JP3470496B2 - Deodorization treatment method using ozone - Google Patents

Deodorization treatment method using ozone

Info

Publication number
JP3470496B2
JP3470496B2 JP11995896A JP11995896A JP3470496B2 JP 3470496 B2 JP3470496 B2 JP 3470496B2 JP 11995896 A JP11995896 A JP 11995896A JP 11995896 A JP11995896 A JP 11995896A JP 3470496 B2 JP3470496 B2 JP 3470496B2
Authority
JP
Japan
Prior art keywords
ozone
catalyst
silver
manganese
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11995896A
Other languages
Japanese (ja)
Other versions
JPH09299756A (en
Inventor
加藤  明
伊久夫 下河辺
紀子 渡辺
寿生 山下
眞吾 一木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11995896A priority Critical patent/JP3470496B2/en
Publication of JPH09299756A publication Critical patent/JPH09299756A/en
Application granted granted Critical
Publication of JP3470496B2 publication Critical patent/JP3470496B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス中の臭い成分
を触媒の存在下でオゾンにより酸化又は分解する新規な
脱臭方法に係り、特に、住宅,事務所,病院,工場,遊
戯場,車内等の不快な臭い成分を室温付近の温度でオゾ
ンにより酸化又は分解する脱臭方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel deodorizing method of oxidizing or decomposing odorous components in gas by ozone in the presence of a catalyst, and particularly to houses, offices, hospitals, factories, amusement parks, in-vehicles. The present invention relates to a deodorizing method of oxidizing or decomposing unpleasant odorous components such as the like with ozone at a temperature near room temperature.

【0002】[0002]

【従来の技術】生活環境水準が高まるにつれ、従来は放
置されていた住宅,事務所,病院,工場,遊戯場,車内
等に存在する微量の不快な臭い成分の除去に対する要求
が高まっている。
2. Description of the Related Art As the standard of living environment rises, there is an increasing demand for the removal of a trace amount of unpleasant odorous components existing in houses, offices, hospitals, factories, playgrounds, cars, etc.

【0003】ガス中の臭い成分の除去法としては、触媒
による酸化分解法,吸着剤を用いる方法及びオゾン酸化
法などが知られている。触媒による酸化分解法は、例え
ば特開平4−200638 号公報に記載されているが、処理ガ
ス温度を高めないと触媒が作用しないという問題があ
り、生活環境での空気中の臭い成分の除去のように、室
温付近で処理する必要があるものには向かない。
Known methods for removing odorous components in gas include oxidative decomposition using a catalyst, a method using an adsorbent, and an ozone oxidation method. The oxidative decomposition method using a catalyst is described in, for example, Japanese Patent Application Laid-Open No. 4-200638, but there is a problem that the catalyst does not work unless the temperature of the processing gas is raised. As such, it is not suitable for those that need to be treated near room temperature.

【0004】吸着剤を用いる方法及びオゾン酸化法は、
室温での微量の臭い成分の除去に向いているが、吸着剤
を用いる方法は、吸着剤の交換を必要とするので、価格
的な面で問題がある。オゾン酸化法は、希薄な悪臭成分
とオゾンとの気相中での反応に長時間を要し、また、未
反応のオゾンは排気されて二次公害となる問題がある。
The method using an adsorbent and the ozone oxidation method are
Although it is suitable for removing a small amount of odorous components at room temperature, the method using an adsorbent requires replacement of the adsorbent, which is problematic in terms of cost. The ozone oxidation method has a problem that it takes a long time to react a dilute malodorous component with ozone in a gas phase, and unreacted ozone is exhausted to cause secondary pollution.

【0005】以上の事情から、近年、オゾンと悪臭成分
とを触媒存在下で反応させて、悪臭成分を酸化または分
解させる脱臭方法が提案された。この方法は、例えば特
開平4−322726号公報,特開平5−49863 号公報,特公平
7−41146号公報に示されている。
Under the above circumstances, a deodorizing method has recently been proposed in which ozone and a malodorous component are reacted in the presence of a catalyst to oxidize or decompose the malodorous component. This method is disclosed in, for example, Japanese Unexamined Patent Publication No. 4-322726, Japanese Unexamined Patent Publication No. 5-49863,
No. 7-41146.

【0006】[0006]

【発明が解決しようとする課題】オゾンと臭い成分との
反応を触媒を使用して加速する方法は、低濃度の臭い成
分を除去する方法として有効である。本発明は、この方
法を更に改善し、低濃度の臭い成分を低濃度のオゾンで
酸化,分解する改良された方法を提供することにある。
The method of accelerating the reaction between ozone and odorous components using a catalyst is effective as a method for removing odorous components of low concentration. The present invention is to further improve this method, and to provide an improved method of oxidizing and decomposing low-odor odorous components with low-concentration ozone.

【0007】居住空間における臭い成分の濃度は、通常
1ppm 以下である。また、オゾンはその濃度が0.1ppm
でも、正常者にとっては不快に感じ、大部分の者は鼻,
のどに刺激を感じる。このため、0.1ppmのオゾン濃度
が労働衛生的許容濃度とされている。本発明は、低濃度
の臭い成分を低濃度のオゾンで酸化,分解し、しかも余
剰オゾンの排出濃度を0.1ppm以下にできる脱臭方法を
提供するものである。
The odorous component concentration in the living space is usually 1 ppm or less. The concentration of ozone is 0.1ppm
But it feels uncomfortable for normal people and most people have nose,
I feel irritation in my throat. For this reason, an ozone concentration of 0.1 ppm is considered to be an acceptable concentration for occupational health. The present invention provides a deodorizing method capable of oxidizing and decomposing low-concentration odorous components with low-concentration ozone and reducing the emission concentration of excess ozone to 0.1 ppm or less.

【0008】[0008]

【課題を解決するための手段】本発明は、臭い成分とオ
ゾンとを含むガスを触媒と接触させ、臭い成分を酸化又
は分解する脱臭処理方法において、ガス中のオゾン濃度
を0.05〜5ppmの範囲とし、触媒によるガス処理の空
間速度を毎時6万〜30万の範囲とし、銀とマンガンを
含有する触媒を用いて室温条件下で臭い成分をオゾンに
より酸化,分解することにある。
The present invention provides a deodorizing treatment method in which a gas containing an odor component and ozone is brought into contact with a catalyst to oxidize or decompose the odor component, and the ozone concentration in the gas is adjusted to 0.05 to 5 ppm. And the space velocity of gas treatment by the catalyst is in the range of 60,000 to 300,000 per hour, and the catalyst containing silver and manganese is used to oxidize and decompose odorous components by ozone under room temperature conditions.

【0009】本発明の脱臭方法に用いる触媒としては、
担体表面に活性成分が担持された構造を有し、活性成分
として銀とマンガンを原子比で1:10〜1:2の割合
で含み、担体に対する活性成分の担持量が酸化物換算で
1〜20重量%であるものが望ましい。
The catalyst used in the deodorizing method of the present invention is
It has a structure in which the active ingredient is supported on the surface of the carrier, contains silver and manganese as the active ingredient in an atomic ratio of 1:10 to 1: 2, and the supported amount of the active ingredient on the carrier is 1 to oxide. It is preferably 20% by weight.

【0010】本発明の方法において、ガス中のオゾン濃
度0.05〜5ppmは、1ppm 以下の濃度の臭い成分を効
率良く脱臭するために必要な条件である。生活環境下の
臭い成分の濃度が1ppm よりも高くなり、ある瞬間には
臭い成分を分解又は酸化するためのガス中のオゾン量が
不足することがあっても、本発明の方法に用いる銀とマ
ンガンを活性成分とする触媒は、オゾンとの反応で処理
しきれない臭い成分を吸着する効果があるために、未反
応の臭い成分が流出することはない。銀とマンガンを活
性成分とする触媒に吸着された臭い成分は、オゾン濃度
の方が臭い成分濃度よりも高いときにオゾンと反応して
分解又は酸化され、触媒から除去される。すなわち銀と
マンガンを活性成分とする触媒には、一種のダムのよう
な効果があり、臭い成分濃度の変化に対応してオゾン濃
度を制御することを必ずしも必要としない効果がある。
また、余剰のオゾンの分解活性も高いため、オゾンが排
出されることは殆どない。
In the method of the present invention, the ozone concentration in the gas of 0.05 to 5 ppm is a necessary condition for efficiently deodorizing odorous components having a concentration of 1 ppm or less. Even if the concentration of the odorous component in the living environment becomes higher than 1 ppm and the amount of ozone in the gas for decomposing or oxidizing the odorous component may be insufficient at a certain moment, the silver used in the method of the present invention The catalyst containing manganese as an active component has an effect of adsorbing an odorous component that cannot be completely treated by a reaction with ozone, and therefore an unreacted odorous component does not flow out. When the ozone concentration is higher than the odor component concentration, the odor component adsorbed by the catalyst containing silver and manganese as active components reacts with ozone to be decomposed or oxidized and removed from the catalyst. That is, a catalyst containing silver and manganese as active components has a kind of dam-like effect, and does not necessarily require controlling the ozone concentration in response to changes in the odorous component concentration.
Further, since the activity of decomposing excess ozone is high, ozone is hardly emitted.

【0011】本発明の方法に用いる銀とマンガンを活性
成分とする触媒とりわけ活性成分が銀とマンガンの二成
分からなる触媒は、オゾン濃度が5ppm 以下の場合でも
十分な脱臭性能を示し、1ppm 以下の低いところでも高
活性を示す。オゾン濃度がこの範囲よりも高いと、かえ
って臭い成分と反応しなかった余剰のオゾンが分解しき
れずに流出する恐れがある。触媒層出口のオゾン濃度は
0.1ppm以下であることが望ましいが、そのためには入
口オゾン濃度を5ppm 以下にするのが好ましく、特に1
ppm以下が好ましい。オゾン濃度が10ppm以上の高濃度
領域では排出オゾン濃度が高くなり好ましくない。
The catalyst containing silver and manganese as active ingredients used in the method of the present invention, especially the catalyst consisting of two active ingredients of silver and manganese, exhibits sufficient deodorizing performance even when the ozone concentration is 5 ppm or less, and 1 ppm or less. It shows high activity even at low levels. If the ozone concentration is higher than this range, there is a risk that excess ozone that did not react with the odorous component may be decomposed and flow out. The ozone concentration at the outlet of the catalyst layer is preferably 0.1 ppm or less, and for that purpose, the ozone concentration at the inlet is preferably 5 ppm or less, particularly 1 ppm.
ppm or less is preferable. If the ozone concentration is in the high concentration range of 10 ppm or more, the discharged ozone concentration becomes high, which is not preferable.

【0012】本発明の方法において、触媒によるガス処
理の空間速度(単位触媒容積当り1時間に処理するガス
量)は、毎時6万〜30万の範囲が好ましい。このよう
に高い空間速度で臭い成分を含有するガスを処理できる
ことにより、触媒容量も小さくてすみ、処理装置をコン
パクトにできるという効果がある。
In the method of the present invention, the space velocity of gas treatment by the catalyst (the amount of gas treated per unit catalyst volume for one hour) is preferably in the range of 60,000 to 300,000 per hour. Since the gas containing the odorous component can be treated at a high space velocity as described above, the catalyst capacity can be small and the treatment device can be made compact.

【0013】本発明の脱臭方法に使用する触媒は、活性
成分が銀とマンガンとの二成分からなるものが最も望ま
しいが、触媒の調製時に原料等に含まれていた他の成分
が混入するのを拒むものではない。銀とマンガンの原子
比は、銀:マンガンで1:10〜1:2の割合からなる
ことが望ましい。銀とマンガンの含有比がこの範囲以外
ではオゾン脱臭反応の性能及び余剰オゾンの分解活性が
低い。また、触媒の耐久性も低い。さらに担体に対する
活性成分の担持量は、酸化物換算で1〜20重量%であ
ることが好ましく、この範囲を越えると本発明の特徴で
あるオゾン低濃度領域で、かつ高い空間速度での高い脱
臭効果及び余剰のオゾンの分解効果が得られない。
The catalyst used in the deodorizing method of the present invention is most preferably an active ingredient consisting of two components, silver and manganese, but other components contained in the raw materials and the like during the preparation of the catalyst are mixed. Does not refuse The atomic ratio of silver to manganese is preferably silver: manganese of 1:10 to 1: 2. If the content ratio of silver and manganese is outside this range, the performance of ozone deodorization reaction and the decomposition activity of excess ozone are low. Also, the durability of the catalyst is low. Further, the amount of the active ingredient supported on the carrier is preferably 1 to 20% by weight in terms of oxide, and when it exceeds this range, high deodorization in a low ozone concentration region and a high space velocity, which is a feature of the present invention. The effect and decomposition effect of excess ozone cannot be obtained.

【0014】本発明の方法に用いる触媒の担体として
は、アルミナ,シリカ,ゼオライト,コージェライト,
チタニア等に代表される比表面積が1m2/g 以上の多
孔質担体が好適である。比表面積が小さい担体を用いる
ときには予め多孔質の材料をコーテングしてから用いる
ことが好ましい。
As the carrier of the catalyst used in the method of the present invention, alumina, silica, zeolite, cordierite,
A porous carrier having a specific surface area of 1 m 2 / g or more, typified by titania, is suitable. When using a carrier having a small specific surface area, it is preferable to coat a porous material in advance.

【0015】本発明で使用する触媒は、セラミックスあ
るいは金属の基材上にコーティングして触媒構造体とし
ても良いし、或いは多孔質担体粉末に触媒成分を担持し
た後、コーティングしても良い。基材としては、ハニカ
ム状,板状のものなどが用いられる。
The catalyst used in the present invention may be coated on a ceramic or metal substrate to form a catalyst structure, or may be coated after the catalyst component is supported on the porous carrier powder. As the base material, a honeycomb-shaped or plate-shaped material is used.

【0016】以下に本発明の触媒の代表的な調製方法を
示すが、これらに限定されるものではない。
The typical methods for preparing the catalyst of the present invention are shown below, but the invention is not limited thereto.

【0017】銀およびマンガンの出発原料としては、酸
化物,水酸化物,炭酸塩,硝酸塩,塩化物,酢酸塩,蓚
酸塩,アルコキサイド等の化合物を用いることが出来
る。調製方法としては通常の含浸法,沈着法,混練法,
共沈法などが使用でき、特に限定されない。すなわち、
これらの成分の原料溶液、好ましくは水溶液を担体に含
浸、又は混練して、乾燥,焼成を行う方法や、これらの
成分原料の混合溶液にアンモニア水等を添加して水酸化
物の沈殿を生成させ、その後、乾燥,焼成を行い、担体
粉末に混合,成形する方法などをいずれも適用できる。
また、原料溶液に担体の粉体を加え、充分に混合しなが
ら、これにアンモニア等のアルカリを添加し、担体上に
沈着し、これを乾燥,焼成をする方法も適用できる。こ
の場合、焼成は空気中で300〜600℃で行うのが好
ましい。
As starting materials for silver and manganese, compounds such as oxides, hydroxides, carbonates, nitrates, chlorides, acetates, oxalates and alkoxides can be used. As the preparation method, usual impregnation method, deposition method, kneading method,
A coprecipitation method or the like can be used and is not particularly limited. That is,
A method of impregnating or kneading a raw material solution of these components, preferably an aqueous solution into a carrier, followed by drying and firing, or addition of ammonia water or the like to a mixed solution of these component raw materials to generate a hydroxide precipitate After that, a method of performing drying and baking, mixing with a carrier powder, and molding can be applied.
Further, a method in which a powder of a carrier is added to a raw material solution, an alkali such as ammonia is added to the raw material solution while being sufficiently mixed, and the mixture is deposited on the carrier, followed by drying and firing, is also applicable. In this case, calcination is preferably performed in air at 300 to 600 ° C.

【0018】なお、これらの触媒は適当な形状に成形し
て用いられる。その形状としては特に制限はないが、円
柱状,球状,板状、ハニカム状等が好ましい。
Incidentally, these catalysts are molded into an appropriate shape before use. The shape is not particularly limited, but a columnar shape, a spherical shape, a plate shape, a honeycomb shape or the like is preferable.

【0019】このようにして調製された触媒の銀元素
は、酸素との化合物あるいは酸素とマンガン元素との化
合物を形成している。すなわち銀は金属状態で析出して
いるのではなく、電子状態としては酸化状態にある。通
常、銀単一触媒の場合には、酸化銀は約200℃以上で
酸素を放出するため、本発明の触媒の好ましい焼成処理
温度300〜600℃では金属銀として析出してしま
う。しかし、本発明の触媒では酸化マンガンが通常安定
なMnO2 よりも酸化数の低い酸化物、すなわち酸化数
が+4よりも低い状態であることによって、銀を酸化状
態に保っている。
The silver element of the catalyst thus prepared forms a compound of oxygen or a compound of oxygen and a manganese element. That is, silver is not precipitated in the metallic state but is in the oxidized state as an electronic state. Usually, in the case of a single silver catalyst, silver oxide releases oxygen at a temperature of about 200 ° C. or higher, so that it precipitates as metallic silver at a preferable calcining temperature of 300 to 600 ° C. for the catalyst of the present invention. However, in the catalyst of the present invention, manganese oxide keeps silver in an oxidized state by the oxide having a lower oxidation number than MnO 2 which is usually stable, that is, the oxidation number is lower than +4.

【0020】マンガンは主としてMn23とMn34
いずれかの形態或いは両者が混在した形態で存在する。
触媒中の銀の一部はマンガンと複合酸化物を形成する。
複合酸化物の形態は、熱処理温度により異なり、AgM
24,AgMnO2 ,AgMnO4,AgMnO3,A
2MnO2,Ag2Mn916のいずれかの形態またはこ
れらの混合物の形態をとる。その結果、触媒はオゾン脱
臭反応に高活性となり、かつ銀が高分散されて凝集も抑
制される。
Manganese exists mainly in the form of either Mn 2 O 3 or Mn 3 O 4 or a mixture of both.
Part of the silver in the catalyst forms a complex oxide with manganese.
The morphology of the complex oxide depends on the heat treatment temperature,
n 2 O 4 , AgMnO 2 , AgMnO 4 , AgMnO 3 , A
It takes the form of any one of g 2 MnO 2 and Ag 2 Mn 9 O 16 or a mixture thereof. As a result, the catalyst becomes highly active in the ozone deodorizing reaction, and silver is highly dispersed and aggregation is suppressed.

【0021】触媒の銀,マンガン元素の化合物形態は、
粉末X線回折で同定でき、電子状態はX線光電子分光法
等の一般的な分析法で同定される。
The compound form of silver and manganese elements of the catalyst is
It can be identified by powder X-ray diffraction, and the electronic state is identified by a general analysis method such as X-ray photoelectron spectroscopy.

【0022】上記のように銀とマンガンとが適当な酸化
状態を保つことが、オゾン脱臭触媒として高活性を保つ
要因の一つと考えられる。
It is considered that maintaining appropriate oxidation states of silver and manganese as described above is one of the factors that maintain high activity as an ozone deodorizing catalyst.

【0023】本発明のオゾン脱臭触媒を応用する製品の
例としては、空気清浄機がある。その場合、脱臭触媒の
他にオゾン発生機構が必要であり、さらに除塵機構を備
えることが好ましいが、除塵機構なしで用いることもで
きる。また、もう一つの応用として空気調節機が挙げら
れる。空気調節機には、通常、暖房機能,冷房機能,除
湿機能,加湿機能などが付加されているが、これらの機
能以外に本発明のオゾン脱臭触媒を組み込み脱臭機能を
付与することができる。その場合、オゾン発生機構も必
要である。すなわち、本発明の脱臭方法を応用した製品
としては、除塵機構,オゾン発生機構を設け、本方法の
脱臭機構を備えた空気清浄機や、冷暖房機構,オゾン発
生機構を設け、本方法の脱臭機構を備えた空気調節機等
があげられる。
An air purifier is an example of a product to which the ozone deodorizing catalyst of the present invention is applied. In that case, an ozone generating mechanism is required in addition to the deodorizing catalyst, and it is preferable to further include a dust removing mechanism, but it is also possible to use without a dust removing mechanism. Another application is an air conditioner. The air conditioner is usually provided with a heating function, a cooling function, a dehumidifying function, a humidifying function, and the like. In addition to these functions, the ozone deodorizing catalyst of the present invention can be incorporated to provide the deodorizing function. In that case, an ozone generating mechanism is also required. That is, as a product to which the deodorizing method of the present invention is applied, a dust removing mechanism and an ozone generating mechanism are provided, and an air purifier equipped with the deodorizing mechanism of the present method, an air conditioning mechanism and an ozone generating mechanism are provided, and the deodorizing mechanism of the present method is provided. There is an air conditioner equipped with.

【0024】本発明の方法による低濃度の臭い成分を含
有するガスの処理においては、まず被処理ガスにオゾン
を混合した後、触媒に通気する。触媒と被処理ガスを接
触させる条件は上記したように、室温条件とし、ガスの
空間速度(SV)は毎時6万〜30万とする。特に毎時
6万〜20万が好ましい。これ以下のSVで使用する場
合には、触媒容量が大きくなったり、処理風量が小さく
なったりする。また、30万を越えるSVでは、本触媒
においても脱臭の効果及び余剰オゾンの分解効果が十分
でない。
In the treatment of a gas containing a low concentration odorous component by the method of the present invention, ozone is first mixed with the gas to be treated and then the catalyst is ventilated. As described above, the conditions for contacting the catalyst and the gas to be treated are room temperature conditions, and the space velocity (SV) of the gas is 60,000 to 300,000 per hour. Particularly, 60,000 to 200,000 per hour is preferable. When used with an SV of less than this, the catalyst capacity becomes large and the processing air volume becomes small. Further, if the SV exceeds 300,000, the deodorizing effect and the effect of decomposing excess ozone are not sufficient even with this catalyst.

【0025】本発明の方法においては、室温条件下、具
体的には0〜50℃の温度範囲で臭い成分を効率良く脱
臭することができ、臭い成分とオゾンを反応させるため
の加熱を特に要しない。しかし、室内の温度が15℃以
下の時には多少加熱して20℃以上まで温度を高めるこ
とが特に望ましい。
In the method of the present invention, odorous components can be efficiently deodorized under room temperature conditions, specifically in the temperature range of 0 to 50 ° C., and heating for reacting odorous components with ozone is particularly required. do not do. However, when the temperature in the room is 15 ° C. or lower, it is particularly desirable to heat it to some extent and raise it to 20 ° C. or higher.

【0026】[0026]

【発明の実施の形態】以下、本発明を実施例を挙げて具
体的に説明するが、本発明はこれらの実施例に限定され
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0027】〔実施例1〕硝酸銀32.9g ,硝酸マン
ガン六水和物500gを蒸留水に溶かして1リットルと
した。ハニカム状のコージェライト担体(150mm角,
厚さ50mm,210セル/平方インチ)にこの混合水溶
液を含浸した。これを120℃で乾燥後、空気雰囲気で
500℃で2時間加熱し、触媒とした。このときの活性
成分である銀(Ag)とマンガン(Mn)の組成比(原
子比)はAg:Mn=1:9であり、活性成分の担持量
は担体に対して、5重量%であった。
Example 1 32.9 g of silver nitrate and 500 g of manganese nitrate hexahydrate were dissolved in distilled water to make 1 liter. Honeycomb-shaped cordierite carrier (150mm square,
A thickness of 50 mm and 210 cells / in 2) was impregnated with this mixed aqueous solution. After drying this at 120 ° C., it was heated in an air atmosphere at 500 ° C. for 2 hours to obtain a catalyst. At this time, the composition ratio (atomic ratio) of silver (Ag) and manganese (Mn), which are active ingredients, was Ag: Mn = 1: 9, and the amount of the active ingredient supported was 5% by weight based on the carrier. It was

【0028】臭い成分を含む居住空間を想定し、臭い成
分を10ppm 含む空気を封入した縦,横,高さ各2mの
アクリル製のボックス内に、上記触媒を1個充填した反
応器を設置し、ファンにより触媒に上記ボックス内のガ
スを室温下、毎分3.75m3の流量で流通させた。この
ときオゾナイザによりオゾンを発生させ、触媒に通過さ
せる前のガスに1ppm の濃度になるよう添加した。この
時の空間速度は毎時20万で行った。一定時間ごとにボ
ックス内のガスをサンプリングし、臭い成分の濃度を分
析することにより脱臭効果を調べた。臭い成分の代表例
としてアセトアルデヒド,トリメチルアミン,アン
モニア,メチルメルカプタン,硫化水素の5種類
を用いた。脱臭率を次式に従って算出した。
Assuming a living space containing odorous components, a reactor filled with one of the above catalysts is installed in an acrylic box having a length, width, and height of 2 m, which is filled with air containing 10 ppm of odorous components. The gas in the box was passed through the catalyst by a fan at room temperature at a flow rate of 3.75 m 3 / min. At this time, ozone was generated by an ozonizer and added to the gas before passing through the catalyst to a concentration of 1 ppm. The space velocity at this time was 200,000 per hour. The deodorizing effect was examined by sampling the gas in the box at regular intervals and analyzing the concentrations of odorous components. As typical examples of odorous components, five kinds of acetaldehyde, trimethylamine, ammonia, methyl mercaptan and hydrogen sulfide were used. The deodorization rate was calculated according to the following formula.

【0029】[0029]

【数1】 [Equation 1]

【0030】表1に反応開始10分後の脱臭率を示す。
表1から明らかなように、本触媒は各種の悪臭成分に対
して高い脱臭効果を示す。
Table 1 shows the deodorization rate 10 minutes after the start of the reaction.
As is clear from Table 1, this catalyst exhibits a high deodorizing effect on various malodorous components.

【0031】なお、この場合の触媒層出口におけるオゾ
ン濃度はいずれも0.05ppm以下であった。
In this case, the ozone concentration at the catalyst layer outlet was 0.05 ppm or less in all cases.

【0032】[0032]

【表1】 [Table 1]

【0033】〔実施例2〕実施例1と同様の方法でAg
とMnの組成比が原子比でAg:Mn=1:10,1:
5,1:3,1:2であるコージェライトハニカム担持
Ag−Mn触媒を調製した。又、比較のためにMn10
0%の触媒とAg100%の触媒及びAgとMnの組成
比が本発明の範囲外の1:15,1:1の触媒も調製し
た。担持量はいずれの場合も酸化物換算で5重量%であ
る。
Example 2 Ag was produced in the same manner as in Example 1.
And the composition ratio of Mn is atomic ratio Ag: Mn = 1: 10, 1:
A cordierite honeycomb-supported Ag-Mn catalyst of 5,1: 3,1: 2 was prepared. Also, for comparison, Mn10
A catalyst having 0% catalyst and 100% Ag and a catalyst having a composition ratio of Ag and Mn of 1:15, 1: 1 outside the range of the present invention was also prepared. In each case, the supported amount is 5% by weight in terms of oxide.

【0034】表2に反応開始10分後の脱臭率を示す。
但し、ここでは臭い成分としてアセトアルデヒドを用い
た。
Table 2 shows the deodorization rate 10 minutes after the start of the reaction.
However, here, acetaldehyde was used as the odor component.

【0035】表2から明らかなように、少量の銀の添加
でマンガン単一触媒よりも大幅に脱臭効果が増大してお
り、本発明の範囲内のAgとMnの比率が好適であるこ
とが判る。本発明の実施例による銀−マンガン触媒の構
造を粉末X線回折法により調べたところ、Mn34のピ
ークとAg2O のピーク及びAgMn24のピークが認
められた。これに対し、マンガン単一触媒はMnO2
銀単一触媒はAg(金属状態)の結晶形態であった。こ
のようにAg−Mn二成分触媒では最適な組成を選ぶこ
とにより、複合効果によって単一触媒と異なった結晶構
造をとリ、これが高い活性を示す原因の一つと考えられ
る。
As is clear from Table 2, the addition of a small amount of silver greatly increases the deodorizing effect as compared with the manganese single catalyst, and the ratio of Ag and Mn within the range of the present invention is suitable. I understand. Silver according to an embodiment of the present invention - the structure of the manganese catalyst was examined by powder X-ray diffraction method, peaks of Mn 3 peak of the O 4 and Ag 2 O and AgMn 2 O 4 was observed. On the other hand, the manganese single catalyst is MnO 2 ,
The silver single catalyst was a crystalline form of Ag (metal state). Thus, by selecting the optimum composition for the Ag-Mn two-component catalyst, it is considered that one of the causes for exhibiting a high activity due to the crystal structure different from that of the single catalyst due to the combined effect.

【0036】[0036]

【表2】 [Table 2]

【0037】〔実施例3〕実施例1において、コージェ
ライトハニカム担体の代わりにチタニアまたはアルミナ
ハニカムを担体に用いて、同様の方法でAg−Mn担持
触媒を調製し、オゾン脱臭試験を行った。但し、ここで
は臭い成分としてアンモニアを用いた。
Example 3 An Ag-Mn supported catalyst was prepared in the same manner as in Example 1 except that titania or alumina honeycomb was used as the carrier instead of the cordierite honeycomb carrier, and the ozone deodorization test was conducted. However, here, ammonia was used as the odor component.

【0038】表3に反応開始10分後の脱臭率を示す。
表3から明らかなように、担体を変えても本触媒はオゾ
ン脱臭に対して高い効果を示す。
Table 3 shows the deodorization rate 10 minutes after the start of the reaction.
As is clear from Table 3, the present catalyst shows a high effect on ozone deodorization even if the carrier is changed.

【0039】[0039]

【表3】 [Table 3]

【0040】〔実施例4〕実施例1において、コージェ
ライトハニカム担体に対する活性成分の担持量を酸化物
基準で0.5,1,2,10,20,30 重量%に変え
た以外は同様の方法でAg−Mn担持触媒を調製し、オ
ゾン脱臭試験を行った。但し、ここでは臭い成分として
メチルメルカプタンを用いた。表4に反応開始10分後
の脱臭率を示す。表4から明らかなように、活性成分の
担持量が1から20重量%の広い範囲で高い脱臭効果を
示した。
[Example 4] The same as Example 1 except that the loading amount of the active ingredient on the cordierite honeycomb carrier was changed to 0.5, 1, 2, 10, 20, 30 wt% based on the oxide. An Ag-Mn supported catalyst was prepared by the method, and an ozone deodorization test was conducted. However, methyl mercaptan was used as the odor component here. Table 4 shows the deodorization rate 10 minutes after the start of the reaction. As is clear from Table 4, a high deodorizing effect was exhibited in a wide range of the supported amount of the active ingredient from 1 to 20% by weight.

【0041】[0041]

【表4】 [Table 4]

【0042】〔実施例5〕本実施例では空間速度を変え
た場合の入口オゾン濃度と出口オゾン濃度の関係を調べ
た結果を示す。実施例1において使用した触媒を用い、
処理ガス風量を変えて空間速度を変化させるとともに、
入口オゾン濃度も変えて実施例1と同様の方法でアセト
アルデヒドの脱臭反応を行った。なお、アセトアルデヒ
ド濃度は1ppmで行った。
[Embodiment 5] In this embodiment, the result of examining the relationship between the inlet ozone concentration and the outlet ozone concentration when the space velocity is changed is shown. Using the catalyst used in Example 1,
While changing the space velocity by changing the processing gas air volume,
The acetaldehyde deodorization reaction was carried out in the same manner as in Example 1 while changing the inlet ozone concentration. The acetaldehyde concentration was 1 ppm.

【0043】図1に反応開始10分後の触媒層出口にお
けるオゾン濃度を示す。なお、アセトアルデヒドはいず
れの場合も90%以上除去されていた。
FIG. 1 shows the ozone concentration at the catalyst layer outlet 10 minutes after the start of the reaction. In all cases, acetaldehyde was removed by 90% or more.

【0044】図1から明らかなように、排出オゾン濃度
を0.1ppm以下にするためには入口オゾン濃度5ppm 以
下,空間速度を毎時30万以下にするのが好ましく、特
に入口オゾン濃度1ppm 以下が好ましいことがわかる。
As is clear from FIG. 1, in order to reduce the exhaust ozone concentration to 0.1 ppm or less, it is preferable that the inlet ozone concentration is 5 ppm or less and the space velocity is 300,000 or less per hour. It turns out to be preferable.

【0045】[0045]

【発明の効果】本発明によれば、住宅,事務所,病院,
工場,遊戯場,車内等の居住空間に存在する低濃度の臭
い成分を室温付近で低濃度のオゾンにより効率良く酸化
又は分解し、悪臭を除くとともに排出されるオゾン濃度
を低く抑えることができる。
According to the present invention, a house, an office, a hospital,
It is possible to efficiently oxidize or decompose low-concentration odorous components existing in living spaces such as factories, amusement parks, and cars in the vicinity of room temperature with low-concentration ozone, remove bad odors, and suppress the ozone concentration discharged.

【図面の簡単な説明】[Brief description of drawings]

【図1】入口オゾン濃度と出口オゾン濃度の関係を示す
図。
FIG. 1 is a diagram showing a relationship between an inlet ozone concentration and an outlet ozone concentration.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 寿生 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (72)発明者 一木 眞吾 新潟県北蒲原郡中条町大字富岡46番地1 株式会社 日立製作所 生産機器事業 部内 (56)参考文献 特開 平8−71361(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 B01D 53/86 A61L 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Yamashita 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Shingo Ichiki Nakajo-machi, Kitakanbara-gun, Niigata 46 Tomioka Address 1 Hitachi Ltd., Production Equipment Division (56) Reference JP-A-8-71361 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01J 21/00-37/36 B01D 53/86 A61L 9/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】臭い成分とオゾンを含むガスを触媒と接触
させて臭い成分を酸化又は分解する脱臭処理方法におい
て、 触媒と接触させる前の前記ガス中のオゾン濃度を0.0
5〜5ppmの範囲とし、触媒によるガス処理の空間速度
を毎時6〜30万の範囲とし、銀と酸素との化合物及び銀と酸素とマンガンとの化合物
の少なくとも一方及びMn 2 3 とMn 3 4 の少なくとも
一方の形態のマンガン酸化物を含む触媒 と前記ガスとを
室温条件下で接触させることを特徴とするオゾンによる
脱臭処理方法。
1. A deodorizing treatment method in which a gas containing an odor component and ozone is brought into contact with a catalyst to oxidize or decompose the odor component, and the ozone concentration in the gas before being brought into contact with the catalyst is 0.0.
The range of 5 to 5 ppm, the space velocity of gas treatment with a catalyst within the range of 60 to 300,000 per hour , the compound of silver and oxygen and the compound of silver, oxygen and manganese.
At least the at least one of and Mn 2 O 3 and Mn 3 O 4
A method for deodorizing treatment with ozone, which comprises contacting a catalyst containing one form of manganese oxide with the gas under room temperature conditions.
【請求項2】請求項1において、前記触媒は担体表面に
活性成分が担持された構造を有し、活性成分として銀と
マンガンを原子比で1:10〜1:2の割合で含み、担
体に対する活性成分の担持量が酸化物換算で1〜20重
量%であることを特徴とするオゾンによる脱臭処理方
法。
2. The carrier according to claim 1, wherein the catalyst has a structure in which an active component is supported on the surface of a carrier, and contains silver and manganese as active components in an atomic ratio of 1:10 to 1: 2. The deodorizing treatment method using ozone, wherein the supported amount of the active ingredient is 1 to 20% by weight in terms of oxide.
【請求項3】請求項2において、前記活性成分は銀とマ
ンガンの二成分からなることを特徴とするオゾンによる
脱臭処理方法。
3. The method for deodorizing treatment with ozone according to claim 2, wherein the active ingredient is composed of two components, silver and manganese.
【請求項4】 臭い成分とオゾンを含むガスを触媒と接触
させて臭い成分を酸化又は分解する脱臭処理方法におい
て、銀と酸素との化合物及び銀と酸素とマンガンとの化
合物の少なくとも一方及びMn23とMn34の少なく
とも一方の形態のマンガン酸化物を含む触媒と前記ガス
とを接触させることを特徴とするオゾンによる脱臭処理
方法。
4. A deodorizing method for oxidizing or decomposing an odor component by bringing a gas containing an odor component and ozone into contact with a catalyst, and at least one of a compound of silver and oxygen and a compound of silver, oxygen and manganese and Mn. A method for deodorizing treatment by ozone, which comprises bringing a catalyst containing a manganese oxide in the form of at least one of 2 O 3 and Mn 3 O 4 into contact with the gas.
JP11995896A 1996-05-15 1996-05-15 Deodorization treatment method using ozone Expired - Fee Related JP3470496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11995896A JP3470496B2 (en) 1996-05-15 1996-05-15 Deodorization treatment method using ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11995896A JP3470496B2 (en) 1996-05-15 1996-05-15 Deodorization treatment method using ozone

Publications (2)

Publication Number Publication Date
JPH09299756A JPH09299756A (en) 1997-11-25
JP3470496B2 true JP3470496B2 (en) 2003-11-25

Family

ID=14774423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11995896A Expired - Fee Related JP3470496B2 (en) 1996-05-15 1996-05-15 Deodorization treatment method using ozone

Country Status (1)

Country Link
JP (1) JP3470496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332862B1 (en) * 2015-09-30 2020-05-06 Futamura Kagaku Kabushiki Kaisha Ozone oxidative decomposition treatment method for vocs and/or gaseous inorganic reducing compounds in gas

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471191B2 (en) * 2003-03-28 2010-06-02 日本ガスケット株式会社 Method for producing deodorizing catalyst
JP6071110B2 (en) * 2013-03-15 2017-02-01 株式会社豊田中央研究所 VOC decomposition removal catalyst and VOC decomposition removal method using the same
JP6680501B2 (en) 2015-09-30 2020-04-15 フタムラ化学株式会社 Method for purifying hazardous substance-containing liquid and apparatus for purifying hazardous substance-containing liquid for carrying out the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3332862B1 (en) * 2015-09-30 2020-05-06 Futamura Kagaku Kabushiki Kaisha Ozone oxidative decomposition treatment method for vocs and/or gaseous inorganic reducing compounds in gas

Also Published As

Publication number Publication date
JPH09299756A (en) 1997-11-25

Similar Documents

Publication Publication Date Title
US5187137A (en) Catalyst and method of preparing the catalyst
US5486356A (en) Deodorant composition combining transition metal oxide or alloy with catalytic metal on carrier
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JPH06102155B2 (en) Deodorant, deodorant manufacturing method, deodorizing method, deodorizing device, and refrigeration cycle device equipped with this deodorizing device
KR101762718B1 (en) Porous copper-manganese filter media and the preparation of the same
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JPH10296087A (en) Deodorizing catalyst and its manufacture
JP3470496B2 (en) Deodorization treatment method using ozone
JP4780490B2 (en) Activated carbon filter
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
JP2002102701A (en) Ordinary temperature catalyst
JPH0584441A (en) Deodorizing catalyst and apparatus using that
JPH10290933A (en) Deodorization catalyst, deodorization filter using the same and deodorizer using the same
JP4656352B2 (en) Room temperature catalyst
JP3546766B2 (en) Deodorizing catalyst
JPH11137656A (en) Deodorant catalyst element and its production
JPH067678A (en) Deodorant catalyst and air cleaner using the same
JPH0290923A (en) Deodorizing method
JPH11290693A (en) Air cleaning catalyst, its manufacture, catalytic structure using the same and air-conditioner equipped with the catalytic structure
JPH08257406A (en) Deodorizing material and deodorizing method
JP3029764B2 (en) Deodorant
JPH057776A (en) Catalyst and its manufacture
KR20030023344A (en) Method for Removing Ozone Using Natural Manganese Ore as a Catalyst
JPH1033646A (en) Toilet deodorizing catalyst
JPH0616849B2 (en) Catalyst for treating gas containing harmful and odorous components

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees