WO2019188219A1 - Ammonia decomposition catalyst and method for producing same, and method for producing hydrogen gas - Google Patents

Ammonia decomposition catalyst and method for producing same, and method for producing hydrogen gas Download PDF

Info

Publication number
WO2019188219A1
WO2019188219A1 PCT/JP2019/009788 JP2019009788W WO2019188219A1 WO 2019188219 A1 WO2019188219 A1 WO 2019188219A1 JP 2019009788 W JP2019009788 W JP 2019009788W WO 2019188219 A1 WO2019188219 A1 WO 2019188219A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia decomposition
ruthenium
decomposition catalyst
oxide
rare earth
Prior art date
Application number
PCT/JP2019/009788
Other languages
French (fr)
Japanese (ja)
Inventor
裕貴 三浦
孝美 大江
圭一 中村
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2020509837A priority Critical patent/JP7264154B2/en
Publication of WO2019188219A1 publication Critical patent/WO2019188219A1/en
Priority to JP2023061899A priority patent/JP2023076661A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an ammonia decomposition catalyst for promoting a reaction for decomposing ammonia into hydrogen gas and nitrogen gas, a method for producing the same, and a method for producing hydrogen gas using the ammonia catalyst.
  • Hydrogen produces water by combustion and does not produce carbon dioxide, which is a greenhouse gas like general fossil fuels. Therefore, hydrogen has attracted attention as a clean energy.
  • fuel cells using hydrogen as a fuel have been put to practical use. It has become.
  • hydrogen has a problem that it is very light in a gaseous state, difficult to transport, and requires a large amount of energy to be liquefied, resulting in a high transport cost.
  • ammonia containing 1.5 molecules of hydrogen per molecule is used as a hydrogen carrier, hydrogen gas and nitrogen gas are generated by catalytic decomposition of ammonia, and the hydrogen gas is taken out and used as an energy source.
  • the technology to do is known.
  • research and development of a catalyst that promotes the decomposition reaction of ammonia at a low temperature of 600 ° C. or less has been advanced.
  • Patent Document 1 describes an ammonia decomposition catalyst in which ruthenium is supported on an inorganic carrier such as ⁇ -alumina.
  • Patent Document 2 describes that the ammonia decomposition rate can be improved by supporting ruthenium and an alkali metal or alkaline earth metal as a promoter on a support such as alumina.
  • Patent Document 3 includes ammonia containing ruthenium and a rare earth oxide such as cerium oxide, and further containing 1 to 50 parts by mass of a refractory inorganic oxide such as aluminum oxide with respect to 100 parts by mass of the rare earth oxide.
  • a cracking catalyst is described.
  • Patent Documents 1 to 3 cannot be said to have sufficient activity for decomposing ammonia at a low temperature. Further, as described in Patent Document 3, catalytic activity is not sufficient. If the content of the rare earth oxide is increased in order to increase the catalyst, the catalyst becomes expensive and the cost of ammonia decomposition increases.
  • the present invention has been made to solve the above-described problems.
  • An ammonia decomposition catalyst exhibiting high activity even at a low temperature in a decomposition reaction of ammonia, a method for producing the same, and hydrogen gas using the ammonia decomposition catalyst An object of the present invention is to provide a manufacturing method.
  • the present invention is based on the finding that in a catalyst using ruthenium as an active metal, the catalytic activity in the ammonia decomposition reaction is improved by supporting a rare earth oxide in addition to ruthenium on a support.
  • the present invention provides the following [1] to [16].
  • the alkali metal obtained in the step 1 on which the rare earth oxide is supported or the carrier obtained in the step 2 on which the rare earth oxide and ruthenium are supported is further added to an alkali metal.
  • the ammonia decomposition catalyst of the present invention it is possible to provide an ammonia decomposition catalyst with improved catalytic activity in the ammonia decomposition reaction. Therefore, by using the ammonia decomposition catalyst of the present invention, the ammonia decomposition reaction can be promoted even at a low temperature, and hydrogen gas can be produced at low cost.
  • ammonia decomposition catalyst The ammonia decomposition catalyst of the present invention (hereinafter also simply referred to as “catalyst”) has ruthenium and a rare earth oxide supported on a carrier made of a metal oxide other than the rare earth oxide, and the content of the rare earth oxide is 0. .1 to 30.0% by mass.
  • the catalyst of the present invention exhibits high activity even at low temperatures in an ammonia decomposition reaction while suppressing the amount of expensive rare earth metal used, and by using this, ammonia can be decomposed at low cost.
  • the carrier in the present invention supports ruthenium and a rare earth oxide, and is made of a metal oxide other than the rare earth oxide.
  • a metal oxide used as a general catalyst carrier can be used. Examples thereof include alumina, silica, titania, zirconia, magnesia, iron oxide, zinc oxide, and tin oxide.
  • the said metal oxide may be used individually by 1 type, or may use 2 or more types together. Of these, preferred is alumina, zirconia or titania, and more preferred is alumina.
  • the kind of alumina is not particularly limited, and examples thereof include ⁇ alumina, ⁇ alumina, ⁇ alumina, and the like, and preferably ⁇ alumina.
  • ⁇ -alumina has a smaller specific surface area than other types of alumina, the surface of the support can be coated even with a small amount of rare earth oxide supported on the support, and high catalytic activity can be maintained in the ammonia decomposition reaction. it can.
  • ⁇ -alumina means a corundum type crystal structure among the crystal phases of alumina.
  • ⁇ -alumina has a monoclinic crystal system, and ⁇ -alumina has a defect spinel type crystal structure.
  • the presence of the metal oxide in the catalyst can be confirmed by powder X-ray diffraction analysis (XRD).
  • the carrier is the main component contained most in the constituent components of the catalyst of the present invention, and the content in the constituent components is preferably larger than the amount of the rare earth oxide to be supported, preferably 50% by mass. As mentioned above, More preferably, it is 60 mass% or more, More preferably, it is 65 mass% or more.
  • the upper limit of the content of the carrier is not particularly limited, but is preferably 99% by mass or less, more preferably 97% by mass or less in consideration of the amount of ruthenium to be supported.
  • the content of the carrier can be calculated from the analysis of the component composition of the catalyst as described in the examples described later, or can be estimated by calculating from the charged amounts of other components of the catalyst.
  • the carrier preferably has an average pore diameter of 5 nm or more, more preferably 8 to 200 nm, still more preferably 10 to 180 nm, from the viewpoint of suppressing a reduction in catalytic action due to diffusion of ammonia gas in the pores.
  • the average pore diameter can be determined by a gas adsorption method, and is determined from the total pore volume and BET specific surface area measured by a specific surface area pore distribution measuring device.
  • the average pore diameter in the present specification is a value determined by the measurement method described in Examples described later.
  • the shape and size of the carrier are appropriately determined according to the specifications of the apparatus for performing the ammonia decomposition reaction, operating conditions, and the like.
  • the shape is, for example, powder, granule, sphere, pellet or the like.
  • the size is 1 ⁇ m to 3 mm, more preferably 2 ⁇ m to 2.5 mm, still more preferably 3 ⁇ m to 2.5 mm in terms of the pressure loss of ammonia gas to be decomposed and the contact area with the catalyst.
  • the particle size of the carrier in this specification is determined as a volume average particle size D50 by a laser diffraction particle size distribution meter. The values in the following examples are catalog values.
  • rare earth oxide examples of the rare earth oxide supported on the carrier include yttrium oxide, lanthanum oxide, cerium oxide, neodymium oxide, samarium oxide, gadolinium oxide, and ytterbium oxide.
  • the rare earth oxides may be used alone or in combination of two or more.
  • those having a basicity at 500 ° C. of more than 600 ⁇ mol / g are preferable, and specifically, lanthanum oxide, cerium oxide, neodymium oxide or samarium oxide is preferable, and more preferable. Is neodymium oxide.
  • the basicity can be measured by a temperature programmed desorption method using carbon dioxide as an acid probe molecule.
  • the values described in “Applied Catalysis A: General”, vol. 356, 2009, p. 57-63 can be referred to.
  • the content of the rare earth oxide in the catalyst of the present invention is 0.1 to 30.0% by mass, preferably 1.0 to 30.0% by mass, more preferably 3.0 to 29.0% by mass. %, More preferably 8.0 to 28.0% by mass, particularly preferably 13.0 to 27.0% by mass. If the content is 0.1% by mass or more, it is sufficient to coat the support, and the catalytic activity in the ammonia decomposition reaction can be improved. Moreover, if it is 30.0 mass% or less, the specific surface area of the support
  • the content of the rare earth oxide in the catalyst is preferably 0.3 to 20.0% by mass, more preferably 0.5 to 10% when the metal oxide of the support is ⁇ -alumina. 0% by mass.
  • the content is preferably 10.0 to 25.0% by mass, more preferably 12.0 to 21.0% by mass.
  • the metal oxide is ⁇ -alumina, the content is preferably 10.0 to 30.0% by mass, more preferably 14.0 to 28.0% by mass.
  • the rare earth oxide is preferably distributed only on the surface of the support from the viewpoint of easily contributing to the ammonia decomposition reaction.
  • the impregnation method as described later is used as a catalyst preparation method, the rare earth oxide is supported so as to cover the surface of the support, so that the component uniformity in the catalyst as obtained by a coprecipitation method or the like is obtained. Unlike the high one, the rare earth oxide is substantially present only on the surface of the support.
  • Ruthenium is a metal species as an active component of the ammonia decomposition catalyst of the present invention, and is supported on the carrier together with a rare earth oxide. By supporting ruthenium in such a manner, the catalytic activity in the ammonia decomposition reaction can be improved.
  • the ruthenium content in the catalyst is preferably such that a sufficiently high catalytic activity is obtained, and is preferably 0.1 to 10.0% by mass in consideration of the cost of ammonia decomposition. Is 0.5 to 8.0 mass%, more preferably 1.0 to 7.0 mass%.
  • the presence of metal ruthenium in the catalyst can be confirmed with a transmission electron microscope (TEM).
  • the uniform type is an aspect in which the active ingredient is uniformly distributed with respect to the carrier.
  • the egg shell type is also called an outer layer carrying type, and is an aspect in which active ingredients are distributed with a predetermined thickness from the surface of the carrier to the inside like an egg shell.
  • the egg yoke type is an embodiment in which the active ingredient is distributed in the core part of the carrier, such as egg yolk.
  • the egg white type is an aspect in which active ingredients are distributed within a predetermined depth inside the carrier surface, such as egg white.
  • the support mode of ruthenium which is an active component, may be any of the above, but preferably from the viewpoint of suppressing the diffusion of ammonia gas into the carrier pores from the reaction rate limiting.
  • Egg shell type The egg shell type catalyst preferably has a region in which ruthenium is distributed at a predetermined concentration from the surface to the inside of the support, that is, a shell portion, and the thickness of the shell portion is preferably 10 to 300 ⁇ m. More preferably, the thickness is 20 to 250 ⁇ m, and still more preferably 50 to 200 ⁇ m. Even if ruthenium is contained in a portion other than the shell portion, it is difficult to contribute to the ammonia decomposition reaction.
  • the region other than the shell portion that is, the region inside the shell portion does not contain ruthenium.
  • the concentration of ruthenium in the shell part is preferably 0.1 to 15.0% by mass, more preferably 0.5 to 10.0% by mass, and still more preferably 100% by mass of the constituent atoms of the shell part. Is 1.0 to 8.0% by mass.
  • the thickness of the shell portion and the ruthenium concentration in the shell portion of the egg shell type catalyst are determined by electron beam microanalyzer (EPMA) or scanning electron microscope / energy dispersive X-ray spectroscopic analysis (SEM). / EDX) can be obtained by measurement using an apparatus. In this invention, it is set as the value calculated
  • the carrier may further carry one or more metals selected from alkali metals and alkaline earth metals. These metals act as promoters for further promoting the ammonia decomposition reaction in the catalyst of the present invention.
  • alkali metal include sodium, potassium, cesium and the like.
  • alkaline earth metal include calcium and barium. These metals may be used individually by 1 type, or may use 2 or more types together. Of these, sodium, potassium or cesium is preferable, and potassium is more preferable.
  • the content of the metal is preferably 0.1 to 10.0 mol, more preferably 0.2 to 8. mol per 1 mol of the ruthenium.
  • the amount is 0 mol, more preferably 0.5 to 5.0 mol.
  • the component composition of a catalyst can be calculated
  • an aqueous solution in which the catalyst is completely dissolved using an acid or base can be prepared, and quantitative analysis of each metal element can be performed with an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer.
  • ICP high frequency inductively coupled plasma
  • the residual components in the container used for loading a predetermined substance are dissolved, the metal element is quantified by ICP emission spectroscopic analysis, and the contained metal element in the raw material for loading is determined.
  • the component composition of the catalyst can also be determined from the difference from the amount.
  • the component composition of the catalyst in the present invention is a value obtained by the analysis method described in Examples described later.
  • the catalyst comprises: a step 1 for supporting the rare earth oxide on the carrier; and a step 2 for supporting the ruthenium on the carrier obtained by supporting the rare earth oxide obtained in the step 1. Can be manufactured.
  • step 1 a rare earth oxide is supported on the carrier made of a metal oxide other than the rare earth oxide.
  • This step can be performed using a general catalyst preparation method for supporting a metal oxide. For example, it is possible to use an impregnation method in which a rare earth compound solution is impregnated in the carrier, and then dried and fired.
  • the rare earth compound is a precursor of a rare earth oxide and is not particularly limited, and examples thereof include salts such as nitrates, carbonates, and chlorides. Preferably, it is a water-soluble nitrate.
  • the specific method of the impregnation method is not particularly limited, and can be performed by, for example, a pore filling method, an evaporation to dryness method, or the like.
  • a pore filling method an evaporation to dryness method, or the like.
  • the equivalent amount of rare earth nitrate is dissolved in water equal to or less than the water absorption amount of the carrier measured in advance to prepare an aqueous solution, and the carrier is impregnated with the whole amount of the aqueous solution and then dried.
  • the water absorption amount of the carrier can be determined by subtracting the mass of the dried carrier from the mass of the absorbed carrier.
  • the mass of the water-absorbed carrier is a state in which water (supernatant) adhering to the surface of the carrier is separated using a sieve or a filter paper after the entire dried carrier is sufficiently immersed in water.
  • an aqueous solution is prepared by dissolving the corresponding amount of rare earth nitrate in a predetermined amount of water, and the entire amount of the aqueous solution is added to the carrier while heating to evaporate the water, A rare earth oxide precursor is supported.
  • a method is used in which a carrier is impregnated with an aqueous solution of rare earth nitrate, rare earth chloride, etc., and then a basic aqueous solution is added to form a water-insoluble rare earth hydroxide, followed by firing to carry the rare earth oxide on the carrier. You can also.
  • drying and calcination can be performed under the general conditions in the catalyst preparation method.
  • the drying method is not particularly limited as long as the liquid can be sufficiently volatilized as a pretreatment for baking.
  • the carrier can be dried by heating to 80 to 130 ° C., preferably 90 to 120 ° C., more preferably 100 to 110 ° C. under atmospheric pressure and atmospheric pressure. it can.
  • the firing method is not particularly limited as long as the rare earth oxide precursor can be oxidized into the rare earth oxide.
  • a rare earth nitrate when used, it is fired at 450 to 800 ° C., preferably 470 to 700 ° C., more preferably 480 to 600 ° C. under normal pressure, thereby obtaining a rare earth oxide in which the rare earth nitrate is thermally decomposed. be able to.
  • step 2 ruthenium is supported on the carrier obtained in step 1 on which the rare earth oxide is supported.
  • This step can be performed using a general method for preparing a metal-supported catalyst.
  • the ruthenium compound solution is impregnated in a carrier on which the rare earth oxide is supported, dried, and then reduced, whereby the ruthenium supporting form is a uniform type, and the rare earth oxide and ruthenium are supported.
  • An ammonia decomposition catalyst can be prepared.
  • a carrier on which the rare earth oxide is supported with an aqueous solution of a ruthenium salt such as ruthenium chloride or nitrosyl ruthenium nitrate, a basic aqueous solution such as sodium carbonate, sodium metasilicate, potassium carbonate, You may make it contact with aqueous solutions, such as barium hydroxide.
  • a ruthenium salt such as ruthenium chloride or nitrosyl ruthenium nitrate
  • a basic aqueous solution such as sodium carbonate, sodium metasilicate, potassium carbonate
  • the carrier is dried, and the surface of the carrier on which the rare earth oxide is supported is supported with water-insoluble ruthenium oxide, and then reduced, whereby the ruthenium is supported in an egg shell type.
  • an ammonia decomposition catalyst carrying ruthenium can be prepared.
  • the ruthenium compound is a ruthenium precursor to be supported, and is not particularly limited.
  • the ruthenium compound has a water-soluble salt such as ruthenium chloride and an organic ligand such as tris (acetylacetonato) ruthenium.
  • a compound or the like can be used.
  • a water-soluble salt is preferable, and ruthenium chloride is more preferable.
  • the drying method can be performed in the same manner as the drying method in step 1 above.
  • the reduction method is not particularly limited.
  • a gas phase reduction using a gas containing a reducing gas such as hydrogen gas or ammonia gas, a liquid using a solution containing a reducing agent such as sodium borohydride, or the like.
  • the method include phase reduction.
  • the temperature is preferably 200 ° C. or higher, more preferably 200 to 600 ° C., and further preferably 250 to 550 ° C.
  • the reduction time is not particularly limited, but is preferably 1 to 24 hours, more preferably 1 to 10 hours, and further preferably 1.5 to 5 hours. From the viewpoint of sufficient reaction progress, it is also preferable to raise the reduction temperature stepwise.
  • the gas phase reduction as described above may be performed, for example, in a state where the ammonia decomposition apparatus is filled before the ammonia decomposition reaction.
  • the step of supporting the alkali metal and / or alkaline earth metal on the carrier may be before or after the step 1 or after the step 2.
  • Method for producing hydrogen gas of the present invention ammonia is decomposed to generate hydrogen gas in the presence of the above-described ammonia decomposition catalyst of the present invention.
  • the catalyst of the present invention the ammonia decomposition reaction can be promoted even at a low temperature, and hydrogen gas can be produced at a low cost.
  • the ammonia decomposition reaction is basically a reaction in which 1.5 mol of hydrogen gas and 0.5 mol of nitrogen gas are generated from 1 mol of ammonia by contacting an ammonia-containing gas with a catalyst.
  • This reaction can be carried out in a general gas phase-solid contact reactor.
  • the reaction system include a batch system and a circulation system, and a fixed bed system and a fluidized bed system are not particularly limited, but a circulation system and a fixed bed system are preferable.
  • the reaction temperature of the ammonia decomposition reaction is preferably 300 to 700 ° C., more preferably 400 to 600 ° C., and still more preferably 400 to 500 ° C. from the viewpoint of the decomposition rate of ammonia and the equipment cost.
  • Space velocity in the reactor of the ammonia-containing gas is from the same viewpoint as described above, preferably from 50 ⁇ 30000h -1, more preferably 50 ⁇ 20000h -1, more preferably from 100 ⁇ 15000h -1.
  • the reaction pressure is not particularly limited, but the absolute pressure is preferably 0.1 to 0.6 MPa, more preferably 0.1 to 0.5 MPa, and still more preferably 0.1 to 0.3 MPa. It is.
  • the hydrogen gas generated by the ammonia decomposition reaction is subjected to a treatment for separation from nitrogen gas and removal of residual ammonia and other trace impurities using a known purification method.
  • a treatment for separation from nitrogen gas and removal of residual ammonia and other trace impurities using a known purification method.
  • PSA pressure swing adsorption
  • Adsorption TSA: Thermal Swing Adsorption
  • a palladium alloy membrane permeation method, a cryogenic separation method, or the like can be used.
  • the amount of generated gas in the decomposition reaction of ammonia is determined by, for example, quantifying hydrogen gas with a gas component analyzer such as a gas chromatograph, It is obtained by a method such as quantifying ammonia gas and calculating from the amount of decomposed ammonia gas.
  • Catalyst component composition In preparing the catalyst, hydrochloric acid is added to each of the container used for supporting the rare earth oxide, the container used for supporting the ruthenium, and the container used for supporting the alkali metal to dissolve the residue.
  • the ICP emission spectroscopic analyzer (“ICPS-8100” manufactured by Shimadzu Corporation) was used to quantify the metal elements in the residue, and from the difference from the amount of each metal element contained in the raw material used, the catalyst The component composition of was calculated.
  • the prepared egg shell type catalyst is embedded in a resin using an automatic hydraulic embedding machine, and then ground with a polishing machine to produce a catalyst particle cross-section sample.
  • SEM / EDX scanning electron microscope / energy dispersive type
  • the X-ray spectroscopy apparatus was used to observe and measure the cross section of the catalyst particles to determine the thickness of the shell portion and the concentration of ruthenium other than the shell portion or the shell portion.
  • the thickness of the shell part is defined as a distance in which the ruthenium concentration is 0.1% by mass or more with respect to 100% by mass of the constituent atoms of the shell part on a straight line from the outer periphery to the center of the particle in the observation image of the catalyst particle cross section. Asked.
  • the measured values of the two arbitrary catalyst particle samples of the eggshell catalyst obtained in Example 12 and Comparative Example 9 below are shown in Table 2 as representative examples. Table 2 also shows the measured values of any three catalyst particle samples of the uniform type catalyst obtained in Comparative Example 8 as a reference.
  • the ruthenium concentration of the shell portion was the depth from the particle surface.
  • the ruthenium concentration in the range of 0-100 ⁇ m was measured. Further, as the ruthenium concentration other than the shell portion, the ruthenium concentration in the range from 200 ⁇ m to the center from the particle surface was measured.
  • FT-IR spectrophotometer Fourier transform infrared spectrophotometer
  • Alumina manufactured by Sasol, average pore size 14 nm, pore volume 0.398 mL / g, particle size 1 mm, water absorption 0.4 mL / g ⁇ -alumina (2): manufactured by Kanto Chemical Co., Inc., particle size 42 nm ⁇ alumina (2): manufactured by Sasol, average pore diameter 10.9 nm, pore volume 0.529 mL / g, particle diameter 1 mm ⁇ Metal (alkali metal) raw material> ⁇ Potassium carbonate: Wako Pure Chemical Industries, Ltd. ⁇ Potassium nitrate: Wako Pure Chemical Industries, Ltd. ⁇ Sodium carbonate: Wako Pure Chemical Industries, Ltd. ⁇ Cesium carbonate: Wako Pure Chemical Industries, Ltd.
  • Example 1 1.9 mL of neodymium nitrate aqueous solution prepared using 2.11 g of neodymium nitrate hexahydrate while mixing 2.10 g of ⁇ -alumina (1) carrier in an evaporating dish and about 1 mL with Pasteur pipette By repeating the operation of dropping and drying, the whole amount was added to obtain a ⁇ -alumina carrier (Nd (NO 3 ) 3 / ⁇ Al 2 O 3 ) on which neodymium nitrate was supported. This carrier was dried at 100 to 110 ° C. in an air atmosphere and then calcined at 500 ° C.
  • ⁇ -alumina carrier Na (NO 3 ) 3 / ⁇ Al 2 O 3
  • a ⁇ -alumina carrier Na 2 O 3 / ⁇ Al 2 O 3
  • a ⁇ -alumina carrier Na 2 O 3 / ⁇ Al 2 O 3
  • the whole amount is added by repeating the operation of dripping about 1 mL of a ruthenium chloride aqueous solution (containing 0.09 g of ruthenium content) with a Pasteur pipette and drying the mixture while mixing with a shaker. Then, it was dried at 100 to 110 ° C. in an air atmosphere to obtain an ammonia decomposition catalyst precursor (RuCl 3 / Nd 2 O 3 / ⁇ Al 2 O 3 ) carrying ruthenium chloride and neodymium oxide.
  • RuCl 3 / Nd 2 O 3 / ⁇ Al 2 O 3 ammonia decomposition catalyst precursor carrying ruthenium chloride and neodymium oxide.
  • Examples 2-6, Comparative Examples 1-4, 7 and 8 Each of the ammonia decomposition catalysts was prepared in the same manner as in Example 1 except that the blending raw materials were changed so as to have the component composition of the catalyst shown in Table 1 below.
  • Example 7 In Example 1, the amount of the ⁇ -alumina (1) support was changed to 2.01 g, and other than that, in the same manner as in Example 1, an ammonia decomposition catalyst (Ru / Nd 2 ) on which ruthenium and neodymium oxide were supported. O 3 / ⁇ Al 2 O 3 ) was prepared. While mixing this catalyst with a cartridge, 3.7 mL of an aqueous solution of 0.16 g of potassium carbonate (amount of potassium contained in 2.6 mol of 1 mol of ruthenium) is dropped by a Pasteur pipette and dried. After repeating the operation and adding the entire amount, drying is performed at 100 to 110 ° C.
  • an ammonia decomposition catalyst (Ru / Nd 2 ) on which ruthenium and neodymium oxide were supported. O 3 / ⁇ Al 2 O 3 ) was prepared. While mixing this catalyst with a cartridge, 3.7 mL of an aqueous solution of 0.16 g of potassium
  • Example 8 2.81 g of ⁇ -alumina (1) support was added to 0.35 mL of an aqueous neodymium nitrate solution prepared using 0.27 g of neodymium nitrate hexahydrate, dried at 100 to 110 ° C. in an air atmosphere, and then at 500 ° C. Firing for 2 hours gave an ⁇ -alumina carrier (Nd 2 O 3 / ⁇ Al 2 O 3 ) on which neodymium oxide was supported. This carrier is cooled to room temperature, then added to 0.30 mL of ruthenium chloride aqueous solution (containing 0.09 g of ruthenium), and dried at 100 to 110 ° C.
  • ruthenium chloride aqueous solution containing 0.09 g of ruthenium
  • a catalyst precursor (RuCl 3 / Nd 2 O 3 / ⁇ Al 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and a uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / ⁇ Al 2 O 3 ) in which ruthenium and neodymium oxide were supported on an ⁇ alumina support. Obtained.
  • Example 9 In Example 8, the amount of ⁇ -alumina (1) support was changed to 2.67 g, and neodymium nitrate hexahydrate was changed to 0.63 g. Otherwise, in the same manner as in Example 8, ruthenium was added to the ⁇ -alumina support. And a uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / ⁇ Al 2 O 3 ) carrying neodymium oxide.
  • Example 10 2.46 g of ⁇ alumina support was added to 0.88 mL of an aqueous neodymium nitrate solution prepared using 1.17 g of neodymium nitrate hexahydrate, dried at 100 to 110 ° C. in an air atmosphere, and then calcined at 500 ° C. for 2 hours.
  • a ⁇ -alumina support (Nd 2 O 3 / ⁇ Al 2 O 3 ) on which neodymium oxide was supported was obtained.
  • the carrier is cooled to room temperature, then added to 0.80 mL of a ruthenium chloride aqueous solution (containing 0.09 g of ruthenium), dried in an air atmosphere at 100 to 110 ° C., and an ammonia decomposition catalyst carrying ruthenium chloride and neodymium oxide.
  • a precursor (RuCl 3 / Nd 2 O 3 / ⁇ Al 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and a uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / ⁇ Al 2 O 3 ) in which ruthenium and neodymium oxide were supported on a ⁇ alumina support. Obtained.
  • Example 11 In the same manner as in Example 10, a ⁇ -alumina carrier (Nd 2 O 3 / ⁇ Al 2 O 3 ) on which neodymium oxide was supported was obtained. The carrier was cooled to room temperature, then added to 0.80 mL of an aqueous ruthenium chloride solution (containing 0.09 g of ruthenium content), and 1.2 mL of an aqueous sodium carbonate solution was further added, and the mixture was allowed to stand overnight. Then, after removing the liquid using a Pasteur pipette, washing with water and drying at 100 to 110 ° C.
  • an ammonia decomposition catalyst precursor (RuO 2 / R) on which ruthenium oxide and neodymium oxide are supported. Nd 2 O 3 / ⁇ Al 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and an egg shell type ammonia decomposition catalyst (Ru / Nd 2 O 3 / ⁇ Al 2 O 3 ) in which ruthenium and neodymium oxide were supported on a ⁇ alumina support. Got.
  • Example 12 The ⁇ alumina support (Nd 2 O 3 / ⁇ Al) was changed in the same manner as in Example 11 except that the amount of the ⁇ alumina support was changed to 2.49 g and the amount of neodymium nitrate hexahydrate was changed to 1.09 g.
  • an ammonia decomposition catalyst (Ru / Nd 2 O 3 / ⁇ Al 2 O 3 ) carrying ruthenium and neodymium oxide was obtained.
  • This catalyst is added to 0.80 mL of an aqueous solution of 0.16 g of potassium carbonate (in which the amount of potassium contained in 1 mol of ruthenium is 2.6 mol), and dried at 100 to 110 ° C.
  • a potassium carbonate-treated ammonia decomposition catalyst (K 2 CO 3 / Ru / Nd 2 O 3 / ⁇ Al 2 O 3 ) carrying ruthenium and neodymium oxide was obtained.
  • 3 mL of this catalyst was reduced in the same manner as in Example 1, and an egg shell type potassium-treated ammonia decomposition catalyst (K / Ru / Nd 2 O 3) in which potassium, ruthenium, and neodymium oxide were supported on a ⁇ -alumina support. / ⁇ Al 2 O 3 ).
  • the thickness of the shell portion of this catalyst was 100 to 200 ⁇ m (see Table 2 below).
  • Example 13 In Example 12, the operation procedure was changed so that potassium was loaded before loading ruthenium, and ruthenium, potassium and neodymium oxide were loaded on the ⁇ alumina support in the same manner as in Example 12 except that.
  • An egg shell type ammonia decomposition catalyst (Ru / K / Nd 2 O 3 / ⁇ Al 2 O 3 ) was obtained.
  • Example 14 to 18 Egg shell type ammonia decomposition catalysts were prepared in the same manner as in Example 12 except that the blending raw materials were changed so as to obtain the component compositions of the catalysts shown in Table 1 below.
  • Example 5 As a support, 2.91 g of cerium oxide, which is a rare earth oxide, was used. On this support, 8.9 mL of ruthenium chloride aqueous solution (containing 0.09 g of ruthenium content) was supported in the same manner as in Example 1, and an ammonia decomposition catalyst precursor (RuCl 3 / CeO 2 ) supporting ruthenium chloride. Got. A uniform in which 3 mL of this precursor is charged into a reactor and reduced in a mixed gas stream of hydrogen gas and nitrogen gas for 1 hour at 300 ° C. and further for 1 hour at 500 ° C., and ruthenium is supported on a cerium oxide support. A type of ammonia decomposition catalyst (Ru / CeO 2 ) was obtained.
  • Comparative Example 6 In Comparative Example 5, the compounding amount of cerium oxide was changed to 2.43 g, and the ammonia decomposition catalyst precursor (Ru / CeO 2 ) on which ruthenium was supported was prepared in the same manner as in Comparative Example 5 except that. This precursor is mixed with 0.48 g of ⁇ -alumina (2) support, and an ammonia decomposition catalyst (Ru / CeO 2 + ⁇ Al 2 O 3 ) composed of a mixed powder of cerium oxide and ⁇ -alumina (2) on which ruthenium is supported. Obtained.
  • Example 2 3 mL of this precursor was reduced in the same manner as in Example 1 to obtain an egg shell type ammonia decomposition catalyst (Ru / ⁇ Al 2 O 3 ) in which ruthenium was supported on a ⁇ alumina support.
  • the thickness of the shell portion of this catalyst was 100 to 200 ⁇ m (see Table 2 below).
  • Example 6 and Comparative Example 4 since it did not reach the ammonia decomposition rate measurable with an infrared spectrophotometer at 500 ° C., the temperature was set to 600 ° C. Further, in Examples 5 and 6 and Comparative Example 5, in consideration of the difference from the density of the ammonia decomposition catalyst of Example 1, the circulation amount of ammonia per mass of ruthenium is approximately the same as that of Example 1.
  • the space velocity (SV) was adjusted to the values shown in Table 1.
  • the decomposition rate is an index representing the magnitude of the ammonia decomposition rate, that is, the degree of catalytic activity of the ammonia decomposition catalyst. The closer the decomposition rate is to 100%, the higher the catalytic activity of the ammonia decomposition catalyst.
  • the catalyst supported after the ruthenium (Example 12) was higher in catalytic activity than the catalyst previously supported (Example 13).
  • ⁇ -alumina or ⁇ -alumina was used as the support (Examples 8 to 10)
  • ⁇ -alumina was used (Examples 8 and 9)
  • sufficient catalytic activity could be maintained with a smaller amount of rare earth oxide supported.
  • an egg shell type catalyst (Examples 11 to 18) it was confirmed that the catalytic activity was improved.

Abstract

Provided are: an ammonia decomposition catalyst which can exhibit a high activity even at a lower temperature in an ammonia decomposition reaction; a method for producing the ammonia decomposition catalyst; and a method for producing a hydrogen gas using the ammonia decomposition catalyst. An ammonia decomposition catalyst in which ruthenium and a rare earth oxide are carried on a carrier composed of a metal oxide other than a rare earth oxide and the content of the rare earth oxide is 0.1 to 30.0% by mass can be produced through step 1 and step 2, wherein the step 1 comprises allowing the rare earth oxide to be carried on the carrier and step 2 comprises allowing the ruthenium to be carried on the carrier produced in step 1 and having the rare earth oxide carried thereon. A hydrogen gas can be produced by decomposing ammonia using the ammonia decomposition catalyst.

Description

アンモニア分解触媒及びその製造方法、並びに水素ガスの製造方法Ammonia decomposition catalyst, method for producing the same, and method for producing hydrogen gas
 本発明は、アンモニアを水素ガス及び窒素ガスに分解する反応を促進するアンモニア分解触媒及びその製造方法、並びに前記アンモニア触媒を用いた水素ガスの製造方法に関する。 The present invention relates to an ammonia decomposition catalyst for promoting a reaction for decomposing ammonia into hydrogen gas and nitrogen gas, a method for producing the same, and a method for producing hydrogen gas using the ammonia catalyst.
 水素は、燃焼により水を生成し、一般的な化石燃料のように、温室効果ガスである二酸化炭素を生じないため、クリーンエネルギーとして注目されており、近年、水素を燃料とした燃料電池が実用化されている。
 しかしながら、水素は、気体の状態では非常に軽く、輸送が困難であり、また、液化するためには非常に多くのエネルギーが必要であり、輸送コストが大きいという課題を有していた。
Hydrogen produces water by combustion and does not produce carbon dioxide, which is a greenhouse gas like general fossil fuels. Therefore, hydrogen has attracted attention as a clean energy. In recent years, fuel cells using hydrogen as a fuel have been put to practical use. It has become.
However, hydrogen has a problem that it is very light in a gaseous state, difficult to transport, and requires a large amount of energy to be liquefied, resulting in a high transport cost.
 これに対しては、1分子当たり1.5分子分の水素を含むアンモニアを水素キャリアとして用い、アンモニアの接触分解により水素ガス及び窒素ガスを生成させて、この水素ガスを取り出してエネルギー源として利用する技術が知られている。そして、水素ガスをより効率的に生成させるために、600℃以下の低温でアンモニアの分解反応を促進する触媒の研究開発が進められている。 For this, ammonia containing 1.5 molecules of hydrogen per molecule is used as a hydrogen carrier, hydrogen gas and nitrogen gas are generated by catalytic decomposition of ammonia, and the hydrogen gas is taken out and used as an energy source. The technology to do is known. And in order to produce hydrogen gas more efficiently, research and development of a catalyst that promotes the decomposition reaction of ammonia at a low temperature of 600 ° C. or less has been advanced.
 例えば、特許文献1に、αアルミナ等の無機質担体にルテニウムを担持させたアンモニア分解触媒が記載されている。
 また、特許文献2には、アルミナ等の担体に、ルテニウム、及び促進剤としてアルカリ金属又はアルカリ土類金属を担持させることにより、アンモニア分解率を向上させることができることが記載されている。
 また、特許文献3には、ルテニウムと、酸化セリウム等の希土類酸化物を含み、さらに、酸化アルミニウム等の耐火性無機酸化物を前記希土類酸化物100質量部に対して1~50質量部含むアンモニア分解触媒が記載されている。
For example, Patent Document 1 describes an ammonia decomposition catalyst in which ruthenium is supported on an inorganic carrier such as α-alumina.
Patent Document 2 describes that the ammonia decomposition rate can be improved by supporting ruthenium and an alkali metal or alkaline earth metal as a promoter on a support such as alumina.
Patent Document 3 includes ammonia containing ruthenium and a rare earth oxide such as cerium oxide, and further containing 1 to 50 parts by mass of a refractory inorganic oxide such as aluminum oxide with respect to 100 parts by mass of the rare earth oxide. A cracking catalyst is described.
特開平8-84910号公報JP-A-8-84910 特開2011-78888号公報JP 2011-78888 A 特開2013-237045号公報JP 2013-237045 A
 しかしながら、上記特許文献1~3に記載されているような触媒では、低温でアンモニアを分解する上での活性は十分とは言えず、また、特許文献3に記載されているように、触媒活性を高めるために、希土類酸化物の含有量を多くすると、触媒が高価となり、アンモニア分解のコストが高くなるという課題を有していた。 However, the catalysts described in Patent Documents 1 to 3 cannot be said to have sufficient activity for decomposing ammonia at a low temperature. Further, as described in Patent Document 3, catalytic activity is not sufficient. If the content of the rare earth oxide is increased in order to increase the catalyst, the catalyst becomes expensive and the cost of ammonia decomposition increases.
 本発明は、上記のような課題を解決するためになされたものであり、アンモニアの分解反応において、低温でも高活性を示すアンモニア分解触媒及びその製造方法、並びに前記アンモニア分解触媒を用いた水素ガスの製造方法を提供することを目的とするものである。 The present invention has been made to solve the above-described problems. An ammonia decomposition catalyst exhibiting high activity even at a low temperature in a decomposition reaction of ammonia, a method for producing the same, and hydrogen gas using the ammonia decomposition catalyst An object of the present invention is to provide a manufacturing method.
 本発明は、ルテニウムを活性金属とする触媒において、ルテニウムの他に希土類酸化物を担体に担持させることにより、アンモニア分解反応における触媒活性が向上することを見出したことに基づくものである。 The present invention is based on the finding that in a catalyst using ruthenium as an active metal, the catalytic activity in the ammonia decomposition reaction is improved by supporting a rare earth oxide in addition to ruthenium on a support.
 すなわち、本発明は、以下の[1]~[16]を提供するものである。
 [1]ルテニウム及び希土類酸化物が、希土類酸化物以外の金属酸化物からなる担体に担持され、前記希土類酸化物の含有量が0.1~30.0質量%である、アンモニア分解触媒。
 [2]前記金属酸化物が、アルミナ、ジルコニア及びチタニアのうちから選ばれる1種以上である、上記[1]に記載のアンモニア分解触媒。
 [3]前記金属酸化物がアルミナである、上記[1]又は[2]に記載のアンモニア分解触媒。
 [4]前記アルミナがαアルミナである、上記[2]又は[3]に記載のアンモニア分解触媒。
 [5]前記希土類酸化物が、酸化ランタン、酸化セリウム、酸化ネオジム、酸化サマリウムのうちから選ばれる1種以上である、上記[1]~[4]のいずれか1項に記載のアンモニア分解触媒。
 [6]前記希土類酸化物が酸化ネオジムである、上記[1]~[5]のいずれか1項に記載のアンモニア分解触媒。
 [7]前記ルテニウムの含有量が0.1~10.0質量%である、上記[1]~[6]のいずれか1項に記載のアンモニア分解触媒。
 [8]前記担体に、さらに、アルカリ金属及びアルカリ土類金属のうちから選ばれる1種以上の金属が担持されている、上記[1]~[7]のいずれか1項に記載のアンモニア分解触媒。
 [9]前記金属の含有量が、前記ルテニウム1モルに対して0.1~10.0モルである、上記[8]に記載のアンモニア分解触媒。
 [10]前記ルテニウムの担持態様がエッグシェル型である、上記[1]~[9]のいずれか1項に記載のアンモニア分解触媒。
 [11]前記エッグシェル型において、ルテニウムの分布領域であるシェル部の厚さが10~300μmである、上記[10]に記載のアンモニア分解触媒。
 [12]前記シェル部におけるルテニウムの濃度が、シェル部の構成原子100質量%に対して0.1~15.0質量%である、上記[11]に記載のアンモニア分解触媒。
That is, the present invention provides the following [1] to [16].
[1] An ammonia decomposition catalyst, in which ruthenium and a rare earth oxide are supported on a carrier made of a metal oxide other than the rare earth oxide, and the content of the rare earth oxide is 0.1 to 30.0 mass%.
[2] The ammonia decomposition catalyst according to the above [1], wherein the metal oxide is one or more selected from alumina, zirconia, and titania.
[3] The ammonia decomposition catalyst according to [1] or [2], wherein the metal oxide is alumina.
[4] The ammonia decomposition catalyst according to the above [2] or [3], wherein the alumina is α-alumina.
[5] The ammonia decomposition catalyst according to any one of the above [1] to [4], wherein the rare earth oxide is one or more selected from lanthanum oxide, cerium oxide, neodymium oxide, and samarium oxide. .
[6] The ammonia decomposition catalyst according to any one of the above [1] to [5], wherein the rare earth oxide is neodymium oxide.
[7] The ammonia decomposition catalyst according to any one of the above [1] to [6], wherein the ruthenium content is 0.1 to 10.0% by mass.
[8] The ammonia decomposition according to any one of the above [1] to [7], wherein the carrier further carries one or more metals selected from alkali metals and alkaline earth metals catalyst.
[9] The ammonia decomposition catalyst according to the above [8], wherein the metal content is 0.1 to 10.0 mol with respect to 1 mol of the ruthenium.
[10] The ammonia decomposition catalyst according to any one of [1] to [9], wherein the ruthenium is supported in an egg shell type.
[11] The ammonia decomposition catalyst according to [10], wherein in the egg shell type, the thickness of the shell part, which is a ruthenium distribution region, is 10 to 300 μm.
[12] The ammonia decomposition catalyst according to the above [11], wherein the concentration of ruthenium in the shell part is 0.1 to 15.0% by mass with respect to 100% by mass of the constituent atoms of the shell part.
 [13]上記[1]~[12]のいずれか1項に記載のアンモニア分解触媒を製造する方法であって、前記担体に希土類酸化物を担持させる工程1と、前記工程1で得られた、前記希土類酸化物が担持されている担体に、前記ルテニウムを担持させる工程2とを有する、アンモニア分解触媒の製造方法。
 [14]前記工程2が、前記希土類酸化物が担持されている担体を、ルテニウム塩の水溶液に浸漬させた後、塩基性水溶液と接触させる工程を含む、上記[13]に記載のアンモニア分解触媒の製造方法。
 [15]前記工程1で得られた、前記希土類酸化物が担持されている担体に、又は、前記工程2で得られた、希土類酸化物及びルテニウムが担持されている担体に、さらに、アルカリ金属及びアルカリ土類金属のうちから選ばれる1種以上の金属を担持させる工程を有する、上記[13]又は[14]に記載のアンモニア分解触媒の製造方法。
 [16]上記[1]~[12]のいずれか1項に記載のアンモニア分解触媒の存在下で、アンモニアを分解して水素ガスを生成させる、水素ガスの製造方法。
[13] A method for producing an ammonia decomposition catalyst as described in any one of [1] to [12] above, obtained by the step 1 of supporting the rare earth oxide on the carrier and the step 1 And a step 2 of supporting the ruthenium on a carrier on which the rare earth oxide is supported.
[14] The ammonia decomposing catalyst according to the above [13], wherein the step 2 includes a step of immersing the carrier carrying the rare earth oxide in an aqueous solution of ruthenium salt and then contacting with a basic aqueous solution. Manufacturing method.
[15] The alkali metal obtained in the step 1 on which the rare earth oxide is supported or the carrier obtained in the step 2 on which the rare earth oxide and ruthenium are supported is further added to an alkali metal. And the method for producing an ammonia decomposition catalyst according to the above [13] or [14], comprising a step of supporting one or more metals selected from alkaline earth metals.
[16] A method for producing hydrogen gas, wherein ammonia is decomposed to produce hydrogen gas in the presence of the ammonia decomposition catalyst according to any one of [1] to [12].
 本発明によれば、アンモニア分解反応における触媒活性を向上させたアンモニア分解触媒を提供することができる。したがって、本発明のアンモニア分解触媒を用いることにより、低温でもアンモニア分解反応を促進することができ、低コストで水素ガスを製造することが可能となる。 According to the present invention, it is possible to provide an ammonia decomposition catalyst with improved catalytic activity in the ammonia decomposition reaction. Therefore, by using the ammonia decomposition catalyst of the present invention, the ammonia decomposition reaction can be promoted even at a low temperature, and hydrogen gas can be produced at low cost.
 以下、本発明のアンモニア分解触媒及びその製造方法、並びに前記アンモニア分解触媒を用いた水素ガスの製造方法について詳細に説明する。
[アンモニア分解触媒]
 本発明のアンモニア分解触媒(以下、単に「触媒」とも言う。)は、ルテニウム及び希土類酸化物が、希土類酸化物以外の金属酸化物からなる担体に担持され、前記希土類酸化物の含有量が0.1~30.0質量%であることを特徴としている。
 本発明の触媒は、高価な希土類金属の使用量を抑えつつ、アンモニア分解反応において、低温でも高い活性を示すものであり、これを用いることにより、アンモニアを低コストで分解することができる。
Hereinafter, the ammonia decomposition catalyst of the present invention, a method for producing the same, and a method for producing hydrogen gas using the ammonia decomposition catalyst will be described in detail.
[Ammonia decomposition catalyst]
The ammonia decomposition catalyst of the present invention (hereinafter also simply referred to as “catalyst”) has ruthenium and a rare earth oxide supported on a carrier made of a metal oxide other than the rare earth oxide, and the content of the rare earth oxide is 0. .1 to 30.0% by mass.
The catalyst of the present invention exhibits high activity even at low temperatures in an ammonia decomposition reaction while suppressing the amount of expensive rare earth metal used, and by using this, ammonia can be decomposed at low cost.
(担体)
 本発明における担体は、ルテニウム及び希土類酸化物を担持させるものであり、希土類酸化物以外の金属酸化物からなる。
 前記金属酸化物としては、一般的な触媒用担体として用いられる金属酸化物を用いることができる。例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、酸化鉄、酸化亜鉛、酸化スズ等が挙げられる。前記金属酸化物は、1種単独で用いても、2種以上を併用してもよい。これらのうち、好ましくはアルミナ、ジルコニア又はチタニアであり、より好ましくはアルミナである。アルミナの種類は、特に限定されるものではなく、例えば、αアルミナ、θアルミナ、γアルミナ等が挙げられ、好ましくはαアルミナである。αアルミナは、他の種類のアルミナと比べて比表面積が小さいため、担体に担持させる希土類酸化物が少ない量でも担体表面を被覆することができ、アンモニア分解反応において高い触媒活性を維持することができる。
(Carrier)
The carrier in the present invention supports ruthenium and a rare earth oxide, and is made of a metal oxide other than the rare earth oxide.
As the metal oxide, a metal oxide used as a general catalyst carrier can be used. Examples thereof include alumina, silica, titania, zirconia, magnesia, iron oxide, zinc oxide, and tin oxide. The said metal oxide may be used individually by 1 type, or may use 2 or more types together. Of these, preferred is alumina, zirconia or titania, and more preferred is alumina. The kind of alumina is not particularly limited, and examples thereof include α alumina, θ alumina, γ alumina, and the like, and preferably α alumina. Since α-alumina has a smaller specific surface area than other types of alumina, the surface of the support can be coated even with a small amount of rare earth oxide supported on the support, and high catalytic activity can be maintained in the ammonia decomposition reaction. it can.
 ここで、αアルミナとは、アルミナの結晶相のうち、結晶構造がコランダム型のものを言う。θアルミナとは、結晶系が単斜晶系であり、また、γアルミナとは、結晶構造が欠陥スピネル型のものである。
 なお、前記触媒中における前記金属酸化物の存在は、粉末X線回折分析法(XRD)にて確認することができる。
Here, α-alumina means a corundum type crystal structure among the crystal phases of alumina. θ-alumina has a monoclinic crystal system, and γ-alumina has a defect spinel type crystal structure.
The presence of the metal oxide in the catalyst can be confirmed by powder X-ray diffraction analysis (XRD).
 前記担体は、本発明の触媒の構成成分中に最も多く含まれる主成分であり、前記構成成分中の含有量は、担持させる希土類酸化物の量よりも多いことが好ましく、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは65質量%以上である。前記担体の含有量の上限は、特に限定されるものではないが、担持するルテニウム量等を考慮して、好ましくは99質量%以下、より好ましくは97質量%以下である。
 前記担体の含有量は、後述する実施例に記載のように触媒の成分組成の分析から求めることができる他、触媒の他の構成成分の仕込み量から計算して推定することもできる。
The carrier is the main component contained most in the constituent components of the catalyst of the present invention, and the content in the constituent components is preferably larger than the amount of the rare earth oxide to be supported, preferably 50% by mass. As mentioned above, More preferably, it is 60 mass% or more, More preferably, it is 65 mass% or more. The upper limit of the content of the carrier is not particularly limited, but is preferably 99% by mass or less, more preferably 97% by mass or less in consideration of the amount of ruthenium to be supported.
The content of the carrier can be calculated from the analysis of the component composition of the catalyst as described in the examples described later, or can be estimated by calculating from the charged amounts of other components of the catalyst.
 前記担体は、アンモニアガスの細孔内拡散による触媒作用の低下を抑制する観点から、平均細孔径が5nm以上であることが好ましく、より好ましくは8~200nm、さらに好ましくは10~180nmである。
 なお、平均細孔径は、ガス吸着法により求めることができ、比表面積細孔分布測定装置で測定された全細孔容積とBET比表面積から求められる。本明細書における平均細孔径は、後述する実施例に記載の測定方法にて求めた値である。
The carrier preferably has an average pore diameter of 5 nm or more, more preferably 8 to 200 nm, still more preferably 10 to 180 nm, from the viewpoint of suppressing a reduction in catalytic action due to diffusion of ammonia gas in the pores.
The average pore diameter can be determined by a gas adsorption method, and is determined from the total pore volume and BET specific surface area measured by a specific surface area pore distribution measuring device. The average pore diameter in the present specification is a value determined by the measurement method described in Examples described later.
 また、担体の形状や大きさは、アンモニア分解反応を行う装置の仕様や操作条件等に応じて適宜定められる。形状は、例えば、粉末状、顆粒状、球形状、ペレット状等である。また、大きさは、分解させるアンモニアガスの圧力損失及び触媒との接触面積等の観点から、粒径が1μm~3mm、より好ましくは2μm~2.5mm、さらに好ましくは3μm~2.5mmである。
 なお、本明細書における担体の粒径は、レーザー回折式粒度分布計にて体積平均粒径D50として求められる。下記実施例における値は、カタログ値である。
Further, the shape and size of the carrier are appropriately determined according to the specifications of the apparatus for performing the ammonia decomposition reaction, operating conditions, and the like. The shape is, for example, powder, granule, sphere, pellet or the like. The size is 1 μm to 3 mm, more preferably 2 μm to 2.5 mm, still more preferably 3 μm to 2.5 mm in terms of the pressure loss of ammonia gas to be decomposed and the contact area with the catalyst. .
In addition, the particle size of the carrier in this specification is determined as a volume average particle size D50 by a laser diffraction particle size distribution meter. The values in the following examples are catalog values.
(希土類酸化物)
 前記担体に担持させる希土類酸化物としては、例えば、酸化イットリウム、酸化ランタン、酸化セリウム、酸化ネオジム、酸化サマリウム、酸化ガドリニウム、酸化イッテルビウム等が挙げられる。前記希土類酸化物は、1種単独で用いても、2種以上を併用してもよい。これらのうち、触媒活性を向上させる観点から、500℃における塩基性度が600μmol/g超であるものが好ましく、具体的には、酸化ランタン、酸化セリウム、酸化ネオジム又は酸化サマリウムが好ましく、より好ましくは酸化ネオジムである。
 なお、塩基性度は、酸プローブ分子として二酸化炭素を用いた昇温脱離法により測定することができる。希土類酸化物の塩基性度は、例えば、“Applied Catalysis A: General”, vol.356, 2009, p.57-63に記載の値を参考とすることができる。
(Rare earth oxide)
Examples of the rare earth oxide supported on the carrier include yttrium oxide, lanthanum oxide, cerium oxide, neodymium oxide, samarium oxide, gadolinium oxide, and ytterbium oxide. The rare earth oxides may be used alone or in combination of two or more. Among these, from the viewpoint of improving the catalytic activity, those having a basicity at 500 ° C. of more than 600 μmol / g are preferable, and specifically, lanthanum oxide, cerium oxide, neodymium oxide or samarium oxide is preferable, and more preferable. Is neodymium oxide.
The basicity can be measured by a temperature programmed desorption method using carbon dioxide as an acid probe molecule. For the basicity of the rare earth oxide, for example, the values described in “Applied Catalysis A: General”, vol. 356, 2009, p. 57-63 can be referred to.
 本発明の触媒中の前記希土類酸化物の含有量は、0.1~30.0質量%であり、好ましくは1.0~30.0質量%、より好ましくは3.0~29.0質量%、さらに好ましくは8.0~28.0質量%、特に好ましくは13.0~27.0質量%である。前記含有量が0.1質量%以上であれば、担体を被覆するのに十分であり、アンモニア分解反応における触媒活性を向上させることができる。また、30.0質量%以下であれば、希土類酸化物での被覆による担体の比表面積が大幅に低下することはなく、触媒活性の低下が抑制される。
 前記触媒中の前記希土類酸化物の含有量は、担体の金属酸化物がαアルミナである場合は、0.3~20.0質量%であることが好ましく、より好ましくは0.5~10.0質量%である。前記金属酸化物がθアルミナである場合は、10.0~25.0質量%であることが好ましく、より好ましくは12.0~21.0質量%である。前記金属酸化物がγアルミナである場合は、10.0~30.0質量%であることが好ましく、より好ましくは14.0~28.0質量%である。
The content of the rare earth oxide in the catalyst of the present invention is 0.1 to 30.0% by mass, preferably 1.0 to 30.0% by mass, more preferably 3.0 to 29.0% by mass. %, More preferably 8.0 to 28.0% by mass, particularly preferably 13.0 to 27.0% by mass. If the content is 0.1% by mass or more, it is sufficient to coat the support, and the catalytic activity in the ammonia decomposition reaction can be improved. Moreover, if it is 30.0 mass% or less, the specific surface area of the support | carrier by coating with rare earth oxide will not fall significantly, and the fall of catalyst activity will be suppressed.
The content of the rare earth oxide in the catalyst is preferably 0.3 to 20.0% by mass, more preferably 0.5 to 10% when the metal oxide of the support is α-alumina. 0% by mass. When the metal oxide is θ-alumina, the content is preferably 10.0 to 25.0% by mass, more preferably 12.0 to 21.0% by mass. When the metal oxide is γ-alumina, the content is preferably 10.0 to 30.0% by mass, more preferably 14.0 to 28.0% by mass.
 前記希土類酸化物は、アンモニア分解反応に寄与しやすい状態とする観点から、前記担体の表面にのみ分布していることが好ましい。
 触媒調製手法として、後述するような含浸法を用いる場合、担体表面を被覆するようにして前記希土類酸化物が担持されるため、共沈法等で得られるような、触媒中の成分均一性が高いものとは異なり、前記希土類酸化物は実質的に担体の表面にのみ存在する状態となる。
The rare earth oxide is preferably distributed only on the surface of the support from the viewpoint of easily contributing to the ammonia decomposition reaction.
When the impregnation method as described later is used as a catalyst preparation method, the rare earth oxide is supported so as to cover the surface of the support, so that the component uniformity in the catalyst as obtained by a coprecipitation method or the like is obtained. Unlike the high one, the rare earth oxide is substantially present only on the surface of the support.
(ルテニウム)
 ルテニウムは、本発明のアンモニア分解触媒の活性成分の金属種であり、前記担体に希土類酸化物とともに担持されている。ルテニウムをこのような態様で担持させることにより、アンモニア分解反応における触媒活性を向上させることができる。
 前記触媒中のルテニウムの含有量は、十分に高い触媒活性が得られる量であり、かつ、アンモニア分解のコストを考慮して、0.1~10.0質量%であることが好ましく、より好ましくは0.5~8.0質量%、さらに好ましくは1.0~7.0質量%である。
 なお、前記触媒中における金属ルテニウムの存在は、透過型電子顕微鏡(TEM)にて確認することができる。
(ruthenium)
Ruthenium is a metal species as an active component of the ammonia decomposition catalyst of the present invention, and is supported on the carrier together with a rare earth oxide. By supporting ruthenium in such a manner, the catalytic activity in the ammonia decomposition reaction can be improved.
The ruthenium content in the catalyst is preferably such that a sufficiently high catalytic activity is obtained, and is preferably 0.1 to 10.0% by mass in consideration of the cost of ammonia decomposition. Is 0.5 to 8.0 mass%, more preferably 1.0 to 7.0 mass%.
The presence of metal ruthenium in the catalyst can be confirmed with a transmission electron microscope (TEM).
 触媒の活性成分の担持態様としては、典型的なものとして、ユニフォーム型、エッグシェル型、エッグヨーク型及びエッグホワイト型等と呼ばれる態様に分類される。ユニフォーム型とは、活性成分が担体に対して均一に分布している態様である。エッグシェル型とは、外層担持型とも呼ばれ、卵の殻のように、担体の表面から内側に所定の厚みで活性成分が分布している態様である。エッグヨーク型とは、卵の黄身のように、担体の核の部分に活性成分が分布している態様である。エッグホワイト型とは、卵の白身のように、担体表面より内側の所定の深さの範囲内に活性成分が分布している態様である。 As a typical mode of supporting the active component of the catalyst, it is classified into modes called a uniform type, egg shell type, egg yoke type, egg white type, and the like. The uniform type is an aspect in which the active ingredient is uniformly distributed with respect to the carrier. The egg shell type is also called an outer layer carrying type, and is an aspect in which active ingredients are distributed with a predetermined thickness from the surface of the carrier to the inside like an egg shell. The egg yoke type is an embodiment in which the active ingredient is distributed in the core part of the carrier, such as egg yolk. The egg white type is an aspect in which active ingredients are distributed within a predetermined depth inside the carrier surface, such as egg white.
 本発明の触媒において、活性成分であるルテニウムの担持態様は、上記のいずれであってもよいが、アンモニアガスの担体細孔内への拡散が反応律速となることを抑制する観点から、好ましくはエッグシェル型である。
 エッグシェル型の触媒は、担体の表面から内側に所定の濃度でルテニウムが分布している領域、すなわち、シェル部を有しており、該シェル部の厚さが10~300μmであることが好ましく、より好ましくは20~250μm、さらに好ましくは50~200μmである。前記シェル部以外にルテニウムが含まれていても、アンモニア分解反応に寄与しにくいため、シェル部以外、すなわち、シェル部よりも内側の領域には、ルテニウムが含まれていないことが好ましい。
 シェル部におけるルテニウムの濃度は、該シェル部の構成原子100質量%に対して0.1~15.0質量%であることが好ましく、より好ましくは0.5~10.0質量%、さらに好ましくは1.0~8.0質量%である。
In the catalyst of the present invention, the support mode of ruthenium, which is an active component, may be any of the above, but preferably from the viewpoint of suppressing the diffusion of ammonia gas into the carrier pores from the reaction rate limiting. Egg shell type.
The egg shell type catalyst preferably has a region in which ruthenium is distributed at a predetermined concentration from the surface to the inside of the support, that is, a shell portion, and the thickness of the shell portion is preferably 10 to 300 μm. More preferably, the thickness is 20 to 250 μm, and still more preferably 50 to 200 μm. Even if ruthenium is contained in a portion other than the shell portion, it is difficult to contribute to the ammonia decomposition reaction. Therefore, it is preferable that the region other than the shell portion, that is, the region inside the shell portion does not contain ruthenium.
The concentration of ruthenium in the shell part is preferably 0.1 to 15.0% by mass, more preferably 0.5 to 10.0% by mass, and still more preferably 100% by mass of the constituent atoms of the shell part. Is 1.0 to 8.0% by mass.
 なお、エッグシェル型の触媒におけるシェル部の厚さ及び該シェル部におけるルテニウムの濃度は、触媒断面について、電子線マイクロアナライザ(EPMA)や、走査型電子顕微鏡/エネルギー分散型X線分光分析(SEM/EDX)装置を用いた測定により求めることができる。本発明においては、後述する実施例に記載の測定方法にて求めた値とする。 Note that the thickness of the shell portion and the ruthenium concentration in the shell portion of the egg shell type catalyst are determined by electron beam microanalyzer (EPMA) or scanning electron microscope / energy dispersive X-ray spectroscopic analysis (SEM). / EDX) can be obtained by measurement using an apparatus. In this invention, it is set as the value calculated | required with the measuring method as described in the Example mentioned later.
(アルカリ金属・アルカリ土類金属)
 前記担体には、さらに、アルカリ金属及びアルカリ土類金属のうちから選ばれる1種以上の金属を担持してもよい。これらの金属は、本発明の触媒において、アンモニア分解反応をより促進させるための促進剤として作用する。
 前記アルカリ金属としては、例えば、ナトリウム、カリウム、セシウム等が挙げられる。前記アルカリ土類金属としては、例えば、カルシウム、バリウム等が挙げられる。これらの金属は、1種単独で用いても、2種以上を併用してもよい。これらのうち、好ましくはナトリウム、カリウム又はセシウムであり、より好ましくはカリウムである。
(Alkali metals and alkaline earth metals)
The carrier may further carry one or more metals selected from alkali metals and alkaline earth metals. These metals act as promoters for further promoting the ammonia decomposition reaction in the catalyst of the present invention.
Examples of the alkali metal include sodium, potassium, cesium and the like. Examples of the alkaline earth metal include calcium and barium. These metals may be used individually by 1 type, or may use 2 or more types together. Of these, sodium, potassium or cesium is preferable, and potassium is more preferable.
 前記触媒中に前記金属が含まれている場合、前記金属の含有量は、前記ルテニウム1モルに対して0.1~10.0モルであることが好ましく、より好ましくは0.2~8.0モル、さらに好ましくは0.5~5.0モルである。 When the metal is contained in the catalyst, the content of the metal is preferably 0.1 to 10.0 mol, more preferably 0.2 to 8. mol per 1 mol of the ruthenium. The amount is 0 mol, more preferably 0.5 to 5.0 mol.
 なお、触媒の成分組成は、金属、金属酸化物及び金属塩の一般的な分析方法により求めることができる。例えば、触媒を酸や塩基を用いて完全に溶解させた水溶液を調製し、ICP(高周波誘導結合プラズマ)発光分光分析装置にて、各金属元素の定量分析を行うことができる。また、簡便な方法として、所定の物質の担持のために使用した容器内の残留成分を溶解して、ICP発光分光分析により金属元素を定量し、担持のための原料物質中の含有金属元素の量との差から触媒の成分組成を求めることもできる。本発明における触媒の成分組成は、後述する実施例に記載の分析方法により求めた値である。 In addition, the component composition of a catalyst can be calculated | required with the general analysis method of a metal, a metal oxide, and a metal salt. For example, an aqueous solution in which the catalyst is completely dissolved using an acid or base can be prepared, and quantitative analysis of each metal element can be performed with an ICP (high frequency inductively coupled plasma) emission spectroscopic analyzer. In addition, as a simple method, the residual components in the container used for loading a predetermined substance are dissolved, the metal element is quantified by ICP emission spectroscopic analysis, and the contained metal element in the raw material for loading is determined. The component composition of the catalyst can also be determined from the difference from the amount. The component composition of the catalyst in the present invention is a value obtained by the analysis method described in Examples described later.
[アンモニア分解触媒の製造方法]
 前記触媒は、前記担体に前記希土類酸化物を担持させる工程1と、前記工程1で得られた、前記希土類酸化物が担持されている担体に、前記ルテニウムを担持させる工程2とを有する製造方法により、製造することができる。
[Method for producing ammonia decomposition catalyst]
The catalyst comprises: a step 1 for supporting the rare earth oxide on the carrier; and a step 2 for supporting the ruthenium on the carrier obtained by supporting the rare earth oxide obtained in the step 1. Can be manufactured.
(工程1)
 工程1では、希土類酸化物以外の金属酸化物からなる前記担体に、希土類酸化物を担持させる。この工程は、一般的な、金属酸化物を担持させる触媒調製方法を用いて行うことができる。例えば、希土類化合物の溶液を前記担体に含浸させた後、乾燥させて焼成する含浸法を用いることができる。
(Process 1)
In step 1, a rare earth oxide is supported on the carrier made of a metal oxide other than the rare earth oxide. This step can be performed using a general catalyst preparation method for supporting a metal oxide. For example, it is possible to use an impregnation method in which a rare earth compound solution is impregnated in the carrier, and then dried and fired.
 前記希土類化合物は、希土類酸化物の前駆体であり、特に限定されるものではないが、例えば、硝酸塩、炭酸塩、塩化物等の塩が挙げられる。好ましくは、水溶性の硝酸塩である。 The rare earth compound is a precursor of a rare earth oxide and is not particularly limited, and examples thereof include salts such as nitrates, carbonates, and chlorides. Preferably, it is a water-soluble nitrate.
 含浸法の具体的な手法は、特に限定されるものではなく、例えば、ポアフィリング法、蒸発乾固法等により行うことができる。
 例えば、希土類硝酸塩の水溶液を用いる場合、まず、担持させる希土類酸化物の量に対応する希土類硝酸塩の相当量を構成希土類金属に基づいて求めておく。
 そして、ポアフィリング法においては、前記相当量の希土類硝酸塩を、予め測定しておいた担体の吸水量以下の水に溶解して水溶液を調製し、この水溶液全量を前記担体に含浸させた後に乾燥させる。なお、担体の吸水量は、乾燥させた担体の質量を、吸水させた担体の質量から差し引くことで求められる。吸水させた担体の質量とは、乾燥させた担体全体を水に十分に浸漬させた後、担体表面に付着した水(上澄み)を、篩やろ紙等を用いて分離した状態のものとする。
 また、蒸発乾固法においては、前記相当量の希土類硝酸塩を所定量の水に溶解させて水溶液を調製し、この水溶液全量を加熱しながら担体に添加することにより水分を蒸発させて、担体に希土類酸化物の前駆体を担持させる。
The specific method of the impregnation method is not particularly limited, and can be performed by, for example, a pore filling method, an evaporation to dryness method, or the like.
For example, when an aqueous solution of rare earth nitrate is used, first, a considerable amount of rare earth nitrate corresponding to the amount of rare earth oxide to be supported is obtained based on the constituent rare earth metal.
In the pore filling method, the equivalent amount of rare earth nitrate is dissolved in water equal to or less than the water absorption amount of the carrier measured in advance to prepare an aqueous solution, and the carrier is impregnated with the whole amount of the aqueous solution and then dried. Let The water absorption amount of the carrier can be determined by subtracting the mass of the dried carrier from the mass of the absorbed carrier. The mass of the water-absorbed carrier is a state in which water (supernatant) adhering to the surface of the carrier is separated using a sieve or a filter paper after the entire dried carrier is sufficiently immersed in water.
In the evaporation to dryness method, an aqueous solution is prepared by dissolving the corresponding amount of rare earth nitrate in a predetermined amount of water, and the entire amount of the aqueous solution is added to the carrier while heating to evaporate the water, A rare earth oxide precursor is supported.
 また、希土類硝酸塩や希土類塩化物等の水溶液を担体に含浸させてから塩基性水溶液を加え、非水溶性の希土類水酸化物とした後に焼成して、担体に希土類酸化物を担持させる方法を用いることもできる。 Also, a method is used in which a carrier is impregnated with an aqueous solution of rare earth nitrate, rare earth chloride, etc., and then a basic aqueous solution is added to form a water-insoluble rare earth hydroxide, followed by firing to carry the rare earth oxide on the carrier. You can also.
 前記含浸法において、乾燥及び焼成は、触媒調製方法における一般的な条件で行うことができる。
 乾燥方法は、焼成の前処理として液体を十分に揮発させることができれば、特に限定されるものではない。例えば、水溶液を含浸させた場合は、空気雰囲気下、常圧で、80~130℃、好ましくは90~120℃、より好ましくは100~110℃に加熱することより、前記担体を乾燥することができる。
 また、焼成方法は、希土類酸化物の前駆体を、希土類酸化物に酸化することができれば、特に限定されるものではない。例えば、希土類硝酸塩を用いた場合、450~800℃、好ましくは470~700℃、より好ましくは480~600℃で、常圧で焼成することにより、希土類硝酸塩が熱分解された希土類酸化物を得ることができる。
In the impregnation method, drying and calcination can be performed under the general conditions in the catalyst preparation method.
The drying method is not particularly limited as long as the liquid can be sufficiently volatilized as a pretreatment for baking. For example, when the aqueous solution is impregnated, the carrier can be dried by heating to 80 to 130 ° C., preferably 90 to 120 ° C., more preferably 100 to 110 ° C. under atmospheric pressure and atmospheric pressure. it can.
The firing method is not particularly limited as long as the rare earth oxide precursor can be oxidized into the rare earth oxide. For example, when a rare earth nitrate is used, it is fired at 450 to 800 ° C., preferably 470 to 700 ° C., more preferably 480 to 600 ° C. under normal pressure, thereby obtaining a rare earth oxide in which the rare earth nitrate is thermally decomposed. be able to.
(工程2)
 工程2では、前記工程1で得られた、前記希土類酸化物が担持されている担体に、ルテニウムを担持させる。この工程は、一般的な、金属を担持させる触媒調製方法を用いて行うことができる。
 例えば、ルテニウム化合物溶液を、前記希土類酸化物が担持されている担体に含浸させ、乾燥させた後、還元することにより、ルテニウムの担持態様がユニフォーム型である、希土類酸化物及びルテニウムが担持されているアンモニア分解触媒を調製することができる。
 また、例えば、前記希土類酸化物が担持されている担体に、塩化ルテニウムやニトロシル硝酸ルテニウム等のルテニウム塩の水溶液を含浸させた後、塩基性水溶液である、炭酸ナトリウム、メタケイ酸ナトリウム、炭酸カリウム、水酸化バリウム等の水溶液と接触させてもよい。この担体を乾燥させて、前記希土類酸化物が担持されている担体の表面に非水溶性の酸化ルテニウムを担持させた後、還元することにより、ルテニウムの担持態様がエッグシェル型である、希土類酸化物及びルテニウムが担持されているアンモニア分解触媒を調製することができる。
(Process 2)
In step 2, ruthenium is supported on the carrier obtained in step 1 on which the rare earth oxide is supported. This step can be performed using a general method for preparing a metal-supported catalyst.
For example, the ruthenium compound solution is impregnated in a carrier on which the rare earth oxide is supported, dried, and then reduced, whereby the ruthenium supporting form is a uniform type, and the rare earth oxide and ruthenium are supported. An ammonia decomposition catalyst can be prepared.
In addition, for example, after impregnating a carrier on which the rare earth oxide is supported with an aqueous solution of a ruthenium salt such as ruthenium chloride or nitrosyl ruthenium nitrate, a basic aqueous solution such as sodium carbonate, sodium metasilicate, potassium carbonate, You may make it contact with aqueous solutions, such as barium hydroxide. The carrier is dried, and the surface of the carrier on which the rare earth oxide is supported is supported with water-insoluble ruthenium oxide, and then reduced, whereby the ruthenium is supported in an egg shell type. And an ammonia decomposition catalyst carrying ruthenium can be prepared.
 前記ルテニウム化合物は、担持させるルテニウムの前駆体であり、特に限定されるものではないが、例えば、塩化ルテニウム等の水溶性の塩や、トリス(アセチルアセトナト)ルテニウム等の有機配位子を有する化合物等を用いることができる。好ましくは、水溶性の塩であり、より好ましくは塩化ルテニウムである。 The ruthenium compound is a ruthenium precursor to be supported, and is not particularly limited. For example, the ruthenium compound has a water-soluble salt such as ruthenium chloride and an organic ligand such as tris (acetylacetonato) ruthenium. A compound or the like can be used. A water-soluble salt is preferable, and ruthenium chloride is more preferable.
 乾燥方法は、前記工程1における乾燥方法と同様に行うことができる。
 また、還元方法は、特に限定されるものではなく、例えば、水素ガス、アンモニアガス等の還元性ガスを含むガスを用いる気相還元、水素化ホウ素ナトリウム等の還元剤を含む溶液等を用いる液相還元等の方法が挙げられる。
 気相還元の場合、温度は、好ましくは200℃以上、より好ましくは200~600℃、さらに好ましくは250~550℃である。還元時間は、特に限定されるものではないが、好ましくは1~24時間、より好ましくは1~10時間、さらに好ましくは1.5~5時間である。十分な反応進行の観点から、還元温度を段階的に上げることも好ましい。
 なお、上記のような気相還元は、アンモニア分解反応を行う前に、例えば、アンモニア分解装置内に充填した状態で、行ってもよい。
The drying method can be performed in the same manner as the drying method in step 1 above.
The reduction method is not particularly limited. For example, a gas phase reduction using a gas containing a reducing gas such as hydrogen gas or ammonia gas, a liquid using a solution containing a reducing agent such as sodium borohydride, or the like. Examples of the method include phase reduction.
In the case of gas phase reduction, the temperature is preferably 200 ° C. or higher, more preferably 200 to 600 ° C., and further preferably 250 to 550 ° C. The reduction time is not particularly limited, but is preferably 1 to 24 hours, more preferably 1 to 10 hours, and further preferably 1.5 to 5 hours. From the viewpoint of sufficient reaction progress, it is also preferable to raise the reduction temperature stepwise.
Note that the gas phase reduction as described above may be performed, for example, in a state where the ammonia decomposition apparatus is filled before the ammonia decomposition reaction.
(アルカリ金属及び/又はアルカリ土類金属の担持)
 前記担体に、ルテニウム及び希土類酸化物が担持され、さらに、アルカリ金属及び/又はアルカリ土類金属が担持されている触媒を調製する場合、前記工程1及び2に加えて、アルカリ金属及び/又はアルカリ土類金属を担持させる工程を経る。
 この工程も、一般的な、金属を担持させる触媒調製方法を用いて行うことができる。例えば、アルカリ金属塩及び/又はアルカリ土類金属塩の溶液を、前記担体に含浸させた後、乾燥させた後、還元する方法を用いることができる。
 乾燥方法は、前記工程1における乾燥方法と同様に行うことができる。
 また、還元方法は、前記工程2の場合と同様の条件で行うことができる。
(Supporting alkali metal and / or alkaline earth metal)
When preparing a catalyst in which ruthenium and a rare earth oxide are supported on the support and further an alkali metal and / or alkaline earth metal is supported, in addition to the steps 1 and 2, an alkali metal and / or an alkali is prepared. Through a process of supporting an earth metal.
This step can also be performed using a general catalyst preparation method for supporting a metal. For example, it is possible to use a method in which an alkali metal salt and / or alkaline earth metal salt solution is impregnated in the support, dried, and then reduced.
The drying method can be performed in the same manner as the drying method in step 1 above.
Further, the reduction method can be performed under the same conditions as in Step 2 above.
 前記担体にアルカリ金属及び/又はアルカリ土類金属を担持させる工程は、前記工程1の前でも後でもよく、また、前記工程2の後でもよい。好ましくは、前記工程1又は2の後である。すなわち、前記工程1で得られた、前記希土類酸化物が担持されている担体に、又は、前記工程2で得られた、希土類酸化物及びルテニウムが担持されている担体に、さらに、アルカリ金属及び/又はアルカリ土類金属を担持させることが好ましい。
 より好ましくは、前記工程2で得られた、希土類酸化物及びルテニウムが担持されている担体に、アルカリ金属及び/又はアルカリ土類金属を担持させる。
The step of supporting the alkali metal and / or alkaline earth metal on the carrier may be before or after the step 1 or after the step 2. Preferably, after step 1 or 2. That is, the carrier obtained by supporting the rare earth oxide obtained in the step 1 or the carrier obtained by supporting the rare earth oxide and ruthenium obtained by the step 2, and an alkali metal and It is preferable to support an alkaline earth metal.
More preferably, an alkali metal and / or an alkaline earth metal is supported on the support obtained in Step 2 on which the rare earth oxide and ruthenium are supported.
[水素ガスの製造方法]
 本発明の水素ガスの製造方法は、上述した本発明のアンモニア分解触媒の存在下で、アンモニアを分解して水素ガスを生成させるものである。本発明の触媒を用いることにより、低温においてもアンモニア分解反応を促進することができ、水素ガスを低コストで製造することができる。
[Method for producing hydrogen gas]
In the method for producing hydrogen gas of the present invention, ammonia is decomposed to generate hydrogen gas in the presence of the above-described ammonia decomposition catalyst of the present invention. By using the catalyst of the present invention, the ammonia decomposition reaction can be promoted even at a low temperature, and hydrogen gas can be produced at a low cost.
 アンモニア分解反応は、基本的には、アンモニア含有ガスを触媒と接触させて、1モルのアンモニアから、1.5モルの水素ガス及び0.5モルの窒素ガスを生成させる反応である。この反応は、一般的な気相-固相接触反応装置で行うことができる。反応方式としては、例えば、バッチ式、流通式等があり、また、固定床式、流動床式等があり、特に限定されないが、好ましくは、流通式、固定床式である。 The ammonia decomposition reaction is basically a reaction in which 1.5 mol of hydrogen gas and 0.5 mol of nitrogen gas are generated from 1 mol of ammonia by contacting an ammonia-containing gas with a catalyst. This reaction can be carried out in a general gas phase-solid contact reactor. Examples of the reaction system include a batch system and a circulation system, and a fixed bed system and a fluidized bed system are not particularly limited, but a circulation system and a fixed bed system are preferable.
 アンモニア分解反応の反応温度は、アンモニアの分解速度及び設備コスト等の観点から、300~700℃であることが好ましく、より好ましくは400~600℃、さらに好ましくは400~500℃である。
 アンモニア含有ガスの反応器中の空間速度は、上記と同様の観点から、50~30000h-1であることが好ましく、より好ましくは50~20000h-1、さらに好ましくは100~15000h-1である。
 反応圧力は、特に限定されるものではないが、絶対圧が0.1~0.6MPaであることが好ましく、より好ましくは0.1~0.5MPa、さらに好ましくは0.1~0.3MPaである。
The reaction temperature of the ammonia decomposition reaction is preferably 300 to 700 ° C., more preferably 400 to 600 ° C., and still more preferably 400 to 500 ° C. from the viewpoint of the decomposition rate of ammonia and the equipment cost.
Space velocity in the reactor of the ammonia-containing gas is from the same viewpoint as described above, preferably from 50 ~ 30000h -1, more preferably 50 ~ 20000h -1, more preferably from 100 ~ 15000h -1.
The reaction pressure is not particularly limited, but the absolute pressure is preferably 0.1 to 0.6 MPa, more preferably 0.1 to 0.5 MPa, and still more preferably 0.1 to 0.3 MPa. It is.
 アンモニア分解反応により生成した水素ガスは、公知の精製方法を用いて、窒素ガスとの分離や、残留アンモニア及びその他の微量不純物等を除去する処理が施される。例えば、ゼオライト、活性炭等の吸着剤を用い、圧力や温度によるガスの吸着特性の違いを利用した方法として、圧力を変動させる圧力スイング吸着(PSA:Pressure Swing Adsorption)法や温度を変動させる温度スイング吸着(TSA:Thermal Swing Adsorption)法等が挙げられる。また、パラジウム合金膜透過法、深冷分離法等を用いることもできる。 The hydrogen gas generated by the ammonia decomposition reaction is subjected to a treatment for separation from nitrogen gas and removal of residual ammonia and other trace impurities using a known purification method. For example, pressure swing adsorption (PSA) method that varies the pressure and temperature swing that varies the temperature as a method that uses the adsorbent such as zeolite and activated carbon and uses the difference in gas adsorption characteristics depending on the pressure and temperature. Adsorption (TSA: Thermal Swing Adsorption) method and the like. Further, a palladium alloy membrane permeation method, a cryogenic separation method, or the like can be used.
 なお、アンモニアの分解反応における生成ガス量は、例えば、ガスクロマトグラフ等の気体成分分析装置にて、水素ガスを定量したり、また、赤外分光光度計を用いて分解反応後のガス中の残留アンモニアガスを定量し、分解したアンモニアガス量から算出する等の方法により求められる。 The amount of generated gas in the decomposition reaction of ammonia is determined by, for example, quantifying hydrogen gas with a gas component analyzer such as a gas chromatograph, It is obtained by a method such as quantifying ammonia gas and calculating from the amount of decomposed ammonia gas.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples.
[分析評価方法]
 本実施例における各種分析評価方法を以下に示す。
[Analysis evaluation method]
Various analysis evaluation methods in this example are shown below.
(金属酸化物の平均細孔径)
 金属酸化物の試料約0.1gについて、比表面積細孔分布測定装置(マイクロトラック・ベル株式会社製「BELSORP-max」、吸着ガス:窒素)にて、全細孔容積を求め、これとBET一点法による比表面積から平均細孔径を求めた。
(Average pore diameter of metal oxide)
About 0.1 g of a metal oxide sample, the total pore volume was determined with a specific surface area pore distribution measuring device ("BELSORP-max" manufactured by Microtrack Bell Co., Ltd., adsorbed gas: nitrogen), and this was BET The average pore diameter was determined from the specific surface area by a single point method.
(θアルミナの吸水量)
 110℃で6時間乾燥させたθアルミナの乾燥試料の質量m1[g]を測定した。乾燥試料を水に2時間浸漬して吸水させた後、ステンレス篩(目開き710μm)で担体に吸収されていない表面の水(上澄み)を取り除き、吸水試料の質量m2[g]を測定した。吸水試料の質量m2[g]から乾燥試料の質量m1[g]を差し引いた質量から、水の比重を1g/mLとみなして、吸水体積を求め、これを乾燥試料の質量mで割った値{(m2-m1)[g]/1[g/mL]}/m1[g]を吸水量(担体1g当たり)[mL/g]として算出した。
(Water absorption of θ alumina)
The mass m 1 [g] of a dried sample of θ alumina dried at 110 ° C. for 6 hours was measured. After the dried sample was immersed in water for 2 hours to absorb water, the surface water (supernatant) not absorbed by the carrier was removed with a stainless sieve (mesh 710 μm), and the mass m 2 [g] of the water-absorbed sample was measured. . From the mass obtained by subtracting the weight of the dry sample from the mass of the water sample m 2 [g] m 1 [ g], the specific gravity of water is regarded as a 1 g / mL, determined water absorption volume, which in the mass m 1 of dry sample The divided value {(m 2 −m 1 ) [g] / 1 [g / mL]} / m 1 [g] was calculated as the amount of water absorption (per gram of carrier) [mL / g].
(触媒の成分組成)
 触媒調製において、希土類酸化物を担持させる際に使用した容器、ルテニウムを担持させる際に使用した容器、及び、アルカリ金属を担持させる際に使用した容器のそれぞれに塩酸を加えて残留物を溶解し、ICP発光分光分析装置(株式会社島津製作所社製「ICPS-8100」)にて、前記残留物中の金属元素を定量し、使用原料中に含まれる各金属元素の量との差から、触媒の成分組成を算出した。
(Catalyst component composition)
In preparing the catalyst, hydrochloric acid is added to each of the container used for supporting the rare earth oxide, the container used for supporting the ruthenium, and the container used for supporting the alkali metal to dissolve the residue. In addition, the ICP emission spectroscopic analyzer (“ICPS-8100” manufactured by Shimadzu Corporation) was used to quantify the metal elements in the residue, and from the difference from the amount of each metal element contained in the raw material used, the catalyst The component composition of was calculated.
(エッグシェル型の触媒の分析)
 調製したエッグシェル型の触媒を、自動油圧式埋込機を用いて樹脂に埋め込んだ後、研磨機で研削して触媒粒子断面試料を作製し、SEM/EDX(走査型電子顕微鏡/エネルギー分散型X線分光法)装置にて、触媒粒子断面の観察及び測定を行い、シェル部の厚さ、及びシェル部もしくはシェル部以外のルテニウムの濃度を求めた。シェル部の厚さは、触媒粒子断面の観察画像における粒子の外周から中心までの直線上で、ルテニウムの濃度がシェル部の構成原子100質量%に対して0.1質量%以上である距離として求めた。
 なお、下記実施例12及び比較例9で得られたエッグシェル型触媒のそれぞれの任意の2点の触媒粒子試料についての測定値を代表例として、下記表2に示す。また、表2には、比較例8で得られたユニフォーム型触媒の任意の3点の触媒粒子試料についての測定値を、参考として併せて示す。
 表2に示すように、下記実施例12及び比較例9の各触媒粒子試料についてのシェル部の厚さが100~200μmであったため、シェル部のルテニウム濃度として、粒子の表面からの深さが0~100μmの範囲のルテニウムの濃度を測定した。また、シェル部以外のルテニウム濃度として、粒子の表面からの深さが200μm~中心の範囲のルテニウム濃度を測定した。
(Analysis of egg shell type catalyst)
The prepared egg shell type catalyst is embedded in a resin using an automatic hydraulic embedding machine, and then ground with a polishing machine to produce a catalyst particle cross-section sample. SEM / EDX (scanning electron microscope / energy dispersive type) The X-ray spectroscopy apparatus was used to observe and measure the cross section of the catalyst particles to determine the thickness of the shell portion and the concentration of ruthenium other than the shell portion or the shell portion. The thickness of the shell part is defined as a distance in which the ruthenium concentration is 0.1% by mass or more with respect to 100% by mass of the constituent atoms of the shell part on a straight line from the outer periphery to the center of the particle in the observation image of the catalyst particle cross section. Asked.
In addition, the measured values of the two arbitrary catalyst particle samples of the eggshell catalyst obtained in Example 12 and Comparative Example 9 below are shown in Table 2 as representative examples. Table 2 also shows the measured values of any three catalyst particle samples of the uniform type catalyst obtained in Comparative Example 8 as a reference.
As shown in Table 2, since the thickness of the shell portion for each catalyst particle sample of Example 12 and Comparative Example 9 below was 100 to 200 μm, the ruthenium concentration of the shell portion was the depth from the particle surface. The ruthenium concentration in the range of 0-100 μm was measured. Further, as the ruthenium concentration other than the shell portion, the ruthenium concentration in the range from 200 μm to the center from the particle surface was measured.
(アンモニア分解率)
 アンモニア分解反応後の回収ガスを、フーリエ変換赤外分光光度計(FT-IR分光光度計、サーモフィッシャーサイエンティフィック株式会社製)に流通させ、波数3333cm-1における吸収ピーク強度を測定し、標準ガス(アンモニア:大陽日酸株式会社製、希釈ガス:窒素)による検量線から、残留アンモニア濃度(x[%])を求め、下記式にて分解率を算出した。
 アンモニア分解率[%]={(100-x)/(100+x)}×100
 なお、回収ガス中、アンモニア以外は、アンモニアが分解して生じた窒素ガス及び水素ガスのみであるとみなした。
(Ammonia decomposition rate)
The recovered gas after the ammonia decomposition reaction was circulated through a Fourier transform infrared spectrophotometer (FT-IR spectrophotometer, manufactured by Thermo Fisher Scientific Co., Ltd.), and the absorption peak intensity at a wave number of 3333 cm −1 was measured. A residual ammonia concentration (x [%]) was determined from a calibration curve using a gas (ammonia: manufactured by Taiyo Nippon Sanso Corporation, dilution gas: nitrogen), and a decomposition rate was calculated by the following formula.
Ammonia decomposition rate [%] = {(100−x) / (100 + x)} × 100
In the recovered gas, except for ammonia, it was considered that only nitrogen gas and hydrogen gas generated by decomposition of ammonia were included.
[アンモニア分解触媒の調製]
 下記の各実施例及び比較例のアンモニア分解触媒の調製に用いた原料の詳細は、以下のとおりである。なお、各原料の粒径の値は、カタログ値である。
<ルテニウム原料>
・塩化ルテニウム:塩化ルテニウム(III)水和物(RuCl3・nH2O)、株式会社フルヤ金属製
<希土類酸化物原料>
・硝酸ネオジム六水和物:ストレムケミカルズ社製
・硝酸ランタン:ストレムケミカルズ社製
・硝酸セリウム:ストレムケミカルズ社製
・硝酸サマリウム:ストレムケミカルズ社製
・酸化セリウム:第一稀元素化学工業株式会社製、平均細孔径7.4nm、細孔容積0.21mL/g、粒径4μm
<担体(金属酸化物)>
・γアルミナ(1):シグマアルドリッチ社製、平均細孔径20nm、細孔容積0.74mL/g、粒径0.5mm
・ジルコニア:第一稀元素化学工業株式会社製、平均細孔径17nm、細孔容積0.35mL/g、粒径4μm
・チタニア:サンゴバン社製、平均細孔径28nm、細孔容積0.3mL/g、粒径0.5mm
・αアルミナ(1):サソール社製、平均細孔径170.5nm、細孔容積0.1243mL/g、粒径1mm
・θアルミナ:サソール社製、平均細孔径14nm、細孔容積0.398mL/g、粒径1mm、吸水量0.4mL/g
・αアルミナ(2):関東化学株式会社製、粒径42nm
・γアルミナ(2):サソール社製、平均細孔径10.9nm、細孔容積0.529mL/g、粒径1mm
<金属(アルカリ金属)原料>
・炭酸カリウム:和光純薬工業株式会社製
・硝酸カリウム:和光純薬工業株式会社製
・炭酸ナトリウム:和光純薬工業株式会社製
・炭酸セシウム:和光純薬工業株式会社製
[Preparation of ammonia decomposition catalyst]
Details of the raw materials used for the preparation of the ammonia decomposition catalysts of the following Examples and Comparative Examples are as follows. In addition, the value of the particle size of each raw material is a catalog value.
<Ruthenium raw material>
Ruthenium chloride: Ruthenium (III) chloride hydrate (RuCl 3 · nH 2 O), manufactured by Furuya Metal Co., Ltd. <Rare earth oxide raw material>
・ Neodymium nitrate hexahydrate: manufactured by Strem Chemicals ・ Lantan nitrate: manufactured by Strem Chemicals ・ Cerium nitrate: manufactured by Strem Chemicals ・ Samarium nitrate: manufactured by Strem Chemicals ・ Cerium oxide: 1st rare element chemical industry Made by Co., Ltd., average pore diameter 7.4 nm, pore volume 0.21 mL / g, particle size 4 μm
<Support (metal oxide)>
Γ-alumina (1): Sigma-Aldrich, average pore size 20 nm, pore volume 0.74 mL / g, particle size 0.5 mm
Zirconia: manufactured by Daiichi Rare Element Chemical Industries, Ltd., average pore diameter 17 nm, pore volume 0.35 mL / g, particle size 4 μm
-Titania: manufactured by Saint-Gobain, average pore size 28 nm, pore volume 0.3 mL / g, particle size 0.5 mm
Α-alumina (1): manufactured by Sasol, average pore diameter 170.5 nm, pore volume 0.1243 mL / g, particle diameter 1 mm
.Theta. Alumina: manufactured by Sasol, average pore size 14 nm, pore volume 0.398 mL / g, particle size 1 mm, water absorption 0.4 mL / g
Α-alumina (2): manufactured by Kanto Chemical Co., Inc., particle size 42 nm
Γ alumina (2): manufactured by Sasol, average pore diameter 10.9 nm, pore volume 0.529 mL / g, particle diameter 1 mm
<Metal (alkali metal) raw material>
・ Potassium carbonate: Wako Pure Chemical Industries, Ltd. ・ Potassium nitrate: Wako Pure Chemical Industries, Ltd. ・ Sodium carbonate: Wako Pure Chemical Industries, Ltd. ・ Cesium carbonate: Wako Pure Chemical Industries, Ltd.
(実施例1)
 γアルミナ(1)担体2.10gを蒸発皿に入れ、薬匙で混合しながら、硝酸ネオジム六水和物2.11gを用いて調製した硝酸ネオジム水溶液9.6mLを、パスツールピペットで約1mL滴下して乾燥させる操作を繰り返すことにより全量加えて、硝酸ネオジムが担持されているγアルミナ担体(Nd(NO3)3/γAl23)を得た。この担体を、空気雰囲気下、100~110℃で乾燥させた後、500℃で2時間焼成し、酸化ネオジムが担持されているγアルミナ担体(Nd23/γAl23)を得た。
 この担体を室温まで冷却後、薬匙で混合しながら、塩化ルテニウム水溶液8.9mL(含有ルテニウム分0.09g)をパスツールピペットで約1mL滴下して乾燥させる操作を繰り返すことにより全量加えた後、空気雰囲気下、100~110℃で乾燥させて、塩化ルテニウム及び酸化ネオジムが担持されているアンモニア分解触媒前駆体(RuCl3/Nd23/γAl2)を得た。この前駆体3mLを、流通式かつ固定床式の反応器に充填し、水素ガス及び窒素ガスの混合気流中、300℃で1時間、さらに、500℃で1時間還元して、γアルミナ担体に、ルテニウム及び酸化ネオジムが担持されているユニフォーム型のアンモニア分解触媒(Ru/Nd23/γAl2)を得た。
Example 1
1.9 mL of neodymium nitrate aqueous solution prepared using 2.11 g of neodymium nitrate hexahydrate while mixing 2.10 g of γ-alumina (1) carrier in an evaporating dish and about 1 mL with Pasteur pipette By repeating the operation of dropping and drying, the whole amount was added to obtain a γ-alumina carrier (Nd (NO 3 ) 3 / γAl 2 O 3 ) on which neodymium nitrate was supported. This carrier was dried at 100 to 110 ° C. in an air atmosphere and then calcined at 500 ° C. for 2 hours to obtain a γ-alumina carrier (Nd 2 O 3 / γAl 2 O 3 ) carrying neodymium oxide. .
After the carrier is cooled to room temperature, the whole amount is added by repeating the operation of dripping about 1 mL of a ruthenium chloride aqueous solution (containing 0.09 g of ruthenium content) with a Pasteur pipette and drying the mixture while mixing with a shaker. Then, it was dried at 100 to 110 ° C. in an air atmosphere to obtain an ammonia decomposition catalyst precursor (RuCl 3 / Nd 2 O 3 / γAl 2 O 3 ) carrying ruthenium chloride and neodymium oxide. 3 mL of this precursor was charged into a flow-through and fixed bed reactor and reduced in a mixed gas stream of hydrogen gas and nitrogen gas for 1 hour at 300 ° C. and further for 1 hour at 500 ° C. to form a γ-alumina carrier. A uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / γAl 2 O 3 ) carrying ruthenium and neodymium oxide was obtained.
(実施例2~6、比較例1~4、7及び8)
 下記表1にそれぞれ示す触媒の成分組成となるように配合原料を変更し、それ以外は実施例1と同様にして、各アンモニア分解触媒を調製した。
(Examples 2-6, Comparative Examples 1-4, 7 and 8)
Each of the ammonia decomposition catalysts was prepared in the same manner as in Example 1 except that the blending raw materials were changed so as to have the component composition of the catalyst shown in Table 1 below.
(実施例7)
 実施例1において、γアルミナ(1)担体の配合量を2.01gに変更し、それ以外は実施例1と同様にして、ルテニウム及び酸化ネオジムが担持されているアンモニア分解触媒(Ru/Nd23/γAl2)を調製した。
 この触媒を薬匙で混合しながら、炭酸カリウム0.16g(ルテニウム1モルに対する含有カリウム分が2.6モルとなる量)の水溶液3.7mLを、パスツールピペットで約1mL滴下して乾燥させる操作を繰り返して全量加えた後、空気雰囲気下、100~110℃で乾燥させて、炭酸カリウムが担持され、かつ、ルテニウム及び酸化ネオジムが担持されている炭酸カリウム処理アンモニア分解触媒前駆体(K2CO3/Ru/Nd23/γAl23)を得た。この前駆体3mLを、実施例1と同様にして還元し、γアルミナ担体に、カリウム、ルテニウム、及び酸化ネオジムが担持されているユニフォーム型のカリウム処理アンモニア分解触媒(K/Ru/Nd23/γAl2)を得た。
(Example 7)
In Example 1, the amount of the γ-alumina (1) support was changed to 2.01 g, and other than that, in the same manner as in Example 1, an ammonia decomposition catalyst (Ru / Nd 2 ) on which ruthenium and neodymium oxide were supported. O 3 / γAl 2 O 3 ) was prepared.
While mixing this catalyst with a cartridge, 3.7 mL of an aqueous solution of 0.16 g of potassium carbonate (amount of potassium contained in 2.6 mol of 1 mol of ruthenium) is dropped by a Pasteur pipette and dried. After repeating the operation and adding the entire amount, drying is performed at 100 to 110 ° C. in an air atmosphere, and a potassium carbonate-treated ammonia decomposition catalyst precursor (K 2 ) on which potassium carbonate is supported and ruthenium and neodymium oxide are supported. CO 3 / Ru / Nd 2 O 3 / γAl 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and a uniform type potassium-treated ammonia decomposition catalyst (K / Ru / Nd 2 O 3) in which potassium, ruthenium, and neodymium oxide were supported on a γ-alumina support. / ΓAl 2 O 3 ).
(実施例8)
 αアルミナ(1)担体2.81gを、硝酸ネオジム六水和物0.27gを用いて調製した硝酸ネオジム水溶液0.35mLに加え、空気雰囲気下、100~110℃で乾燥した後、500℃で2時間焼成し、酸化ネオジムが担持されているαアルミナ担体(Nd23/αAl23)を得た。
 この担体を室温まで冷却後、塩化ルテニウム水溶液0.30mL(含有ルテニウム分0.09g)に加え、空気雰囲気下、100~110℃で乾燥させて、塩化ルテニウム及び酸化ネオジムが担持されているアンモニア分解触媒前駆体(RuCl3/Nd23/αAl2)を得た。この前駆体3mLを、実施例1と同様にして還元し、αアルミナ担体に、ルテニウム及び酸化ネオジムが担持されているユニフォーム型のアンモニア分解触媒(Ru/Nd23/αAl2)を得た。
(Example 8)
2.81 g of α-alumina (1) support was added to 0.35 mL of an aqueous neodymium nitrate solution prepared using 0.27 g of neodymium nitrate hexahydrate, dried at 100 to 110 ° C. in an air atmosphere, and then at 500 ° C. Firing for 2 hours gave an α-alumina carrier (Nd 2 O 3 / αAl 2 O 3 ) on which neodymium oxide was supported.
This carrier is cooled to room temperature, then added to 0.30 mL of ruthenium chloride aqueous solution (containing 0.09 g of ruthenium), and dried at 100 to 110 ° C. in an air atmosphere to decompose ammonia carrying ruthenium chloride and neodymium oxide. A catalyst precursor (RuCl 3 / Nd 2 O 3 / αAl 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and a uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / αAl 2 O 3 ) in which ruthenium and neodymium oxide were supported on an α alumina support. Obtained.
(実施例9)
 実施例8において、αアルミナ(1)担体の配合量を2.67g、硝酸ネオジム六水和物を0.63gに変更し、それ以外は実施例8と同様にして、αアルミナ担体に、ルテニウム及び酸化ネオジムが担持されているユニフォーム型のアンモニア分解触媒(Ru/Nd23/αAl2)を得た。
Example 9
In Example 8, the amount of α-alumina (1) support was changed to 2.67 g, and neodymium nitrate hexahydrate was changed to 0.63 g. Otherwise, in the same manner as in Example 8, ruthenium was added to the α-alumina support. And a uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / αAl 2 O 3 ) carrying neodymium oxide.
(実施例10)
 θアルミナ担体2.46gを、硝酸ネオジム六水和物1.17gを用いて調製した硝酸ネオジム水溶液0.88mLに加え、空気雰囲気下、100~110℃で乾燥した後、500℃で2時間焼成し、酸化ネオジムが担持されているθアルミナ担体(Nd23/θAl23)を得た。
 この担体を室温まで冷却後、塩化ルテニウム水溶液0.80mL(含有ルテニウム分0.09g)に加え、空気雰囲気下、100~110℃で乾燥し、塩化ルテニウム及び酸化ネオジムが担持されているアンモニア分解触媒前駆体(RuCl3/Nd23/θAl2)を得た。この前駆体3mLを、実施例1と同様にして還元し、θアルミナ担体に、ルテニウム及び酸化ネオジムが担持されているユニフォーム型のアンモニア分解触媒(Ru/Nd23/θAl2)を得た。
(Example 10)
2.46 g of θ alumina support was added to 0.88 mL of an aqueous neodymium nitrate solution prepared using 1.17 g of neodymium nitrate hexahydrate, dried at 100 to 110 ° C. in an air atmosphere, and then calcined at 500 ° C. for 2 hours. Thus, a θ-alumina support (Nd 2 O 3 / θAl 2 O 3 ) on which neodymium oxide was supported was obtained.
The carrier is cooled to room temperature, then added to 0.80 mL of a ruthenium chloride aqueous solution (containing 0.09 g of ruthenium), dried in an air atmosphere at 100 to 110 ° C., and an ammonia decomposition catalyst carrying ruthenium chloride and neodymium oxide. A precursor (RuCl 3 / Nd 2 O 3 / θAl 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and a uniform type ammonia decomposition catalyst (Ru / Nd 2 O 3 / θAl 2 O 3 ) in which ruthenium and neodymium oxide were supported on a θ alumina support. Obtained.
(実施例11)
 実施例10と同様にして、酸化ネオジムが担持されているθアルミナ担体(Nd23/θAl23)を得た。
 この担体を室温まで冷却後、塩化ルテニウム水溶液0.80mL(含有ルテニウム分0.09g)に加え、さらに、炭酸ナトリウム水溶液1.2mLを加えて、一晩静置した。そして、パスツールピペットを用いて液体を除去した後、水で洗浄し、空気雰囲気下、100~110℃で乾燥し、酸化ルテニウム及び酸化ネオジムが担持されているアンモニア分解触媒前駆体(RuO2/Nd23/θAl23)を得た。この前駆体3mLを、実施例1と同様にして還元し、θアルミナ担体に、ルテニウム及び酸化ネオジムが担持されているエッグシェル型のアンモニア分解触媒(Ru/Nd23/θAl2)を得た。
(Example 11)
In the same manner as in Example 10, a θ-alumina carrier (Nd 2 O 3 / θAl 2 O 3 ) on which neodymium oxide was supported was obtained.
The carrier was cooled to room temperature, then added to 0.80 mL of an aqueous ruthenium chloride solution (containing 0.09 g of ruthenium content), and 1.2 mL of an aqueous sodium carbonate solution was further added, and the mixture was allowed to stand overnight. Then, after removing the liquid using a Pasteur pipette, washing with water and drying at 100 to 110 ° C. in an air atmosphere, an ammonia decomposition catalyst precursor (RuO 2 / R) on which ruthenium oxide and neodymium oxide are supported. Nd 2 O 3 / θAl 2 O 3 ) was obtained. 3 mL of this precursor was reduced in the same manner as in Example 1, and an egg shell type ammonia decomposition catalyst (Ru / Nd 2 O 3 / θAl 2 O 3 ) in which ruthenium and neodymium oxide were supported on a θ alumina support. Got.
(実施例12)
 θアルミナ担体の配合量を2.49g、硝酸ネオジム六水和物の配合量を1.09gに変更し、それ以外は、実施例11と同様にして、θアルミナ担体(Nd23/θAl23)を得た後、ルテニウム及び酸化ネオジムが担持されているアンモニア分解触媒(Ru/Nd23/θAl2)を得た。
 この触媒を、炭酸カリウム0.16g(ルテニウム1モルに対する含有カリウム分が2.6モルとなる量)の水溶液0.80mLに加え、空気雰囲気下、100~110℃で乾燥し、炭酸カリウムが担持され、ルテニウム及び酸化ネオジムが担持されている炭酸カリウム処理アンモニア分解触媒(K2CO3/Ru/Nd23/θAl23)を得た。この触媒3mLを、実施例1と同様にして還元し、θアルミナ担体に、カリウム、ルテニウム、及び酸化ネオジムが担持されているエッグシェル型のカリウム処理アンモニア分解触媒(K/Ru/Nd23/θAl2)を得た。なお、本触媒のシェル部の厚さは、100~200μmであった(下記表2参照)。
Example 12
The θ alumina support (Nd 2 O 3 / θAl) was changed in the same manner as in Example 11 except that the amount of the θ alumina support was changed to 2.49 g and the amount of neodymium nitrate hexahydrate was changed to 1.09 g. After obtaining 2 O 3 ), an ammonia decomposition catalyst (Ru / Nd 2 O 3 / θAl 2 O 3 ) carrying ruthenium and neodymium oxide was obtained.
This catalyst is added to 0.80 mL of an aqueous solution of 0.16 g of potassium carbonate (in which the amount of potassium contained in 1 mol of ruthenium is 2.6 mol), and dried at 100 to 110 ° C. in an air atmosphere to carry potassium carbonate. Thus, a potassium carbonate-treated ammonia decomposition catalyst (K 2 CO 3 / Ru / Nd 2 O 3 / θAl 2 O 3 ) carrying ruthenium and neodymium oxide was obtained. 3 mL of this catalyst was reduced in the same manner as in Example 1, and an egg shell type potassium-treated ammonia decomposition catalyst (K / Ru / Nd 2 O 3) in which potassium, ruthenium, and neodymium oxide were supported on a θ-alumina support. / ΘAl 2 O 3 ). The thickness of the shell portion of this catalyst was 100 to 200 μm (see Table 2 below).
(実施例13)
 実施例12において、ルテニウムを担持する前に、カリウムを担持させるように、操作手順を変更し、それ以外は実施例12と同様にして、θアルミナ担体に、ルテニウム、カリウム及び酸化ネオジムが担持されているエッグシェル型のアンモニア分解触媒(Ru/K/Nd23/θAl2)を得た。
(Example 13)
In Example 12, the operation procedure was changed so that potassium was loaded before loading ruthenium, and ruthenium, potassium and neodymium oxide were loaded on the θ alumina support in the same manner as in Example 12 except that. An egg shell type ammonia decomposition catalyst (Ru / K / Nd 2 O 3 / θAl 2 O 3 ) was obtained.
(実施例14~18)
 下記表1にそれぞれ示す触媒の成分組成となるように配合原料を変更し、それ以外は実施例12と同様にして、エッグシェル型の各アンモニア分解触媒を調製した。
(Examples 14 to 18)
Egg shell type ammonia decomposition catalysts were prepared in the same manner as in Example 12 except that the blending raw materials were changed so as to obtain the component compositions of the catalysts shown in Table 1 below.
(比較例5)
 担体として希土類酸化物である酸化セリウム2.91gを用いた。この担体に、塩化ルテニウム水溶液8.9mL(含有ルテニウム分0.09g)を実施例1と同様の手法で担持させて、塩化ルテニウムが担持されているアンモニア分解触媒前駆体(RuCl3/CeO2)を得た。この前駆体3mLを、反応器に充填し、水素ガス及び窒素ガスの混合気流中、300℃で1時間、さらに、500℃で1時間還元して、酸化セリウム担体にルテニウムが担持されているユニフォーム型のアンモニア分解触媒(Ru/CeO2)を得た。
(Comparative Example 5)
As a support, 2.91 g of cerium oxide, which is a rare earth oxide, was used. On this support, 8.9 mL of ruthenium chloride aqueous solution (containing 0.09 g of ruthenium content) was supported in the same manner as in Example 1, and an ammonia decomposition catalyst precursor (RuCl 3 / CeO 2 ) supporting ruthenium chloride. Got. A uniform in which 3 mL of this precursor is charged into a reactor and reduced in a mixed gas stream of hydrogen gas and nitrogen gas for 1 hour at 300 ° C. and further for 1 hour at 500 ° C., and ruthenium is supported on a cerium oxide support. A type of ammonia decomposition catalyst (Ru / CeO 2 ) was obtained.
(比較例6)
 比較例5において、酸化セリウムの配合量を2.43gに変更し、それ以外は比較例5と同様にして、ルテニウムが担持されているアンモニア分解触媒前駆体(Ru/CeO2)を調製した。
 この前駆体をαアルミナ(2)担体0.48gと混合し、ルテニウムが担持されている酸化セリウム及びαアルミナ(2)の混合粉末からなるアンモニア分解触媒(Ru/CeO2+αAl2)を得た。
(Comparative Example 6)
In Comparative Example 5, the compounding amount of cerium oxide was changed to 2.43 g, and the ammonia decomposition catalyst precursor (Ru / CeO 2 ) on which ruthenium was supported was prepared in the same manner as in Comparative Example 5 except that.
This precursor is mixed with 0.48 g of α-alumina (2) support, and an ammonia decomposition catalyst (Ru / CeO 2 + αAl 2 O 3 ) composed of a mixed powder of cerium oxide and α-alumina (2) on which ruthenium is supported. Obtained.
(比較例9)
 γアルミナ(2)担体2.91gに、塩化ルテニウム水溶液0.80mL(含有ルテニウム分0.09g)を加え、さらに、炭酸ナトリウム水溶液2.4mLを加えて、一晩静置した。そして、パスツールピペットを用いて液体を除去した後、水で洗浄し、空気雰囲気下、100~110℃で乾燥し、酸化ルテニウムが担持されているアンモニア分解触媒前駆体(RuO2/γAl23)を得た。この前駆体3mLを、実施例1と同様にして還元し、γアルミナ担体にルテニウムが担持されているエッグシェル型のアンモニア分解触媒(Ru/γAl2)を得た。なお、本触媒のシェル部の厚さは、100~200μmであった(下記表2参照)。
(Comparative Example 9)
To 2.91 g of the γ-alumina (2) support, 0.80 mL of ruthenium chloride aqueous solution (containing 0.09 g of ruthenium content) was added, and further 2.4 mL of sodium carbonate aqueous solution was added and allowed to stand overnight. Then, after removing the liquid using a Pasteur pipette, washing with water, drying at 100 to 110 ° C. in an air atmosphere, and an ammonia decomposition catalyst precursor (RuO 2 / γAl 2 O carrying ruthenium oxide) 3 ) got. 3 mL of this precursor was reduced in the same manner as in Example 1 to obtain an egg shell type ammonia decomposition catalyst (Ru / γAl 2 O 3 ) in which ruthenium was supported on a γ alumina support. The thickness of the shell portion of this catalyst was 100 to 200 μm (see Table 2 below).
[アンモニア分解反応]
 上記の実施例及び比較例で得られた各アンモニア分解触媒を用いて、アンモニア分解装置(流通式・固定床式)の円筒状の反応器(実施例1~7及び比較例1~5:内径0.75cm、長さ40cm、実施例8~18及び比較例6~9:内径1.1cm、長さ40cm)に充填した触媒3mLに対し、0.1MPa(大気圧)で空間速度(SV)10000h-1(流量500mL/min)でアンモニアを流通させ、触媒充填部の下端部の温度を500℃として、アンモニア分解反応を行い、アンモニアの分解率を求めた。
 なお、実施例6及び比較例4については、500℃では、赤外分光光度計で測定可能なアンモニア分解率に達しなかったため、温度を600℃とした。また、実施例5、6及び比較例5については、実施例1のアンモニア分解触媒の密度との相違を勘案し、ルテニウムの質量当たりのアンモニアの流通量が実施例1と同等程度となるように、空間速度(SV)を表1に示す数値に調整した。
 分解率は、アンモニア分解速度の大きさ、すなわち、アンモニア分解触媒の触媒活性の程度を表す指標であり、分解率が100%に近いほど、アンモニア分解触媒の触媒活性が高いことを示している。
 これらの結果を、触媒の成分組成と併せて、表1にまとめて示す。
[Ammonia decomposition reaction]
Using each ammonia decomposition catalyst obtained in the above examples and comparative examples, a cylindrical reactor (Examples 1 to 7 and Comparative Examples 1 to 5: inner diameter) of an ammonia decomposition apparatus (flow type / fixed bed type) Space velocity (SV) at 0.1 MPa (atmospheric pressure) for 3 mL of catalyst packed in 0.75 cm, length 40 cm, Examples 8-18 and Comparative Examples 6-9: inner diameter 1.1 cm, length 40 cm) Ammonia was circulated at 10,000 h −1 (flow rate 500 mL / min), the temperature at the lower end of the catalyst packed portion was 500 ° C., an ammonia decomposition reaction was performed, and the ammonia decomposition rate was determined.
In addition, about Example 6 and Comparative Example 4, since it did not reach the ammonia decomposition rate measurable with an infrared spectrophotometer at 500 ° C., the temperature was set to 600 ° C. Further, in Examples 5 and 6 and Comparative Example 5, in consideration of the difference from the density of the ammonia decomposition catalyst of Example 1, the circulation amount of ammonia per mass of ruthenium is approximately the same as that of Example 1. The space velocity (SV) was adjusted to the values shown in Table 1.
The decomposition rate is an index representing the magnitude of the ammonia decomposition rate, that is, the degree of catalytic activity of the ammonia decomposition catalyst. The closer the decomposition rate is to 100%, the higher the catalytic activity of the ammonia decomposition catalyst.
These results are shown together in Table 1 together with the component composition of the catalyst.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示した結果から、希土類酸化物以外の金属酸化物からなる担体に、ルテニウム及び0.1~30.0質量%の希土類酸化物を担持した触媒を用いた場合(実施例1~18)は、アンモニア分解反応において高い触媒活性を示すことが認められた。
 実施例1~4と比較例1及び2との比較、実施例5と比較例3との比較、及び、実施例6と比較例4との比較から、希土類酸化物を所定の含有量で担持させることにより、触媒活性が向上することが認められた。
 また、実施例7と実施例1との比較、及び、実施例12~18と実施例11との比較から、さらに、アルカリ金属を担持させることにより、触媒活性がさらに向上することが認められた。また、アルカリ金属を担持させる場合は、ルテニウムよりも後で担持させた触媒(実施例12)の方が、先に担持させた触媒(実施例13)よりも、触媒活性が高かった。
 担体としてαアルミナ又はθアルミナを用いた場合(実施例8~10)、希土類酸化物の担持量を低減させても、十分な触媒活性が得られることが認められた。特に、αアルミナを用いた場合(実施例8及び9)は、希土類酸化物がより少ない担持量で、十分な触媒活性を維持することができた。
 また、エッグシェル型の触媒とした場合(実施例11~18)、触媒活性が向上することが認められた。
From the results shown in Table 1, when a catalyst supporting ruthenium and 0.1 to 30.0% by mass of a rare earth oxide was used on a carrier made of a metal oxide other than the rare earth oxide (Examples 1 to 18). ) Was found to exhibit high catalytic activity in the ammonia decomposition reaction.
From the comparison between Examples 1 to 4 and Comparative Examples 1 and 2, the comparison between Example 5 and Comparative Example 3, and the comparison between Example 6 and Comparative Example 4, the rare earth oxide is supported at a predetermined content. It has been confirmed that the catalytic activity is improved by the treatment.
Further, from the comparison between Example 7 and Example 1 and the comparison between Examples 12 to 18 and Example 11, it was confirmed that the catalytic activity was further improved by further supporting an alkali metal. . In addition, when the alkali metal was supported, the catalyst supported after the ruthenium (Example 12) was higher in catalytic activity than the catalyst previously supported (Example 13).
When α-alumina or θ-alumina was used as the support (Examples 8 to 10), it was confirmed that sufficient catalytic activity could be obtained even if the amount of rare earth oxide supported was reduced. In particular, when α-alumina was used (Examples 8 and 9), sufficient catalytic activity could be maintained with a smaller amount of rare earth oxide supported.
In addition, when an egg shell type catalyst was used (Examples 11 to 18), it was confirmed that the catalytic activity was improved.

Claims (16)

  1.  ルテニウム及び希土類酸化物が、希土類酸化物以外の金属酸化物からなる担体に担持され、前記希土類酸化物の含有量が0.1~30.0質量%である、アンモニア分解触媒。 An ammonia decomposition catalyst in which ruthenium and a rare earth oxide are supported on a carrier made of a metal oxide other than the rare earth oxide, and the content of the rare earth oxide is 0.1 to 30.0 mass%.
  2.  前記金属酸化物が、アルミナ、ジルコニア及びチタニアのうちから選ばれる1種以上である、請求項1に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to claim 1, wherein the metal oxide is at least one selected from alumina, zirconia and titania.
  3.  前記金属酸化物がアルミナである、請求項1又は2に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to claim 1 or 2, wherein the metal oxide is alumina.
  4.  前記アルミナがαアルミナである、請求項2又は3に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to claim 2 or 3, wherein the alumina is α-alumina.
  5.  前記希土類酸化物が、酸化ランタン、酸化セリウム、酸化ネオジム、酸化サマリウムのうちから選ばれる1種以上である、請求項1~4のいずれか1項に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to any one of claims 1 to 4, wherein the rare earth oxide is one or more selected from lanthanum oxide, cerium oxide, neodymium oxide, and samarium oxide.
  6.  前記希土類酸化物が酸化ネオジムである、請求項1~5のいずれか1項に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to any one of claims 1 to 5, wherein the rare earth oxide is neodymium oxide.
  7.  前記ルテニウムの含有量が0.1~10.0質量%である、請求項1~6のいずれか1項に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to any one of claims 1 to 6, wherein the ruthenium content is 0.1 to 10.0 mass%.
  8.  前記担体に、さらに、アルカリ金属及びアルカリ土類金属のうちから選ばれる1種以上の金属が担持されている、請求項1~7のいずれか1項に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to any one of claims 1 to 7, further comprising one or more metals selected from alkali metals and alkaline earth metals supported on the carrier.
  9.  前記金属の含有量が、前記ルテニウム1モルに対して0.1~10.0モルである、請求項8に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to claim 8, wherein the content of the metal is 0.1 to 10.0 mol per 1 mol of the ruthenium.
  10.  前記ルテニウムの担持態様がエッグシェル型である、請求項1~9のいずれか1項に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to any one of claims 1 to 9, wherein the ruthenium is supported in an egg shell type.
  11.  前記エッグシェル型において、ルテニウムの分布領域であるシェル部の厚さが10~300μmである、請求項10に記載のアンモニア分解触媒。 11. The ammonia decomposition catalyst according to claim 10, wherein in the egg shell type, the thickness of the shell part, which is a ruthenium distribution region, is 10 to 300 μm.
  12.  前記シェル部におけるルテニウムの濃度が、シェル部の構成原子100質量%に対して0.1~15.0質量%である、請求項11に記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to claim 11, wherein the concentration of ruthenium in the shell part is 0.1 to 15.0% by mass with respect to 100% by mass of the constituent atoms of the shell part.
  13.  請求項1~12のいずれか1項に記載のアンモニア分解触媒を製造する方法であって、
     前記担体に希土類酸化物を担持させる工程1と、
     前記工程1で得られた、前記希土類酸化物が担持されている担体に、前記ルテニウムを担持させる工程2とを有する、アンモニア分解触媒の製造方法。
    A method for producing an ammonia decomposition catalyst according to any one of claims 1 to 12,
    Step 1 for supporting a rare earth oxide on the carrier;
    A process for producing an ammonia decomposition catalyst, comprising the step 2 of supporting the ruthenium on the support on which the rare earth oxide is supported obtained in the step 1.
  14.  前記工程2が、前記希土類酸化物が担持されている担体を、ルテニウム塩の水溶液に浸漬させた後、塩基性水溶液と接触させる工程を含む、請求項13に記載のアンモニア分解触媒の製造方法。 14. The method for producing an ammonia decomposition catalyst according to claim 13, wherein the step 2 includes a step of immersing the carrier carrying the rare earth oxide in an aqueous solution of ruthenium salt and then bringing the carrier into contact with a basic aqueous solution.
  15.  前記工程1で得られた、前記希土類酸化物が担持されている担体に、又は、前記工程2で得られた、希土類酸化物及びルテニウムが担持されている担体に、さらに、アルカリ金属及びアルカリ土類金属のうちから選ばれる1種以上の金属を担持させる工程を有する、請求項13又は14に記載のアンモニア分解触媒の製造方法。 The carrier obtained by supporting the rare earth oxide obtained in the step 1 or the carrier obtained by supporting the rare earth oxide and ruthenium obtained by the step 2 may be further added with alkali metal and alkaline earth. The method for producing an ammonia decomposition catalyst according to claim 13 or 14, further comprising a step of supporting one or more metals selected from among similar metals.
  16.  請求項1~12のいずれか1項に記載のアンモニア分解触媒の存在下で、アンモニアを分解して水素ガスを生成させる、水素ガスの製造方法。 A method for producing hydrogen gas, wherein ammonia is decomposed to produce hydrogen gas in the presence of the ammonia decomposition catalyst according to any one of claims 1 to 12.
PCT/JP2019/009788 2018-03-26 2019-03-11 Ammonia decomposition catalyst and method for producing same, and method for producing hydrogen gas WO2019188219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020509837A JP7264154B2 (en) 2018-03-26 2019-03-11 Ammonia decomposition catalyst, method for producing the same, and method for producing hydrogen gas
JP2023061899A JP2023076661A (en) 2018-03-26 2023-04-06 Ammonia decomposition catalyst and method for producing the same, and method for producing hydrogen gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-058203 2018-03-26
JP2018058203 2018-03-26

Publications (1)

Publication Number Publication Date
WO2019188219A1 true WO2019188219A1 (en) 2019-10-03

Family

ID=68061630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009788 WO2019188219A1 (en) 2018-03-26 2019-03-11 Ammonia decomposition catalyst and method for producing same, and method for producing hydrogen gas

Country Status (2)

Country Link
JP (2) JP7264154B2 (en)
WO (1) WO2019188219A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241841A1 (en) * 2020-05-28 2021-12-02 한국화학연구원 Ammonia cracking catalyst, and method of cracking ammonia and generating hydrogen by using same
WO2022070597A1 (en) * 2020-09-29 2022-04-07 株式会社日本触媒 Ammonia decomposition catalyst
US20220234886A1 (en) * 2021-01-27 2022-07-28 Toyota Jidosha Kabushiki Kaisha Ammonia decomposition catalyst and ammonia decomposition method using the same
CN115155569A (en) * 2022-06-15 2022-10-11 中海油天津化工研究设计院有限公司 Eggshell type Ru-based hydrogenation catalyst, and preparation method and application thereof
CN116056789A (en) * 2020-09-11 2023-05-02 韩国化学研究院 Catalyst for ammonia decomposition reaction and hydrogen production method using the same
WO2023090644A1 (en) * 2021-11-16 2023-05-25 아주대학교산학협력단 Ruthenium catalyst for ammonia decomposition reaction, preparation method therefor, and method for producing hydrogen by using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884910A (en) * 1994-07-21 1996-04-02 Japan Pionics Co Ltd Method for decomposing ammonia
JP2001009281A (en) * 1999-07-01 2001-01-16 Nippon Shokubai Co Ltd Ammonia decomposition catalyst and treatment of ammonia-containing waste gas
CN1456491A (en) * 2003-06-09 2003-11-19 清华大学 Cartalyst for preparing hydrogen without COx by ammonia decompsition reaction and preparing method thereof
CN1506300A (en) * 2002-12-12 2004-06-23 中国科学院大连化学物理研究所 Ruthenium-based catalyst for decomposing ammonia to prepare mixed H2-N2 gas and its prepn
JP2012101157A (en) * 2010-11-09 2012-05-31 Hitachi Zosen Corp Ammonia oxidation and decomposition catalyst
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884910A (en) * 1994-07-21 1996-04-02 Japan Pionics Co Ltd Method for decomposing ammonia
JP2001009281A (en) * 1999-07-01 2001-01-16 Nippon Shokubai Co Ltd Ammonia decomposition catalyst and treatment of ammonia-containing waste gas
CN1506300A (en) * 2002-12-12 2004-06-23 中国科学院大连化学物理研究所 Ruthenium-based catalyst for decomposing ammonia to prepare mixed H2-N2 gas and its prepn
CN1456491A (en) * 2003-06-09 2003-11-19 清华大学 Cartalyst for preparing hydrogen without COx by ammonia decompsition reaction and preparing method thereof
JP2012101157A (en) * 2010-11-09 2012-05-31 Hitachi Zosen Corp Ammonia oxidation and decomposition catalyst
JP2013237045A (en) * 2013-07-08 2013-11-28 Nippon Shokubai Co Ltd Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNG, D. B. ET AL.: "Enhanced ammonia dehydrogenation over Ru/La(x)-Al2O3 (x=0-50mol%): Structural and electronic effects of La doping, International", JOURNAL OF HYDROGEN ENERGY, vol. 42, 28 August 2016 (2016-08-28), pages 1639 - 1647, XP029914327 *
HASHIMOTO, K. J. ET AL.: "Decomposition of ammonia over a catalyst consisting of ruthenium metal and cerium oxides supported on Y-form zeolite", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, vol. 161, 2000, pages 171 - 178, XP055639658, ISSN: 1381-1169 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241841A1 (en) * 2020-05-28 2021-12-02 한국화학연구원 Ammonia cracking catalyst, and method of cracking ammonia and generating hydrogen by using same
CN116056789A (en) * 2020-09-11 2023-05-02 韩国化学研究院 Catalyst for ammonia decomposition reaction and hydrogen production method using the same
WO2022070597A1 (en) * 2020-09-29 2022-04-07 株式会社日本触媒 Ammonia decomposition catalyst
JP7464738B2 (en) 2020-09-29 2024-04-09 株式会社日本触媒 Ammonia Decomposition Catalyst
US20220234886A1 (en) * 2021-01-27 2022-07-28 Toyota Jidosha Kabushiki Kaisha Ammonia decomposition catalyst and ammonia decomposition method using the same
WO2023090644A1 (en) * 2021-11-16 2023-05-25 아주대학교산학협력단 Ruthenium catalyst for ammonia decomposition reaction, preparation method therefor, and method for producing hydrogen by using same
CN115155569A (en) * 2022-06-15 2022-10-11 中海油天津化工研究设计院有限公司 Eggshell type Ru-based hydrogenation catalyst, and preparation method and application thereof
CN115155569B (en) * 2022-06-15 2024-02-13 中海油天津化工研究设计院有限公司 Eggshell Ru-based hydrogenation catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP7264154B2 (en) 2023-04-25
JP2023076661A (en) 2023-06-01
JPWO2019188219A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7264154B2 (en) Ammonia decomposition catalyst, method for producing the same, and method for producing hydrogen gas
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
US9522391B2 (en) Co-selective methanation catalyst
Bhaduri et al. Preparation of asymmetrically distributed bimetal ceria (CeO2) and copper (Cu) nanoparticles in nitrogen-doped activated carbon micro/nanofibers for the removal of nitric oxide (NO) by reduction
Zhou et al. Preparation of a monolith MnO x–CeO 2/La–Al 2 O 3 catalyst and its properties for catalytic oxidation of toluene
Devaiah et al. Nanocrystalline alumina-supported ceria–praseodymia solid solutions: structural characteristics and catalytic CO oxidation
ZHANG et al. Effects of adding CeO2 to Ag/Al2O3 catalyst for ammonia oxidation at low temperatures
CN109641200B (en) Methane oxidation catalyst, preparation process and use method thereof
Xu et al. Preparation, characterization, and catalytic performance of PdPt/3DOM LaMnAl11O19 for the combustion of methane
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP6837828B2 (en) Low temperature oxidation catalyst
Choi et al. Catalytic liquid phase oxidation of 1, 4-dioxane over a Pt/CeO 2-ZrO 2-Bi 2 O 3/SBA-16 catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP6886290B2 (en) Method for manufacturing low temperature oxidation catalyst
WO2017213093A1 (en) Magnesia-based catalyst carrier, and production method therefor
CA3215982A1 (en) Carbon dioxide methanation catalyst molded body and method for producing the same
JP6614897B2 (en) Methane oxidation removal catalyst manufacturing method and methane oxidation removal method
EP4029832A1 (en) Powdered complex oxide containing elemental cerium and element zirconium, exhaust gas purification catalyst composition using same, and method for producing same
JP6197052B2 (en) Fuel reforming catalyst
JP6909405B2 (en) Methaneization catalyst, its production method, and methane production method using it
Taira et al. CO 2 capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO 2
Ding et al. Preparation of adsorption materials by combustion method: a new approach to the preparation of magnesia doped with trace zirconium
JP5561673B2 (en) Porous catalyst carrier and method for producing porous catalyst carrier
RU2810716C1 (en) Method for removal of dissolved oxygen in petroleum product
JP2012120939A (en) Method for manufacturing catalyst and catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776453

Country of ref document: EP

Kind code of ref document: A1