JP4110241B2 - Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst - Google Patents

Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst Download PDF

Info

Publication number
JP4110241B2
JP4110241B2 JP30701198A JP30701198A JP4110241B2 JP 4110241 B2 JP4110241 B2 JP 4110241B2 JP 30701198 A JP30701198 A JP 30701198A JP 30701198 A JP30701198 A JP 30701198A JP 4110241 B2 JP4110241 B2 JP 4110241B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
oxide
monoxide conversion
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30701198A
Other languages
Japanese (ja)
Other versions
JP2000126597A (en
Inventor
昌弘 齊藤
光太郎 瀧
治 岡田
弘樹 藤田
康雄 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP30701198A priority Critical patent/JP4110241B2/en
Publication of JP2000126597A publication Critical patent/JP2000126597A/en
Application granted granted Critical
Publication of JP4110241B2 publication Critical patent/JP4110241B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、一酸化炭素と水蒸気から水素と二酸化炭素を生成する一酸化炭素転化反応、または水性ガスシフト反応等と呼ばれる反応に使用される一酸化炭素反応用触媒に関し、さらに詳しくは、一酸化炭素転化触媒のうち、反応温度約150〜300℃の比較的低温で用いられる、酸化銅-酸化亜鉛系の一酸化炭素低温転化反応用触媒、ならびに該低温転化触媒を用いる一酸化炭素低温転化方法に関する。
【0002】
【従来の技術】
反応温度150〜300℃の比較的低温で使用される一酸化炭素の転化反応用触媒は古くから工業的に利用されている重要な触媒であり、酸化銅-酸化亜鉛系触媒は今日に至るまでその代表的且つ重要な触媒である。
従来の酸化銅-酸化亜鉛系触媒は、硫黄や塩素等の触媒毒によって被毒され易いこと、高温度或いは過剰水蒸気の影響により活性低下を招くこと、等の無視できない諸問題があった。
【0003】
これらの問題を解決するため、酸化クロム、酸化マンガン、酸化アルミニウム等の成分添加が検討され、実用化が図られてきた。そして40数年以前に酸化銅-酸化亜鉛-酸化アルミニウム系触媒が実用化され、耐久性の問題の解決には著しい進展が見られたが、以来30有余年間この種触媒が低温転化触媒として、専ら使用され今日に到っている。
【0004】
しかしながら、この種触媒の実用化によっても、酸化銅-酸化亜鉛系触媒の持つ低耐久性の問題が完全に解決されたとは云い難く、触媒の経時的な活性低下による等、短期間のうちに劣化触媒を交換する必要に迫られるような事態が依然として回避されていないのが実情である。
【0005】
特開昭64-27645号には、金属銅と酸化亜鉛および/または酸化マグネシウムか らなる、炭素酸化物転化工程(一酸化炭素転化反応、メタノール合成反応等)に適する、銅表面積が少なくとも70m2/gCuである触媒が開示されている。
【0006】
そしてこの触媒の任意成分として、Al,V,Cr,Ti,Zr,Tl,U,Mo,W,Mn, Siおよび希土類から選ばれる元素Xが示され、Xの含有量は、必須成分である 銅、亜鉛、マグネシウム、およびXの合計量に対し2〜50%であることが示さ れている。
また、この触媒のか焼温度が250℃を越える(300〜350℃)こと、および金属銅への還元温度が好ましくは200℃未満であることが示されている。
【0007】
しかしながら、酸化硅素を含む触媒の具体例は何ら示されておらず、特定量の酸化硅素に関しては全く記載されていない。また、触媒の高耐久性や長期安定性には言及されていない。
【0008】
また、本発明者の一人は、特願平9-294097号において、メタノール合成反応用の、少量の酸化硅素を含む銅系触媒を提案しているが、メタノール合成に好適な酸化硅素含有量は0.3〜0.9重量%の範囲に限定されている。
しかしながら、本発明とは異なる反応を対象とし異なる酸化硅素含有量を特定する異なる触媒に関するものである。
【0009】
【発明が解決しようとする課題】
触媒の交換を行わず長期間の運転を安定して行うためには、高活性でしかも活性の低下が起こらない耐久性に優れた触媒の開発が求められる。
【0010】
本発明はこのような課題に鑑みなされたものであって、本発明の目的は、上記のような問題のない、一酸化炭素の転化反応に使用する高活性で且つ活性低下のない高耐久性・長期安定性の優れた酸化銅-酸化亜鉛系触媒(一酸化炭素低温転化反応用触媒)、ならびに該低温転化触媒を用いる一酸化炭素低温転化方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、これらの課題を解決するため、一酸化炭素の転化反応用酸化銅-酸化亜鉛系触媒について鋭意検討を行った結果、従来の酸化銅-酸化亜鉛系触媒に特定量の酸化硅素を添加した触媒が、一酸化炭素転化反応に極めて高い活性を有し、しかも使用中に活性低下が起こらず、長期に亘って高活性を維持することを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明は酸化銅および酸化亜鉛に加えて、触媒総重量の0.5〜5重量%の範囲の量の酸化硅素、或いはさらに1〜30%の範囲の量の酸化アルミニウムを含む、高活性で高耐久性・長期安定性に優れる一酸化炭素低温転化反応用触媒、ならびに該低温転化触媒を用いる一酸化炭素低温転化方法を開示するものである。
【0013】
【発明の実施の形態】
以下、本発明の実施態様を具体的に説明するが、本発明はこれによりなんら限定されるものでない。
【0014】
本触媒の活性成分である酸化銅と酸化亜鉛の含有量は、それぞれ20〜65重量%と10〜70重量%の範囲とすることが好ましい。この範囲外の含有量では触媒の活性或いは耐久性が充分発揮されない。
また、本発明の触媒は酸化アルミニウムその他の成分を含んでもよい。特に、1〜30重量%の酸化アルミニウムを含有すると、触媒の成型性、活性、耐久性によい効果をもたらす。
【0015】
本発明の触媒の特徴は、酸化銅-酸化亜鉛系の従来触媒に、特定量の酸化硅素を添加したことにあるが、その添加量は0.5〜5重量%とすることが好ましく、1〜5重量%とすることがより好ましい。
0.5重量%より低い含有量では、触媒耐久性の改善の効果が少なく、また0.5 重量%以上であっても、1重量%未満であると場合によっては耐久性改善の効果が十分に発現されないことがある。また5重量%を越える含有量では活性が低下してくる。
【0016】
触媒への硅素成分の添加効果は、反応中の水蒸気分圧と密接に関係しており、一酸化炭素転化反応における水蒸気分圧は、上記のメタノール合成反応の場合よりも遥かに高い。
さらに、一酸化炭素転化用触媒とメタノール合成用触媒は、一般には共に、酸化銅および酸化亜鉛を含むものが多いが、この触媒の上記の両反応に関与する表面部位がそれそれ異なることが知られている。
【0017】
本発明の触媒は、上記の点を考慮し鋭意研究を重ね、一酸化炭素転化用触媒にはメタノール合成用触媒よりも硅素成分の含有量が多く、且つ特定の含有量の硅素成分が極めて有効であることを見出した結果に基づき得られたものである。
【0018】
本発明の触媒を製造する方法は、硅素成分の添加工程が加わった他は、現在よく知られている酸化銅-酸化亜鉛系の一酸化炭素転化反応用触媒の製造方法と特に変わるものではなく、現行の各種の製造方法が適用可能である。
本触媒製造の際の組成物の焼成は、350〜650℃の範囲で行なうことが好ましく、この焼成工程を省くと触媒耐久性の確保が著しく阻害されるので望ましいことではない。
【0019】
硅素成分の添加時に使用される原料としては、コロイダルシリカが最も好ましいが、コロイダルシリカに限定されるものではなく、溶存シリカ、硅酸、各種硅酸塩等も使用可能である。
硅素分添加の時期としては、触媒製造のいずれの段階でもよいが、硅素分の分散がよく行われることが必要であり、そのためには活性成分の沈殿工程での添加が最も望ましい。
【0020】
本触媒の形状、サイズ等は、使用目的に応じて適宜選択されるもので、特に限定されるものではない。
【0021】
本発明の触媒は使用に先だって酸化銅の金属銅への還元を行う必要があるが、還元操作を反応器外で行い、その後に反応器内に充填してもよく、また反応器に触媒を充填した後に反応ガスに含まれる一酸化炭素や水素等を用いて還元を行ってもよい。還元温度は200〜350℃が適当である。
【0022】
【実施例】
以下、実施例により本発明を詳細に説明し、本発明の特徴とするところをより明確にする。
【0023】
[実施例1]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および1gのコロダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0024】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、400℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅45.8%、酸化亜鉛44.2%、酸化アルミニウム9.3%およびシリカ0.7%であった。
【0025】
得られた触媒0.5mlを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を毎分300mlの流速で供給し、300℃で触媒中の酸化銅の水素還元を行った。
触媒の還元後、反応管に原料ガス(容量基準CO:3%,CO2:17%,水素:80%)と水蒸気を供給し、転化反応を行った。
【0026】
反応条件は、温度205℃、圧力11kg/cm2G、水蒸気と原料ガスの容量比は1.5、原料ガス(水蒸気を除く)の空間速度は11.250(h-1)であった。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0027】
[実施例2]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および1.5gのコロダルシリカ(日産化学工業社製スノーテ ックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0028】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、500℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅45.6%、酸化亜鉛44.1%、酸化アルミニウム9.3%およびシリカ1.0%であった。
【0029】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0030】
[実施例3]
実施例2で調製したと同じ沈殿物を、600℃で3時間空気中で焼成して、触媒とした。得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0031】
[実施例4]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および3gのコロダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0032】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、400℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅45.3%,酸化亜鉛43.7%,酸化アルミニウム9.2%およびシリカ1.9%であった。
【0033】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0034】
[実施例5]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物および5gのコロダルシリカ(日産化学工業社製スノーテックスO、シリカ濃度20重量%)を蒸留水に溶解し300mlとした溶液Aと、37.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0035】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、400℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅44.7%,酸化亜鉛43.2%,酸化アルミニウム9.1%およびシリカ3.1%であった。
【0036】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表1に示す。
【0037】
【表1】

Figure 0004110241
[比較例1]
31.7gの硝酸銅三水和物、38.1gの硝酸亜鉛六水和物、15.3gの硝酸アルミニウム九水和物を蒸留水に溶解し300mlとした溶液Aと、87.4gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に、毎分7mlの速度で滴下して沈殿物を得た。
【0038】
得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、600℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅46.1%、酸化亜鉛44.7%、酸化アルミニウム9.3%であった。
【0039】
得られた触媒を用いて、実施例1と同様にして一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表2に示す。
【0040】
[比較例2]
35.1gの硝酸銅三水和物、25.3gの硝酸亜鉛六水和物、12.5gのオキシ硝酸ジルコニウム、8.5gの硝酸アルミニウム九水和物を蒸留水に溶解し300mlとした溶液Aと、36.3gの無水炭酸ナトリウムを蒸留水に溶解し300mlとした溶液Bを、400gの蒸留水中に毎分7mlの速度で滴下して沈殿物を得た。得られた沈殿物は、3日間熟成させ、濾過、洗浄後、110℃で一昼夜乾燥した。乾燥後の沈殿物は、600℃で3時間空気中で焼成して、触媒とした。
この触媒の組成は重量基準で、酸化銅46.8%、酸化亜鉛26.9%、酸化ジルコニウム21.6%、酸化アルミニウム4.7%であった。
【0041】
得られた触媒を用いて、実施例1と同様にして、一酸化炭素の水蒸気による転化反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、一酸化炭素転化率を調べた。結果を表2に示す。
【0042】
【表2】
Figure 0004110241
表1および表2に示す通り、本発明の触媒により、一酸化炭素の水蒸気による転化反応において、高い一酸化炭素転化効率を長時間に亘って得られることは明らかである。
【0043】
【発明の効果】
本発明によって、150〜300℃の比較的低い温度範囲において、極めて高い一酸化炭素の転化効率を長時間に亘って保持することのできる、高活性で高耐久の優れた酸化銅-酸化亜鉛系の一酸化炭素低温転化反応用触媒、および該触媒 を用いる一酸化炭素転化方法が提供され、触媒、用役、原料各原単位が向上する等の産業上有用な効果が奏される。[0001]
[Technical field to which the invention belongs]
The present invention relates to a catalyst for carbon monoxide reaction used in a reaction called carbon monoxide conversion reaction for generating hydrogen and carbon dioxide from carbon monoxide and water vapor, or a water gas shift reaction, and more specifically, carbon monoxide. Among the conversion catalysts, the present invention relates to a copper oxide-zinc oxide based carbon monoxide low temperature conversion reaction catalyst used at a relatively low temperature of about 150 to 300 ° C., and a carbon monoxide low temperature conversion method using the low temperature conversion catalyst. .
[0002]
[Prior art]
Carbon monoxide conversion catalysts used at a relatively low reaction temperature of 150 to 300 ° C. are important catalysts that have been used industrially for a long time, and copper oxide-zinc oxide catalysts have been used to date. Its representative and important catalyst.
Conventional copper oxide-zinc oxide-based catalysts have various problems that cannot be ignored, such as being easily poisoned by catalyst poisons such as sulfur and chlorine, and causing a decrease in activity due to the influence of high temperature or excessive water vapor.
[0003]
In order to solve these problems, addition of components such as chromium oxide, manganese oxide, and aluminum oxide has been studied and put into practical use. Forty years ago, a copper oxide-zinc oxide-aluminum oxide catalyst was put into practical use, and remarkable progress was made in solving the durability problem. Since then, this kind of catalyst has been used as a low-temperature conversion catalyst for more than 30 years. Used exclusively today.
[0004]
However, even with the practical use of this type of catalyst, it is difficult to say that the problem of low durability of the copper oxide-zinc oxide based catalyst has been completely solved. The situation is that the situation in which it is necessary to replace the deteriorated catalyst has not been avoided.
[0005]
Japanese Patent Laid-Open No. 64-27645 discloses that a copper surface area suitable for a carbon oxide conversion process (carbon monoxide conversion reaction, methanol synthesis reaction, etc.) comprising metallic copper and zinc oxide and / or magnesium oxide is at least 70 m 2 / s. A catalyst that is gCu is disclosed.
[0006]
As an optional component of this catalyst, an element X selected from Al, V, Cr, Ti, Zr, Tl, U, Mo, W, Mn, Si and a rare earth is shown, and the content of X is an essential component. It is shown to be 2 to 50% based on the total amount of copper, zinc, magnesium and X.
It has also been shown that the calcination temperature of this catalyst exceeds 250 ° C. (300-350 ° C.) and the reduction temperature to metallic copper is preferably less than 200 ° C.
[0007]
However, no specific example of a catalyst containing silicon oxide is shown, and no specific amount of silicon oxide is described. Further, there is no mention of high durability and long-term stability of the catalyst.
[0008]
In addition, one of the present inventors has proposed a copper-based catalyst containing a small amount of silicon oxide for methanol synthesis reaction in Japanese Patent Application No. 9-294097, but the silicon oxide content suitable for methanol synthesis is It is limited to the range of 0.3 to 0.9% by weight.
However, it relates to a different catalyst that targets a different reaction from the present invention and specifies a different silicon oxide content.
[0009]
[Problems to be solved by the invention]
In order to stably operate for a long period of time without exchanging the catalyst, it is required to develop a catalyst having high activity and excellent durability that does not cause a decrease in activity.
[0010]
The present invention has been made in view of such problems, and the object of the present invention is to have a high durability used for the conversion reaction of carbon monoxide without the above-mentioned problems and a high durability without a decrease in the activity. The object is to provide a copper oxide-zinc oxide based catalyst (catalyst for carbon monoxide low temperature conversion reaction) having excellent long-term stability, and a carbon monoxide low temperature conversion method using the low temperature conversion catalyst.
[0011]
[Means for Solving the Problems]
In order to solve these problems, the present inventors have conducted extensive studies on a copper oxide-zinc oxide catalyst for conversion reaction of carbon monoxide. As a result, a specific amount of oxidation was added to the conventional copper oxide-zinc oxide catalyst. It has been found that a catalyst to which silicon has been added has extremely high activity in the carbon monoxide conversion reaction, does not cause a decrease in activity during use, and maintains high activity over a long period of time. It was.
[0012]
That is, the present invention comprises high oxide containing, in addition to copper oxide and zinc oxide, silicon oxide in an amount in the range of 0.5-5% by weight of the total catalyst weight, or aluminum oxide in an amount in the range of 1-30%. The present invention discloses a catalyst for low-temperature carbon monoxide conversion reaction that is active and has high durability and excellent long-term stability, and a low-temperature carbon monoxide conversion method using the low-temperature conversion catalyst.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited thereto.
[0014]
The contents of copper oxide and zinc oxide, which are active components of the catalyst, are preferably in the range of 20 to 65% by weight and 10 to 70% by weight, respectively. If the content is outside this range, the activity or durability of the catalyst is not sufficiently exhibited.
The catalyst of the present invention may contain aluminum oxide and other components. In particular, when 1 to 30% by weight of aluminum oxide is contained, the catalyst has good effects on moldability, activity and durability.
[0015]
A feature of the catalyst of the present invention is that a specific amount of silicon oxide is added to a conventional copper oxide-zinc oxide catalyst, and the addition amount is preferably 0.5 to 5% by weight. More preferably, it is made into 5 weight%.
When the content is lower than 0.5% by weight, the effect of improving the catalyst durability is small, and even when the content is 0.5% by weight or more, if the content is less than 1% by weight, the effect of improving the durability is sufficient in some cases. May not be expressed. Further, when the content exceeds 5% by weight, the activity decreases.
[0016]
The effect of adding the silicon component to the catalyst is closely related to the partial pressure of water vapor during the reaction, and the partial pressure of water vapor in the carbon monoxide conversion reaction is much higher than in the case of the methanol synthesis reaction described above.
Furthermore, carbon monoxide conversion catalysts and methanol synthesis catalysts generally contain both copper oxide and zinc oxide, but it is known that the surface sites involved in both of the above reactions of this catalyst are different. It has been.
[0017]
The catalyst of the present invention has been intensively studied in consideration of the above points, and the carbon monoxide conversion catalyst has a higher content of silicon component than the catalyst for methanol synthesis, and a specific content of silicon component is extremely effective. It was obtained on the basis of the results of finding that.
[0018]
The method for producing the catalyst of the present invention is not particularly different from the currently well-known method for producing a catalyst for carbon monoxide conversion reaction based on copper oxide-zinc oxide, except that a silicon component addition step is added. Various current manufacturing methods can be applied.
The composition is preferably calcined in the range of 350 to 650 ° C. in the production of the present catalyst. If this calcining step is omitted, ensuring of catalyst durability is significantly hindered, which is not desirable.
[0019]
Colloidal silica is most preferable as a raw material used when adding the silicon component, but is not limited to colloidal silica, and dissolved silica, oxalic acid, various oxalates, and the like can also be used.
The timing of adding the silicon component may be at any stage of the catalyst production, but it is necessary that the silicon component is well dispersed. For this purpose, the addition of the active component in the precipitation step is most desirable.
[0020]
The shape, size, etc. of the catalyst are appropriately selected according to the purpose of use and are not particularly limited.
[0021]
Prior to use, the catalyst of the present invention needs to reduce copper oxide to metallic copper. However, the reduction operation may be performed outside the reactor and then charged into the reactor, or the catalyst may be loaded into the reactor. After filling, reduction may be performed using carbon monoxide, hydrogen, or the like contained in the reaction gas. The reduction temperature is suitably 200 to 350 ° C.
[0022]
【Example】
Hereinafter, the present invention will be described in detail by way of examples, and the features of the present invention will be clarified more clearly.
[0023]
[Example 1]
31.7 g copper nitrate trihydrate, 38.1 g zinc nitrate hexahydrate, 15.3 g aluminum nitrate nonahydrate and 1 g collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration 20 weight) %) Was dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate in 300 ml of distilled water was added dropwise to 400 g of distilled water at a rate of 7 ml per minute. A precipitate was obtained.
[0024]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The dried precipitate was calcined in the air at 400 ° C. for 3 hours to form a catalyst.
The composition of this catalyst was, on a weight basis, 45.8% copper oxide, 44.2% zinc oxide, 9.3% aluminum oxide and 0.7% silica.
[0025]
0.5 ml of the catalyst obtained was filled into a reaction tube, a mixed gas of helium and hydrogen (90% by volume of helium, 10% by volume of hydrogen) was supplied at a flow rate of 300 ml / min, and the copper oxide in the catalyst at 300 ° C. Hydrogen reduction was performed.
After the reduction of the catalyst, a raw material gas (volume basis CO: 3%, CO 2 : 17%, hydrogen: 80%) and water vapor were supplied to the reaction tube to carry out a conversion reaction.
[0026]
The reaction conditions were a temperature of 205 ° C., a pressure of 11 kg / cm 2 G, a volume ratio of water vapor to the raw material gas of 1.5, and a space velocity of the raw material gas (excluding water vapor) was 11.250 (h −1).
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0027]
[Example 2]
31.7 g copper nitrate trihydrate, 38.1 g zinc nitrate hexahydrate, 15.3 g aluminum nitrate nonahydrate and 1.5 g collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration) 20% by weight) dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate dissolved in distilled water to 300 ml of solution B were dropped into 400 g of distilled water at a rate of 7 ml per minute. To obtain a precipitate.
[0028]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The precipitate after drying was calcined in air at 500 ° C. for 3 hours to obtain a catalyst.
The composition of the catalyst was 45.6% copper oxide, 44.1% zinc oxide, 9.3% aluminum oxide and 1.0% silica on a weight basis.
[0029]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0030]
[Example 3]
The same precipitate as prepared in Example 2 was calcined in air at 600 ° C. for 3 hours to form a catalyst. Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0031]
[Example 4]
31.7 g copper nitrate trihydrate, 38.1 g zinc nitrate hexahydrate, 15.3 g aluminum nitrate nonahydrate and 3 g collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration 20 weight) %) Was dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate in 300 ml of distilled water was added dropwise to 400 g of distilled water at a rate of 7 ml per minute. A precipitate was obtained.
[0032]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The dried precipitate was calcined in the air at 400 ° C. for 3 hours to form a catalyst.
The composition of this catalyst was, on a weight basis, 45.3% copper oxide, 43.7% zinc oxide, 9.2% aluminum oxide and 1.9% silica.
[0033]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0034]
[Example 5]
31.7 g of copper nitrate trihydrate, 38.1 g of zinc nitrate hexahydrate, 15.3 g of aluminum nitrate nonahydrate and 5 g of collodal silica (Snowtex O, Nissan Chemical Industries, silica concentration 20 wt. %) Was dissolved in distilled water to 300 ml, and 37.4 g of anhydrous sodium carbonate in 300 ml of distilled water was added dropwise to 400 g of distilled water at a rate of 7 ml per minute. A precipitate was obtained.
[0035]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The dried precipitate was calcined in the air at 400 ° C. for 3 hours to form a catalyst.
The composition of the catalyst was 44.7% copper oxide, 43.2% zinc oxide, 9.1% aluminum oxide and 3.1% silica on a weight basis.
[0036]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0004110241
[Comparative Example 1]
31.7 g of copper nitrate trihydrate, 38.1 g of zinc nitrate hexahydrate, 15.3 g of aluminum nitrate nonahydrate dissolved in distilled water to 300 ml, and 87.4 g of anhydrous A solution B obtained by dissolving sodium carbonate in distilled water to 300 ml was dropped into 400 g of distilled water at a rate of 7 ml per minute to obtain a precipitate.
[0038]
The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The precipitate after drying was calcined in air at 600 ° C. for 3 hours to obtain a catalyst.
The composition of this catalyst was 46.1% copper oxide, 44.7% zinc oxide, and 9.3% aluminum oxide on a weight basis.
[0039]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 2.
[0040]
[Comparative Example 2]
A solution prepared by dissolving 35.1 g of copper nitrate trihydrate, 25.3 g of zinc nitrate hexahydrate, 12.5 g of zirconium oxynitrate and 8.5 g of aluminum nitrate nonahydrate in distilled water to make 300 ml. A and a solution B in which 36.3 g of anhydrous sodium carbonate was dissolved in distilled water to make 300 ml were dropped into 400 g of distilled water at a rate of 7 ml / min to obtain a precipitate. The obtained precipitate was aged for 3 days, filtered, washed, and dried at 110 ° C. overnight. The precipitate after drying was calcined in air at 600 ° C. for 3 hours to obtain a catalyst.
The composition of this catalyst was 46.8% copper oxide, 26.9% zinc oxide, 21.6% zirconium oxide, and 4.7% aluminum oxide on a weight basis.
[0041]
Using the obtained catalyst, the conversion reaction of carbon monoxide with water vapor was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatograph, and the carbon monoxide conversion was examined. The results are shown in Table 2.
[0042]
[Table 2]
Figure 0004110241
As shown in Tables 1 and 2, it is clear that high conversion efficiency of carbon monoxide can be obtained for a long time in the conversion reaction of carbon monoxide with water vapor by the catalyst of the present invention.
[0043]
【The invention's effect】
According to the present invention, a highly active and highly durable copper oxide-zinc oxide system capable of maintaining a very high carbon monoxide conversion efficiency over a long period of time in a relatively low temperature range of 150 to 300 ° C. A carbon monoxide low temperature conversion reaction catalyst and a carbon monoxide conversion method using the catalyst are provided, and industrially useful effects such as improvement of the catalyst, utility, and raw material basic units can be achieved.

Claims (5)

一酸化炭素転化触媒において、活性成分として触媒総重量に対する重量基準百分率で、酸化銅を20ないし65%、酸化亜鉛を10ないし70%、酸化硅素を0.5ないし5%の範囲で含有する組成物を焼成してなることを特徴とする、一酸化炭素低温転化反応用触媒。In the carbon monoxide conversion catalyst, a composition containing 20 to 65% of copper oxide, 10 to 70% of zinc oxide and 0.5 to 5% of silicon oxide as active components in a weight basis percentage with respect to the total weight of the catalyst. A catalyst for low-temperature carbon monoxide conversion reaction, characterized by firing a product. 前記酸化硅素を1ないし5%の範囲で含有する請求項1記載 の一酸化炭素低温転化反応用触媒。The catalyst for low-temperature carbon monoxide conversion reaction according to claim 1, which contains the silicon oxide in a range of 1 to 5%. 前記活性成分に、さらに酸化アルミニウムを1ないし30%の範囲で含有する請求項1または2記載の一酸化炭素低温転化反応用触媒。The catalyst for low-temperature carbon monoxide conversion reaction according to claim 1 or 2, wherein the active ingredient further contains aluminum oxide in an amount of 1 to 30%. 前記組成物の焼成温度が350ないし650℃の範囲内にある請求項1、2または3記載の一酸化炭素低温転化反応用触媒。The catalyst for low-temperature carbon monoxide conversion reaction according to claim 1, 2 or 3, wherein the calcination temperature of the composition is in the range of 350 to 650 ° C. 一酸化炭素転化方法において、該方法に用いられる触媒が、請求項1ないし4のいずれかに記載の一酸化炭素低温転化反応用触媒であることを特徴とする、一酸化炭素低温転化方法。The carbon monoxide conversion method, wherein the catalyst used in the method is a carbon monoxide low temperature conversion reaction catalyst according to any one of claims 1 to 4.
JP30701198A 1998-10-28 1998-10-28 Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst Expired - Lifetime JP4110241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30701198A JP4110241B2 (en) 1998-10-28 1998-10-28 Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30701198A JP4110241B2 (en) 1998-10-28 1998-10-28 Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst

Publications (2)

Publication Number Publication Date
JP2000126597A JP2000126597A (en) 2000-05-09
JP4110241B2 true JP4110241B2 (en) 2008-07-02

Family

ID=17963952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30701198A Expired - Lifetime JP4110241B2 (en) 1998-10-28 1998-10-28 Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst

Country Status (1)

Country Link
JP (1) JP4110241B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728124B1 (en) * 2006-02-10 2007-06-13 삼성에스디아이 주식회사 Catalyst for water gas shift for fuel cell system, method of preparing same and fuel cell system comprising same
JP2007313487A (en) * 2006-05-29 2007-12-06 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
CN101652176B (en) 2007-04-10 2012-07-04 出光兴产株式会社 Catalyst precursor and catalyst using the same
CN100441294C (en) * 2007-05-10 2008-12-10 湖北省化学研究院 Deovo catalyst for raw gas of carbon monoxide, preparation, and application
RU2554949C1 (en) * 2014-04-02 2015-07-10 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Copper-zinc catalyst for low-temperature conversion of carbon monoxide with steam
RU2555842C1 (en) * 2014-04-02 2015-07-10 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Copper-chromium-zinc catalyst for heterogeneous reactions
GB201905293D0 (en) * 2019-04-15 2019-05-29 Johnson Matthey Plc Copper-containing catalysts
GB202016050D0 (en) 2020-10-09 2020-11-25 Johnson Matthey Plc Hydrogen process

Also Published As

Publication number Publication date
JP2000126597A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
EP0042471B1 (en) Catalyst and method for producing the catalyst
US4565803A (en) Methanol synthesis catalyst
KR0170423B1 (en) Ceric oxide containing composition, its preparation and its use
US6416731B1 (en) Process for catalytical steam reforming of a hydrocarbon feedstock
US5691263A (en) Amorphous perovskite catalysts for nitrogen oxide reduction and methods of preparing the same
JP4222827B2 (en) Hydrocarbon reforming method
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
CN103191720B (en) A kind of catalyst for methanation in presence of sulfur of magnesium aluminate spinel load
JP4974674B2 (en) Complex oxide
EA014214B1 (en) Supported cobalt catalysts for the fischer tropsch synthesis
JP4110241B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the catalyst
JPS59122432A (en) Production of mixed alcohol
US6238640B1 (en) Conversion method of carbon monoxide and catalyst
JPS5929633B2 (en) Low-temperature steam reforming method for hydrocarbons
US20050100495A1 (en) Process for eliminating sulfur-containing compounds by direct oxidation
US4537867A (en) Promoted iron-cobalt spinel catalyst for Fischer-Tropsch processes
JP3837520B2 (en) Catalyst for CO shift reaction
JPS647974B2 (en)
JP3868010B2 (en) Catalysts based on highly dispersed metal oxides, especially containing zirconia
CN113019391B (en) Catalyst for preparing cyclohexanol and ethanol by hydrogenating cyclohexyl acetate, preparation method and application thereof
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP4512748B2 (en) Catalyst for water gas conversion reaction
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
US4616000A (en) Copper beryllium-containing catalysts for the production of alcohols

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050810

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term