JP3837520B2 - Catalyst for CO shift reaction - Google Patents

Catalyst for CO shift reaction Download PDF

Info

Publication number
JP3837520B2
JP3837520B2 JP2002293179A JP2002293179A JP3837520B2 JP 3837520 B2 JP3837520 B2 JP 3837520B2 JP 2002293179 A JP2002293179 A JP 2002293179A JP 2002293179 A JP2002293179 A JP 2002293179A JP 3837520 B2 JP3837520 B2 JP 3837520B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
weight
reaction
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002293179A
Other languages
Japanese (ja)
Other versions
JP2004122063A (en
Inventor
昌弘 斉藤
功 高原
和久 村田
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002293179A priority Critical patent/JP3837520B2/en
Publication of JP2004122063A publication Critical patent/JP2004122063A/en
Application granted granted Critical
Publication of JP3837520B2 publication Critical patent/JP3837520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水性ガス転化反応用触媒に関し、更に詳しくは一酸化炭素と水蒸気を反応させて二酸化炭素および水素を製造する(COシフト反応あるいは水性ガスシフト反応などと呼ばれる)際に使用されるCOシフト反応用触媒に関する。
【0002】
【従来の技術】
従来より、COシフト反応は、炭化水素からの水素製造におけるCO除去あるいはメタノール合成やオキソ合成におけるH/CO比の調整のための重要な反応であることが知られており、さらに、最近では、燃料電池用のCO含有量が低い水素を、炭化水素などから製造するための主要な工程の一つとして注目されている。
このシフト反応は下記反応式に示されるように、COとHOからHとCOを生成する反応である。
【化1】
CO + HO → CO + H
これまでに、このようなCOシフト反応用触媒としては、高温反応用として、鉄・クロム系触媒が、低温反応用として、銅/亜鉛/アルミニウムの酸化物からなる触媒あるいは銅/亜鉛/クロムの酸化物からなる触媒が開発され、工業的に実施されている(例えば非特許文献1参照)。
しかしながら、何れの触媒もCO転化率が未だ満足すべきでないのが現状であり、高性能な触媒の開発が重要な技術開発課題となっている。
【0003】
【非特許文献1】
「触媒講座」第8巻、251頁〜262頁 触媒学会編、講談社発行(1985)。
【0004】
【発明が解決しようとする課題】
本発明は、このような実情に鑑みなされたものであり、低温COシフト反応に用いられている銅/酸化亜鉛系触媒の触媒活性を更に改善・向上し得る新たなCOシフト反応用触媒を提供することを主な目的とする。
【0005】
【課題を解決するための手段】
本発明者は、銅を含む触媒について種々の研究を行った結果、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とする触媒により、その課題を解決し得ることを見い出した。
【0006】
即ち、本発明によれば、第一に、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とする、COシフト反応において高い性能を示す触媒が提供される。
第二に、第一の発明において、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%および1〜25重量%であることを特徴とするCOシフト反応用触媒が提供される。
第三に、一酸化炭素および水蒸気を上記第一又は第二の触媒に接触させることを特徴とするCOシフト反応方法が提供される。
第四に、一酸化炭素および水蒸気を上記第一又は第二の触媒に接触させ、シフト反応させることを特徴とする二酸化炭素及び水素の製造方法が提供される。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0008】
本発明のCOシフト反応用触媒は、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とすることを特徴とする。
【0009】
各触媒成分の割合は、特に限定されないが、触媒全体を100重量%とするとき、酸化銅が20〜70重量%、酸化亜鉛が10〜60重量%、酸化ジルコニウムが1〜50重量%、酸化アルミニウムが1〜50重量%、酸化マンガンが1〜25重量%とされる。このような量的範囲において、組成を反応条件に応じて適切に定めることにより、その反応条件に適した触媒性能を得ることができる。
また、本発明のCOシフト反応用触媒は、酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とするが、本発明の反応を損なわない範囲で、他の物質を含んでいても良い。このような物質としては、たとえば、酸化カルシウム、酸化マグネシウム、酸化珪素、酸化ランタン、酸化セリウムなどが挙げられる。
【0010】
本発明の触媒成分となる酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンの原料としては、それぞれの硝酸塩、塩酸塩、硫酸鉛、有機酸塩、水酸化物等を用いることができる。触媒は、共沈法、含浸法、混合法、逐次沈殿法、アルコキシド法等の方法により、あるいは、これらの方法を組み合わせた方法により触媒前駆体を調製し、次いで、触媒前駆体を空気中で焼成することにより製造できる。触媒前駆体の焼成温度は、特に限定しないが、300〜650℃の範囲が好ましく、350℃〜600℃が特に好ましい。
【0011】
このようにして製造された触媒は、そのままで、あるいは適当な方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択できる。すなわち、本発明による触媒は、固定床、流動床等いずれの反応方式においても用いることができる。
【0012】
焼成後の触媒は、反応に使用する前に触媒中の酸化銅を金属銅に予め還元しても良い。但し、この還元を行わない場合にも、反応ガス中の一酸化炭素や水素により酸化銅は自然に還元されるので、事前の還元操作は必須ではない。
【0013】
上記本発明にかかる触媒を用いる、一酸化炭素の水蒸気によるCOシフト反応方法における反応条件は、原料ガス中の一酸化炭素や水素の濃度や触媒成分の含有量などにより異なり得る。
【0014】
通常、反応温度は150〜300℃、反応圧力は1〜100気圧(絶対圧力)、原料ガス中(水蒸気を除く)の一酸化炭素のモル濃度は1〜30%、水蒸気と原料ガス中の一酸化炭素のモル比は1〜100、原料ガス(水蒸気を除く)の空間速度は1,000〜100,000(1/h)の範囲が適当である。
【0015】
【実施例】
以下、実施例をあげて本発明の特徴とするところをより一層明確にする。
【0016】
実施例1
硝酸銅三水和物10.2g、硝酸亜鉛六水和物9.8g、オキシ硝酸ジルコニウム二水和物3.3g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物1.3gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム12.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.4重量%、酸化亜鉛32.3重量%、酸化ジルコニウム18.5重量%、酸化アルミニウム4.6重量%、二酸化マンガン4.2重量%であった。
【0017】
得られた触媒0.5mlを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を毎分300mlの流速で供給し300℃で触媒中の酸化銅の水素還元を行った。触媒の還元後、反応管に、原料ガス(CO10容量%、CO2 18容量%、水素72容量%)と水蒸気を供給し、反応を行った。反応条件は、温度、250℃、圧力、0.15MPa、水蒸気と原料ガスの容量比は0.3、原料ガス(水蒸気を除く)の空間速度は35,000(1/h)であった。反応生成ガスをガスクロマトグラフにより分析した。その結果、反応時間10時間においてCO転化率は56%であった(表1参照)。
【0018】
実施例2
硝酸銅三水和物10.2g、硝酸亜鉛六水和物9.8g、オキシ硝酸ジルコニウム二水和物3.0g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物1.8gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム12.8gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.5重量%、酸化亜鉛32.3重量%、酸化ジルコニウム16.6重量%、酸化アルミニウム4.6重量%、二酸化マンガン5.9重量%であった。
【0019】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率58%であった(表1参照)。
【0020】
実施例3
硝酸銅三水和物10.1g、硝酸亜鉛六水和物9.8g、オキシ硝酸ジルコニウム二水和物2.7g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物2.2gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.0gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.5重量%、酸化亜鉛32.4重量%、酸化ジルコニウム15.0重量%、酸化アルミニウム4.6重量%、二酸化マンガン7.5重量%であった。
【0021】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率56%であった(表1参照)。
【0022】
実施例4
硝酸銅三水和物10.1g、硝酸亜鉛六水和物9.7g、オキシ硝酸ジルコニウム二水和物2.1g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物3.0gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.3gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.6重量%、酸化亜鉛32.5重量%、酸化ジルコニウム12.1重量%、酸化アルミニウム4.6重量%、二酸化マンガン10.2重量%であった。
【0023】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率58%であった(表1参照)。
【0024】
実施例5
硝酸銅三水和物10.0g、硝酸亜鉛六水和物9.6g、オキシ硝酸ジルコニウム二水和物1.6g、硝酸アルミニウム九水和物2.8g、硝酸マンガン六水和物3.7gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.7重量%、酸化亜鉛32.5重量%、酸化ジルコニウム9.3重量%、酸化アルミニウム4.6重量%、二酸化マンガン12.8重量%であった。
【0025】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率56%であった(表1参照)。
【0026】
実施例6
硝酸銅三水和物10.0g、硝酸亜鉛六水和物9.5g、オキシ硝酸ジルコニウム二水和物0.8g、硝酸アルミニウム九水和物2.7g、硝酸マンガン六水和物4.8gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム14.1gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.9重量%、酸化亜鉛32.6重量%、酸化ジルコニウム4.7重量%、酸化アルミニウム4.7重量%、二酸化マンガン17.1重量%であった。
【0027】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率57%であった(表1参照)。
【0028】
比較例1
硝酸銅三水和物8.5g、硝酸亜鉛六水和物8.2g、硝酸アルミニウム九水和物14.1gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.9gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.3重量%、酸化亜鉛32.2重量%、酸化アルミニウム27.6重量%であった。
【0029】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間2時間後において、CO転化率30%であった(表1参照)。
【0030】
比較例2
硝酸銅三水和物8.5g、硝酸亜鉛六水和物8.2g、オキシ硝酸ジルコニウム二水和物14.1gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.3重量%、酸化亜鉛32.2重量%、酸化ジルコニウム27.6重量%であった。
【0031】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間2時間後において、CO転化率52%であった(表1参照)。
【0032】
比較例3
硝酸銅三水和物10.7g、硝酸亜鉛六水和物10.3g、オキシ硝酸ジルコニウム二水和物4.4g、硝酸マンガン六水和物1.3gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.4重量%、酸化亜鉛32.3重量%、酸化ジルコニウム23.1重量%、二酸化マンガン4.2重量%であった。
【0033】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率50%であった(表1参照)。
【0034】
比較例4
硝酸銅三水和物10.2g、硝酸亜鉛六水和物9.8g、オキシ硝酸ジルコニウム二水和物3.3g、硝酸アルミニウム九水和物2.8gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.4重量%、酸化亜鉛32.3重量%、酸化ジルコニウム18.5重量%、酸化アルミニウム4.6重量%であった。
【0035】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率53%であった(表1参照)。
【0036】
比較例5
硝酸銅三水和物9.7g、硝酸亜鉛六水和物9.4g、硝酸アルミニウム九水和物2.7g、硝酸マンガン六水和物6.0gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅41.1重量%、酸化亜鉛32.8重量%、酸化アルミニウム4.7重量%、二酸化マンガン21.4重量%であった。
【0037】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間10時間後において、CO転化率53%であった(表1参照)。
【0038】
比較例6
硝酸銅三水和物8.8g、硝酸亜鉛六水和物8.5g、硝酸アルミニウム九水和物11.2g、硝酸マンガン六水和物1.5gを蒸留水に溶解し、100mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム13.6gを蒸留水に溶解し、100mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した300mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて1日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成した。次に、焼成後の酸化物を圧縮成型後、粉砕し、250〜600μmに粒度調製した後、400℃で再度焼成して触媒とした。この触媒の組成は、酸化銅40.5重量%、酸化亜鉛32.3重量%、酸化アルミニウム21.3重量%、二酸化マンガン5.9重量%であった。
【0039】
得られた触媒0.5mlを反応管に充填し、実施例1と同様にして、COシフト反応を行った。その結果、反応経過時間4時間後において、CO転化率18%であった(表1参照)。
【0040】
【表1】

Figure 0003837520
【0041】
表1に示す結果から、本発明の酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とする触媒を用いれば、COシフト反応において、高いCO転化率を得ることができることが明らかである。
【0042】
【発明の効果】
本発明の触媒は、COシフト反応において、優れた触媒活性を示し、従来の低温反応用のCOシフト反応用触媒である、銅/亜鉛/アルミニウムの酸化物からなる触媒あるいは銅/亜鉛/クロムの酸化物に比べCO転化率が高いものである。従って、COシフト反応特に低温下におけるCOシフト反応をを工業的に有利に実施することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for water gas conversion reaction, and more specifically, CO shift used when carbon monoxide and water vapor are reacted to produce carbon dioxide and hydrogen (referred to as CO shift reaction or water gas shift reaction). The present invention relates to a reaction catalyst.
[0002]
[Prior art]
Conventionally, it is known that the CO shift reaction is an important reaction for removing CO in hydrogen production from hydrocarbons or adjusting the H 2 / CO ratio in methanol synthesis or oxo synthesis. Attention has been focused on as one of the main processes for producing hydrogen with low CO content for fuel cells from hydrocarbons and the like.
This shift reaction is a reaction for generating H 2 and CO 2 from CO and H 2 O as shown in the following reaction formula.
[Chemical 1]
CO + H 2 O → CO 2 + H 2
Up to now, as such a catalyst for CO shift reaction, an iron / chromium-based catalyst for high temperature reaction, a catalyst made of copper / zinc / aluminum oxide or a copper / zinc / chromium catalyst for low temperature reaction. Catalysts made of oxides have been developed and implemented industrially (for example, see Non-Patent Document 1).
However, the present situation is that the CO conversion rate of any catalyst is not yet satisfactory, and the development of a high-performance catalyst is an important technical development subject.
[0003]
[Non-Patent Document 1]
"Catalyst Lecture" Vol. 8, pp. 251-262, edited by the Catalysis Society of Japan, published by Kodansha (1985).
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and provides a new catalyst for CO shift reaction that can further improve and improve the catalytic activity of the copper / zinc oxide catalyst used in the low temperature CO shift reaction. The main purpose is to do.
[0005]
[Means for Solving the Problems]
As a result of various studies on a catalyst containing copper, the present inventor has found that the problem can be solved by a catalyst containing copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components. .
[0006]
That is, according to the present invention, first, there is provided a catalyst exhibiting high performance in a CO shift reaction comprising copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components.
Second, in the first invention, a catalyst having copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components, and when the total amount of the catalyst is 100% by weight, the content of each component is In this order, the catalyst for CO shift reaction is provided which is 20 to 70% by weight, 10 to 60% by weight, 1 to 50% by weight, 1 to 50% by weight and 1 to 25% by weight.
Third, there is provided a CO shift reaction method characterized by contacting carbon monoxide and water vapor with the first or second catalyst.
Fourth, there is provided a method for producing carbon dioxide and hydrogen, wherein carbon monoxide and water vapor are brought into contact with the first or second catalyst to cause a shift reaction.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0008]
The catalyst for CO shift reaction of the present invention is characterized by containing copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components.
[0009]
The ratio of each catalyst component is not particularly limited, but when the total catalyst is 100% by weight, copper oxide is 20 to 70% by weight, zinc oxide is 10 to 60% by weight, zirconium oxide is 1 to 50% by weight, oxidation Aluminum is 1 to 50% by weight and manganese oxide is 1 to 25% by weight. In such a quantitative range, by appropriately determining the composition according to the reaction conditions, catalyst performance suitable for the reaction conditions can be obtained.
The catalyst for CO shift reaction of the present invention contains copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components, but contains other substances as long as the reaction of the present invention is not impaired. Also good. Examples of such a substance include calcium oxide, magnesium oxide, silicon oxide, lanthanum oxide, cerium oxide, and the like.
[0010]
As raw materials for copper oxide, zinc oxide, zirconium oxide, aluminum oxide, and manganese oxide, which are catalyst components of the present invention, respective nitrates, hydrochlorides, lead sulfates, organic acid salts, hydroxides, and the like can be used. For the catalyst, a catalyst precursor is prepared by a method such as a coprecipitation method, an impregnation method, a mixing method, a sequential precipitation method, an alkoxide method, or a combination of these methods. It can be manufactured by firing. Although the calcination temperature of a catalyst precursor is not specifically limited, The range of 300-650 degreeC is preferable and 350 degreeC-600 degreeC is especially preferable.
[0011]
The catalyst thus produced is used as it is or after being granulated or tableted by an appropriate method. The particle diameter and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor. That is, the catalyst according to the present invention can be used in any reaction system such as a fixed bed and a fluidized bed.
[0012]
The catalyst after calcination may be obtained by previously reducing copper oxide in the catalyst to metallic copper before use in the reaction. However, even when this reduction is not performed, the copper oxide is naturally reduced by carbon monoxide or hydrogen in the reaction gas, and therefore a prior reduction operation is not essential.
[0013]
The reaction conditions in the CO shift reaction method of carbon monoxide with water vapor using the catalyst according to the present invention may vary depending on the concentration of carbon monoxide and hydrogen in the raw material gas, the content of the catalyst component, and the like.
[0014]
Usually, the reaction temperature is 150 to 300 ° C., the reaction pressure is 1 to 100 atm (absolute pressure), the molar concentration of carbon monoxide in the raw material gas (excluding water vapor) is 1 to 30%, one in the water vapor and the raw material gas. The molar ratio of carbon oxide is suitably 1 to 100, and the space velocity of the raw material gas (excluding water vapor) is suitably in the range of 1,000 to 100,000 (1 / h).
[0015]
【Example】
Hereinafter, the features of the present invention will be further clarified by giving examples.
[0016]
Example 1
Copper nitrate trihydrate 10.2 g, zinc nitrate hexahydrate 9.8 g, zirconium oxynitrate dihydrate 3.3 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 1.3 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 12.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.4% by weight of copper oxide, 32.3% by weight of zinc oxide, 18.5% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 4.2% by weight of manganese dioxide.
[0017]
0.5 ml of the obtained catalyst is filled in a reaction tube, and a mixed gas of helium and hydrogen (90% by volume of helium, 10% by volume of hydrogen) is supplied at a flow rate of 300 ml / min and hydrogen of copper oxide in the catalyst at 300 ° C. Reduction was performed. After the reduction of the catalyst, the reaction was carried out by supplying raw material gas (CO 10% by volume, CO2 18% by volume, hydrogen 72% by volume) and water vapor into the reaction tube. The reaction conditions were temperature, 250 ° C., pressure, 0.15 MPa, the volume ratio of water vapor to the raw material gas was 0.3, and the space velocity of the raw material gas (excluding water vapor) was 35,000 (1 / h). The reaction product gas was analyzed by gas chromatography. As a result, the CO conversion was 56% at a reaction time of 10 hours (see Table 1).
[0018]
Example 2
Copper nitrate trihydrate 10.2 g, zinc nitrate hexahydrate 9.8 g, zirconium oxynitrate dihydrate 3.0 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 1.8 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 12.8 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.5% by weight of copper oxide, 32.3% by weight of zinc oxide, 16.6% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 5.9% by weight of manganese dioxide.
[0019]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, CO conversion was 58% after 10 hours of reaction elapsed time (see Table 1).
[0020]
Example 3
Copper nitrate trihydrate 10.1 g, zinc nitrate hexahydrate 9.8 g, zirconium oxynitrate dihydrate 2.7 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 2.2 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 13.0 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.5% by weight of copper oxide, 32.4% by weight of zinc oxide, 15.0% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 7.5% by weight of manganese dioxide.
[0021]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, CO conversion was 56% after 10 hours of reaction elapsed time (see Table 1).
[0022]
Example 4
Copper nitrate trihydrate 10.1 g, zinc nitrate hexahydrate 9.7 g, zirconium oxynitrate dihydrate 2.1 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 3.0 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 13.3 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.6% by weight of copper oxide, 32.5% by weight of zinc oxide, 12.1% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 10.2% by weight of manganese dioxide.
[0023]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, CO conversion was 58% after 10 hours of reaction elapsed time (see Table 1).
[0024]
Example 5
Copper nitrate trihydrate 10.0 g, zinc nitrate hexahydrate 9.6 g, zirconium oxynitrate dihydrate 1.6 g, aluminum nitrate nonahydrate 2.8 g, manganese nitrate hexahydrate 3.7 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.7% by weight of copper oxide, 32.5% by weight of zinc oxide, 9.3% by weight of zirconium oxide, 4.6% by weight of aluminum oxide, and 12.8% by weight of manganese dioxide.
[0025]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, CO conversion was 56% after 10 hours of reaction elapsed time (see Table 1).
[0026]
Example 6
Copper nitrate trihydrate 10.0 g, zinc nitrate hexahydrate 9.5 g, zirconium oxynitrate dihydrate 0.8 g, aluminum nitrate nonahydrate 2.7 g, manganese nitrate hexahydrate 4.8 g Was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 14.1 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.9% by weight of copper oxide, 32.6% by weight of zinc oxide, 4.7% by weight of zirconium oxide, 4.7% by weight of aluminum oxide, and 17.1% by weight of manganese dioxide.
[0027]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, the CO conversion rate was 57% after 10 hours of reaction elapsed time (see Table 1).
[0028]
Comparative Example 1
8.5 g of copper nitrate trihydrate, 8.2 g of zinc nitrate hexahydrate, and 14.1 g of aluminum nitrate nonahydrate were dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution A. On the other hand, 13.9 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.3% by weight of copper oxide, 32.2% by weight of zinc oxide, and 27.6% by weight of aluminum oxide.
[0029]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, after 2 hours of reaction elapsed time, the CO conversion was 30% (see Table 1).
[0030]
Comparative Example 2
8.5 g of copper nitrate trihydrate, 8.2 g of zinc nitrate hexahydrate, and 14.1 g of zirconium oxynitrate dihydrate were dissolved in distilled water to prepare a 100 ml aqueous solution. On the other hand, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.3% by weight of copper oxide, 32.2% by weight of zinc oxide, and 27.6% by weight of zirconium oxide.
[0031]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, the CO conversion was 52% after 2 hours of reaction elapsed (see Table 1).
[0032]
Comparative Example 3
10.7 g of copper nitrate trihydrate, 10.3 g of zinc nitrate hexahydrate, 4.4 g of zirconium oxynitrate dihydrate, and 1.3 g of manganese nitrate hexahydrate were dissolved in distilled water to give a 100 ml aqueous solution. To prepare a solution A. On the other hand, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.4% by weight of copper oxide, 32.3% by weight of zinc oxide, 23.1% by weight of zirconium oxide, and 4.2% by weight of manganese dioxide.
[0033]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, the CO conversion was 50% after 10 hours of reaction elapsed time (see Table 1).
[0034]
Comparative Example 4
Dissolve 10.2 g of copper nitrate trihydrate, 9.8 g of zinc nitrate hexahydrate, 3.3 g of zirconium oxynitrate dihydrate, and 2.8 g of aluminum nitrate nonahydrate in distilled water, and add 100 ml of an aqueous solution. To prepare a solution A. On the other hand, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.4% by weight of copper oxide, 32.3% by weight of zinc oxide, 18.5% by weight of zirconium oxide, and 4.6% by weight of aluminum oxide.
[0035]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, after 10 hours of reaction elapsed time, the CO conversion was 53% (see Table 1).
[0036]
Comparative Example 5
Dissolve 9.7 g of copper nitrate trihydrate, 9.4 g of zinc nitrate hexahydrate, 2.7 g of aluminum nitrate nonahydrate, and 6.0 g of manganese nitrate hexahydrate in distilled water. It prepared and it was set as A liquid. On the other hand, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 41.1% by weight of copper oxide, 32.8% by weight of zinc oxide, 4.7% by weight of aluminum oxide, and 21.4% by weight of manganese dioxide.
[0037]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, after 10 hours of reaction elapsed time, the CO conversion was 53% (see Table 1).
[0038]
Comparative Example 6
Dissolve 8.8 g of copper nitrate trihydrate, 8.5 g of zinc nitrate hexahydrate, 11.2 g of aluminum nitrate nonahydrate, and 1.5 g of manganese nitrate hexahydrate in distilled water. It prepared and it was set as the A liquid. On the other hand, 13.6 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 100 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 300 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 1 day, and then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours. Next, the oxide after firing was compression molded and then pulverized to adjust the particle size to 250 to 600 μm, and then fired again at 400 ° C. to obtain a catalyst. The composition of this catalyst was 40.5% by weight of copper oxide, 32.3% by weight of zinc oxide, 21.3% by weight of aluminum oxide, and 5.9% by weight of manganese dioxide.
[0039]
0.5 ml of the obtained catalyst was filled into a reaction tube, and a CO shift reaction was carried out in the same manner as in Example 1. As a result, after 4 hours of reaction elapsed time, the CO conversion was 18% (see Table 1).
[0040]
[Table 1]
Figure 0003837520
[0041]
From the results shown in Table 1, it is clear that a high CO conversion can be obtained in the CO shift reaction by using the catalyst of the present invention containing copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components. It is.
[0042]
【The invention's effect】
The catalyst of the present invention exhibits excellent catalytic activity in the CO shift reaction, and is a conventional catalyst for CO shift reaction for low temperature reaction, a catalyst made of copper / zinc / aluminum oxide or copper / zinc / chromium. CO conversion is higher than that of oxide. Therefore, the CO shift reaction, particularly the CO shift reaction at a low temperature, can be advantageously carried out industrially.

Claims (4)

酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とすることを特徴とするCOシフト反応用触媒。A catalyst for CO shift reaction comprising copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components. 酸化銅、酸化亜鉛、酸化ジルコニウム、酸化アルミニウムおよび酸化マンガンを必須成分とする触媒であって、触媒全体を100重量%とするとき、各成分の含有量が、上記の順に20〜70重量%、10〜60重量%、1〜50重量%、1〜50重量%および1〜25重量%であることを特徴とする請求項1に記載のCOシフト反応用触媒。A catalyst comprising copper oxide, zinc oxide, zirconium oxide, aluminum oxide and manganese oxide as essential components, and when the total catalyst is 100% by weight, the content of each component is 20 to 70% by weight in the above order, The catalyst for CO shift reaction according to claim 1, wherein the catalyst is 10 to 60 wt%, 1 to 50 wt%, 1 to 50 wt%, and 1 to 25 wt%. 一酸化炭素および水蒸気を請求項1又は2の触媒に接触させることを特徴とするCOシフト反応方法。A CO shift reaction method comprising contacting carbon monoxide and water vapor with the catalyst according to claim 1 or 2. 一酸化炭素および水蒸気を請求項1又は2の触媒に接触させシフト反応させることを特徴とする二酸化炭素及び水素の製造方法。A method for producing carbon dioxide and hydrogen, wherein carbon monoxide and water vapor are brought into contact with the catalyst of claim 1 or 2 to cause a shift reaction.
JP2002293179A 2002-10-07 2002-10-07 Catalyst for CO shift reaction Expired - Lifetime JP3837520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293179A JP3837520B2 (en) 2002-10-07 2002-10-07 Catalyst for CO shift reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293179A JP3837520B2 (en) 2002-10-07 2002-10-07 Catalyst for CO shift reaction

Publications (2)

Publication Number Publication Date
JP2004122063A JP2004122063A (en) 2004-04-22
JP3837520B2 true JP3837520B2 (en) 2006-10-25

Family

ID=32284162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293179A Expired - Lifetime JP3837520B2 (en) 2002-10-07 2002-10-07 Catalyst for CO shift reaction

Country Status (1)

Country Link
JP (1) JP3837520B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020205265A1 (en) * 2019-04-01 2020-10-08 Basf Corporation Copper extrudate catalyst and applications for hydrogenation and hydrogenolysis

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238333B2 (en) * 2004-03-18 2007-07-03 General Motors Corporation High activity water gas shift catalysts with no methane formation
CN101522303B (en) 2006-10-13 2013-02-06 出兴光产株式会社 Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
KR101484793B1 (en) 2007-04-10 2015-01-20 이데미쓰 고산 가부시키가이샤 Catalyst precursor substance, and catalyst using the same
CN103525474B (en) * 2013-10-30 2014-10-08 西南化工研究设计院有限公司 Ultrafine desulfurization agent and preparation method thereof
CN106179360B (en) * 2016-06-29 2018-09-04 西安向阳航天材料股份有限公司 A kind of CuZnAl catalyst and preparation method thereof
CN113600207B (en) * 2021-08-27 2023-06-30 四川蜀泰化工科技有限公司 Wide-temperature conversion catalyst applicable to high CO and preparation and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020205265A1 (en) * 2019-04-01 2020-10-08 Basf Corporation Copper extrudate catalyst and applications for hydrogenation and hydrogenolysis

Also Published As

Publication number Publication date
JP2004122063A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
KR101085038B1 (en) Catalyst for synthesis of methanol from syngas and preparation method thereof
WO2018120576A1 (en) Catalyst for preparing hydrocarbons from carbon dioxide by one-step hydrogenation and method for preparing same
JP7227564B2 (en) Catalyst for alcohol synthesis and method for producing alcohol using the same
JPH06319999A (en) Catalyst for synthetic production of isoalcohol from carbon monoxide and hydrogen
JP3837520B2 (en) Catalyst for CO shift reaction
CN105080564A (en) Catalyst used for preparation of carbon monoxide by conversion of carbon dioxide and use method thereof
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP4512748B2 (en) Catalyst for water gas conversion reaction
KR20140129935A (en) Method for preparing dimethyl carbonate using supported catalyst
JP2007313487A (en) Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP3086867B2 (en) Catalyst for syngas production and method for syngas production
JPH08176034A (en) Synthesis of methanol
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP3752531B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
JPH0371174B2 (en)
JPH0456015B2 (en)
JP7332871B2 (en) Methanol production method and methanol production catalyst
JP3837512B2 (en) Catalyst for ethylbenzene dehydrogenation in the presence of carbon dioxide
RU2677875C1 (en) Catalyst and method for obtaining gas mixture enriched by hydrogen from dimethyl ether and air
JP2000000466A (en) Catalyst for production of synthetic gas and production of synthetic gas
JP4696295B2 (en) Catalyst for ethylbenzene dehydrogenation reaction in the presence of carbon dioxide and method for producing styrene using the same
JP2003154268A (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the same
RU2218988C2 (en) Catalytic agent and method of production of dimethyl ether and methanol from synthetic gas
WO2019218490A1 (en) Method for directly preparing dimethyl ether by synthesis gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

R150 Certificate of patent or registration of utility model

Ref document number: 3837520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term