JPH0371174B2 - - Google Patents

Info

Publication number
JPH0371174B2
JPH0371174B2 JP6493983A JP6493983A JPH0371174B2 JP H0371174 B2 JPH0371174 B2 JP H0371174B2 JP 6493983 A JP6493983 A JP 6493983A JP 6493983 A JP6493983 A JP 6493983A JP H0371174 B2 JPH0371174 B2 JP H0371174B2
Authority
JP
Japan
Prior art keywords
copper
zinc
catalyst
reaction
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6493983A
Other languages
Japanese (ja)
Other versions
JPS59189937A (en
Inventor
Mikio Yoneoka
Kazuo Takada
Kumiko Watabe
Takeo Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP6493983A priority Critical patent/JPS59189937A/en
Publication of JPS59189937A publication Critical patent/JPS59189937A/en
Publication of JPH0371174B2 publication Critical patent/JPH0371174B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタノールの水蒸気改質用触媒の製造
法に関し、さらに詳しくは、銅の酸化物、亜鉛の
酸化物およびアルミニウムの酸化物を含有するメ
タノール水蒸気改質用触媒の改良された製造法に
係わる。 水素ガスは多くの分野で使用されており、たと
えばアンモニア合成、各種有機化合物の水素化、
石油精製、脱硫などの化学工業用などに多く使わ
れ、さらに冶金工業用、半導体工業用にも需要が
多くなつてきている。 また、最近では燃料電池に関する技術の進展な
どにより新しいエネルギー源としても期待されて
おり、水素ガスの需要はますます増大の傾向にあ
る。 水素ガスの製造法として、従来広く行なわれて
きた方法の一つに、たとえば液化石油ガス
(LPG)、液化天然ガス(LNG)およびナフサな
どの炭化水素から水蒸気改質によつて得られた水
素ガス、一酸化炭素および炭酸ガスからなる改質
ガスから常法により一酸化炭素および炭酸ガスを
除いて水素ガスを製造するとの方法がある。この
従来法は一般的に(1)炭化水素類が供給不安定であ
り、その価格も不安定である。(2)原料の脱硫が必
要であり(3)反応温度が800〜1000℃と非常に高い
などのため、中規模ないし小規模な水素ガス製造
には特に不適当であるとされている。 これに対してメタノールと水蒸気とを反応させ
て改質ガスを得る方法が知られている。このメタ
ノールの水蒸気改質反応は、かなり古くから知ら
れていたが、これまでにこの方法により水素ガス
を製造した例は少ない。その理由のひとつに、こ
の方法の工業化に適した実用触媒が開発されなか
つたことにある。 さらには、このメタノールな水蒸気改質反応で
は、下記の主反応()とともに副反応として下
記の逆シフト反応()も併起し、折角生成され
た水素が浪費されるとともに一酸化炭素ガスが副
生する。 CH3OH+H2O3H2+CO2 () CO2+H2CO+H2O () その結果、水素ガスを製造することを目的とし
ている場合には、改質ガスに改質ガスからの除去
が炭酸ガスよりも困難な一酸化炭素も含まれるこ
とになるので、改質ガス中の一酸化炭素ガス濃度
を極力抑えるため、また目的物である水素ガスの
浪費を防ぐために、前記()の反応の進行を極
力抑制することが有利である。 熱力学的平衝上、前記の反応()において右
側への進行を抑制し改質ガス中の一酸化炭素ガス
濃度を低くするためには、反応()において反
応温度を低くし、かつメタノールに対する水の比
率を高くすればよいことは知られている。しかし
ながら、この場合には大過剰の水の存在下でメタ
ノールの水蒸気改質反応を行なうことになり、こ
の大量の水を蒸発させるために多量の熱が必要と
なり経済的でないので、工業的にはメタノールに
対する水の比率(モル比)はできるだけ1に近づ
けて行なわれる。また、温度が低くなれば改質反
応速度が低下し不利となる。 したがつて、メタノール水蒸気改質反応の工業
触媒として、まず、低い温度でも十分な活性を有
することが必須であり、これとともに長時間の使
用においても触媒活性が低下しない、いわゆる耐
久性を有することを、されに高温下においてさえ
も低温におけると同様な高活性を維持するいわゆ
る耐熱性を有することが好ましい。 公知の触媒として銅、クロム、マンガン酸化物
触媒(特公昭54−11274)、銅、亜鉛、アルミニウ
ム含有触媒(特開昭49−47281)、銅、亜鉛、アル
ミニウム、トリウム酸化物触媒(USP4091086)、
銅、亜鉛、アルミニウム、クロム酸化物触媒およ
びニツケル、アルミニウム酸化物触媒(特開昭57
−56302)などがあるが、これらの触媒はいずれ
も、前記の三つの条件をともに満足しうるもので
はない。 たとえば特開昭57−56302号にはつぎのように
記載されている。すなわち、例1として、CuO44
重量%、ZnO45重量%およびAl2O311重量%の組
成を持つ低温転化型の古典的な触媒を用い、水対
メタノールのモル比5の条件で反応させた旨が記
載されている。しかしながら、この場合には反応
成績の経時的な劣化が大きく安定した成績を得る
ことはできなかつたという。なお、ここでは用い
られた触媒の製造法は全く記載されてない。 また、特開昭49−47281号はつぎのように記載
されている。すなわち、実施例1によれば、硝酸
銅、硝酸亜鉛および硝酸アルミニウムの混合水溶
液から炭酸ナトリウムを沈殿剤として沈殿を得、
これを加熱および成型して原子比でCu:Zn:Al
=6:3:1の触媒を調製した。この触媒6を
用いて、30気圧(絶対圧)下毎時メタノール5Kg
と水30Kgの混合物を蒸発させて340℃となし、こ
れをこの温度で触媒に通し温度は約220℃にまで
低下した。そして毎時14.1Nm3のガスが流出し、
このガスはCO2とH2を1:3の割合で含有し、
そのCO含量は0.05容量%以下であつたとされて
いる。 これらの例は、いずれも銅、亜鉛およびアルミ
ニウムのそれぞれの酸化物を含有する触媒を用い
たメタノールの水蒸気改質であるが、前者では、
触媒活性の経時劣化が大きいことが欠点である。
また、後者では、メタノールに対する水のモル比
が10という水が大過剰な条件で反応を行なつてお
り熱経済的に不利であつて、工業的な意義は大き
いとはいゝ難い。また、触媒活性の耐久性、耐熱
性については不明である。 前記したように、メタノールの水蒸気改質法に
おいて、銅、亜鉛、およびアルミニウムの酸化物
を含有する触媒を用いることは公知であるが、触
媒活性の経時劣化が大きいとかあるいはまたメタ
ノールに対する水のモル比が化学量論量よりもは
るかに大きく、工業的な価値が低いなどの欠点を
有しており満足すべきものとはいい難い。 本発明者らは低い温度でも十分な活性を有
し、長時間の使用においても触媒活性が低下し
ないいわゆる耐久性を有し、さらに高温下にお
いても高活性を維持するいわゆる耐熱性を有する
工業触媒として使用しうる銅、亜鉛およびアルミ
ニウムのそれぞれの酸化物を含有する触媒につい
て鈍意研究し本発明を完成した。 すなわち、本発明は、銅の酸化物、亜鉛の酸化
物およびアルムニウムの酸化物を含有するメタノ
ールの水蒸気改質触媒の製造法において、塩基性
炭酸銅、銅の水酸化物および銅の酸化物からなる
群から選ばれた少くとも1種の銅化合物と、塩基
性炭酸亜鉛、亜鉛の水酸化物および亜鉛の酸化物
からなる群から選ばれた少くとも1種の亜鉛化合
物と、アルミナゾルとを混合し、乾燥、焼成、成
形することを特徴とするメタノールの水蒸気改質
用触媒の製造法である。 本発明では、触媒は特定の銅化合物と亜鉛化合
物とアルミナゾルとを混合し、焼成することによ
り製造されが、銅および亜鉛のそれぞれの化合物
は塩基性炭酸塩、水酸化物および酸化物である。
銅化合物および亜鉛化合物はいずれもその品位に
は特に制限はなく、試薬乃至工業薬品を使用しう
る。 銅化合物と亜鉛化合物とアルミナゾルとの混合
はそれぞれの化合物同士を単に混合するか、また
は銅化合物と亜鉛化合物との混合物をたとえば共
沈殿法などによつて得、この混合物にアルミナゾ
ルを混合してもよい。 前者の場合には三者を混合する順序には特に制
限はなく、三者を一挙に混合してもよく、また、
三者のうち二者を予め混合し、ついでこの二者の
混合物と他の一者とを混合してもよい。 後者において、銅および亜鉛の原料としては、
水溶性化合物であれば、とくに制限されるもので
はないが、実用上、硝酸塩が好ましい。また、た
とえば銅およば亜鉛のそれぞれの金属のような水
に不溶な原料は、硝酸などの酸を加えて溶解して
使用される。これらの原料を用いて銅と亜鉛との
共沈殿を生成させるときに使用される沈殿剤は通
常アルカリが使用されるが、アルカリとしては、
苛性アルカリ、炭酸アルカリおよび重炭酸アルカ
リ、などが使用され、就中、炭酸ナトリウムが好
適に使用される。共沈殿の操作は、通常、室温か
ら90℃付近の温度において行なわれる。共沈殿を
得るための成分水溶液と沈殿剤水溶液の混合は、
回分式、半回分式および連続式などのそれ自体公
知の方法で行なうことができる。 このようにして得られた沈殿スラリーは別、
洗浄される。沈殿スラリーはアルカリが実質的に
残留しない程度に十分に洗浄されることが好まし
い。 次いで、銅化合物と亜鉛化合物との混合物にア
ルミナゾルを添加し、またはアルミナゾルに銅化
合物と亜鉛化合物との混合物を添加したのち、銅
化合物と亜鉛化合物との混合物とアルミナゾルと
が常法によつて混和、〓和され混合される。本発
明で使用されるアルミナゾルは、通常市販されて
いるアルミナゾルであればよく、粒子の大きさと
しては通常は1ミクロン以下、好ましくは200ミ
リミクロン以下の平均直径を有する微粒子状のも
のが使用される。このように微粒子状のアルミナ
ゾルを用いると、きわめて分散性がよいためすぐ
れた触媒を得ることができる。また、アルミナゾ
ルは、有機酸で酸性側で安定化されたものが一般
に使用される。また、銅触媒に対して毒作用を示
すような物質が混入してないものが使用される。 本発明における銅化合物および亜鉛化合物なら
びにアルミナゾルの量比は、原子比で銅1に対し
て、亜鉛は0.2〜2、好ましくは0.3〜1.5、アルミ
ニウムは0.01〜0.5、好ましくは0.04〜0.4である。 このようにして得られた銅化合物、亜鉛化合物
およびアルミナゾルの混合物は乾燥、焼成され
る。 乾燥は、常法たとえば常圧下もしくは減圧下
で、さらには空気、窒素などの不活性ガス気流中
で、約100℃以下の温度で行なわれる。 焼成はそれ自体公知の方法で行なうことができ
る。すなわち、たとえば、電気炉あるいはガス焼
成炉などの焼成炉で、酸素ガスを含有する雰囲気
下で行なわれ、空気中での焼成は好ましい。焼成
温度は少なくとも250℃、好ましくは300〜500℃
であり、焼成の時間は0.5〜5時間、好ましくは
1〜3時間である。 焼成されたのち、銅の酸化物、亜鉛の酸化物お
よびアルミニウムの酸化物は、通常は常法により
成形される。すなわち、たとえばグラフアイトな
どのような滑剤を加え、または加えずに多孔板お
よび打錠機などを使用して成形される。ついで、
常法により還元することによつてメタノールな水
蒸気改質用触媒として賦活される。この還元は、
予め水素ガス、一酸化炭素ガスまたはそれらの混
合ガスなどの還元性ガス雰囲気中で150〜400℃で
触媒を加熱して行なうことができるし、または加
熱された触媒にメタノールまたはメタノールと水
の混合物を接触させて分解した発生したガスで還
元することもできる。 なお、本発明によつて製造された触媒を用いた
メタノールの水蒸気改質反応で採用される反応条
件は反応温度150〜400℃、好ましくは180〜350℃
である。またメタノールに対する水の比率はメタ
ノール1モルに対して水は1〜7モル、好ましく
は1〜5モルとするが、7モルをこえかつ30モル
以下とすることを妨げない。また、メタノール蒸
気の空間速度は50〜50000/hr-1好ましくは100〜
15000hr-1であり、反応圧力は50Kg/cm2G以下、
好ましくは30Kg/cm2G〜常圧である。また必要に
応じて、水素ガス、一酸化炭素ガス、炭酸ガスお
よび窒素ガスなどをあらかじめメタノール1モル
に対して0.1〜5モル程度加えて反応を行なうこ
ともできる。 このようにして得られた改質ガス中の一酸化炭
素はきわめて微量であり、通常は実用上ほとんど
支障にならない程度であり、または多くとも除去
が困難でない程度である。また、改質ガス中の炭
酸ガスをたとえば炭酸ナトリウム水溶液、炭酸カ
リウム水溶液もしくはアミノエチルアルコール水
溶液または活性炭などを使用する常法によつて除
去して水素ガスが容易に得られる。 本発明で得られた触媒は、低温活性、耐久性お
よび耐熱性ともにすぐれ、メタノールの水蒸気改
質反応に好適に使用される。 以下の実施例により本発明をさらに具体的に説
明する。 実施例 1 銅、亜鉛およびアルミニウムの原子比が1:
0.75:0.25である銅、亜鉛およびアルミニウムの
それぞれの酸化物からなる触媒を調製した。すな
わち、所定組成比の硝酸銅(試薬1級)、硝酸亜
鉛(試薬1級)を含有する水溶液と炭酸ナトリウ
ム(試薬1級)の水溶液をそれぞれ73℃に加熱
し、よく撹拌しながら混合し塩基性炭酸銅と塩基
性炭酸亜鉛との共沈殿物を得た。この共沈殿物を
過分離、洗浄したのち、所定比率となる量のア
ルミナゾル(アルミナ含有率10wt%)を加えて
混合した。このようにして得られた所定の組成の
混合物を80℃で乾燥したのち、空気気流中380℃
で焼成した。焼成物を破砕したのち、滑剤として
グラフアイト3wt%を添加し、打錠してタブレツ
トに造粒した。 このタブレツト状触媒10mlを内径10mmφの反応
器に充填し、水素気流中200℃で6時間加熱して
還元したのち、所定の反応条件下で反応を行なつ
た。この反応期間において、1回あたり5日間
360℃での高温反応を行ない、再び280℃下げて触
媒の活性をしらべた。これを数回くりかえした。 反応条件および反応成績などを第1表に示す。 比較例 1 アルミニウム源としてアルミナゾルのかわりに
硝酸アルミニウム(試薬1級)を使用し、かつ、
硝酸アルミニウム、硝酸銅(試薬1級)および硝
酸亜鉛(試薬1級)の三者を水に溶解した水溶液
と炭酸ナトリウム(試薬1級)水溶液とを混合し
た以外は実施例1と同様に行なつた。 反応条件および反応成績などを第1表に示す。 比較例 2 アルミナゾルのかわりに水酸化アルミニウム粉
末(試薬)を用いた以外は、実施例1と全く同様
に行なつた。 反応条件および反応成績などを第1表に示す。 実施例 2 実施例1におけると同一の銅、亜鉛およびアル
ミニウムの原子比を有する触媒を調製した。所定
組成比の水酸化銅(試薬)、水酸化亜鉛(試薬)
およびアルミナゾル(10wt%含有率)を混合し
た。この混合物を70℃で乾燥したのち、空気気流
中380℃で焼成した。造粒以後は実施例1におけ
ると同様に行なつた。 反応条件および反応成績などを第1表に示す。
The present invention relates to a method for producing a catalyst for steam reforming of methanol, and more particularly to an improved method for producing a catalyst for steam reforming of methanol containing a copper oxide, a zinc oxide, and an aluminum oxide. . Hydrogen gas is used in many fields, such as ammonia synthesis, hydrogenation of various organic compounds,
It is widely used in chemical industries such as petroleum refining and desulfurization, and demand is also increasing for metallurgical and semiconductor industries. Furthermore, due to recent advances in fuel cell technology, hydrogen gas is expected to be used as a new energy source, and the demand for hydrogen gas is on the rise. One of the conventionally widely used methods for producing hydrogen gas is hydrogen obtained by steam reforming from hydrocarbons such as liquefied petroleum gas (LPG), liquefied natural gas (LNG), and naphtha. There is a method in which hydrogen gas is produced by removing carbon monoxide and carbon dioxide from a reformed gas consisting of gas, carbon monoxide and carbon dioxide by a conventional method. This conventional method generally has (1) an unstable supply of hydrocarbons and an unstable price; (2) Desulfurization of the raw material is required, and (3) the reaction temperature is extremely high at 800 to 1000°C, making it particularly unsuitable for medium- to small-scale hydrogen gas production. On the other hand, a method is known in which methanol and steam are reacted to obtain reformed gas. Although this steam reforming reaction of methanol has been known for a long time, there have been few examples of producing hydrogen gas by this method. One of the reasons for this is that no practical catalyst suitable for industrialization of this method has been developed. Furthermore, in this methanol steam reforming reaction, in addition to the main reaction () described below, the reverse shift reaction () described below also occurs as a side reaction, and the hydrogen that has been produced is wasted and carbon monoxide gas is produced as a side reaction. live. CH 3 OH + H 2 O3H 2 + CO 2 () CO 2 + H 2 CO + H 2 O () As a result, if the purpose is to produce hydrogen gas, the removal from the reformed gas is less than that of carbon dioxide. However, in order to suppress the concentration of carbon monoxide gas in the reformed gas as much as possible, and to prevent the waste of hydrogen gas, which is the target gas, the progress of the reaction () above is slowed down. It is advantageous to suppress it as much as possible. Based on thermodynamic equilibrium, in order to suppress the progression to the right side in the above reaction () and lower the concentration of carbon monoxide gas in the reformed gas, the reaction temperature must be lowered in the reaction (), and the It is known that the proportion of water can be increased. However, in this case, the steam reforming reaction of methanol is carried out in the presence of a large excess of water, and a large amount of heat is required to evaporate this large amount of water, making it uneconomical. The ratio (molar ratio) of water to methanol is kept as close to 1 as possible. Furthermore, if the temperature is lowered, the rate of the reforming reaction will decrease, which is disadvantageous. Therefore, as an industrial catalyst for the methanol steam reforming reaction, it is essential that it has sufficient activity even at low temperatures, and at the same time, it must have so-called durability, which means that the catalyst activity does not decrease even when used for a long time. In addition, it is preferable to have so-called heat resistance, which maintains the same high activity even at high temperatures as at low temperatures. Known catalysts include copper, chromium, and manganese oxide catalysts (Japanese Patent Publication No. 54-11274), copper, zinc, and aluminum-containing catalysts (Japanese Patent Publication No. 49-47281), copper, zinc, aluminum, and thorium oxide catalysts (USP4091086),
Copper, zinc, aluminum, chromium oxide catalyst and nickel, aluminum oxide catalyst
-56302), but none of these catalysts can satisfy all of the above three conditions. For example, Japanese Patent Application Laid-Open No. 57-56302 describes the following. That is, as example 1, CuO44
It is described that the reaction was carried out using a low-temperature conversion classical catalyst having a composition of 5% by weight of ZnO and 11% by weight of Al 2 O 3 and a molar ratio of water to methanol of 5. However, in this case, the reaction results deteriorated over time and stable results could not be obtained. Incidentally, the method for producing the catalyst used is not described at all here. Furthermore, Japanese Patent Application Laid-open No. 49-47281 describes as follows. That is, according to Example 1, a precipitate was obtained from a mixed aqueous solution of copper nitrate, zinc nitrate and aluminum nitrate using sodium carbonate as a precipitant,
This is heated and molded to produce Cu:Zn:Al in atomic ratio.
A catalyst with a ratio of 6:3:1 was prepared. Using this catalyst 6, 5 kg of methanol per hour under 30 atmospheres (absolute pressure)
A mixture of 30 kg of water was evaporated to 340°C and passed through the catalyst at this temperature, reducing the temperature to about 220°C. And 14.1Nm3 of gas flows out every hour.
This gas contains CO 2 and H 2 in a ratio of 1:3,
Its CO content is said to have been less than 0.05% by volume. These examples all involve steam reforming of methanol using catalysts containing oxides of copper, zinc, and aluminum, but in the former case,
The disadvantage is that the catalyst activity deteriorates significantly over time.
In addition, in the latter case, the reaction is carried out under conditions where the molar ratio of water to methanol is 10, which is a large excess of water, which is thermoeconomically disadvantageous, and is therefore of little industrial significance. Furthermore, the durability of catalyst activity and heat resistance are unknown. As mentioned above, it is known that a catalyst containing oxides of copper, zinc, and aluminum is used in the steam reforming method of methanol, but the catalyst activity deteriorates over time or the molar ratio of water to methanol is high. The ratio is much larger than the stoichiometric amount, and it has drawbacks such as low industrial value and cannot be said to be satisfactory. The present inventors have developed an industrial catalyst that has sufficient activity even at low temperatures, has so-called durability that does not reduce catalytic activity even after long-term use, and has so-called heat resistance that maintains high activity even under high temperatures. The present invention was completed through intuitive research on catalysts containing oxides of copper, zinc, and aluminum that can be used as catalysts. That is, the present invention provides a method for producing a methanol steam reforming catalyst containing a copper oxide, a zinc oxide, and an aluminum oxide, in which basic copper carbonate, copper hydroxide, and copper oxide are used. At least one type of copper compound selected from the group consisting of; at least one type of zinc compound selected from the group consisting of basic zinc carbonate, zinc hydroxide, and zinc oxide; and alumina sol mixed. This is a method for producing a catalyst for steam reforming of methanol, which is characterized by drying, calcination, and molding. In the present invention, the catalyst is produced by mixing a specific copper compound, zinc compound, and alumina sol and calcining the mixture, and the respective copper and zinc compounds are basic carbonates, hydroxides, and oxides.
There are no particular restrictions on the quality of both the copper compound and the zinc compound, and reagents or industrial chemicals may be used. The copper compound, zinc compound, and alumina sol can be mixed by simply mixing the respective compounds, or by obtaining a mixture of the copper compound and zinc compound by, for example, a coprecipitation method, and then mixing the alumina sol with this mixture. good. In the former case, there is no particular restriction on the order in which the three components are mixed, and the three components may be mixed all at once;
Two of the three may be mixed in advance, and then the mixture of the two may be mixed with the other one. In the latter, the raw materials for copper and zinc are:
There are no particular restrictions on the compound as long as it is a water-soluble compound, but nitrates are preferred from a practical standpoint. Furthermore, water-insoluble raw materials such as metals such as copper and zinc are used after being dissolved by adding an acid such as nitric acid. Alkali is usually used as the precipitant when co-precipitating copper and zinc using these raw materials, but as an alkali,
Caustic alkali, alkali carbonate, alkali bicarbonate, etc. are used, and sodium carbonate is particularly preferably used. The coprecipitation operation is usually carried out at a temperature from room temperature to around 90°C. Mixing of component aqueous solution and precipitant aqueous solution to obtain coprecipitation is as follows:
It can be carried out by a method known per se such as a batch method, a semi-batch method, and a continuous method. Separately, the precipitate slurry thus obtained is
Washed. Preferably, the precipitated slurry is sufficiently washed so that substantially no alkali remains. Next, after adding the alumina sol to the mixture of the copper compound and the zinc compound, or adding the mixture of the copper compound and the zinc compound to the alumina sol, the mixture of the copper compound and the zinc compound and the alumina sol are mixed by a conventional method. , is summed and mixed. The alumina sol used in the present invention may be any commercially available alumina sol, and the alumina sol used is a fine particulate one having an average diameter of usually 1 micron or less, preferably 200 millimicrons or less. Ru. When such fine-particle alumina sol is used, it is possible to obtain an excellent catalyst because of its extremely good dispersibility. Furthermore, alumina sol stabilized on the acidic side with an organic acid is generally used. In addition, the catalyst used must not contain substances that have a poisonous effect on the copper catalyst. The atomic ratio of the copper compound, zinc compound, and alumina sol in the present invention is 0.2 to 2, preferably 0.3 to 1.5, and 0.01 to 0.5, preferably 0.04 to 0.4 for zinc to 1 copper, and 0.01 to 0.5, preferably 0.04 to 0.4. The thus obtained mixture of copper compound, zinc compound and alumina sol is dried and calcined. Drying is carried out in a conventional manner, for example, under normal pressure or reduced pressure, or in a stream of inert gas such as air or nitrogen at a temperature of about 100° C. or less. Firing can be performed by a method known per se. That is, for example, firing is performed in a firing furnace such as an electric furnace or a gas firing furnace in an atmosphere containing oxygen gas, and firing in air is preferable. Firing temperature is at least 250℃, preferably 300-500℃
The firing time is 0.5 to 5 hours, preferably 1 to 3 hours. After firing, the copper oxide, zinc oxide and aluminum oxide are usually shaped by conventional methods. That is, it is formed using a perforated plate and a tablet press, with or without the addition of a lubricant such as graphite. Then,
It is activated as a methanol steam reforming catalyst by reducing it by a conventional method. This reduction is
This can be done by preheating the catalyst at 150-400℃ in a reducing gas atmosphere such as hydrogen gas, carbon monoxide gas or a mixture thereof, or by adding methanol or a mixture of methanol and water to the heated catalyst. It is also possible to reduce the gas by contacting and decomposing the gas. The reaction conditions employed in the methanol steam reforming reaction using the catalyst produced according to the present invention are a reaction temperature of 150 to 400°C, preferably 180 to 350°C.
It is. Further, the ratio of water to methanol is 1 to 7 mol, preferably 1 to 5 mol, per 1 mol of methanol, but the ratio may be more than 7 mol and less than 30 mol. In addition, the space velocity of methanol vapor is 50 to 50000/hr -1 , preferably 100 to
15000hr -1 , reaction pressure is 50Kg/cm 2 G or less,
Preferably it is 30 kg/cm 2 G to normal pressure. Further, if necessary, the reaction can be carried out by adding hydrogen gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, etc. in advance in an amount of about 0.1 to 5 mol per mol of methanol. The amount of carbon monoxide in the reformed gas thus obtained is extremely small, and is usually of a level that hardly poses a practical problem, or at most, a level that is not difficult to remove. Further, hydrogen gas can be easily obtained by removing carbon dioxide gas in the reformed gas by a conventional method using, for example, an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, an aqueous aminoethyl alcohol solution, or activated carbon. The catalyst obtained in the present invention has excellent low-temperature activity, durability, and heat resistance, and is suitable for use in methanol steam reforming reactions. The present invention will be explained in more detail by the following examples. Example 1 The atomic ratio of copper, zinc and aluminum is 1:
A catalyst was prepared consisting of 0.75:0.25 of the respective oxides of copper, zinc and aluminum. That is, an aqueous solution containing copper nitrate (1st class reagent) and zinc nitrate (1st class reagent) and an aqueous solution of sodium carbonate (1st class reagent) in a predetermined composition ratio are heated to 73°C and mixed with thorough stirring to form a base. A co-precipitate of basic copper carbonate and basic zinc carbonate was obtained. After over-separating and washing this coprecipitate, alumina sol (alumina content: 10 wt%) in a predetermined ratio was added and mixed. After drying the mixture of the predetermined composition thus obtained at 80°C, it was dried at 380°C in an air stream.
It was fired in After crushing the fired product, 3 wt% of graphite was added as a lubricant, and the mixture was compressed into tablets. 10 ml of this tablet-shaped catalyst was filled into a reactor with an inner diameter of 10 mmφ, heated in a hydrogen stream at 200° C. for 6 hours for reduction, and then reacted under predetermined reaction conditions. During this reaction period, 5 days per dose
A high-temperature reaction was carried out at 360°C, then the temperature was lowered to 280°C and the activity of the catalyst was examined. This was repeated several times. The reaction conditions and reaction results are shown in Table 1. Comparative Example 1 Aluminum nitrate (grade 1 reagent) was used instead of alumina sol as an aluminum source, and
The same procedure as in Example 1 was carried out, except that an aqueous solution of aluminum nitrate, copper nitrate (1st grade reagent), and zinc nitrate (1st grade reagent) dissolved in water and an aqueous solution of sodium carbonate (1st grade reagent) were mixed. Ta. The reaction conditions and reaction results are shown in Table 1. Comparative Example 2 The same procedure as in Example 1 was carried out except that aluminum hydroxide powder (reagent) was used instead of alumina sol. The reaction conditions and reaction results are shown in Table 1. Example 2 A catalyst with the same atomic ratios of copper, zinc and aluminum as in Example 1 was prepared. Copper hydroxide (reagent) and zinc hydroxide (reagent) in a specified composition ratio
and alumina sol (10wt% content) were mixed. This mixture was dried at 70°C and then calcined at 380°C in a stream of air. The steps after granulation were carried out in the same manner as in Example 1. The reaction conditions and reaction results are shown in Table 1.

【表】【table】

【表】 * 上段 初期における改質ガス組成
下段 耐熱試験最終回の後における改質ガ
ス組成
第2表以下でも同様
実施例 3 銅、亜鉛およびアルミニウムの原子比を1:
0.4:0.2とし、かつ、触媒の還元ガスとして水素
と一酸化炭素との混合ガス(H250%)を用いた
以外は実施例1と同様に行なつた。 反応条件および反応成績などを第2表に示す。 比較例 3 実施例3と同じ組成を触媒をつぎのようにして
調製した。所定組成比の硝酸銅(試薬1級)、硝
酸亜鉛(試薬1級)を含有する水溶液と炭酸ナト
リウム水溶液に水酸化アルミニウム微粉末(試
薬)をけん濁させた溶液をそれぞれ80℃に加熱
し、よく撹拌しながら混合し共沈殿スラリーを得
た。この共沈殿スラリーを過、分離、洗浄した
のち70℃で乾燥し空気気流中380℃で焼成した。
造粒以下の操作は、触媒の還元ガスとして水素と
一酸化炭素の混合ガス(H250%)を用いた以外
は実施例1と同様に行なつた。 反応条件および反応成績などを第2表に示し
た。
[Table] *Top: Initial reformed gas composition
Lower row Reformed gas composition after the final heat resistance test
Example 3 The atomic ratio of copper, zinc and aluminum is 1:1 in Table 2 and below.
The same procedure as in Example 1 was conducted except that the ratio was 0.4:0.2 and a mixed gas of hydrogen and carbon monoxide (H 2 50%) was used as the reducing gas for the catalyst. The reaction conditions and reaction results are shown in Table 2. Comparative Example 3 A catalyst having the same composition as in Example 3 was prepared as follows. An aqueous solution containing copper nitrate (1st class reagent) and zinc nitrate (1st class reagent) in a predetermined composition ratio and a solution in which aluminum hydroxide fine powder (reagent) is suspended in an aqueous sodium carbonate solution are heated to 80°C, respectively. The mixture was mixed with thorough stirring to obtain a coprecipitation slurry. This coprecipitated slurry was filtered, separated, washed, dried at 70°C, and calcined at 380°C in a stream of air.
The operations following granulation were carried out in the same manner as in Example 1, except that a mixed gas of hydrogen and carbon monoxide (H 2 50%) was used as the reducing gas for the catalyst. The reaction conditions and reaction results are shown in Table 2.

【表】【table】

【表】 実施例 4 銅、亜鉛およびアルミニウムの原子比が1:
1.35:0.1である銅、亜鉛およびアルミニウムの
それぞれの酸化物からなる触媒を調製した。すな
わち、所定組成比の硝酸銅(工業用)、硝酸亜鉛
(工業用)を含有する水溶液を75℃に加温し、こ
れを溶液Aとする。別に所定量の炭酸ナトリウム
を含有する水溶液を75℃に加温、これを溶液Bと
する。一方、撹拌機を有する反応槽に水を入れ、
よく撹拌しながら75℃とし、ここに溶液A、Bを
同時に供給を開始し、かつ同時に供給が終るよう
にそれぞれ定速で供給し、混合し共沈殿物を得
た。この共沈殿物を過、分離、洗浄したのち所
定比率となる量のアルミナゾル(アルミナ含有率
10wt%)を加え、混合した。このようにして得
られた所定の組成の混合物を100℃で乾燥したの
ち、空気気流中400℃で焼成した。焼成物を破砕
した後、滑剤としてグラフアイト3wt%を添加
し、打錠してタブレツトに造粒した。 このタブレツト状触媒10mlを内径10mmφの反応
器に充填し、200℃に加熱し、ここにメタノール
蒸気を少量ずつ送入して還元した。つづいて所定
の反応条件で実施例1と同様に反応を行なつた。 反応条件および反応成績などを第3表に示す。 比較例 4 アルミナゾルのかわりにγ―アルミナ(試薬)
を微粒(100メツシユ以下)に破砕して用いた以
外は実施例4と全く同様に行なつた。 反応条件および反応成績などを第3表に示す。
[Table] Example 4 Atomic ratio of copper, zinc and aluminum is 1:
A catalyst was prepared consisting of the respective oxides of copper, zinc and aluminum in a ratio of 1.35:0.1. That is, an aqueous solution containing copper nitrate (industrial use) and zinc nitrate (industrial use) in a predetermined composition ratio is heated to 75° C., and this is designated as solution A. Separately, an aqueous solution containing a predetermined amount of sodium carbonate was heated to 75°C, and this was designated as solution B. On the other hand, put water in a reaction tank equipped with a stirrer,
The temperature was raised to 75° C. with thorough stirring, and solutions A and B were started to be supplied at the same time and each was supplied at a constant rate so as to end at the same time, and mixed to obtain a coprecipitate. After filtering, separating and washing this coprecipitate, an amount of alumina sol (alumina content
10wt%) was added and mixed. The thus obtained mixture having a predetermined composition was dried at 100°C and then fired at 400°C in a stream of air. After crushing the fired product, 3 wt% of graphite was added as a lubricant, and the mixture was compressed into tablets. 10 ml of this tablet-shaped catalyst was filled into a reactor with an inner diameter of 10 mmφ, heated to 200° C., and methanol vapor was introduced little by little into the reactor for reduction. Subsequently, a reaction was carried out in the same manner as in Example 1 under predetermined reaction conditions. Table 3 shows the reaction conditions and reaction results. Comparative example 4 γ-alumina (reagent) instead of alumina sol
The same procedure as in Example 4 was carried out except that the powder was crushed into fine particles (100 mesh or less). Table 3 shows the reaction conditions and reaction results.

【表】【table】

【表】 実施例 5 銅、亜鉛およびアルミニウムの原子比が1:
1:0.35である銅、亜鉛およびアルミニウムのそ
れぞれの酸化物からなる触媒を調製した。すなわ
ち、所定組成比となるような量の硝酸銅(試薬1
級)を含有する水溶液に重炭酸アンモニウム水溶
液を加えて銅スラリー液を調製した。別に調製し
た所定組成比となる量の酸化亜鉛(試薬1級)ス
ラリー溶液に前記の銅スラリー液を加えて、撹拌
下で炭酸ガスを吹き込み塩基性炭酸銅と塩基性炭
酸亜鉛との共沈殿を得た。これ以後の操作は実施
例1と同様に行なつた。 反応条件および反応成績などを第4表に示す。 比較例 5 実施例5と同じ組成の触媒をつぎのようにして
調製した。所定組成比となる量の硝酸銅(試薬1
級)を含有する水溶液に水酸化アルミニウム微粉
末(試薬)をけん濁させた溶液に重炭酸アンモニ
ウム水溶液を加えて銅―水酸化アルミニウムスラ
リー液を調製した。別に調製した所定組成比とな
る量の酸化亜鉛(試薬1級)スラリー液に前記の
銅―水酸化アルミニウムスラリー液を加えて、撹
拌下で炭酸ガスを吹き込み共沈殿スラリーを得
た。この共沈殿スラリーを過、分離、洗浄した
のち80℃で乾燥し空気気流中380℃で焼成した。
以後の操作は実施例1と同様に行なつた。 反応条件および反応成績などを第4表に示す。 実施例 6 実施例5と同一の銅、亜鉛、およびアルミニウ
ムの原子比を有する触媒を調製した。所定組成比
の硝酸銅(工業用)および硝酸亜鉛(工業用)を
含有する水溶液と水酸化ナトリウム(工業用)の
水溶液をそれぞれ70℃に加熱し、よく撹拌しなが
ら混合し、銅の酸化物と亜鉛の酸化物との混合物
を得た。これを過分離、洗浄したのち、所定比
率となる量のアルミナゾル(10wt%含有率)を
加え混合した。これ以後の操作は実施例1と同様
に行なつた。 反応条件および反応成績などを第4表に示す。
[Table] Example 5 Atomic ratio of copper, zinc and aluminum is 1:
A catalyst was prepared consisting of the respective oxides of copper, zinc and aluminum in a ratio of 1:0.35. That is, an amount of copper nitrate (reagent 1
A copper slurry solution was prepared by adding an aqueous ammonium bicarbonate solution to an aqueous solution containing a copper-based compound. The above copper slurry liquid was added to a separately prepared zinc oxide (grade 1 reagent) slurry solution having a predetermined composition ratio, and carbon dioxide gas was blown into the solution while stirring to cause coprecipitation of basic copper carbonate and basic zinc carbonate. Obtained. The subsequent operations were carried out in the same manner as in Example 1. Table 4 shows the reaction conditions and reaction results. Comparative Example 5 A catalyst having the same composition as in Example 5 was prepared as follows. Copper nitrate (reagent 1) in an amount that gives a predetermined composition ratio
A copper-aluminum hydroxide slurry solution was prepared by adding an aqueous ammonium bicarbonate solution to a solution in which aluminum hydroxide fine powder (reagent) was suspended in an aqueous solution containing aluminum hydroxide. The copper-aluminum hydroxide slurry was added to a separately prepared slurry of zinc oxide (grade 1 reagent) having a predetermined composition ratio, and carbon dioxide gas was blown into the slurry with stirring to obtain a coprecipitated slurry. This coprecipitated slurry was filtered, separated, washed, dried at 80°C, and calcined at 380°C in a stream of air.
The subsequent operations were performed in the same manner as in Example 1. Table 4 shows the reaction conditions and reaction results. Example 6 A catalyst with the same atomic ratios of copper, zinc, and aluminum as in Example 5 was prepared. An aqueous solution containing copper nitrate (industrial use) and zinc nitrate (industrial use) in a predetermined composition ratio and an aqueous solution of sodium hydroxide (industrial use) are each heated to 70°C and mixed with thorough stirring to form copper oxide. A mixture of zinc oxide and zinc oxide was obtained. After over-separating and washing this, alumina sol (10 wt% content) in an amount to give a predetermined ratio was added and mixed. The subsequent operations were carried out in the same manner as in Example 1. Table 4 shows the reaction conditions and reaction results.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 銅の酸化物、亜鉛の酸化物およびアルミニウ
ムの酸化物を含有するメタノールの水蒸気改質用
触媒の製造法において、塩基性炭酸銅、銅の水酸
化物および銅の酸化物からなる群から選ばれた少
くとも1種の銅化合物と、塩基性炭酸亜鉛、亜鉛
の水酸化物および亜鉛の酸化物からなる群から選
ばれた少くとも1種の亜鉛化合物と、アルミナゾ
ルとを混合し、乾燥、焼成、成形することを特徴
とするメタノールの水蒸気改質用触媒の製造法。
1. In a method for producing a catalyst for steam reforming of methanol containing copper oxide, zinc oxide and aluminum oxide, a catalyst selected from the group consisting of basic copper carbonate, copper hydroxide and copper oxide is used. At least one type of copper compound, at least one type of zinc compound selected from the group consisting of basic zinc carbonate, zinc hydroxide, and zinc oxide, and alumina sol are mixed, dried, A method for producing a catalyst for steam reforming of methanol, which comprises firing and molding.
JP6493983A 1983-04-13 1983-04-13 Preparation of steam reforming catalyst of methanol Granted JPS59189937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6493983A JPS59189937A (en) 1983-04-13 1983-04-13 Preparation of steam reforming catalyst of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6493983A JPS59189937A (en) 1983-04-13 1983-04-13 Preparation of steam reforming catalyst of methanol

Publications (2)

Publication Number Publication Date
JPS59189937A JPS59189937A (en) 1984-10-27
JPH0371174B2 true JPH0371174B2 (en) 1991-11-12

Family

ID=13272499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6493983A Granted JPS59189937A (en) 1983-04-13 1983-04-13 Preparation of steam reforming catalyst of methanol

Country Status (1)

Country Link
JP (1) JPS59189937A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177B2 (en) * 1984-10-05 1995-01-11 川崎重工業株式会社 Method for producing catalyst for methanol steam reforming
JP2535760B2 (en) * 1993-07-07 1996-09-18 工業技術院長 Method for producing catalyst for steam reforming of methanol
WO2001078892A1 (en) * 2000-04-19 2001-10-25 Osaka Gas Co., Ltd. Method for preparing catalyst for reforming methanol
KR100863491B1 (en) 2007-05-01 2008-10-15 한국과학기술원 Hybrid catalysts for dme steam reforming to produce hydrogen as fuel cell feed, and application to producing hydrogen and the method thereof
DE102014004391A1 (en) 2014-03-26 2015-10-15 Clariant International Ltd. Process for the preparation of catalysts with increased strength and reduced volume shrinkage

Also Published As

Publication number Publication date
JPS59189937A (en) 1984-10-27

Similar Documents

Publication Publication Date Title
US6051163A (en) Catalyst for steam-reforming methanol
US3850850A (en) Method of making a methanol synthesis catalyst
CA1144911A (en) Catalyst and method for producing the catalyst
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US3303001A (en) Low temperature shift reaction involving a zinc oxide-copper catalyst
US20180273454A1 (en) Multicomponent heterogeneous catalysts for direct co2 hydrogenation to methanol
JPH08229399A (en) Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation
US6238640B1 (en) Conversion method of carbon monoxide and catalyst
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
US3947381A (en) Method of making a catalyst
JP3328845B2 (en) Hydrogen production method and catalyst used for it
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JPH0371174B2 (en)
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JP2535760B2 (en) Method for producing catalyst for steam reforming of methanol
CN117545554A (en) Method for preparing a water gas shift catalyst, catalyst and method for reducing carbon monoxide content
JPH11106811A (en) Production of reduced iron and apparatus therefor
JP4202087B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS6246482B2 (en)
JPS60122038A (en) Catalyst for reforming methanol
JPS60110337A (en) Catalyst for preparing hydrogen rich gas
JPS63209752A (en) Methanol reforming catalyst
JPS637842A (en) Catalyst for reforming methanol