JP4110241B2 - Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst - Google Patents
Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst Download PDFInfo
- Publication number
- JP4110241B2 JP4110241B2 JP30701198A JP30701198A JP4110241B2 JP 4110241 B2 JP4110241 B2 JP 4110241B2 JP 30701198 A JP30701198 A JP 30701198A JP 30701198 A JP30701198 A JP 30701198A JP 4110241 B2 JP4110241 B2 JP 4110241B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- carbon monoxide
- oxide
- monoxide conversion
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、一酸化炭素と水蒸気から水素と二酸化炭素を生成する一酸化炭素転化反応、または水性ガスシフト反応等と呼ばれる反応に使用される一酸化炭素反応用触媒に関し、さらに詳しくは、一酸化炭素転化触媒のうち、反応温度約150〜300℃の比較的低温で用いられる、酸化銅-酸化亜鉛系の一酸化炭素低温転化反応用触媒、ならびに該低温転化触媒を用いる一酸化炭素低温転化方法に関する。
【0002】
【従来の技術】
反応温度150〜300℃の比較的低温で使用される一酸化炭素の転化反応用触媒は古くから工業的に利用されている重要な触媒であり、酸化銅-酸化亜鉛系触媒は今日に至るまでその代表的且つ重要な触媒である。
従来の酸化銅-酸化亜鉛系触媒は、硫黄や塩素等の触媒毒によって被毒され易いこと、高温度或いは過剰水蒸気の影響により活性低下を招くこと、等の無視できない諸問題があった。
【0003】
これらの問題を解決するため、酸化クロム、酸化マンガン、酸化アルミニウム等の成分添加が検討され、実用化が図られてきた。そして40数年以前に酸化銅-酸化亜鉛-酸化アルミニウム系触媒が実用化され、耐久性の問題の解決には著しい進展が見られたが、以来30有余年間この種触媒が低温転化触媒として、専ら使用され今日に到っている。
【0004】
しかしながら、この種触媒の実用化によっても、酸化銅-酸化亜鉛系触媒の持つ低耐久性の問題が完全に解決されたとは云い難く、触媒の経時的な活性低下による等、短期間のうちに劣化触媒を交換する必要に迫られるような事態が依然として回避されていないのが実情である。
【0005】
特開昭64-27645号には、金属銅と酸化亜鉛および/または酸化マグネシウムか らなる、炭素酸化物転化工程(一酸化炭素転化反応、メタノール合成反応等)に適する、銅表面積が少なくとも70m2/gCuである触媒が開示されている。
【0006】
そしてこの触媒の任意成分として、Al,V,Cr,Ti,Zr,Tl,U,Mo,W,Mn, Siおよび希土類から選ばれる元素Xが示され、Xの含有量は、必須成分である 銅、亜鉛、マグネシウム、およびXの合計量に対し2〜50%であることが示さ れている。
また、この触媒のか焼温度が250℃を越える(300〜350℃)こと、および金属銅への還元温度が好ましくは200℃未満であることが示されている。
【0007】
しかしながら、酸化硅素を含む触媒の具体例は何ら示されておらず、特定量の酸化硅素に関しては全く記載されていない。また、触媒の高耐久性や長期安定性には言及されていない。
【0008】
また、本発明者の一人は、特願平9-294097号において、メタノール合成反応用の、少量の酸化硅素を含む銅系触媒を提案しているが、メタノール合成に好適な酸化硅素含有量は0.3〜0.9重量%の範囲に限定されている。
しかしながら、本発明とは異なる反応を対象とし異なる酸化硅素含有量を特定する異なる触媒に関するものである。
【0009】
【発明が解決しようとする課題】
触媒の交換を行わず長期間の運転を安定して行うためには、高活性でしかも活性の低下が起こらない耐久性に優れた触媒の開発が求められる。
【0010】
本発明はこのような課題に鑑みなされたものであって、本発明の目的は、上記のような問題のない、一酸化炭素の転化反応に使用する高活性で且つ活性低下のない高耐久性・長期安定性の優れた酸化銅-酸化亜鉛系触媒(一酸化炭素低温転化反応用触媒)、ならびに該低温転化触媒を用いる一酸化炭素低温転化方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、これらの課題を解決するため、一酸化炭素の転化反応用酸化銅-酸化亜鉛系触媒について鋭意検討を行った結果、従来の酸化銅-酸化亜鉛系触媒に特定量の酸化硅素を添加した触媒が、一酸化炭素転化反応に極めて高い活性を有し、しかも使用中に活性低下が起こらず、長期に亘って高活性を維持することを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明は酸化銅および酸化亜鉛に加えて、触媒総重量の0.5〜5重量%の範囲の量の酸化硅素、或いはさらに1〜30%の範囲の量の酸化アルミニウムを含む、高活性で高耐久性・長期安定性に優れる一酸化炭素低温転化反応用触媒、ならびに該低温転化触媒を用いる一酸化炭素低温転化方法を開示するものである。
【0013】
【発明の実施の形態】
以下、本発明の実施態様を具体的に説明するが、本発明はこれによりなんら限定されるものでない。
【0014】
本触媒の活性成分である酸化銅と酸化亜鉛の含有量は、それぞれ20〜65重量%と10〜70重量%の範囲とすることが好ましい。この範囲外の含有量では触媒の活性或いは耐久性が充分発揮されない。
また、本発明の触媒は酸化アルミニウムその他の成分を含んでもよい。特に、1〜30重量%の酸化アルミニウムを含有すると、触媒の成型性、活性、耐久性によい効果をもたらす。
【0015】
本発明の触媒の特徴は、酸化銅-酸化亜鉛系の従来触媒に、特定量の酸化硅素を添加したことにあるが、その添加量は0.5〜5重量%とすることが好ましく、1〜5重量%とすることがより好ましい。
0.5重量%より低い含有量では、触媒耐久性の改善の効果が少なく、また0.5 重量%以上であっても、1重量%未満であると場合によっては耐久性改善の効果が十分に発現されないことがある。また5重量%を越える含有量では活性が低下してくる。
【0016】
触媒への硅素成分の添加効果は、反応中の水蒸気分圧と密接に関係しており、一酸化炭素転化反応における水蒸気分圧は、上記のメタノール合成反応の場合よりも遥かに高い。
さらに、一酸化炭素転化用触媒とメタノール合成用触媒は、一般には共に、酸化銅および酸化亜鉛を含むものが多いが、この触媒の上記の両反応に関与する表面部位がそれそれ異なることが知られている。
【0017】
本発明の触媒は、上記の点を考慮し鋭意研究を重ね、一酸化炭素転化用触媒にはメタノール合成用触媒よりも硅素成分の含有量が多く、且つ特定の含有量の硅素成分が極めて有効であることを見出した結果に基づき得られたものである。
【0018】
本発明の触媒を製造する方法は、硅素成分の添加工程が加わった他は、現在よく知られている酸化銅-酸化亜鉛系の一酸化炭素転化反応用触媒の製造方法と特に変わるものではなく、現行の各種の製造方法が適用可能である。
本触媒製造の際の組成物の焼成は、350〜650℃の範囲で行なうことが好ましく、この焼成工程を省くと触媒耐久性の確保が著しく阻害されるので望ましいことではない。
【0019】
硅素成分の添加時に使用される原料としては、コロイダルシリカが最も好ましいが、コロイダルシリカに限定されるものではなく、溶存シリカ、硅酸、各種硅酸塩等も使用可能である。
硅素分添加の時期としては、触媒製造のいずれの段階でもよいが、硅素分の分散がよく行われることが必要であり、そのためには活性成分の沈殿工程での添加が最も望ましい。
【0020】
本触媒の形状、サイズ等は、使用目的に応じて適宜選択されるもので、特に限定されるものではない。
【0021】
本発明の触媒は使用に先だって酸化銅の金属銅への還元を行う必要があるが、還元操作を反応器外で行い、その後に反応器内に充填してもよく、また反応器に触媒を充填した後に反応ガスに含まれる一酸化炭素や水素等を用いて還元を行ってもよい。還元温度は200〜350℃が適当である。
【0022】
【実施例】
以下、実施例により本発明を詳細に説明し、本発明の特徴とするところをより明確にする。
【0023】
[実施例1]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および1gのコロダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0024】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、400℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅45.8%、酸化亜鉛44.2%、酸化アルミニウム9.3%およびシリカ0.7%であった。
【0025】
得られた触媒0.5mlを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を毎分300mlの流速で供給し、300℃で触媒中の酸化銅の水素還元を行った。
触媒の還元後、反応管に原料ガス(容量基準CO:3%,CO2:17%,水素:80%)と水蒸気を供給し、転化反応を行った。
【0026】
反応条件は、温度205℃、圧力11kg/cm2G、水蒸気と原料ガスの容量比は1.5、原料ガス(水蒸気を除く)の空間速度は11.250(h-1)であった。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0027】
[実施例2]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および1.5gのコロダルシリカ(日産化学工業社製スノーテ ックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0028】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、500℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅45.6%、酸化亜鉛44.1%、酸化アルミニウム9.3%およびシリカ1.0%であった。
【0029】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0030】
[実施例3]
実施例2で調製したと同じ沈殿物を、600℃で3時間空気中で焼成して、触媒とした。得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0031】
[実施例4]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および3gのコロダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0032】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、400℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅45.3%,酸化亜鉛43.7%,酸化アルミニウム9.2%およびシリカ1.9%であった。
【0033】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0034】
[実施例5]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および5gのコロダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0035】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、400℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅44.7%,酸化亜鉛43.2%,酸化アルミニウム9.1%およびシリカ3.1%であった。
【0036】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0037】
【表1】
[比較例1]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物を蒸留水に溶解し300mlとした溶液Aと、87.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0038】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、600℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅46.1%、酸化亜鉛44.7%、酸化アルミニウム9.3%であった。
【0039】
得られた触媒を用いて、実施例1と同様にして一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表2に示す。
【0040】
[比較例2]
35.1gの硝酸銅三水和物、25.3gの硝酸亜鉛六水和物、12.5gのオキシ硝酸ジルコニウム、8.5gの硝酸アルミニウム九水和物を蒸留水に溶解し300mlとした溶液Aと、36.3gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に毎分7mlの速度で滴下して沈殿物を得た。得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、600℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅46.8%、酸化亜鉛26.9%、酸化ジルコニウム21.6%、酸化アルミニウム4.7%であった。
【0041】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表2に示す。
【0042】
【表2】
表1および表2に示す通り、本発明の触媒により、一酸化炭素の水蒸気による転化反応において、高い一酸化炭素転化効率を長時間に亘って得られることは明らかである。
【0043】
【発明の効果】
本発明によって、150〜300℃の比較的低い温度範囲において、極めて高い一酸化炭素の転化効率を長時間に亘って保持することのできる、高活性で高耐久の優れた酸化銅-酸化亜鉛系の一酸化炭素低温転化反応用触媒、および該触媒 を用いる一酸化炭素転化方法が提供され、触媒、用役、原料各原単位が向上する等の産業上有用な効果が奏される。[0001]
[Technical field to which the invention belongs]
The present invention relates to a catalyst for carbon monoxide reaction used in a reaction called carbon monoxide conversion reaction for generating hydrogen and carbon dioxide from carbon monoxide and water vapor, or a water gas shift reaction, and more specifically, carbon monoxide. Among the conversion catalysts, the present invention relates to a copper oxide-zinc oxide based carbon monoxide low temperature conversion reaction catalyst used at a relatively low temperature of about 150 to 300 ° C., and a carbon monoxide low temperature conversion method using the low temperature conversion catalyst. .
[0002]
[Prior art]
Carbon monoxide conversion catalysts used at a relatively low reaction temperature of 150 to 300 ° C. are important catalysts that have been used industrially for a long time, and copper oxide-zinc oxide catalysts have been used to date. Its representative and important catalyst.
Conventional copper oxide-zinc oxide-based catalysts have various problems that cannot be ignored, such as being easily poisoned by catalyst poisons such as sulfur and chlorine, and causing a decrease in activity due to the influence of high temperature or excessive water vapor.
[0003]
In order to solve these problems, addition of components such as chromium oxide, manganese oxide, and aluminum oxide has been studied and put into practical use. Forty years ago, a copper oxide-zinc oxide-aluminum oxide catalyst was put into practical use, and remarkable progress was made in solving the durability problem. Since then, this kind of catalyst has been used as a low-temperature conversion catalyst for more than 30 years. Used exclusively today.
[0004]
However, even with the practical use of this type of catalyst, it is difficult to say that the problem of low durability of the copper oxide-zinc oxide based catalyst has been completely solved. The situation is that the situation in which it is necessary to replace the deteriorated catalyst has not been avoided.
[0005]
Japanese Patent Laid-Open No. 64-27645 discloses that a copper surface area suitable for a carbon oxide conversion process (carbon monoxide conversion reaction, methanol synthesis reaction, etc.) comprising metallic copper and zinc oxide and / or magnesium oxide is at least 70 m 2 / s. A catalyst that is gCu is disclosed.
[0006]
As an optional component of this catalyst, an element X selected from Al, V, Cr, Ti, Zr, Tl, U, Mo, W, Mn, Si and a rare earth is shown, and the content of X is an essential component. It is shown to be 2 to 50% based on the total amount of copper, zinc, magnesium and X.
It has also been shown that the calcination temperature of this catalyst exceeds 250 ° C. (300-350 ° C.) and the reduction temperature to metallic copper is preferably less than 200 ° C.
[0007]
However, no specific example of a catalyst containing silicon oxide is shown, and no specific amount of silicon oxide is described. Further, there is no mention of high durability and long-term stability of the catalyst.
[0008]
In addition, one of the present inventors has proposed a copper-based catalyst containing a small amount of silicon oxide for methanol synthesis reaction in Japanese Patent Application No. 9-294097, but the silicon oxide content suitable for methanol synthesis is It is limited to the range of 0.3 to 0.9% by weight.
However, it relates to a different catalyst that targets a different reaction from the present invention and specifies a different silicon oxide content.
[0009]
[Problems to be solved by the invention]
In order to stably operate for a long period of time without exchanging the catalyst, it is required to develop a catalyst having high activity and excellent durability that does not cause a decrease in activity.
[0010]
The present invention has been made in view of such problems, and the object of the present invention is to have a high durability used for the conversion reaction of carbon monoxide without the above-mentioned problems and a high durability without a decrease in the activity. The object is to provide a copper oxide-zinc oxide based catalyst (catalyst for carbon monoxide low temperature conversion reaction) having excellent long-term stability, and a carbon monoxide low temperature conversion method using the low temperature conversion catalyst.
[0011]
[Means for Solving the Problems]
In order to solve these problems, the present inventors have conducted extensive studies on a copper oxide-zinc oxide catalyst for conversion reaction of carbon monoxide. As a result, a specific amount of oxidation was added to the conventional copper oxide-zinc oxide catalyst. It has been found that a catalyst to which silicon has been added has extremely high activity in the carbon monoxide conversion reaction, does not cause a decrease in activity during use, and maintains high activity over a long period of time. It was.
[0012]
That is, the present invention comprises high oxide containing, in addition to copper oxide and zinc oxide, silicon oxide in an amount in the range of 0.5-5% by weight of the total catalyst weight, or aluminum oxide in an amount in the range of 1-30%. The present invention discloses a catalyst for low-temperature carbon monoxide conversion reaction that is active and has high durability and excellent long-term stability, and a low-temperature carbon monoxide conversion method using the low-temperature conversion catalyst.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited thereto.
[0014]
The contents of copper oxide and zinc oxide, which are active components of the catalyst, are preferably in the range of 20 to 65% by weight and 10 to 70% by weight, respectively. If the content is outside this range, the activity or durability of the catalyst is not sufficiently exhibited.
The catalyst of the present invention may contain aluminum oxide and other components. In particular, when 1 to 30% by weight of aluminum oxide is contained, the catalyst has good effects on moldability, activity and durability.
[0015]
A feature of the catalyst of the present invention is that a specific amount of silicon oxide is added to a conventional copper oxide-zinc oxide catalyst, and the addition amount is preferably 0.5 to 5% by weight. More preferably, it is made into 5 weight%.
When the content is lower than 0.5% by weight, the effect of improving the catalyst durability is small, and even when the content is 0.5% by weight or more, if the content is less than 1% by weight, the effect of improving the durability is sufficient in some cases. May not be expressed. Further, when the content exceeds 5% by weight, the activity decreases.
[0016]
The effect of adding the silicon component to the catalyst is closely related to the partial pressure of water vapor during the reaction, and the partial pressure of water vapor in the carbon monoxide conversion reaction is much higher than in the case of the methanol synthesis reaction described above.
Furthermore, carbon monoxide conversion catalysts and methanol synthesis catalysts generally contain both copper oxide and zinc oxide, but it is known that the surface sites involved in both of the above reactions of this catalyst are different. It has been.
[0017]
The catalyst of the present invention has been intensively studied in consideration of the above points, and the carbon monoxide conversion catalyst has a higher content of silicon component than the catalyst for methanol synthesis, and a specific content of silicon component is extremely effective. It was obtained on the basis of the results of finding that.
[0018]
The method for producing the catalyst of the present invention is not particularly different from the currently well-known method for producing a catalyst for carbon monoxide conversion reaction based on copper oxide-zinc oxide, except that a silicon component addition step is added. Various current manufacturing methods can be applied.
The composition is preferably calcined in the range of 350 to 650 ° C. in the production of the present catalyst. If this calcining step is omitted, ensuring of catalyst durability is significantly hindered, which is not desirable.
[0019]
Colloidal silica is most preferable as a raw material used when adding the silicon component, but is not limited to colloidal silica, and dissolved silica, oxalic acid, various oxalates, and the like can also be used.
The timing of adding the silicon component may be at any stage of the catalyst production, but it is necessary that the silicon component is well dispersed. For this purpose, the addition of the active component in the precipitation step is most desirable.
[0020]
The shape, size, etc. of the catalyst are appropriately selected according to the purpose of use and are not particularly limited.
[0021]
Prior to use, the catalyst of the present invention needs to reduce copper oxide to metallic copper. However, the reduction operation may be performed outside the reactor and then charged into the reactor, or the catalyst may be loaded into the reactor. After filling, reduction may be performed using carbon monoxide, hydrogen, or the like contained in the reaction gas. The reduction temperature is suitably 200 to 350 ° C.
[0022]
【Example】
Hereinafter, the present invention will be described in detail by way of examples, and the features of the present invention will be clarified more clearly.
[0023]
[Example 1]
31.7 g copper nitrate trihydrate, 38.1 g zinc nitrate hexahydrate, 15.3 g aluminum nitrate nonahydrate and 1 g collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration 20 weight) %) Was dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate in 300 ml of distilled water was added dropwise to 400 g of distilled water at a rate of 7 ml per minute. A precipitate was obtained.
[0024]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The dried precipitate was calcined in the air at 400 ° C. for 3 hours to form a catalyst.
The composition of this catalyst was, on a weight basis, 45.8% copper oxide, 44.2% zinc oxide, 9.3% aluminum oxide and 0.7% silica.
[0025]
0.5 ml of the catalyst obtained was filled into a reaction tube, a mixed gas of helium and hydrogen (90% by volume of helium, 10% by volume of hydrogen) was supplied at a flow rate of 300 ml / min, and the copper oxide in the catalyst at 300 ° C. Hydrogen reduction was performed.
After the reduction of the catalyst, a raw material gas (volume basis CO: 3%, CO 2 : 17%, hydrogen: 80%) and water vapor were supplied to the reaction tube to carry out a conversion reaction.
[0026]
The reaction conditions were a temperature of 205 ° C., a pressure of 11 kg / cm 2 G, a volume ratio of water vapor to the raw material gas of 1.5, and a space velocity of the raw material gas (excluding water vapor) was 11.250 (h −1).
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0027]
[Example 2]
31.7 g copper nitrate trihydrate, 38.1 g zinc nitrate hexahydrate, 15.3 g aluminum nitrate nonahydrate and 1.5 g collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration) 20% by weight) dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate dissolved in distilled water to 300 ml of solution B were dropped into 400 g of distilled water at a rate of 7 ml per minute. To obtain a precipitate.
[0028]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The precipitate after drying was calcined in air at 500 ° C. for 3 hours to obtain a catalyst.
The composition of the catalyst was 45.6% copper oxide, 44.1% zinc oxide, 9.3% aluminum oxide and 1.0% silica on a weight basis.
[0029]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0030]
[Example 3]
The same precipitate as prepared in Example 2 was calcined in air at 600 ° C. for 3 hours to form a catalyst. Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0031]
[Example 4]
31.7 g copper nitrate trihydrate, 38.1 g zinc nitrate hexahydrate, 15.3 g aluminum nitrate nonahydrate and 3 g collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration 20 weight) %) Was dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate in 300 ml of distilled water was added dropwise to 400 g of distilled water at a rate of 7 ml per minute. A precipitate was obtained.
[0032]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The dried precipitate was calcined in the air at 400 ° C. for 3 hours to form a catalyst.
The composition of this catalyst was, on a weight basis, 45.3% copper oxide, 43.7% zinc oxide, 9.2% aluminum oxide and 1.9% silica.
[0033]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0034]
[Example 5]
31.7 g of copper nitrate trihydrate, 38.1 g of zinc nitrate hexahydrate, 15.3 g of aluminum nitrate nonahydrate and 5 g of collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration 20 wt. %) Was dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate in 300 ml of distilled water was added dropwise to 400 g of distilled water at a rate of 7 ml per minute. A precipitate was obtained.
[0035]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The dried precipitate was calcined in the air at 400 ° C. for 3 hours to form a catalyst.
The composition of the catalyst was 44.7% copper oxide, 43.2% zinc oxide, 9.1% aluminum oxide and 3.1% silica on a weight basis.
[0036]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0037]
[Table 1]
[Comparative Example 1]
31.7 g of copper nitrate trihydrate, 38.1 g of zinc nitrate hexahydrate, 15.3 g of aluminum nitrate nonahydrate dissolved in distilled water to 300 ml, and 87.4 g of anhydrous A solution B obtained by dissolving sodium carbonate in distilled water to 300 ml was dropped into 400 g of distilled water at a rate of 7 ml per minute to obtain a precipitate.
[0038]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The precipitate after drying was calcined in air at 600 ° C. for 3 hours to obtain a catalyst.
The composition of this catalyst was 46.1% copper oxide, 44.7% zinc oxide, and 9.3% aluminum oxide on a weight basis.
[0039]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 2.
[0040]
[Comparative Example 2]
A solution prepared by dissolving 35.1 g of copper nitrate trihydrate, 25.3 g of zinc nitrate hexahydrate, 12.5 g of zirconium oxynitrate and 8.5 g of aluminum nitrate nonahydrate in distilled water to make 300 ml. A and a solution B in which 36.3 g of anhydrous sodium carbonate was dissolved in distilled water to make 300 ml were dropped into 400 g of distilled water at a rate of 7 ml / min to obtain a precipitate. The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The precipitate after drying was calcined in air at 600 ° C. for 3 hours to obtain a catalyst.
The composition of this catalyst was 46.8% copper oxide, 26.9% zinc oxide, 21.6% zirconium oxide, and 4.7% aluminum oxide on a weight basis.
[0041]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 2.
[0042]
[Table 2]
As shown in Tables 1 and 2, it is clear that high conversion efficiency of carbon monoxide can be obtained for a long time in the conversion reaction of carbon monoxide with water vapor by the catalyst of the present invention.
[0043]
【The invention's effect】
According to the present invention, a highly active and highly durable copper oxide-zinc oxide system capable of maintaining a very high carbon monoxide conversion efficiency over a long period of time in a relatively low temperature range of 150 to 300 ° C. A carbon monoxide low temperature conversion reaction catalyst and a carbon monoxide conversion method using the catalyst are provided, and industrially useful effects such as improvement of the catalyst, utility, and raw material basic units can be achieved.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30701198A JP4110241B2 (en) | 1998-10-28 | 1998-10-28 | Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30701198A JP4110241B2 (en) | 1998-10-28 | 1998-10-28 | Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000126597A JP2000126597A (en) | 2000-05-09 |
JP4110241B2 true JP4110241B2 (en) | 2008-07-02 |
Family
ID=17963952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30701198A Expired - Lifetime JP4110241B2 (en) | 1998-10-28 | 1998-10-28 | Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4110241B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100728124B1 (en) * | 2006-02-10 | 2007-06-13 | 삼성에스디아이 주식회사 | Catalyst for water gas shift for fuel cell system, method of preparing same and fuel cell system comprising same |
JP2007313487A (en) * | 2006-05-29 | 2007-12-06 | National Institute Of Advanced Industrial & Technology | Catalyst for water gas shift reaction, and method for water gas shift reaction using the same |
CN101652176B (en) | 2007-04-10 | 2012-07-04 | 出光兴产株式会社 | Catalyst precursor and catalyst using the same |
CN100441294C (en) * | 2007-05-10 | 2008-12-10 | 湖北省化学研究院 | Deovo catalyst for raw gas of carbon monoxide, preparation, and application |
RU2554949C1 (en) * | 2014-04-02 | 2015-07-10 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Copper-zinc catalyst for low-temperature conversion of carbon monoxide with steam |
RU2555842C1 (en) * | 2014-04-02 | 2015-07-10 | Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" | Copper-chromium-zinc catalyst for heterogeneous reactions |
GB201905293D0 (en) * | 2019-04-15 | 2019-05-29 | Johnson Matthey Plc | Copper-containing catalysts |
GB202016050D0 (en) | 2020-10-09 | 2020-11-25 | Johnson Matthey Plc | Hydrogen process |
-
1998
- 1998-10-28 JP JP30701198A patent/JP4110241B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000126597A (en) | 2000-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0406896B1 (en) | Catalyst for reforming hydrocarbon with steam | |
EP0042471B1 (en) | Catalyst and method for producing the catalyst | |
US4565803A (en) | Methanol synthesis catalyst | |
KR0170423B1 (en) | Ceric oxide containing composition, its preparation and its use | |
US6416731B1 (en) | Process for catalytical steam reforming of a hydrocarbon feedstock | |
US5691263A (en) | Amorphous perovskite catalysts for nitrogen oxide reduction and methods of preparing the same | |
JP4222827B2 (en) | Hydrocarbon reforming method | |
JP5553484B2 (en) | Ammonia decomposition catalyst and ammonia decomposition method | |
CN103191720B (en) | A kind of catalyst for methanation in presence of sulfur of magnesium aluminate spinel load | |
JP4974674B2 (en) | Complex oxide | |
EA014214B1 (en) | Supported cobalt catalysts for the fischer tropsch synthesis | |
JP4110241B2 (en) | Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst | |
JPS59122432A (en) | Production of mixed alcohol | |
US6238640B1 (en) | Conversion method of carbon monoxide and catalyst | |
JPS5929633B2 (en) | Low-temperature steam reforming method for hydrocarbons | |
US20050100495A1 (en) | Process for eliminating sulfur-containing compounds by direct oxidation | |
US4537867A (en) | Promoted iron-cobalt spinel catalyst for Fischer-Tropsch processes | |
JP3837520B2 (en) | Catalyst for CO shift reaction | |
JPS647974B2 (en) | ||
JP3868010B2 (en) | Catalysts based on highly dispersed metal oxides, especially containing zirconia | |
CN113019391B (en) | Catalyst for preparing cyclohexanol and ethanol by hydrogenating cyclohexyl acetate, preparation method and application thereof | |
JP4012965B2 (en) | Catalyst for high temperature CO shift reaction | |
JP4512748B2 (en) | Catalyst for water gas conversion reaction | |
JP2007313487A (en) | Catalyst for water gas shift reaction, and method for water gas shift reaction using the same | |
US4616000A (en) | Copper beryllium-containing catalysts for the production of alcohols |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20040309 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050810 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050810 |
|
RD07 | Notification of extinguishment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7427 Effective date: 20050810 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050811 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080311 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |