 239000011777 magnesium Substances 0.000 description 21
- 150000003839 salts Chemical class 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 17
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 15
- 239000002243 precursor Substances 0.000 description 15
- 239000007789 gas Substances 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 10
- 230000003197 catalytic effect Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 150000004703 alkoxides Chemical class 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000033116 oxidation-reduction process Effects 0.000 description 7
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000003472 neutralizing effect Effects 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000000975 co-precipitation Methods 0.000 description 4
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002515 CoAl Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910018565 CuAl Inorganic materials 0.000 description 2
- 229910015372 FeAl Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- -1 organic acid salts Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- GVSTYPOYHNVKHY-UHFFFAOYSA-N 2-methoxybutanoic acid Chemical compound CCC(OC)C(O)=O GVSTYPOYHNVKHY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Description
本発明は、触媒組成物、詳しくは、排ガス浄化用触媒などとして好適に用いられる触媒組成物に関する。 The present invention relates to a catalyst composition, and more particularly to a catalyst composition suitably used as an exhaust gas purifying catalyst.
自動車エンジンなどの内燃機関から排出される排気ガスには、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)などが含まれている。これらを浄化するための三元触媒として、活性成分である貴金属(Pt(白金)、Rh(ロジウム)およびPd(パラジウム)など)が触媒担体に担持された、排ガス浄化用触媒が種々知られている。
例えば、一般的な耐熱性酸化物であるアルミナ担体にPdが担持された、Pd/アルミナからなる触媒などが種々知られている(例えば、特許文献1参照)。
Exhaust gas discharged from an internal combustion engine such as an automobile engine includes hydrocarbon (HC), carbon monoxide (CO), nitrogen oxide (NOx), and the like. As a three-way catalyst for purifying these, various exhaust gas purification catalysts in which noble metals (Pt (platinum), Rh (rhodium), Pd (palladium), etc.) as active components are supported on a catalyst carrier are known. Yes.
For example, various catalysts made of Pd / alumina, in which Pd is supported on an alumina carrier, which is a general heat-resistant oxide, are known (see, for example, Patent Document 1).
しかし、Pdなどの貴金属元素は、一般的に高価であるため、工業的には、なるべく少量で、ガス浄化性能を有効に発現させることが求められている。
一方、特許文献1では、遷移金属であるCuが活性成分として触媒担体(アルミナ、ゼオライトなど)に担持された、貴金属を不含有の触媒も提案されている。
However, since noble metal elements such as Pd are generally expensive, industrially, it is required to effectively develop gas purification performance with as little amount as possible.
On the other hand, Patent Document 1 proposes a catalyst containing no transition metal, in which Cu as a transition metal is supported on a catalyst carrier (alumina, zeolite, etc.) as an active component.
しかし、特許文献1の触媒では、Cuは触媒担体に担持されているだけであるため、触媒担体におけるCuの結晶子径が比較的大きい。そのため、高温下または酸化還元変動下、さらには、長期使用時において、担持されているだけのCu微粒子が凝集することにより、触媒担体における触媒活性点が減少する。その結果、触媒活性が低下して、排ガス浄化性能(とりわけ、NOxの浄化性能)が低下するという不具合がある。 However, in the catalyst of Patent Document 1, since Cu is only supported on the catalyst carrier, the crystallite diameter of Cu in the catalyst carrier is relatively large. For this reason, the catalyst active points in the catalyst carrier are reduced by agglomeration of Cu fine particles that are supported only at high temperatures or under oxidation-reduction fluctuations, and also during long-term use. As a result, there is a problem that the catalytic activity is lowered and the exhaust gas purification performance (particularly, NOx purification performance) is lowered.
本発明の目的は、貴金属元素の使用を低減しつつ、高温下または酸化還元変動下、さらには、長期使用時において、Cuの優れた触媒活性を発現することのできる、触媒組成物を提供することである。 An object of the present invention is to provide a catalyst composition capable of exhibiting excellent catalytic activity of Cu under high temperature or oxidation-reduction fluctuations, and further during long-term use, while reducing the use of noble metal elements. That is.
上記目的を達成するために、本発明の触媒組成物は、下記一般式(1)で表わされるスピネル型複合酸化物を含むことを特徴としている。
(M1−xCux)O・nAl2O3 (1)
(式中、Mは、Mg、Fe、CoおよびNiから選択される少なくとも1種の元素を示し、xは、0<x≦1の原子割合を示し、nは、0.08〜5を示す。)
また、本発明の触媒組成物では、上記一般式(1)において、x=1であることが好適である。
In order to achieve the above object, the catalyst composition of the present invention is characterized by containing a spinel type complex oxide represented by the following general formula (1).
(M 1-x Cu x) O · nAl 2 O 3 (1)
(In the formula, M represents at least one element selected from Mg, Fe, Co and Ni, x represents an atomic ratio of 0 <x ≦ 1, and n represents 0.08 to 5) .)
In the catalyst composition of the present invention, it is preferable that x = 1 in the general formula (1).
本発明の触媒組成物によれば、活性成分であるCuは、特定組成のスピネル型複合酸化物に、担持されるのではなく組成として含有されている。そのため、酸化物におけるCuの結晶子径を小さくすることができ、Cuの酸化物に対する分散状態が良好に保持される。その結果、高温下または酸化還元変動下、さらには長期使用後においても、Cu微粒子の凝集を抑制することができる。 According to the catalyst composition of the present invention, Cu, which is an active component, is contained as a composition rather than being supported on a spinel composite oxide having a specific composition. Therefore, the crystallite diameter of Cu in the oxide can be reduced, and the dispersion state with respect to the oxide of Cu is well maintained. As a result, the aggregation of Cu fine particles can be suppressed even at high temperatures or under redox fluctuations and even after long-term use.
そのため、長期にわたって、Cuの粒成長による触媒活性低下を防止することができ、Cuの高い触媒活性を保持することができる。
したがって、本発明の触媒組成物を使用すれば、Cuを活性成分として使用できるため、貴金属元素を低減しながら、低コストで、高温下または酸化還元変動下、長期にわたって優れた触媒活性を発現することができる。
Therefore, it is possible to prevent a decrease in catalytic activity due to Cu grain growth over a long period of time, and to maintain a high catalytic activity of Cu.
Therefore, if the catalyst composition of the present invention is used, Cu can be used as an active ingredient, so that excellent catalytic activity is exhibited over a long period of time at a low cost and under high temperature or oxidation-reduction fluctuations while reducing noble metal elements. be able to.
本発明の触媒組成物は、下記一般式(1)で表わされるスピネル型複合酸化物を含んでいる。
(M1−xCux)O・nAl2O3 (1)
(式中、Mは、Mg、Fe、CoおよびNiから選択される少なくとも1種の元素を示し、xは、0<x≦1の原子割合を示し、nは、0.08〜5を示す。)
上記一般式(1)において、xは0<x≦1のCuの原子割合を示す。つまり、Cuは、必須成分であり、好ましくは、x=1である。その場合、スピネル型複合酸化物は、例えば、下記一般式(1´)で表わされる、いわゆる銅スピネルである。
The catalyst composition of the present invention contains a spinel type complex oxide represented by the following general formula (1).
(M 1-x Cu x) O · nAl 2 O 3 (1)
(In the formula, M represents at least one element selected from Mg, Fe, Co and Ni, x represents an atomic ratio of 0 <x ≦ 1, and n represents 0.08 to 5) .)
In the said General formula (1), x shows the atomic ratio of Cu of 0 <x <= 1. That is, Cu is an essential component, and preferably x = 1. In that case, the spinel-type composite oxide is, for example, a so-called copper spinel represented by the following general formula (1 ′).
CuO・nAl2O3 (1´)
(式中、nは、0.08〜5を示す。)
本発明の触媒組成物が上記一般式(1´)で表わされる銅スピネルを含む場合、触媒組成物におけるCuの結晶子径を一層小さくすることができ、さらに、コストを低減することができる。
CuO.nAl 2 O 3 (1 ′)
(In the formula, n represents 0.08 to 5.)
When the catalyst composition of this invention contains the copper spinel represented by the said general formula (1 '), the crystallite diameter of Cu in a catalyst composition can be made still smaller, and also cost can be reduced.
一方、Mの原子割合は、1−x、つまり、1からCuの原子割合(0<x≦1)を差し引いた残余の原子割合となる。すなわち、上記一般式(1)において、Mは、任意成分であり、含まれていてもよいし、含まれていなくてもよい。
Mが含まれる場合、Mは、Mg、Fe、CoおよびNiから選択される少なくとも1種の元素を示している。これらの元素は、単独でもよく、また、2種類以上併用もできる。また、Mが含まれる場合、Mは、好ましくは、Coおよび/またはNiである。
On the other hand, the atomic ratio of M is 1-x, that is, the atomic ratio of the remainder obtained by subtracting the atomic ratio of Cu from 1 (0 <x ≦ 1). That is, in the general formula (1), M is an optional component and may or may not be included.
When M is included, M represents at least one element selected from Mg, Fe, Co, and Ni. These elements may be used alone or in combination of two or more. When M is contained, M is preferably Co and / or Ni.
また、上記一般式(1)において、nは、0.08〜0.5を示し、好ましくは、0.16〜5を示す。
このような上記一般式(1)で表わされるスピネル型複合酸化物としては、具体的には、(Co0.3Cu0.2Mg2.5)O3・0.5Al2O3、つまりCo0.3Cu0.2Mg2.5AlO4.5、(Ni0.3Cu0.2Mg2.5)O3・0.5Al2O3、つまりNi0.3Cu0.2Mg2.5AlO4.5、(Fe0.1Cu0.4Mg2.5)O3・0.5Al2O3、つまりFe0.1Cu0.4Mg2.5AlO4.5、CuO・Al2O3などが挙げられる。
Moreover, in the said General formula (1), n shows 0.08-0.5, Preferably, 0.16-5 is shown.
As such a spinel type complex oxide represented by the general formula (1), specifically, (Co 0.3 Cu 0.2 Mg 2.5 ) O 3 .0.5Al 2 O 3 , Co 0.3 Cu 0.2 Mg 2.5 AlO 4.5 , (Ni 0.3 Cu 0.2 Mg 2.5 ) O 3 .0.5Al 2 O 3 , that is, Ni 0.3 Cu 0.2 Mg 2.5 AlO 4.5 , (Fe 0.1 Cu 0.4 Mg 2.5 ) O 3 .0.5Al 2 O 3 , that is, Fe 0.1 Cu 0.4 Mg 2.5 AlO 4.5 , CuO.Al 2 O 3 and the like.
そして、上記一般式(1)で表わされるスピネル型複合酸化物は、特に制限されることなく、複合酸化物を調製するための適宜の方法、例えば、共沈法、クエン酸錯体法、アルコキシド法などによって、製造することができる。
共沈法では、例えば、上記した各元素の塩を所定の化学量論比で含む混合塩水溶液を調製し、この混合塩水溶液に中和剤を加えて共沈させた後、得られた共沈物を乾燥後、熱処理する。
The spinel-type composite oxide represented by the general formula (1) is not particularly limited, and an appropriate method for preparing the composite oxide, for example, a coprecipitation method, a citric acid complex method, an alkoxide method It can manufacture by.
In the coprecipitation method, for example, a mixed salt aqueous solution containing the salt of each element described above at a predetermined stoichiometric ratio is prepared, and a neutralizing agent is added to the mixed salt aqueous solution to perform coprecipitation. The precipitate is dried and then heat-treated.
各元素の塩としては、例えば、硫酸塩、硝酸塩、塩化物、りん酸塩などの無機塩、例えば、酢酸塩、しゅう酸塩などの有機酸塩などが挙げられる。また、混合塩水溶液は、例えば、各元素の塩を、所定の化学量論比となるような割合で水に加えて、攪拌混合することにより調製することができる。
その後、この混合塩水溶液に、中和剤を加えて共沈させる。中和剤としては、例えば、アンモニア、例えば、水酸化テトラメチルアンモニウム、トリエチルアミン、ピリジンなどのアミン類などの有機塩基、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウムなどの無機塩基が挙げられる。なお、中和剤は、その中和剤を加えた後の溶液のpHが6〜10程度となるように加える。
Examples of the salt of each element include inorganic salts such as sulfate, nitrate, chloride, and phosphate, and organic acid salts such as acetate and oxalate. Further, the mixed salt aqueous solution can be prepared, for example, by adding the salt of each element to water at a ratio that gives a predetermined stoichiometric ratio and stirring and mixing.
Thereafter, a neutralizing agent is added to the mixed salt aqueous solution to cause coprecipitation. Examples of the neutralizing agent include ammonia, for example, organic bases such as amines such as tetramethylammonium hydroxide, triethylamine, and pyridine, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and ammonium carbonate. An inorganic base is mentioned. In addition, a neutralizing agent is added so that the pH of the solution after adding the neutralizing agent may become about 6-10.
そして、混合塩水溶液をろ過し、必要により共沈物を水洗することにより、前駆体を得る。次いで、前駆体を、例えば、真空乾燥や通風乾燥などにより乾燥させた後、例えば、500〜1000℃、好ましくは、600〜950℃で熱処理することにより、上記一般式(1)で表わされるスピネル型複合酸化物を得る。
また、クエン酸錯体法では、例えば、クエン酸と上記した各元素の塩とを、上記した各元素に対し化学量論比よりやや過剰のクエン酸水溶液を加えてクエン酸混合塩水溶液を調製し、このクエン酸混合塩水溶液を乾固させて、上記した各元素のクエン酸錯体を形成させた後、得られたクエン酸錯体を仮焼成後、熱処理する。
And a precursor is obtained by filtering mixed salt aqueous solution and washing a coprecipitate if necessary. Next, the precursor is dried by, for example, vacuum drying or ventilation drying, and then heat-treated at, for example, 500 to 1000 ° C., preferably 600 to 950 ° C., whereby the spinel represented by the above general formula (1) is obtained. Type complex oxide is obtained.
Further, in the citric acid complex method, for example, citric acid and a salt of each element described above are added to each element described above by adding a slightly excessive citric acid aqueous solution than the stoichiometric ratio to prepare a citric acid mixed salt aqueous solution. After this citric acid mixed salt aqueous solution is dried to form a citric acid complex of each element described above, the obtained citric acid complex is pre-baked and then heat-treated.
各元素の塩としては、上記と同様の塩が挙げられ、また、クエン酸混合塩水溶液は、例えば、上記と同様に混合塩水溶液を調製して、その混合塩水溶液に、クエン酸の水溶液を加えることにより、調製することができる。
その後、このクエン酸混合塩水溶液を乾固させて、上記した各元素のクエン酸錯体を形成させる。乾固は、形成されるクエン酸錯体が分解しない温度、例えば、室温〜150℃程度で、水分を除去する。これによって、上記した各元素のクエン酸錯体を形成させることができる。
Examples of the salt of each element include the same salts as described above. For the citric acid mixed salt aqueous solution, for example, a mixed salt aqueous solution is prepared in the same manner as described above, and an aqueous citric acid solution is added to the mixed salt aqueous solution. It can be prepared by adding.
Thereafter, the citric acid mixed salt aqueous solution is dried to form a citric acid complex of each element described above. Drying removes moisture at a temperature at which the formed citric acid complex does not decompose, for example, from room temperature to 150 ° C. Thereby, a citric acid complex of each element described above can be formed.
そして、形成されたクエン酸錯体を仮焼成後、熱処理する。仮焼成は、例えば、真空または不活性雰囲気下において、250〜350℃で加熱する。その後、例えば、500〜1200℃、好ましくは、600〜1000℃で熱処理することにより、上記一般式(1)で表わされるスピネル型複合酸化物を得る。
また、アルコキシド法では、例えば、上記した各元素のアルコキシドを、上記した化学量論比で含む混合アルコキシド溶液を調製し、この混合アルコキシド溶液に、水を加えて加水分解することにより、沈殿物を得る。
The formed citric acid complex is subjected to heat treatment after calcination. In the preliminary firing, for example, heating is performed at 250 to 350 ° C. in a vacuum or an inert atmosphere. Thereafter, for example, heat treatment is performed at 500 to 1200 ° C., preferably 600 to 1000 ° C., to obtain the spinel complex oxide represented by the general formula (1).
In the alkoxide method, for example, a mixed alkoxide solution containing the alkoxide of each element described above in the above stoichiometric ratio is prepared, and water is added to the mixed alkoxide solution to hydrolyze the precipitate, thereby producing a precipitate. obtain.
各元素のアルコキシドとしては、例えば、各元素と、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシなどのアルコキシとから形成される(モノ、ジ、トリ)アルコラートや、下記一般式(2)で示される各元素の(モノ、ジ、トリ)アルコキシアルコラートなどが挙げられる。
E[OCH(R1)−(CH2)i−OR2]j (2)
(式中、Eは、各元素を示し、R1は、水素原子または炭素数1〜4のアルキル基を示し、R2は、炭素数1〜4のアルキル基を示し、iは、1〜3の整数、jは、2〜4の整数を示す。)
アルコキシアルコラートは、より具体的には、例えば、メトキシエチレート、メトキシプロピレート、メトキシブチレート、エトキシエチレート、エトキシプロピレート、プロポキシエチレート、ブトキシエチレートなどが挙げられる。
Examples of the alkoxide of each element include (mono, di, tri) alcoholate formed from each element and alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, and the following general formula (2). Examples include (mono, di, tri) alkoxy alcoholates of each element.
E [OCH (R 1) - (CH 2) i -OR 2] j (2)
(In the formula, E represents each element, R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 2 represents an alkyl group having 1 to 4 carbon atoms, and i represents 1 to 1) (An integer of 3 and j represents an integer of 2 to 4.)
More specifically, examples of the alkoxy alcoholate include methoxyethylate, methoxypropylate, methoxybutyrate, ethoxyethylate, ethoxypropylate, propoxyethylate, butoxyethylate, and the like.
そして、混合アルコキシド溶液は、例えば、各元素のアルコキシドを、上記した化学量論比となるように有機溶媒に加えて、攪拌混合することにより調製することができる。
有機溶媒としては、各元素のアルコキシドを溶解できれば、特に制限されないが、例えば、芳香族炭化水素類、脂肪族炭化水素類、アルコール類、ケトン類、エステル類などが挙げられる。好ましくは、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類が挙げられる。
And a mixed alkoxide solution can be prepared by, for example, adding the alkoxide of each element to an organic solvent so that it may become said stoichiometric ratio, and stirring and mixing.
The organic solvent is not particularly limited as long as the alkoxide of each element can be dissolved, and examples thereof include aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, ketones, and esters. Preferably, aromatic hydrocarbons such as benzene, toluene and xylene are used.
そして、得られた沈殿物を、蒸発乾固し、その後、例えば、真空乾燥や通風乾燥などにより乾燥させた後、例えば、500〜1000℃、好ましくは、600〜950℃で熱処理することにより、上記一般式(1)で表わされるスピネル型複合酸化物を得る。 このようにして得られる上記一般式(1)で表わされるスピネル型複合酸化物のCuの含有量は、その目的および用途により適宜決定されるが、例えば、スピネル型複合酸化物(総量)に対して、例えば、1.5〜14重量%、好ましくは、6.5〜13.3重量%である。 Then, the obtained precipitate is evaporated to dryness, and then dried by, for example, vacuum drying or ventilation drying, and then heat-treated at, for example, 500 to 1000 ° C., preferably 600 to 950 ° C. The spinel type complex oxide represented by the general formula (1) is obtained. The content of Cu in the spinel-type composite oxide represented by the above general formula (1) thus obtained is appropriately determined depending on the purpose and application. For example, with respect to the spinel-type composite oxide (total amount) For example, it is 1.5 to 14% by weight, preferably 6.5 to 13.3% by weight.
また、スピネル型複合酸化物の比表面積(例えば、BET比表面積)は、例えば、0.5〜90m2/gであり、好ましくは、50〜90m2/gである。
また、上記一般式(1)で表わされるスピネル型複合酸化物におけるCuの結晶子径は、例えば、2〜60nmであり、好ましくは、2〜50nmである。この結晶子径は、例えば、X線回折(X−Ray Diffraction:XRD)装置により触媒組成物を測定し、測定により得られるXRDデータにおけるCuのピークについて、Scherrerの式を適用することにより求めることができる。
The specific surface area of the spinel-type complex oxide (e.g., BET specific surface area) is, for example, 0.5~90m 2 / g, preferably, 50~90m 2 / g.
Moreover, the crystallite diameter of Cu in the spinel type complex oxide represented by the general formula (1) is, for example, 2 to 60 nm, and preferably 2 to 50 nm. The crystallite diameter is obtained by, for example, measuring the catalyst composition with an X-ray diffraction (XRD) apparatus and applying the Scherrer equation to the Cu peak in the XRD data obtained by the measurement. Can do.
Cuの結晶子径が上記した範囲内にあれば、スピネル型複合酸化物の比表面積が上記した範囲内にある場合でも、Cuの粒成長による触媒活性低下を防止することができ、Cuの高い触媒活性を保持することができる。
そして、本発明のスピネル型複合酸化物は、そのまま、触媒組成物として用いることもできるが、通常、触媒担体上に担持させるなど、公知の方法により、触媒組成物として調製される。
If the crystallite diameter of Cu is within the above range, even if the specific surface area of the spinel composite oxide is within the above range, it is possible to prevent a decrease in catalytic activity due to Cu grain growth, and the high Cu content. The catalytic activity can be maintained.
The spinel composite oxide of the present invention can be used as it is as a catalyst composition, but is usually prepared as a catalyst composition by a known method such as loading on a catalyst carrier.
触媒担体としては、例えば、コージェライトなどからなるハニカム状のモノリス担体など、公知の触媒担体が挙げられる。触媒担体上に担持させるには、例えば、まず、上記により得られたスピネル型複合酸化物に、水を加えてスラリーとする。そして、これを触媒担体上にコーティングし、乾燥させ、その後、300〜800℃、好ましくは、300〜600℃で熱処理する。これにより、スピネル型複合酸化物を、触媒担体上に担持させることができる。 Examples of the catalyst carrier include known catalyst carriers such as a honeycomb monolith carrier made of cordierite. In order to make it carry | support on a catalyst support | carrier, for example, water is first added to the spinel type complex oxide obtained by the above, and it is set as a slurry. Then, this is coated on a catalyst carrier, dried, and then heat-treated at 300 to 800 ° C., preferably 300 to 600 ° C. Thereby, the spinel type complex oxide can be supported on the catalyst carrier.
そして、本発明の触媒組成物によれば、活性成分であるCuが、上記一般式(1)で表わされる特定組成のスピネル型複合酸化物に、担持されるのではなく組成として含有されている。そのため、スピネル型複合酸化物におけるCuの結晶子径を小さくすることができ、Cuのスピネル型複合酸化物に対する分散状態が良好に保持される。その結果、高温下または酸化還元変動下、さらには長期使用後においても、Cu微粒子の凝集を抑制することができる。 According to the catalyst composition of the present invention, Cu, which is an active component, is contained as a composition rather than being supported on the spinel complex oxide having a specific composition represented by the general formula (1). . Therefore, the crystallite diameter of Cu in the spinel complex oxide can be reduced, and the dispersion state of the Cu spinel complex oxide is well maintained. As a result, the aggregation of Cu fine particles can be suppressed even at high temperatures or under redox fluctuations and even after long-term use.
そのため、長期にわたって、Cuの粒成長による触媒活性低下を防止することができ、スピネル型複合酸化物の比表面積が上記した範囲内にある場合でも、Cuの高い触媒活性を保持することができる。
したがって、本発明の触媒組成物を使用すれば、Cuを活性成分として使用できるため、貴金属元素を低減しながら、低コストで、高温下または酸化還元変動下、長期にわたって優れた触媒活性を発現することができる。
Therefore, it is possible to prevent a decrease in catalytic activity due to Cu grain growth over a long period of time, and it is possible to maintain a high catalytic activity of Cu even when the specific surface area of the spinel composite oxide is within the above-described range.
Therefore, if the catalyst composition of the present invention is used, Cu can be used as an active ingredient, so that excellent catalytic activity is exhibited over a long period of time at a low cost and under high temperature or oxidation-reduction fluctuations while reducing noble metal elements. be able to.
本発明の触媒組成物は、気相や液相の反応触媒として広く用いることができる。特に、優れた排ガス浄化性能を長期にわたって実現することができるので、例えば、ガソリンエンジン、ディーゼルエンジンなどの内燃機関やボイラなどから排出される排気ガスを浄化するための排ガス浄化用触媒として、好適に使用することができる。 The catalyst composition of the present invention can be widely used as a gas phase or liquid phase reaction catalyst. In particular, since excellent exhaust gas purification performance can be realized over a long period of time, for example, as an exhaust gas purification catalyst for purifying exhaust gas discharged from internal combustion engines such as gasoline engines and diesel engines, boilers, etc. Can be used.
次に、本発明を実施例および比較例に基づいて説明するが、本発明は下記の実施例によって限定されるものではない。
実施例1(Co0.3Cu0.2Mg2.5AlO4.5粉末の製造)
硝酸コバルト Co換算で0.03モル
硝酸銅 Cu換算で0.02モル
硝酸マグネシウム Mg換算で0.25モル
硝酸アルミニウム Al換算で0.10モル
上記の成分を、500mL容量の丸底フラスコに加え、超純水100mLを加えて約30分間攪拌溶解させることにより、混合塩水溶液を調製した。次いで、混合塩水溶液を、攪拌中の10%テトラメチルアンモニウムヒドロキシド水溶液へ、1分間当たり20滴の速さで滴下して共沈物を得た。滴下終了後、10%テトラメチルアンモニウムヒドロキシド水溶液の攪拌を1時間続け、その後、一晩放置した。
Next, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited by the following Example.
Example 1 (Production of Co 0.3 Cu 0.2 Mg 2.5 AlO 4.5 powder)
Cobalt nitrate 0.03 mol copper nitrate in terms of Co 0.02 mol in terms of Cu magnesium nitrate 0.25 mol in terms of Mg Aluminum nitrate 0.10 mol in terms of Al The above ingredients were added to a 500 mL round bottom flask, A mixed salt aqueous solution was prepared by adding 100 mL of ultrapure water and dissolving with stirring for about 30 minutes. Subsequently, the mixed salt aqueous solution was dropped into the stirring 10% tetramethylammonium hydroxide aqueous solution at a rate of 20 drops per minute to obtain a coprecipitate. After completion of the dropwise addition, stirring of the 10% tetramethylammonium hydroxide aqueous solution was continued for 1 hour, and then left overnight.
そして、水溶液をろ過することにより、前駆体を取り出した。ろ過中、共沈物を大量の超純水で洗浄することにより、共沈物に残存するアンモニア成分を取り除いた。その後、前駆体を、110℃で12時間乾燥させた。乾燥後、前駆体を粉砕して粉末状にし、大気雰囲気、850℃で5時間熱処理して、Co0.3Cu0.2Mg2.5AlO4.5粉末を得た。 And the precursor was taken out by filtering aqueous solution. During filtration, the coprecipitate was washed with a large amount of ultrapure water to remove the ammonia component remaining in the coprecipitate. Thereafter, the precursor was dried at 110 ° C. for 12 hours. After drying, the precursor was pulverized into a powder form and heat-treated at 850 ° C. for 5 hours in an air atmosphere to obtain Co 0.3 Cu 0.2 Mg 2.5 AlO 4.5 powder.
なお、このCo0.3Cu0.2Mg2.5AlO4.5粉末において、Cuの含有割合は、6.7重量%であった。
実施例2(Ni0.3Cu0.2Mg2.5AlO4.5粉末の製造)
硝酸ニッケル Ni換算で0.03モル
硝酸銅 Cu換算で0.02モル
硝酸マグネシウム Mg換算で0.25モル
硝酸アルミニウム Al換算で0.10モル
上記の成分を用いたこと以外は、実施例1と同様の方法により、前駆体を調製した。その後、実施例1と同様の方法により、前駆体を乾燥、粉砕、そして熱処理して、Ni0.3Cu0.2Mg2.5AlO4.5粉末を得た。
Incidentally, in this Co 0.3 Cu 0.2 Mg 2.5 AlO 4.5 powder, the content of Cu was 6.7% by weight.
Example 2 (Production of Ni 0.3 Cu 0.2 Mg 2.5 AlO 4.5 powder)
Nickel nitrate 0.03 mol copper nitrate in terms of Ni 0.02 mol in terms of Cu magnesium nitrate 0.25 mol in terms of Mg Aluminum nitrate 0.10 mol in terms of Al Except for using the above components, Example 1 and A precursor was prepared by a similar method. Thereafter, the precursor was dried, pulverized, and heat-treated in the same manner as in Example 1 to obtain Ni 0.3 Cu 0.2 Mg 2.5 AlO 4.5 powder.
なお、このNi0.3Cu0.2Mg2.5AlO4.5粉末において、Cuの含有割合は、6.7重量%であった。
参考例3(Fe0.1Cu0.4Mg2.5AlO4.5粉末の製造)
硝酸鉄 Fe換算で0.01モル
硝酸銅 Cu換算で0.04モル
硝酸マグネシウム Mg換算で0.25モル
硝酸アルミニウム Al換算で0.10モル
上記の成分を用いたこと以外は、実施例1と同様の方法により、前駆体を調製した。その後、実施例1と同様の方法により、前駆体を乾燥、粉砕、そして熱処理して、Fe0.1Cu0.4Mg2.5AlO4.5粉末を得た。
Incidentally, in this Ni 0.3 Cu 0.2 Mg 2.5 AlO 4.5 powder, the content of Cu was 6.7% by weight.
Reference Example 3 (Production of Fe 0.1 Cu 0.4 Mg 2.5 AlO 4.5 powder)
Iron nitrate 0.01 mol in terms of Fe 0.04 mol in terms of Cu magnesium nitrate 0.25 mol in terms of Mg Aluminum nitrate 0.10 mol in terms of Al Except for using the above components, Example 1 A precursor was prepared by a similar method. Thereafter, the precursor was dried, pulverized, and heat-treated in the same manner as in Example 1 to obtain Fe 0.1 Cu 0.4 Mg 2.5 AlO 4.5 powder.
なお、このFe0.1Cu0.4Mg2.5AlO4.5粉末において、Cuの含有割合は、6.7重量%であった。
参考例4(CuAl2O4粉末の製造)
硝酸銅 Cu換算で0.10モル
硝酸アルミニウム Al換算で0.20モル
上記の成分を用いたこと以外は、実施例1と同様の方法により、前駆体を調製した。その後、実施例1と同様の方法により、前駆体を乾燥、粉砕、そして熱処理して、CuAl2O4粉末を得た。
Incidentally, in this Fe 0.1 Cu 0.4 Mg 2.5 AlO 4.5 powder, the content of Cu was 6.7% by weight.
Reference Example 4 (Production of CuAl 2 O 4 powder)
Copper nitrate 0.10 mol in terms of Cu Aluminum nitrate 0.20 mol in terms of Al A precursor was prepared in the same manner as in Example 1 except that the above components were used. Thereafter, in the same manner as in Example 1, the precursor dried, pulverized, and then heat-treated to obtain CuA l2 O 4 powder.
なお、このCuAl2O4粉末において、Cuの含有割合は、35.0重量%であった。
比較例1(Cu/Al2O3粉末の製造)
市販のθ−Al2O3粉末に、硝酸銅水溶液を含浸させ、110℃で一昼夜乾燥後、電気炉にて、大気中、650℃で1時間熱処理(焼成)することにより、Cu/Al2O3で示されるCuが担持されたθ−アルミナ粉末を得た。Cu/Al2O3粉末において、Cuの担持量(含有量)は、3.0重量%であった。
比較例2(FeAl2O4粉末の製造)
硝酸鉄 Fe換算で0.10モル
硝酸アルミニウム Al換算で0.20モル
上記の成分を用いたこと以外は、実施例1と同様の方法により、前駆体を調製した。その後、実施例1と同様の方法により、前駆体を乾燥、粉砕、そして熱処理して、FeAl2O4粉末を得た。
比較例3(CoAl2O4粉末の製造)
硝酸コバルト Co換算で0.10モル
硝酸アルミニウム Al換算で0.20モル
上記の成分を用いたこと以外は、実施例1と同様の方法により、前駆体を調製した。その後、実施例1と同様の方法により、前駆体を乾燥、粉砕、そして熱処理して、CoAl2O4粉末を得た。
1 Cuの結晶子径の測定
X線回折(X−Ray Diffraction:XRD)装置を用いて、上記実施例および比較例により得られた各粉末を測定した。そして、測定により得られたXRDデータにおけるCuのピークについて、Scherrerの式を適用することにより、各粉末におけるCuの結晶子径を求めた。結果を下記表1に示す。
2 酸化還元耐久試験
不活性雰囲気5分、酸化雰囲気10分、不活性雰囲気5分および還元雰囲気10分の計30分を1サイクルとし、このサイクルを10サイクル、合計5時間繰り返して、初期OSC機能評価後の粉末を、酸化雰囲気と還元雰囲気とに交互に暴露した後、還元雰囲気のまま室温まで冷却した。
Incidentally, in the CuAl 2 O 4 powder, the content of Cu was 35.0 wt%.
Comparative Example 1 (Production of Cu / Al 2 O 3 powder)
A commercially available θ-Al 2 O 3 powder was impregnated with an aqueous copper nitrate solution, dried overnight at 110 ° C., and then heat-treated (fired) in the air at 650 ° C. for 1 hour in an electric furnace to obtain Cu / Al 2 A θ-alumina powder carrying Cu represented by O 3 was obtained. In the Cu / Al 2 O 3 powder, the supported amount (content) of Cu was 3.0% by weight.
Comparative Example 2 (Production of FeAl 2 O 4 powder)
Iron nitrate 0.10 mol in terms of Fe Aluminum nitrate 0.20 mol in terms of Al A precursor was prepared in the same manner as in Example 1 except that the above components were used. Thereafter, the precursor was dried, pulverized, and heat-treated in the same manner as in Example 1 to obtain FeAl 2 O 4 powder.
Comparative Example 3 (Production of CoAl 2 O 4 powder)
Cobalt nitrate Co-converted 0.10 mol Aluminum nitrate Al-converted 0.20 mol A precursor was prepared in the same manner as in Example 1 except that the above components were used. Thereafter, the precursor was dried, pulverized, and heat-treated in the same manner as in Example 1 to obtain CoAl 2 O 4 powder.
1 Measurement of crystallite diameter of Cu Each powder obtained by the above Examples and Comparative Examples was measured using an X-ray diffraction (XRD) apparatus. Then, with respect to the Cu peak in the XRD data obtained by the measurement, the crystallite diameter of Cu in each powder was obtained by applying the Scherrer equation. The results are shown in Table 1 below.
2 Oxidation reduction endurance test 5 minutes of inert atmosphere, 10 minutes of oxidizing atmosphere, 5 minutes of inert atmosphere and 10 minutes of reducing atmosphere are set as one cycle, and this cycle is repeated for 10 cycles for a total of 5 hours. The powder after the evaluation was alternately exposed to an oxidizing atmosphere and a reducing atmosphere, and then cooled to room temperature in the reducing atmosphere.
なお、各雰囲気は、高温水蒸気を含む下記表2に示した組成のガスを、300×10−3m3/hrの流量で供給することによって調製した。また、雰囲気温度は、約1000℃に維持した。
3 NOx浄化率
上記酸化還元耐久試験後の各粉末を、常圧固定床流通反応装置内に配置した。触媒床に、下記表3に示す組成のモデルガスを流通させ、前処理として、表3に示す空気燃料比(A/F)14.0のリッチガス中で、600℃10分間保持した後、室温まで一度冷却した。
In addition, each atmosphere was prepared by supplying the gas of the composition shown in following Table 2 containing high temperature steam at the flow volume of 300 * 10 < -3 > m < 3 > / hr. The ambient temperature was maintained at about 1000 ° C.
3 NOx purification rate Each powder after the oxidation-reduction durability test was placed in an atmospheric pressure fixed bed flow reactor. A model gas having the composition shown in Table 3 below was circulated through the catalyst bed, and as a pretreatment, it was kept in a rich gas with an air fuel ratio (A / F) of 14.0 shown in Table 3 at 600 ° C. for 10 minutes, Cooled once until.
次いで、触媒床温度を室温から600℃まで1800秒で昇温させた後、A/Fを表3に示すように、14.0から15.2まで各A/F保持時間を300秒として変化させ、その間のNOx浄化率を連続的に測定した。各粉末におけるA/F=14.6での浄化率を下記表1に示す。
4 比表面積の測定
上記実施例および比較例により得られた粉末の、酸化還元耐久試験前後それぞれの比表面積を、BET法に従って測定した。その結果を下記表1に示す。
Next, after raising the catalyst bed temperature from room temperature to 600 ° C. in 1800 seconds, the A / F was changed from 14.0 to 15.2 with each A / F holding time being 300 seconds as shown in Table 3. The NOx purification rate during that time was continuously measured. The purification rate at A / F = 14.6 for each powder is shown in Table 1 below.
4. Measurement of specific surface area The specific surface areas of the powders obtained in the above examples and comparative examples were measured before and after the oxidation-reduction durability test according to the BET method. The results are shown in Table 1 below.
Claims (1)
(M1−xCux)O・nAl2O3 (1)
(式中、Mは、Mgと、CoおよびNiから選択される少なくとも1種の元素とを示し、xは、0<x<1の原子割合を示し、nは、0.08〜5を示す。) An exhaust gas purifying catalyst comprising a spinel type complex oxide represented by the following general formula (1):
(M 1-x Cu x) O · nAl 2 O 3 (1)
(Wherein, M is a Mg, shows at least one element selected from C o and Ni, x denotes the 0 <x <1 in atomic ratio, n is a 0.08 to 5 Show.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009197122A JP5506292B2 (en) | 2009-08-27 | 2009-08-27 | Exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009197122A JP5506292B2 (en) | 2009-08-27 | 2009-08-27 | Exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011045840A JP2011045840A (en) | 2011-03-10 |
JP5506292B2 true JP5506292B2 (en) | 2014-05-28 |
Family
ID=43832703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009197122A Expired - Fee Related JP5506292B2 (en) | 2009-08-27 | 2009-08-27 | Exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5506292B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5767024B2 (en) * | 2011-06-01 | 2015-08-19 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
JP5644739B2 (en) * | 2011-06-24 | 2014-12-24 | 株式会社デンソー | Exhaust gas purification catalyst |
JP5715518B2 (en) * | 2011-07-25 | 2015-05-07 | ダイハツ工業株式会社 | Exhaust gas purification catalyst |
CN104053503B (en) * | 2012-01-19 | 2016-11-02 | 丰田自动车株式会社 | Exhaust emission control catalyst and manufacture method thereof |
JP5975104B2 (en) * | 2012-08-10 | 2016-08-23 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and method for producing the same |
CA2898175C (en) | 2013-01-17 | 2021-05-04 | B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University | A catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons |
US9522386B2 (en) | 2013-01-17 | 2016-12-20 | B.G. Negev Technologies And Applications Ltd. At Ben-Gurion University | Catalyst and a process for catalytic conversion of carbon dioxide-containing gas and hydrogen streams to hydrocarbons |
JP5967015B2 (en) * | 2013-05-27 | 2016-08-10 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
JP2014237078A (en) * | 2013-06-06 | 2014-12-18 | トヨタ自動車株式会社 | Exhaust gas purifying catalyst and method for producing the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5610333A (en) * | 1979-07-06 | 1981-02-02 | Toyota Motor Corp | Catalyst for cleaning up exhaust gas and manufacture of said catalyst |
JPS5610334A (en) * | 1979-07-06 | 1981-02-02 | Toyota Motor Corp | Catalyst for cleaning up exhaust gas and manufacture of said catalyst |
GB8519319D0 (en) * | 1985-07-31 | 1985-09-04 | Shell Int Research | Catalyst |
JPH0418934A (en) * | 1990-05-15 | 1992-01-23 | Idemitsu Kosan Co Ltd | Carbonaceous material for reduction of nitrogen oxide |
DE19546476A1 (en) * | 1995-12-13 | 1997-06-19 | Daimler Benz Ag | Catalyst, process for its manufacture and use thereof |
JP5072136B2 (en) * | 1998-07-24 | 2012-11-14 | 千代田化工建設株式会社 | Method for producing porous spinel complex oxide |
-
2009
- 2009-08-27 JP JP2009197122A patent/JP5506292B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011045840A (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5506292B2 (en) | Exhaust gas purification catalyst | |
JP5216189B2 (en) | Exhaust gas purification catalyst | |
JP2004041868A (en) | Exhaust gas purifying catalyst | |
JP5166245B2 (en) | Catalyst composition | |
WO2006049042A1 (en) | Exhaust gas purification catalyst | |
EP1722889A1 (en) | Exhaust gas purifying catalyst, metal oxide particle and production process thereof | |
JP6187770B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same | |
WO2006134787A1 (en) | Exhaust gas purifying catalyst | |
CN109689205B (en) | Use of vanadates as oxidation catalysts | |
EP2155366B1 (en) | Oxygen storage/release material and exhaust gas purifying catalyst comprising the same | |
WO2012161091A1 (en) | Exhaust gas purifying catalyst and carrier | |
JP3956733B2 (en) | Cerium-zirconium composite metal oxide for exhaust gas purification catalyst | |
EP2939737A1 (en) | Catalyst carrier and exhaust gas purifying catalyst | |
JP5616382B2 (en) | Oxidation catalyst and exhaust gas purification method using the same | |
JP3251009B2 (en) | Exhaust gas purification catalyst | |
JP5449924B2 (en) | Oxygen storage / release material | |
JP6096818B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same | |
WO2018055894A1 (en) | Particulate matter combustion catalyst and particulate matter combustion catalyst filter | |
JP5692594B2 (en) | Exhaust gas purification catalyst | |
JP5607891B2 (en) | Exhaust gas purification catalyst | |
JP2012115732A (en) | Catalyst for purifying exhaust gas | |
JP3221706B2 (en) | Nitrogen oxide removal catalyst and exhaust gas purification method using the same | |
JP3885339B2 (en) | Exhaust gas purification catalyst, method for producing the same, and method for using the same | |
JP5822682B2 (en) | Exhaust gas purification catalyst | |
JP2012115731A (en) | Catalyst for purifying exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130813 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131008 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140318 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140318 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5506292 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |