JP2012223768A - Catalyst and method for decomposing ammonia - Google Patents

Catalyst and method for decomposing ammonia Download PDF

Info

Publication number
JP2012223768A
JP2012223768A JP2012181525A JP2012181525A JP2012223768A JP 2012223768 A JP2012223768 A JP 2012223768A JP 2012181525 A JP2012181525 A JP 2012181525A JP 2012181525 A JP2012181525 A JP 2012181525A JP 2012223768 A JP2012223768 A JP 2012223768A
Authority
JP
Japan
Prior art keywords
ammonia
oxide
catalyst
acid strength
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012181525A
Other languages
Japanese (ja)
Inventor
Hisakazu Shindo
久和 進藤
Masaru Kirishiki
賢 桐敷
Hideaki Tsuneki
英昭 常木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2012181525A priority Critical patent/JP2012223768A/en
Publication of JP2012223768A publication Critical patent/JP2012223768A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To decompose ammonia, particularly, the ammonia which is contained in a gas, in a wide range from low concentration to high concentration.SOLUTION: A catalyst for decomposing ammonia is obtained by depositing at least one element (platinum group element) of group 8-10 elements on a metal oxide (metal oxide having low acid strength) having ≥-5.6 acid strength (Hconstant). It is preferable that the metal oxide having low acid strength is aluminum oxide, cerium oxide, magnesium oxide or titanium oxide.

Description

本発明は、アンモニアを分解する触媒及び当該触媒を用いたアンモニアの分解方法を提供するものである。   The present invention provides a catalyst for decomposing ammonia and a method for decomposing ammonia using the catalyst.

アンモニアは臭気性を有するのでガス中含まれるとき処理することが必要となるものであり、従来から処理方法は提示され、例えば酸素とアンモニアを接触させて酸化分解する方法、アンモニアを水素へ転化する方法などが提案されている。例えば、コークス炉から生じるアンモニアを空気の存在下に白金アルミナ触媒、マンガンアルミナ触媒、鉄アルミナ触媒を用いてアンモニアを分解し水素を得る方法(特許文献1)であるが、当該方法ではNOxが副生することが多く新たにNOx処理の設備が必要となり好ましくは無く、また有機性廃棄物処理工程から生じるアンモニアガスをニッケル、アルカリ土類、ランタノイドを担持したアルミナ、シリカ等を用いて分解し水素を得る方法(特許文献2)であるが、当該方法では転化率が低く実用的ではないものである。更にコークス炉から生じるアンモニアの処理に際して従来の触媒が鉄アルミナ、白金アルミナ、ルテニウムアルミナであるに対してルテニウムとアルカリ金属、アルカリ土類金属とをアルミナに担持した触媒を用いてアンモニアを分解し水素を得る方法(特許文献3)では当該方法では転化率が低く実用的ではなく好ましくはないものである。   Ammonia is odorous and needs to be treated when it is contained in a gas. Conventionally, a treatment method has been proposed, for example, a method in which oxygen and ammonia are brought into contact with each other to oxidize and decompose, and ammonia is converted to hydrogen. Methods have been proposed. For example, there is a method of decomposing ammonia generated from a coke oven using a platinum alumina catalyst, a manganese alumina catalyst, and an iron alumina catalyst in the presence of air to obtain hydrogen (Patent Document 1). It is often undesirable that new NOx treatment facilities are required, and the ammonia gas generated from the organic waste treatment process is decomposed using nickel, alkaline earth, alumina carrying lanthanoids, silica, etc. to generate hydrogen. However, this method has a low conversion rate and is not practical. Furthermore, in the treatment of ammonia generated from a coke oven, conventional catalysts are iron alumina, platinum alumina, and ruthenium alumina, whereas ammonia is decomposed and hydrogen is decomposed using a catalyst in which ruthenium, alkali metal, and alkaline earth metal are supported on alumina. In this method (Patent Document 3), the conversion rate is low and not practical and not preferable.

特開昭64−56301号公報JP-A 64-56301 特開2004−195454号公報JP 2004-195454 A 特開平01−119341号公報JP-A-01-119341

本発明は、アンモニア濃度が低濃度から高濃度まで広範囲において、効率良く分解することができる触媒である。   The present invention is a catalyst that can be efficiently decomposed over a wide range of ammonia concentrations from low to high.

本発明者らは鋭意検討の結果、上記課題を解決する方法として、8族から10族の元素の少なくとも一種の元素(以下、「白金族元素」とも称する)と、酸強度(H定数)が−5.6以上でありかつ比表面積が5〜300m/gである金属酸化物(以下、「低酸強度酸化物」とも称する)とを含むことを特徴とするアンモニアを窒素、水素に転化するアンモニア分解触媒を用いたアンモニアの分解方法を見出し発明の完成に至ったものである。 As a method for solving the above-mentioned problems, the present inventors have conducted intensive studies, and at least one element of group 8 to group 10 elements (hereinafter also referred to as “platinum group element”) and acid strength (H 0 constant). Including a metal oxide (hereinafter also referred to as “low acid strength oxide”) having a specific surface area of 5 to 300 m 2 / g in nitrogen and hydrogen. The inventors have found a method for decomposing ammonia using an ammonia decomposing catalyst to be converted, and have completed the invention.

本発明を用いることでアンモニア、特にガス中に含まれるアンモニアを低濃度から高濃度まで広範囲に分解することができるものである。   By using the present invention, ammonia, particularly ammonia contained in a gas, can be decomposed over a wide range from a low concentration to a high concentration.

本発明の第一発明は、8族から10族の元素の少なくとも一種の元素と、酸強度(H定数)が−5.6以上でありかつ比表面積が5〜300m/gである金属酸化物(低酸強度酸化物)とを含むことを特徴とするアンモニア分解触媒であり、好ましくは8族から10族の元素の少なくとも一種の元素を酸強度(H定数)が−5.6以上である金属酸化物(低酸強度酸化物)に担持したアンモニア分解触媒であり、好ましくは酸化アルミニウム、酸化セリウム、酸化マグネシウム、酸化ニオブ、酸化チタン、酸化バナジウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ランタン、酸化ネオジムであり、更に好ましくは酸化アルミニウム、酸化セリウム、酸化マグネシウムおよび酸化チタンからなる群から選ばれる少なくとも一種である。 The first invention of the present invention is a metal having at least one element of Group 8 to Group 10, an acid strength (H 0 constant) of −5.6 or more and a specific surface area of 5 to 300 m 2 / g. An ammonia decomposition catalyst comprising an oxide (low acid strength oxide), preferably an acid strength (H 0 constant) of at least one element of Group 8 to Group 10 elements of −5.6. Ammonia decomposition catalyst supported on the above metal oxide (low acid strength oxide), preferably aluminum oxide, cerium oxide, magnesium oxide, niobium oxide, titanium oxide, vanadium oxide, tantalum oxide, hafnium oxide, yttrium oxide Lanthanum oxide, neodymium oxide, more preferably at least selected from the group consisting of aluminum oxide, cerium oxide, magnesium oxide and titanium oxide Both are kind.

また当該低酸強度酸化物の比表面積が1〜300m/gであることが好ましい。 The specific surface area of the low acid strength oxide is preferably 1 to 300 m 2 / g.

本発明の第二発明は、当該触媒を用いてアンモニアを分解することを特徴とするアンモニア分解方法であり、好ましくは当該アンモニアが尿素を分解して得られるものであること、180〜950℃でアンモニア分解することである。以下に本発明を詳細に述べる。   The second invention of the present invention is an ammonia decomposing method characterized by decomposing ammonia using the catalyst. Preferably, the ammonia is obtained by decomposing urea, at 180 to 950 ° C. Ammonia decomposition. The present invention is described in detail below.

8族から10族の元素の少なくとも一種の元素であれば何れのものであっても良いが、好ましくは白金、パラジウム、ロジウム、ルテニウム、鉄、コバルトおよびニッケルからなる群から選ばれる少なくとも一種であり、更に好ましくはルテニウムおよび/または鉄であり、最も好ましくはルテニウムである。   Any element may be used as long as it is at least one element of Group 8 to Group 10, but preferably at least one element selected from the group consisting of platinum, palladium, rhodium, ruthenium, iron, cobalt and nickel. More preferred is ruthenium and / or iron, and most preferred is ruthenium.

8族から10族の元素の少なくとも一種の元素の原料としては、金属、水酸化物、酸化物、炭酸塩、硝酸塩、塩化物、ニトロシル硝酸塩、硫酸塩、カルボニル錯体を使用することができ、好ましくは硝酸塩、塩化物、ニトロシル硝酸塩、カルボニル錯体である。   As a raw material of at least one element of Group 8 to Group 10, metals, hydroxides, oxides, carbonates, nitrates, chlorides, nitrosyl nitrates, sulfates, and carbonyl complexes can be used. Are nitrates, chlorides, nitrosyl nitrates, carbonyl complexes.

当該低酸強度酸化物は、酸強度(H定数)で−5.6以上、好ましくは−5.6〜+1.5であり、最も好ましくは+1.5以上である。H定数とは、Hammettの酸度関数を用いて表した酸強度である。H定数が上記値を示す金属酸化物であれば何れであっても良いが、好ましくはα−アルミナ、酸化アルミニウム、酸化セリウム、酸化マグネシウム、酸化チタン、酸化ニオブ、酸化バナジウム、酸化タンタル、酸化ハフニウム、酸化イットリウム、酸化ランタン、酸化ネオジムであり、更に好ましくは酸化アルミニウム、酸化セリウム、酸化マグネシウムおよび酸化チタンからなる群から選ばれる少なくとも一種であることである。これらの酸化物は単独酸化物でも複合酸化物でも用いることができる。また、同一組成の酸化物であっても酸強度が上記範囲内であるものが好ましい。 The low acid strength oxide has an acid strength (H 0 constant) of −5.6 or more, preferably −5.6 to +1.5, and most preferably +1.5 or more. The H 0 constant is the acid strength expressed using the Hammett acidity function. Any metal oxide may be used as long as the H 0 constant exhibits the above value, but α-alumina, aluminum oxide, cerium oxide, magnesium oxide, titanium oxide, niobium oxide, vanadium oxide, tantalum oxide, and oxide are preferable. Hafnium, yttrium oxide, lanthanum oxide, and neodymium oxide, and more preferably at least one selected from the group consisting of aluminum oxide, cerium oxide, magnesium oxide, and titanium oxide. These oxides can be used as single oxides or complex oxides. Moreover, even if it is an oxide of the same composition, that whose acid strength is in the said range is preferable.

また、当該低酸強度酸化物の原料は、酸化物の他、硝酸塩、炭酸塩など熱分解で酸化物となるものを使用することもできる。   In addition to oxides, raw materials for the low acid strength oxides may be oxides such as nitrates and carbonates that are converted to oxides by thermal decomposition.

当該酸強度の測定方法としては、固体表面の酸強度を指示薬で測定する方法であり、具体的には約0.1gの試料を試験管に入れ、3〜5mLのベンゼンを加えた後、約0.1質量%の指示薬を含むベンゼン溶液の少量を加えたときの色の変化を観察する方法を用いることができる。   The acid strength measurement method is a method of measuring the acid strength of the solid surface with an indicator. Specifically, about 0.1 g of a sample is put in a test tube, and 3 to 5 mL of benzene is added. A method of observing a color change when a small amount of a benzene solution containing an indicator of 0.1% by mass is added can be used.

当該低酸強度酸化物の比表面積が1〜300m/g、好ましくは5〜260m/g、更に20〜200m/gであることが好ましい。比表面積の測定方法としてBET法を用いるものである。例えば同一組成の酸化物であったとしても上記範囲内の酸化物であることが好ましい。 The low acid strength oxide having a specific surface area of 1~300m 2 / g, it is preferred that preferably 5~260m 2 / g, further 20 to 200 m 2 / g. The BET method is used as a method for measuring the specific surface area. For example, even if it is an oxide of the same composition, it is preferable that it is an oxide within the above range.

8族から10族の元素の少なくとも一種の元素の量(金属換算)は、当該低酸強度酸化物100質量部に対して0.1〜50質量部、好ましくは0.5〜20質量部、更に好ましくは1.0〜6.0質量部である。   The amount of at least one element of Group 8 to Group 10 elements (in metal equivalent) is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, based on 100 parts by weight of the low acid strength oxide. More preferably, it is 1.0-6.0 mass parts.

当該触媒には他の成分を添加(添加成分)することができ、例えばアルカリ金属であり、好ましくはセシウム、ルビジウムおよびカリウムからなる群から選ばれる少なくとも一種である。添加成分の量は元素換算で、当該低酸強度酸化物100質量部に対して1〜40質量部、好ましくは3〜20質量部である。   Other components can be added (added component) to the catalyst, for example, an alkali metal, preferably at least one selected from the group consisting of cesium, rubidium and potassium. The amount of the additive component is 1 to 40 parts by mass, preferably 3 to 20 parts by mass with respect to 100 parts by mass of the low acid strength oxide in terms of element.

アンモニアガスとしては、アンモニアを一般的に使用することができる他、尿素のように熱分解等によりアンモニアを生じさせるものであっても良い。またアンモニアガスには触媒毒にならない程度であれば他の成分が含まれていても良い。   As the ammonia gas, ammonia can be generally used, and ammonia may be generated by thermal decomposition or the like like urea. The ammonia gas may contain other components as long as they do not cause catalyst poisoning.

対触媒当たりのアンモニアガス量は、SV(空間速度)で、1000〜20000hr−1、好ましくは2000〜15000hr−1、最も好ましくは3000〜10000hr−1である。なお、触媒当たりとは、触媒を反応器に詰めたときに占める容積当たりの単位時間当たりのアンモニアガス容積である。 Ammonia gas per pair catalyst, at SV (space velocity), 1000~20000hr -1, preferably 2000~15000Hr -1, and most preferably 3000~10000hr -1. In addition, per catalyst is the volume of ammonia gas per unit time per volume occupied when the catalyst is packed in the reactor.

反応温度は、180〜950℃、好ましくは300〜900℃、更に好ましくは400〜800℃である。反応圧力は0.002MPa〜2MPa、好ましくは0.004MPa〜1MPaである。   The reaction temperature is 180 to 950 ° C, preferably 300 to 900 ° C, more preferably 400 to 800 ° C. The reaction pressure is 0.002 MPa to 2 MPa, preferably 0.004 MPa to 1 MPa.

触媒の調製方法としては、一般的に方法を用いることができ、低酸強度酸化物と白金族元素とを混合する方法、白金族元素の水性液を低酸強度酸化物に含浸する方法、水性液に含まれる白金族元素を低酸強度酸化物に化学的に吸着させる方法などを用いることができる。好ましくは含浸する方法である。更に具体的に調製方法を示すと、乾燥させた低酸強度酸化物の吸水量(体積)を測定しておき、含浸させたい白金族元素の量がちょうどその体積になるように濃度調整した溶液を、乾燥させた低酸強度酸化物に撹拌しながら徐々にしみ込ませる方法である。   As a method for preparing the catalyst, a general method can be used, a method of mixing a low acid strength oxide and a platinum group element, a method of impregnating a low acid strength oxide with an aqueous solution of a platinum group element, an aqueous solution A method of chemically adsorbing the platinum group element contained in the liquid to the low acid strength oxide can be used. The impregnation method is preferred. More specifically, the preparation method shows a water absorption amount (volume) of the dried low acid strength oxide, and a solution whose concentration is adjusted so that the amount of the platinum group element to be impregnated is just the volume. Is gradually soaked into the dried low acid strength oxide while stirring.

また、本発明にかかる触媒は、白金族元素の少なくとも一種の元素と低酸強度酸化物とを含む触媒であれば何れの形態であっても良く、白金族元素と低酸強度酸化物との混合物である形態、または白金族元素の少なくとも一種の元素を低酸強度酸化物に担持した形態であっても良いが、好ましくは後者の担持である。   The catalyst according to the present invention may be in any form as long as it contains at least one element of a platinum group element and a low acid strength oxide. Although it may be in the form of a mixture or in the form of supporting at least one element of a platinum group element on a low acid strength oxide, the latter is preferable.

以下に実施例と比較例により本発明を詳細に説明するが、本発明の趣旨に反しない限り以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to the following examples unless it is contrary to the gist of the present invention.

(実施例1)
(触媒A)
ルテニウム含有率3.938質量%のルテニウム水溶液13.365gを、γ−アルミナ(BET比表面積130m/g)の担体10gに均一になるように含浸し、Ru換算で5質量%になるように調整後、90〜120℃で乾燥を行った。その後、400℃,4時間の水素還元を行った。Ru/Alを得た。
Example 1
(Catalyst A)
13.365 g of a ruthenium aqueous solution having a ruthenium content of 3.938% by mass is impregnated uniformly into 10 g of a carrier of γ-alumina (BET specific surface area 130 m 2 / g), so that it becomes 5% by mass in terms of Ru. After the adjustment, drying was performed at 90 to 120 ° C. Thereafter, hydrogen reduction was performed at 400 ° C. for 4 hours. Ru / Al 2 O 3 was obtained.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は7.1%であった。SV=15000hr−1に変えた時の結果は、分解率4.5%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 7.1%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 4.5%.

(実施例2)
(触媒B)
ルテニウム含有率3.938質量%の硝酸ルテニウム水溶液(田中貴金属製)13.365gを、γ−アルミナ(日揮製、表面積166m/g)の担体10gに均一になるように含浸し、Ru換算で5質量%になるように調整後、90〜120℃で乾燥を行った。その後、400℃,4時間の水素還元を行った。Ru/Alを得た。
(Example 2)
(Catalyst B)
13.365 g of ruthenium nitrate aqueous solution (manufactured by Tanaka Kikinzoku) with a ruthenium content of 3.938% by mass was impregnated uniformly into 10 g of a carrier of γ-alumina (manufactured by JGC, surface area of 166 m 2 / g), and converted to Ru. After adjusting so that it might become 5 mass%, it dried at 90-120 degreeC. Thereafter, hydrogen reduction was performed at 400 ° C. for 4 hours. Ru / Al 2 O 3 was obtained.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は3.7%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 3.7%.

(実施例3)
(触媒C)
Ce(NO・6HOを水に溶解し0.2N溶液とし、5%アンモニア水でpH10にして沈殿を生成させ、撹拌,静置後に吸引濾過して純水で洗浄した。100℃乾燥後に空気中で500℃、3時間焼成を行い、CeO担体を得た。これに、マヨネーズ瓶にてルテニウムカルボニルRu(CO)12をTHFに溶解させた溶液を含浸させ、一晩攪拌を継続させた後にエバポレーターでTHFを除去し、350℃まで窒素中で昇温、350〜400℃、4時間水素気流で還元処理し、2.45質量%Ru/CeOを得た。BET表面積を測定した結果、29m/gであった。
(Example 3)
(Catalyst C)
Ce (NO 3 ) 3 · 6H 2 O was dissolved in water to form a 0.2N solution, pH was adjusted to 10 with 5% aqueous ammonia, a precipitate was formed, stirred, allowed to stand, filtered with suction, and washed with pure water. After drying at 100 ° C., calcination was performed in air at 500 ° C. for 3 hours to obtain a CeO 2 carrier. This was impregnated with a solution in which ruthenium carbonyl Ru 3 (CO) 12 was dissolved in THF in a mayonnaise bottle. After stirring overnight, the THF was removed with an evaporator, and the temperature was raised to 350 ° C. in nitrogen. The reduction treatment was performed at 350 to 400 ° C. for 4 hours in a hydrogen stream to obtain 2.45 mass% Ru / CeO 2 . It was 29 m < 2 > / g as a result of measuring a BET surface area.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は7.8%であった。SV=15000hr−1に変えた時の結果は、分解率4.4%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 7.8%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 4.4%.

(実施例4)
(触媒D)
塩基性炭酸マグネシウムを500℃、3時間焼成を行い、MgO担体を得た。触媒Cにおいて、CeO担体をMgO担体に変えた以外は触媒Cと同じ調製法により、2.44質量%Ru/MgOを得た。BET表面積を測定した結果、126m/gであった。
Example 4
(Catalyst D)
Basic magnesium carbonate was calcined at 500 ° C. for 3 hours to obtain an MgO carrier. In the catalyst C, except for changing the CeO 2 support the MgO support by the same preparation method a catalyst C, was obtained 2.44 wt% Ru / MgO. As a result of measuring the BET surface area, it was 126 m 2 / g.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は2.7%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 2.7%.

(実施例5)
(触媒E)
触媒Cにおいて、CeO担体をルチル型の酸化チタン担体に変えた以外は触媒Cと同じ調製法により、2.44質量%Ru/TiOを得た。
(Example 5)
(Catalyst E)
In the catalyst C, 2.44 mass% Ru / TiO 2 was obtained by the same preparation method as the catalyst C except that the CeO 2 support was changed to a rutile type titanium oxide support.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は3.3%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 3.3%.

(実施例6)
(触媒F)
硝酸セシウムを用いて、乾燥した触媒Aの吸水量と同じ体積の含浸液がCs/Ru=1(モル比)になるように水容液を調製し、触媒Aに対して均一になるように含浸した。400℃の水素処理を4時間実施し、Cs−Ru/Al(Cs/Ru=1 モル比)を得た。BET表面積を測定した結果、103m/gであった。
(Example 6)
(Catalyst F)
Using cesium nitrate, prepare an aqueous solution so that the impregnating liquid having the same volume as the water absorption amount of the dried catalyst A becomes Cs / Ru = 1 (molar ratio), so that it is uniform with respect to the catalyst A. Impregnated. Hydrogen treatment at 400 ° C. was performed for 4 hours to obtain Cs—Ru / Al 2 O 3 (Cs / Ru = 1 molar ratio). As a result of measuring the BET surface area, it was 103 m 2 / g.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は37.5%であった。SV=15000hr−1に変えた時の結果は、分解率25.9%であった。200℃、SV=6000hr−1、常圧での結果は、分解率3.3%であった。SV=15000hr−1に変えた時の結果は、分解率1.9%であった。450℃、SV=3500hr−1、常圧で25時間実施した時の結果は、分解率は96.2〜99.3%であった。その後、400℃、SV=3000hr−1で実施した時の結果は、分解率96.0%であった。SV=6000hr−1に変えた時の結果は、分解率92.9%であった。反応温度を350℃に下げて実施したところ、SV=3000hr−1で分解率73.7%、SV=6000hr−1で分解率65.6%であった。500℃に反応温度を上げて実施したところ、SV=3500hr−1、7000hr−1共に分解率100%であった。又、600℃、750℃で分解率を測定した結果は、SV=3500、7000共に分解率100%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 and normal pressure, the decomposition rate was 37.5%. The result of changing to SV = 15000 hr −1 was a decomposition rate of 25.9%. The result at 200 ° C., SV = 6000 hr −1 , and normal pressure was a decomposition rate of 3.3%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.9%. As a result of carrying out at 450 ° C., SV = 3500 hr −1 and normal pressure for 25 hours, the decomposition rate was 96.2 to 99.3%. Thereafter, the decomposition rate was 96.0% when carried out at 400 ° C. and SV = 3000 hr −1 . The result of changing to SV = 6000 hr −1 was a decomposition rate of 92.9%. When the reaction temperature was carried down to 350 ° C., SV = 3000 hr decomposition rate 73.7% at -1, with a degradation rate of 65.6% at SV = 6000 hr -1. When the reaction temperature was raised to 500 ° C., SV = 3500 hr −1 and 7000 hr −1 both had a decomposition rate of 100%. The results of measuring the decomposition rate at 600 ° C. and 750 ° C. were 100% for both SV = 3500 and 7000.

(実施例7)
(触媒G)
触媒Fにおいて、硝酸セシウムに変えて、硝酸ルビジウムを用いた以外は触媒Fと同じ方法で、Rb−Ru/Al(Rb/Ru=1 モル比)を得た。
(Example 7)
(Catalyst G)
In catalyst F, Rb—Ru / Al 2 O 3 (Rb / Ru = 1 molar ratio) was obtained in the same manner as catalyst F, except that rubidium nitrate was used instead of cesium nitrate.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は26.0%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 26.0%.

(実施例8)
(触媒H)
触媒Fにおいて、硝酸セシウムに変えて硝酸カリウムを用いた以外は触媒Fと同じ方法で、K−Ru/Al(K/Ru=1 モル比)を得た。
(Example 8)
(Catalyst H)
In the catalyst F, K-Ru / Al 2 O 3 (K / Ru = 1 molar ratio) was obtained by the same method as the catalyst F except that potassium nitrate was used instead of cesium nitrate.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は20.0%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 and normal pressure, the decomposition rate was 20.0%.

(実施例9)
(触媒I)
触媒Fにおいて、Ru/Alに変え触媒C(Ru/Al)を用いた以外は、触媒Fと同じ調製方法でセシウムを含浸して、Cs−Ru/CeO(Cs/Ru=1 モル比)を得た。BET表面積を測定した結果は、24m/gであった。
Example 9
(Catalyst I)
In the catalyst F, Ru / Al 2 O 3 to changing the catalyst C (Ru / Al 2 O 3 ) except for using is impregnated with cesium in the same preparation method as catalysts F, Cs-Ru / CeO 2 (Cs / Ru = 1 molar ratio) was obtained. The result of measuring the BET surface area was 24 m 2 / g.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は31.4%であった。SV=15000hr−1に変えた時の結果は、分解率21.3%であった。200℃、SV=6000hr−1、常圧での結果は、分解率2.6%であった。SV=15000hr−1に変えた時の結果は、分解率1.6%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 31.4%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 21.3%. The result at 200 ° C., SV = 6000 hr −1 , and normal pressure was a decomposition rate of 2.6%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.6%.

(実施例10)
(触媒J)
触媒Fにおいて、Cs/Ruの比率をCs/Ru=8(モル比)に変えた以外は触媒Fと同じ調製方法で、Cs−Ru/Al(Cs/Ru=8 モル比)を得た。BET表面積を測定した結果、46m/gであった。
(Example 10)
(Catalyst J)
In the catalyst F, except that the ratio of Cs / Ru was changed to Cs / Ru = 8 (molar ratio), Cs—Ru / Al 2 O 3 (Cs / Ru = 8 molar ratio) Obtained. It was 46 m < 2 > / g as a result of measuring a BET surface area.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は32.4%であった。SV=15000hr−1に変えた時の結果は、分解率21.0%であった。200℃、SV=6000hr−1、常圧で実施した結果、分解率は3.1%であった。SV=15000hr−1に変えた時の結果は、分解率1.5%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 32.4%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 21.0%. As a result of carrying out at 200 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 3.1%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 1.5%.

(実施例11)
(触媒K)
Cs/Ru=8(モル比)に変えた以外は触媒Iと同じ調製方法で実施し、Cs−Ru/CeO(Cs/Ru=8 モル比)を得た。
(Example 11)
(Catalyst K)
Except for changing the Cs / Ru = 8 (molar ratio) was performed in the same preparation method a catalyst I, was obtained Cs-Ru / CeO 2 and (Cs / Ru = 8 molar ratio).

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は16.6%であった。SV=15000hr−1に変えた時の結果は、分解率10.2%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 16.6%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 10.2%.

(実施例12)
(触媒L)
Ce(NO・6HOを水に溶解し0.2N溶液とし、5%アンモニア水でpH10にして沈殿を生成させ、撹拌,静置後に吸引濾過して純水で洗浄した。100℃乾燥後に空気中で500℃、3時間焼成を行い、CeO担体を得た。Ni(NO・6HOをメタノールに溶解し、得られたCeOに含浸を行った。500℃空気中1時間焼成を行い、真空排気後、水素中で12時間還元を行った。Ni/CeOを得た。これに、マヨネーズ瓶にてルテニウムカルボニルRu(CO)12をTHFに溶解させた溶液を含浸させ、一晩攪拌を継続させた後にエバポレーターでTHFを除去し、400℃まで真空乾燥、350〜400℃、4時間水素気流で還元処理を行った。0.48質量%Ni−2.45質量%Ru/CeOを得た。
(Example 12)
(Catalyst L)
Ce (NO 3 ) 3 · 6H 2 O was dissolved in water to form a 0.2N solution, pH was adjusted to 10 with 5% aqueous ammonia, a precipitate was formed, stirred, allowed to stand, filtered with suction, and washed with pure water. After drying at 100 ° C., calcination was performed in air at 500 ° C. for 3 hours to obtain a CeO 2 carrier. Ni (NO 3 ) 2 · 6H 2 O was dissolved in methanol, and the resulting CeO 2 was impregnated. Firing was performed in air at 500 ° C. for 1 hour, and after evacuation, reduction was performed in hydrogen for 12 hours. Ni / CeO 2 was obtained. This was impregnated with a solution in which ruthenium carbonyl Ru 3 (CO) 12 was dissolved in THF in a mayonnaise bottle, and after stirring was continued overnight, the THF was removed by an evaporator, vacuum dried to 400 ° C., 350 to 400 Reduction treatment was performed in a hydrogen stream at 4 ° C. for 4 hours. 0.48 mass% Ni-2.45 mass% Ru / CeO 2 was obtained.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は9.0%であった。SV=15000hr−1に変えた時の結果は、分解率5.1%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 9.0%. The result when changing to SV = 15000 hr −1 was a decomposition rate of 5.1%.

(比較例1)
(触媒E)
担体にシリカアルミナ(日揮製、表面積196m/g、SiO:67.5質量%、Al:25.6質量%)を用いた以外は触媒Bと同じ調製方法を実施し、5質量%Ru/SiO・Alを得た。
(Comparative Example 1)
(Catalyst E)
The same preparation method as catalyst B was carried out except that silica alumina (manufactured by JGC, surface area 196 m 2 / g, SiO 2 : 67.5 mass%, Al 2 O 3 : 25.6 mass%) was used as the carrier. Mass% Ru / SiO 2 · Al 2 O 3 was obtained.

(アンモニア分解反応)
99.9%以上の純度のアンモニアを用いて、アンモニア分解反応を行った。300℃、SV=6000hr−1、常圧で実施した結果、分解率は1.7%であった。
(Ammonia decomposition reaction)
An ammonia decomposition reaction was performed using ammonia having a purity of 99.9% or more. As a result of carrying out at 300 ° C., SV = 6000 hr −1 , and normal pressure, the decomposition rate was 1.7%.

本発明は、アンモニアの分解に関するものであり、アンモニア臭気を有するガスの無臭化する環境的な分野、アンモニアを窒素、水素に転化する分野に応用できるものである。   The present invention relates to the decomposition of ammonia, and can be applied to an environmental field in which a gas having an ammonia odor is not brominated, and a field in which ammonia is converted to nitrogen or hydrogen.

Claims (2)

8族から10族の元素の少なくとも一種の元素(以下、「白金族元素」とも称する)と、酸強度(H定数)が−5.6以上でありかつ比表面積が5〜300m/gである金属酸化物(以下、「低酸強度酸化物」とも称する)とを含むことを特徴とするアンモニアを窒素、水素に転化するアンモニア分解触媒。 At least one element of group 8 to group 10 elements (hereinafter also referred to as “platinum group element”), an acid strength (H 0 constant) of −5.6 or more, and a specific surface area of 5 to 300 m 2 / g An ammonia decomposition catalyst for converting ammonia into nitrogen and hydrogen, characterized in that it contains a metal oxide (hereinafter also referred to as “low acid strength oxide”). 請求項1記載の触媒を用いてアンモニアを窒素、水素に転化することを特徴とするアンモニア分解方法。 Ammonia decomposition method, wherein ammonia is converted to nitrogen and hydrogen using the catalyst according to claim 1.
JP2012181525A 2012-08-20 2012-08-20 Catalyst and method for decomposing ammonia Pending JP2012223768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181525A JP2012223768A (en) 2012-08-20 2012-08-20 Catalyst and method for decomposing ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181525A JP2012223768A (en) 2012-08-20 2012-08-20 Catalyst and method for decomposing ammonia

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008107512A Division JP5553484B2 (en) 2008-04-17 2008-04-17 Ammonia decomposition catalyst and ammonia decomposition method

Publications (1)

Publication Number Publication Date
JP2012223768A true JP2012223768A (en) 2012-11-15

Family

ID=47274552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181525A Pending JP2012223768A (en) 2012-08-20 2012-08-20 Catalyst and method for decomposing ammonia

Country Status (1)

Country Link
JP (1) JP2012223768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383939A (en) * 2014-11-05 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 Catalyst for catalytically oxidizing carbon monoxide at room temperature as well as preparing method and application of catalyst
KR20200076404A (en) * 2018-12-19 2020-06-29 한국과학기술연구원 Ruthenium based zeolite based catalysts for ammonia dehydrogenation, method of forming the same and method of producing hydrogen gas from ammonia using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884910A (en) * 1994-07-21 1996-04-02 Japan Pionics Co Ltd Method for decomposing ammonia
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2009254981A (en) * 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Ammonia decomposing catalyst and method of decomposing ammonia

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0884910A (en) * 1994-07-21 1996-04-02 Japan Pionics Co Ltd Method for decomposing ammonia
JP2004307326A (en) * 2003-03-25 2004-11-04 Ngk Insulators Ltd Method for recovering energy from organic waste
JP2009254981A (en) * 2008-04-17 2009-11-05 Nippon Shokubai Co Ltd Ammonia decomposing catalyst and method of decomposing ammonia

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104383939A (en) * 2014-11-05 2015-03-04 上海纳米技术及应用国家工程研究中心有限公司 Catalyst for catalytically oxidizing carbon monoxide at room temperature as well as preparing method and application of catalyst
KR20200076404A (en) * 2018-12-19 2020-06-29 한국과학기술연구원 Ruthenium based zeolite based catalysts for ammonia dehydrogenation, method of forming the same and method of producing hydrogen gas from ammonia using the same
KR102241516B1 (en) 2018-12-19 2021-04-19 한국과학기술연구원 Ruthenium based zeolite based catalysts for ammonia dehydrogenation, method of forming the same and method of producing hydrogen gas from ammonia using the same

Similar Documents

Publication Publication Date Title
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
TWI547313B (en) A silver catalyst carrier, a process for its preparation, a silver catalyst made from the carrier and a use thereof
CN108246300B (en) methanation catalyst with rutile TiO2 as carrier and preparation method thereof
CN103908959B (en) Ce-Zr composite alumina oxide material and preparation method thereof
JP2847018B2 (en) Carbon dioxide reduction reaction catalyst
CA2868271C (en) Alumina carrier, method of preparing the same, and silver catalyst
TW201231158A (en) An alumina support, a preparation method for the same, and a silver catalyst prepared from the same, and use thereof
JP6883289B2 (en) Hydrogen production method and catalyst for hydrogen production
JP2021130100A (en) Ammonia decomposition catalyst
AU2014298498B2 (en) Nitrous oxide decomposition catalyst
CN105435779B (en) Carbon monoxide vapor- phase synthesis oxalate catalyst
KR20130074843A (en) Catalyst for reforming of methane with the enhanced stability for sulfur components, preparing method thereof and methane reforming method using the catalyst
JP2016175079A (en) Catalyst and method for production of chlorine by gas phase oxidation
KR20170100573A (en) Cycloalkane oxidation catalysts and method to produce alcohols and ketones
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
JP2012223768A (en) Catalyst and method for decomposing ammonia
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2013237045A (en) Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2012223769A (en) Method for producing ammonia decomposition catalyst
CN106674173B (en) Dehydrogenation catalyst and method for preparing valerolactone
JP4110241B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP3837520B2 (en) Catalyst for CO shift reaction
JP5746539B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, ammonia decomposition method and hydrogen production method using the catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028