JP4505127B2 - Production method of reforming catalyst and production method of synthesis gas using the same - Google Patents

Production method of reforming catalyst and production method of synthesis gas using the same Download PDF

Info

Publication number
JP4505127B2
JP4505127B2 JP2000318479A JP2000318479A JP4505127B2 JP 4505127 B2 JP4505127 B2 JP 4505127B2 JP 2000318479 A JP2000318479 A JP 2000318479A JP 2000318479 A JP2000318479 A JP 2000318479A JP 4505127 B2 JP4505127 B2 JP 4505127B2
Authority
JP
Japan
Prior art keywords
reforming
catalyst
precipitate
reforming catalyst
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000318479A
Other languages
Japanese (ja)
Other versions
JP2002126530A (en
Inventor
秀夫 岡戸
俊也 若月
清 稲葉
ひとみ 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oil Gas and Metals National Corp
Original Assignee
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oil Gas and Metals National Corp filed Critical Japan Oil Gas and Metals National Corp
Priority to JP2000318479A priority Critical patent/JP4505127B2/en
Publication of JP2002126530A publication Critical patent/JP2002126530A/en
Application granted granted Critical
Publication of JP4505127B2 publication Critical patent/JP4505127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、一酸化炭素(CO)と水素(H2 )との混合ガスである合成ガスを、メタンなどの炭化水素と水、二酸化炭素、酸素、空気などの改質物質とから得るためのリホーミング用触媒の製法と、このリホーミング用触媒を用いた合成ガスの製法に関する。
【0002】
【従来の技術】
従来、メタン、天然ガス、石油ガス、ナフサ、重油、原油などの炭化水素と、水、空気、酸素あるいは二酸化炭素の改質物質とを高温で触媒の存在下、反応させて、反応性に富む一酸化炭素と水素とからなる合成ガスを生成するリホーミングが行われており、生成した合成ガスを原料としてメタノールや液体燃料油が製造されている。
【0003】
このリホーミングに使用されるリホーミング用触媒としては、ニッケル/アルミナ触媒、ニッケル/マグネシア/アルミナ触媒などが用いられる。
しかしながら、これらのリホーミング用触媒を用いた反応では、例えばメタンと水蒸気とを化学等量反応させようとすると、炭素質(カーボン)が多量に析出する問題があり、この炭素質の析出を防止するために大過剰の水蒸気を供給し、リホーミング反応を促進するようにしている。
このため、従来のリホーミングにあっては、多量の水蒸気を必要とするためエネルギーコストが嵩み、設備が大型化する不都合があった。
【0004】
そこで、本出願人は、特願平10−103203号によって、大過剰の水蒸気を供給しなくても炭素質(カーボン)の析出を抑えることができる触媒を提案した。
このリホーミング用触媒は、下記式で表される組成を有する複合酸化物からなり、Coが該複合酸化物中で高分散化されているものである。
aCo・bMg・cCa・dO
(式中、a,b,c,dはモル分率であり、a+b+c=1、0.005≦a≦0.20、0.80≦(b+c)≦0.995、0<b≦0.995、0≦c≦0.995、d=元素が酸素と電荷均衡を保つのに必要な数である。)
また、本出願人は、特願平11−104634号によってさらに炭素質(カーボン)の析出を抑えることができる触媒を提案した。
下記式で表される組成を有する複合酸化物からなり、MおよびNiが該複合酸化物中で高分散化されているものである。
aM・bNi・cMg・dCa・eO
(式中、a,b,c,d,eはモル分率であり、a+b+c+d=1、0.0001≦a≦0.10、0.0001≦b≦0.20、0.70≦(c+d)≦0.9998、0<c≦0.9998、0≦d<0.9998、e=元素が酸素と電荷均衡を保つのに必要な数である。また、Mは周期律表第6A族元素、第7A族元素、Niを除く第8族遷移元素、第1B族元素、第2B族元素、第4B族元素およびランタノイド元素の少なくとも1種類の元素である。)
そして、Mとして、具体的にはマンガン、ロジウム、ルテニウム、白金、パラジウム、亜鉛、鉛、ランタン、セリウムから選ばれる少なくとも1種の元素が用いられるものである。
【0005】
しかしながら、このリホーミング用触媒にあっては、炭素質(カーボン)の析出抑制効果に優れているものの、共沈法で得た沈殿物(塩基性炭酸塩)をそのまま焼成すると、焼成時の脱炭酸、脱水による重量減少が大きく、体積減少も激しく、実用に耐え得るに十分な機械的強度を有していないという問題があった。
【0006】
【発明が解決しようとする課題】
よって、本発明における課題は、炭化水素に化学等量もしくはそれに近い量の改質物質を加えて、リホーミングする際に、カーボンの析出がないようにするとともに、実用に耐え得るに十分な機械的強度を有するリホーミング用触媒の製法を提供することにある。
【0007】
【課題を解決するための手段】
かかる課題は、上記触媒を共沈法によって製造する際、生成した水酸化物からなる沈殿物を乾燥した後、一次焼成する際の焼成温度を673K〜873Kの範囲とし、この焼成物を成形した後、二次焼成する際の焼成温度を1223K〜1573Kの範囲にすることによって解決される。
【0008】
【発明の実施の形態】
以下、本発明を詳しく説明する。
まず、本発明におけるリホーミング用コバルト系触媒について説明する。
本発明における第1のリホーミング用コバルト系触媒は、下記式(1)で表される組成の複合酸化物からなるものである。ここでの組成は焼成後の無水物基準で表されたものである。
aCo・bMg・cCa・dO (1)
(式中、a,b,c,dはモル分率であり、a+b+c=1、0.005≦a≦0.30、0.70≦(b+c)≦0.995、0<b≦0.995、0≦c≦0.995、d=元素が酸素と電荷均衡を保つのに必要な数である。)
【0009】
コバルト含有量(a)は、0.005≦a≦0.30であり、好ましくは、0.01≦b≦0.25、さらに好ましくは0.01≦b≦0.20の範囲とされる。コバルト含有量(a)が0.005未満ではコバルトの含有量が少なすぎて反応活性が低く、また0.30を超えると後述する高分散化が阻害され、炭素質析出防止効果が十分得られない。
【0010】
マグネシウム含有量(b)とカルシウム含有量(c)との合計量(b+c)は、0.70≦(b+c)≦0.995であり、好ましくは0.75≦(b+c)≦0.99、さらに好ましくは0.80≦(b+c)≦0.99である。このうち、マグネシウム含有量(b)は0<b≦0.995であり、好ましくは0.25≦b≦0.99、さらに好ましくは0.5≦b≦0.99であり、カルシウム含有量(c)は0≦c≦0.995、好ましくは0≦c≦0.5、さらに好ましくは0≦c≦0.3である。
【0011】
マグネシウム含有量(b)とカルシウム含有量(c)との合計量(b+c)は、コバルトとのバランスで決められる。マグネシウムとカルシウムの添加割合は、上記範囲内であればいかなる割合でもリホーミング反応に優れた効果を発揮するが、カルシウムは炭素質析出の抑制に効果があるものの、マグネシウムに比べて活性が低いので、活性を重視するのであれば、カルシウム含有量(c)が0.5を超えると活性が低下するので好ましくない。
【0012】
次に、本発明におけるリホーミング用ニッケル系触媒について説明する。
本発明における第2および第3のリホーミング用ニッケル系触媒は、上記式(1)で表される組成の複合酸化物のCoをNiに置き換えたもの、または、下記式(2)で表される組成の複合酸化物からなるものである。ここでの組成は焼成後の無水物基準で表されたものである。
aM・bNi・cMg・dCa・eO (2)
(式中、a,b,c,d,eはモル分率であり、a+b+c+d=1、0.0001≦a≦0.10、0.0001≦b≦0.30、0.60≦(c+d)≦0.9998、0<c≦0.9998、0≦d<0.9998、e=元素が酸素と電荷均衡を保つのに必要な数である。また、Mは周期律表第6A族元素、第7A族元素、Niを除く第8族遷移元素、第1B族元素、第2B族元素、第4B族元素およびランタノイド元素の少なくとも1種類の元素である。)
なお、ここでの周期律表は、IUPACによるものとする。
【0013】
ここでMは、マンガン、モリブデン、ロジウム、ルテニウム、白金、パラジウム、銅、銀、亜鉛、錫、鉛、ランタン、セリウムから選ばれる少なくとも1種であることが好ましい。また、この組成において、Mの含有量(a)は、0.0001≦a≦0.10であり、好ましくは0.0001≦a≦0.05、さらに好ましくは0.0001≦a≦0.03である。Mの含有量(a)が0.0001未満では、炭素質析出抑制効果が認められず、0.10を超えるとリホーミング反応の活性を低下させ不都合である。
【0014】
ニッケル含有量(b)は、0.0001≦b≦0.30であり、好ましくは、0.0001≦b≦0.25、さらに好ましくは0.0001≦b≦0.20である。ニッケル含有量(b)が0.0001未満ではニッケルの含有量が少なすぎて反応活性が低く、0.30を超えると後述する高分散化が阻害され、炭素質析出防止効果が十分得られない。
【0015】
マグネシウム含有量(c)とカルシウム含有量(d)との合計量(c+d)は、0.60≦(c+d)≦0.9998であり、好ましくは0.70≦(c+d)≦0.9998、さらに好ましくは0.77≦(c+d)≦0.9998である。このうち、マグネシウム含有量(c)は0<c≦0.9998であり、好ましくは0.20≦c≦0.9998、さらに好ましくは0.47≦c≦0.9998であり、カルシウム含有量(d)は0≦d<0.9998、好ましくは0≦d≦0.5、さらに好ましくは0≦d≦0.3であり、カルシウムを欠くものであってもよい。
【0016】
マグネシウム含有量(c)とカルシウム含有量(d)との合計量(c+d)は、M含有量(a)およびニッケル含有量(b)とのバランスで決められる。(c+d)は上記範囲内であればいかなる割合でもリホーミング反応に優れた効果を発揮するが、カルシウム(d)とM(a)の含有量が多いと炭素質析出の抑制に効果があるものの、マグネシウム(c)が多い場合に比べて触媒活性が低い。よって、活性を重視するのであれば、カルシウム含有量(c)が0.5を超え、M含有量(a)が0.1を超えると活性が低下するので好ましくない。
【0017】
本発明における複合酸化物とは、MgO、CaOが岩塩型結晶構造をとり、その格子に位置するMgまたはCa原子の一部がCo、NiおよびMに置換した一種の固溶体であって、単相をなすものであり、各元素単独の酸化物の混合物を言うものではない。
そして、本発明では、コバルト、ニッケルおよびMがこの複合酸化物中に高分散状態となっている。
【0018】
本発明での分散とは、一般に触媒分野で定義されているものであって、例えば「触媒講座 第5巻 触媒設計」第141頁(触媒学会編、講談社刊)などにあるように、担持された金属の全原子数に対する触媒表面に露出している原子数の比として定められるものである。
【0019】
これを、本発明について図1の模式図によって具体的に説明すると、複合酸化物からなる触媒1の表面には活性中心となる半球状などの微小粒子2、2…が無数に存在しており、この微小粒子2は、後述する活性化(還元)処理後ではコバルト、ニッケルおよびMの金属元素またはその化合物からなっている。
この微小粒子2をなすコバルト、ニッケルおよびMの金属元素またはその化合物の原子数をAとし、これらの原子のうち粒子2の表面に露出している原子の数をBとすると、B/Aが分散度となる。
【0020】
触媒反応に関与するのは、微小粒子2の表面に露出している原子であると考えれば、分散度が1に近いものは多くの原子がその表面に分布することになって、活性中心が増加し、高活性となりうると考えられる。
また、微小粒子2の粒径が限りなく小さくなれば、微小粒子2をなす原子の大部分は、粒子2表面に露出することになって、分散度は1に近づく。したがって、微小粒子2の粒径が分散度を表す指標にもなりうる。
【0021】
本発明の触媒では、微細粒子2の径が種々の測定法、例えばX線回析法などの測定限界の3.5nm未満であり、このことから分散度が高く、高分散状態であると言うことができる。このため、反応に関与するコバルト、ニッケルおよびMの原子数が増加し、高活性となって、反応が化学量論的に進行し、炭素質(カーボン)の析出が防止される。
【0022】
次に、本発明のリホーミング用コバルト系触媒およびリホーミング用ニッケル系触媒の製法について詳しく説明する。
本発明の触媒の製法は、いわゆる共沈法によって行われる。
共沈法による製造は、まずコバルト、ニッケル、マグネシウム、カルシウム、周期律表第6A族元素、第7A族元素、CoまたはNiを除く第8族遷移元素、第1B族元素、第2B族元素、第4B族元素およびランタノイド元素の酢酸塩などの有機塩や、硝酸塩などの無機塩といった水溶性塩類を水に溶解した完全な水溶液とする。この水溶液を撹拌しながら293〜393Kで沈殿剤を加えて沈殿物を生成させる。触媒成分を高度に分散させるには、沈殿を生成させる際に撹拌するのが好ましく、沈殿物生成後も10分間以上撹拌して沈殿の生成を完結させるのが好ましい。
【0023】
沈殿剤には、ナトリウムおよび/またはカリウムの炭酸塩、炭酸水素塩、シュウ酸塩、水酸化物が好ましい。また、炭酸アンモニウム、水酸化アンモニウム、アンモニア(アンモニア水)なども沈殿剤として使用できる。
沈殿剤の添加によってpHが上昇し、上記の成分からなる化合物が熱分解性水酸化物の形態で沈殿する。混合物の最終pHは6以上であることが好ましく、pHが8〜11の範囲がさらに好ましい。
【0024】
沈殿物が得られたら、沈殿物をろ過後、水や炭酸アンモニウム水溶液で洗浄を繰り返し、次にこれを373K以上の温度で乾燥する。
次に、乾燥した沈殿物を、空気中、温度673〜873K、好ましくは723〜823Kで、時間1〜20時間、好ましくは2〜10時間焼成して熱分解性水酸化物の熱分解を行い、焼成物を得る。
本発明の製法においては、この焼成時の温度が重要な意味を有し、焼成温度が673K未満では、目的とする焼成物が得られない。873Kを超えると、焼成物は十分な機械的強度が得られず、次工程において取り扱いが困難となる。
【0025】
次に、得られた焼成物を成形し、成形物とする。
次に、この成形物を、空気中、温度1223〜1573K、好ましくは1223〜1523Kで、時間1〜20時間、好ましくは2〜10時間焼成して、目的のリホーミング用触媒を得る。
本発明の製法においては、この焼成時の温度が重要な意味を有し、焼成温度が上記温度範囲外では、十分な機械的強度を有する触媒が得られない。
【0026】
また、このようにして得られた触媒を粉砕して、粉末として用いることもできるが、必要に応じて圧縮成型機により成型して、タブレット状、リング状などとして用いることもできる。また、これらの触媒を石英砂、アルミナ、マグネシア、カルシア、その他の希釈剤と合わせて用いることもできる。
【0027】
次に、このようなリホーミング用コバルト系触媒およびリホーミング用ニッケル系触媒を用いた合成ガスの製法について説明する。
まず、予めリホーミング用触媒の活性化処理を行う。この活性化処理は触媒を水素ガスなどの還元性気体の存在下で、773〜1273K、好ましくは873〜1273K、さらに好ましくは923〜1273Kの温度範囲で0.5〜30時間程度加熱することによって行われる。還元性気体は窒素ガスなどの不活性ガスで希釈されていてもよい。
この活性化処理をリホーミング反応を行う反応器内で行うこともできる。
【0028】
この活性化処理により、図1での触媒1表面の微小粒子2、2…が還元されてCo、NiまたはMの金属元素またはその化合物となり、触媒活性が発現する。
本発明での活性化処理は、従来のCoまたはNi酸化物系触媒の活性化よりも高温で行う。従来のCoまたはNi酸化物系触媒ではすべて773K未満で行われており、本発明でのこのような高温での活性化処理が上述の高分散化に寄与している可能性がある。
【0029】
合成ガスの原料となる炭化水素としては、天然ガス、石油ガス、ナフサ、重油、原油などや石炭、コールサンドなどから得られた炭化水素などが用いられ、その一部にメタンなどの炭化水素が含有されていれば、特に限定されることはない。これらは2種以上が混合されていてもよい。
また、改質物質としては、水(水蒸気)、二酸化炭素、酸素、空気などが用いられ、2種以上が混合されていてもよい。好ましい改質物質としては、水または二酸化炭素もしくは水と二酸化炭素との混合物である。
【0030】
反応に際しての炭化水素と改質物質との供給割合は、炭化水素中の炭素原子の数を基準とするモル比で表して、改質物質/炭素比=0.3〜100、好ましくは0.3〜10、さらに好ましくは0.5〜3とされ、本発明では、改質物質を大過剰に供給する必要はない。炭化水素と改質物質との混合気体には、希釈剤として窒素などの不活性ガスを共存させてもよい。
【0031】
具体的な反応としては、上述のリホーミング用コバルト系触媒およびリホーミング用ニッケル系触媒を充填した反応管に、炭化水素と改質物質とからなる原料ガスを供給し、温度が773〜1273K、好ましくは873〜1273K、さらに好ましくは923〜1273Kの条件で、圧力条件が0.1〜10MPa、好ましくは0.1〜5MPa、さらに好ましくは0.1〜3MPaの範囲で反応を行う。
【0032】
原料ガスの空間速度(GHSV:原料ガスの供給速度を体積換算の触媒量で除した値)は、500〜200000h-1、好ましくは1000〜100000h-1、さらに好ましくは1000〜70000h-1の範囲とすることが望ましい。
また、触媒床の形態は、固定床、移動床、流動床などの周知の形態を任意に選択できる。
【0033】
このようなリホーミング用触媒およびこれを用いた合成ガスの製法にあっては、CoO、NiOあるいはMOxをMgOまたはMgO/CaOとの複合酸化物とし、コバルト、ニッケルおよびMを高分散化したものであるので、高活性となり、メタンなどの炭化水素と水蒸気などの改質物質とを化学等量もしくはそれに近い量で反応させても、炭素質(カーボン)の析出が抑制され、効率よく合成ガスを製造できる。このため、水蒸気などの改質物質を大過剰に供給する必要がなく、改質物質の無駄がなくなり、低コストで合成ガスを生産できる。
また、触媒が炭素質で汚染されることがないので、触媒活性の経時的な低下が抑制され、触媒の寿命が長くなる。
【0034】
また、共沈によって得られた熱分解性水酸化物の沈殿物を乾燥後、温度673〜873Kの範囲で一次焼成し、この焼成物を成形後、温度1223〜1573Kの範囲で二次焼成したので、触媒の結晶構造の均一化(キンク、ステップなどの不整合の解消)や固体内拡散が進むことにより、活性成分(Co、Ni、M)の一層の高分散化が起こり、カーボンの析出を防止することができ、触媒寿命を長くすることができる。また、一次焼成時に脱炭酸、脱水した後に、二次焼成により触媒を完全に焼成するので、実用に耐え得るに十分な機械的強度を有するリホーミング用触媒を得ることができる。
【0035】
以下、具体例を示して本発明の作用、効果を明確にするが、本発明はこれら具体例に限定されるものではない。
(実施例1)
硝酸コバルト六水和物16.2g、硝酸マグネシウム六水和物270.7gを水500mlに溶解した。ついで、この溶液の温度を323Kに保ちながら、2mol/L炭酸カリウム水溶液590mlを加えることによってpH9にし、コバルトおよびマグネシウムの2成分からなる水酸化物の沈澱物を生成させた。この沈澱物をろ過し、洗浄を行なった後、空気中、393Kで12時間以上乾燥した。次いで空気中、723Kで4時間焼成して、焼成物を得た。この焼成物を任意形状に成形した後、空気中、1453Kで5時間焼成して触媒(A)を得た。この触媒(A)の耐破壊強度は70kg/個であった。
(実施例2)
硝酸ニッケル六水和物9.69g、硝酸マグネシウム六水和物276.3gを水500mlに溶解した。ついで、この溶液の温度を323Kに保ちながら、2mol/L炭酸カリウム水溶液590mlを加えることによってpH9にし、ニッケルおよびマグネシウムの2成分からなる水酸化物の沈澱物を生成させた。この沈澱物をろ過し、洗浄を行なった後、空気中、393Kで12時間以上乾燥した。次いで空気中、723Kで4時間焼成して、焼成物を得た。この焼成物を任意形状に成形した後、空気中、1453Kで5時間焼成して触媒(B)を得た。この触媒(B)の耐破壊強度は73kg/個であった。
(実施例3)
硝酸ニッケル六水和物14.5g、硝酸マグネシウム六水和物272.1g、硝酸マンガン六水和物3.19gを水500mlに溶解した。ついで、この溶液の温度を323Kに保ちながら、2mol/L炭酸カリウム水溶液590mlを加えることによってpH9にし、ニッケル、マグネシウムおよびマンガンの3成分からなる水酸化物の沈澱物を生成させた。この沈澱物をろ過し、洗浄を行なった後、空気中、393Kで12時間以上乾燥した。次いで空気中、723Kで4時間焼成して、焼成物を得た。この焼成物を任意形状に成形した後、空気中、1453Kで5時間焼成して触媒(C)を得た。この触媒(C)の耐破壊強度は71kg/個であった。
【0036】
(比較例1)
沈殿物を乾燥した後の焼成温度を923Kとした以外は実施例1と同様にして触媒(D)を得た。この触媒(D)の耐破壊強度は38kg/個であった。
(比較例2)
沈殿物を乾燥した後の焼成温度を1023Kとした以外は実施例1と同様にして触媒(E)を得た。この触媒(E)の耐破壊強度は30kg/個であった。
【0037】
(反応例1)
実施例1で調整した触媒(A)30mlを加圧固定床流通式反応容器に充填してメタンの二酸化炭素と水蒸気によるリホーミングを行った。触媒(A)に予め水蒸気流中1173Kで還元処理を施した後、メタン:二酸化炭素:水=1:0.4:1の原料ガスを、圧力2.1MPa、温度1123K、GHSV=6000/hrの条件で反応を行った。
反応開始から100時間経過後のメタン転化率は、59%(反応条件下のメタンの平衡転化率は59%)であり、反応開始から3000時間経過後のメタン転化率は、59%であった。
(反応例2)
実施例2で調整した触媒(B)30mlを加圧固定床流通式反応容器に充填してメタンの二酸化炭素と水蒸気によるリホーミングを行った。触媒(B)に予め水蒸気流中1173Kで還元処理を施した後、メタン:二酸化炭素:水=1:0.4:1の原料ガスを、圧力2.1MPa、温度1123K、GHSV=6000/hrの条件で反応を行った。
反応開始から100時間経過後のメタン転化率は、59%(反応条件下のメタンの平衡転化率は59%)であった。
(反応例3)
実施例3で調整した触媒(C)30mlを加圧固定床流通式反応容器に充填してメタンの二酸化炭素と水蒸気によるリホーミングを行った。触媒(C)に予め水蒸気流中1173Kで還元処理を施した後、メタン:二酸化炭素:水=1:0.4:1の原料ガスを、圧力2.1MPa、温度1123K、GHSV=6000/hrの条件で反応を行った。
反応開始から100時間経過後のメタン転化率は、59%(反応条件下のメタンの平衡転化率は59%)であった。
【0038】
【発明の効果】
以上説明したように、本発明によれば、リホーミング用触媒として、CoO、NiOあるいはMOxをMgOまたはMgO/CaOと複合酸化物化し、コバルト、ニッケルおよびMを高分散化したものを用いるので、炭化水素と改質物質とを化学等量もしくはそれに近い量で反応させても、炭素質(カーボン)の析出を抑え、効率よく合成ガスを得ることができ、生産コストの低減が図れる。また、触媒が炭素質で汚染されることがないので、触媒活性の経時的な低下が抑制され、触媒の寿命が長くなる。
【0039】
また、共沈によって得られた沈殿物を乾燥後、温度673〜873Kの範囲で一次焼成し、この焼成物を成形後、温度1223〜1573Kの範囲で二次焼成したので、一次焼成時に脱炭酸、脱水し、二次焼成により触媒を完全に焼成することができるので、実用に耐え得るに十分な機械的強度を有するリホーミング用触媒を得ることができる。
【図面の簡単な説明】
【図1】 本発明の触媒の表面状態を模式的に示した説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a synthesis gas that is a mixed gas of carbon monoxide (CO) and hydrogen (H2) from a hydrocarbon such as methane and a reforming substance such as water, carbon dioxide, oxygen, and air. The present invention relates to a method for producing a homing catalyst and a method for producing a synthesis gas using the reforming catalyst.
[0002]
[Prior art]
Conventionally, it is highly reactive by reacting hydrocarbons such as methane, natural gas, petroleum gas, naphtha, heavy oil, and crude oil with water, air, oxygen, or carbon dioxide reforming substances in the presence of a catalyst at high temperatures. Reforming is performed to generate a synthesis gas composed of carbon monoxide and hydrogen, and methanol and liquid fuel oil are produced using the generated synthesis gas as a raw material.
[0003]
As the reforming catalyst used for the reforming, a nickel / alumina catalyst, a nickel / magnesia / alumina catalyst, or the like is used.
However, in the reaction using these reforming catalysts, there is a problem that a large amount of carbonaceous matter (carbon) is precipitated when, for example, a chemical equivalent of methane and water vapor is reacted. Therefore, a large excess of water vapor is supplied to promote the reforming reaction.
For this reason, in the conventional reforming, since a large amount of water vapor is required, the energy cost is increased, and there is a disadvantage that the equipment is increased in size.
[0004]
Therefore, the present applicant has proposed a catalyst that can suppress the precipitation of carbonaceous matter (carbon) without supplying a large excess of water vapor, in Japanese Patent Application No. 10-103203.
This reforming catalyst is composed of a complex oxide having a composition represented by the following formula, and Co is highly dispersed in the complex oxide.
aCo ・ bMg ・ cCa ・ dO
(Where, a, b, c, d are mole fractions, a + b + c = 1, 0.005 ≦ a ≦ 0.20, 0.80 ≦ (b + c) ≦ 0.995, 0 <b ≦ 0. 995, 0 ≦ c ≦ 0.995, d = the number necessary for the element to maintain a charge balance with oxygen.)
Further, the present applicant has proposed a catalyst that can further suppress the precipitation of carbonaceous matter (carbon) according to Japanese Patent Application No. 11-104634.
It consists of a complex oxide having a composition represented by the following formula, and M and Ni are highly dispersed in the complex oxide.
aM ・ bNi ・ cMg ・ dCa ・ eO
(Where, a, b, c, d, e are mole fractions, a + b + c + d = 1, 0.0001 ≦ a ≦ 0.10, 0.0001 ≦ b ≦ 0.20, 0.70 ≦ (c + d ) ≦ 0.9998, 0 <c ≦ 0.9998, 0 ≦ d <0.9998, e = the number necessary for the element to maintain a charge balance with oxygen, and M is group 6A of the periodic table This is at least one element selected from the group consisting of elements, Group 7A elements, Group 8 transition elements excluding Ni, Group 1B elements, Group 2B elements, Group 4B elements, and lanthanoid elements.)
As M, specifically, at least one element selected from manganese, rhodium, ruthenium, platinum, palladium, zinc, lead, lanthanum, and cerium is used.
[0005]
However, although this reforming catalyst is excellent in the effect of suppressing the precipitation of carbonaceous matter (carbon), if the precipitate (basic carbonate) obtained by the coprecipitation method is calcined as it is, it is removed during the calcining. There was a problem that the weight loss due to carbonic acid and dehydration was large, the volume was drastically reduced, and the mechanical strength was not sufficient to withstand practical use.
[0006]
[Problems to be solved by the invention]
Therefore, the problem in the present invention is that a chemical equivalent amount or a quantity close to that of a hydrocarbon is added to a hydrocarbon to prevent carbon precipitation during reforming, and sufficient machinery to withstand practical use. It is an object to provide a method for producing a reforming catalyst having sufficient strength.
[0007]
[Means for Solving the Problems]
Such a problem is that when the catalyst is produced by the coprecipitation method, after the precipitate made of the generated hydroxide is dried, the firing temperature at the time of primary firing is in the range of 673K to 873K, and the fired product is molded. Then, it is solved by setting the firing temperature in the secondary firing to a range of 1223K to 1573K.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
First, the reforming cobalt catalyst in the present invention will be described.
The 1st cobalt catalyst for reforming in this invention consists of complex oxide of the composition represented by following formula (1). The composition here is expressed on the basis of anhydride after firing.
aCo · bMg · cCa · dO (1)
(Where, a, b, c, d are mole fractions, a + b + c = 1, 0.005 ≦ a ≦ 0.30, 0.70 ≦ (b + c) ≦ 0.995, 0 <b ≦ 0. 995, 0 ≦ c ≦ 0.995, d = the number necessary for the element to maintain a charge balance with oxygen.)
[0009]
The cobalt content (a) is 0.005 ≦ a ≦ 0.30, preferably 0.01 ≦ b ≦ 0.25, and more preferably 0.01 ≦ b ≦ 0.20. . If the cobalt content (a) is less than 0.005, the cobalt content is too low and the reaction activity is low, and if it exceeds 0.30, high dispersion described later is inhibited, and a carbonaceous precipitation preventing effect is sufficiently obtained. Absent.
[0010]
The total amount (b + c) of the magnesium content (b) and the calcium content (c) is 0.70 ≦ (b + c) ≦ 0.995, preferably 0.75 ≦ (b + c) ≦ 0.99, More preferably, 0.80 ≦ (b + c) ≦ 0.99. Among these, the magnesium content (b) is 0 <b ≦ 0.995, preferably 0.25 ≦ b ≦ 0.99, more preferably 0.5 ≦ b ≦ 0.99, and the calcium content. (C) is 0 ≦ c ≦ 0.995, preferably 0 ≦ c ≦ 0.5, and more preferably 0 ≦ c ≦ 0.3.
[0011]
The total amount (b + c) of the magnesium content (b) and the calcium content (c) is determined by the balance with cobalt. If the addition ratio of magnesium and calcium is within the above range, any ratio will exhibit an excellent effect on the reforming reaction, but although calcium is effective in suppressing carbonaceous precipitation, it is less active than magnesium. If the importance is placed on the activity, the calcium content (c) exceeding 0.5 is not preferable because the activity decreases.
[0012]
Next, the reforming nickel-based catalyst in the present invention will be described.
The second and third reforming nickel-based catalysts in the present invention are obtained by replacing Co in the composite oxide having the composition represented by the above formula (1) with Ni, or represented by the following formula (2). It is made of a complex oxide having a composition. The composition here is expressed on the basis of anhydride after firing.
aM ・ bNi ・ cMg ・ dCa ・ eO (2)
(Where, a, b, c, d and e are mole fractions, a + b + c + d = 1, 0.0001 ≦ a ≦ 0.10, 0.0001 ≦ b ≦ 0.30, 0.60 ≦ (c + d ) ≦ 0.9998, 0 <c ≦ 0.9998, 0 ≦ d <0.9998, e = the number necessary for the element to maintain a charge balance with oxygen, and M is group 6A of the periodic table This is at least one element selected from the group consisting of elements, Group 7A elements, Group 8 transition elements excluding Ni, Group 1B elements, Group 2B elements, Group 4B elements, and lanthanoid elements.)
The periodic table here is based on IUPAC.
[0013]
Here, M is preferably at least one selected from manganese, molybdenum, rhodium, ruthenium, platinum, palladium, copper, silver, zinc, tin, lead, lanthanum, and cerium. In this composition, the M content (a) is 0.0001 ≦ a ≦ 0.10, preferably 0.0001 ≦ a ≦ 0.05, and more preferably 0.0001 ≦ a ≦ 0. 03. If the M content (a) is less than 0.0001, the carbonaceous precipitation suppressing effect is not recognized, and if it exceeds 0.10, the activity of the reforming reaction is lowered, which is inconvenient.
[0014]
The nickel content (b) is 0.0001 ≦ b ≦ 0.30, preferably 0.0001 ≦ b ≦ 0.25, and more preferably 0.0001 ≦ b ≦ 0.20. When the nickel content (b) is less than 0.0001, the nickel content is too low and the reaction activity is low, and when it exceeds 0.30, the high dispersion described later is inhibited and the carbonaceous precipitation preventing effect cannot be sufficiently obtained. .
[0015]
The total amount (c + d) of the magnesium content (c) and the calcium content (d) is 0.60 ≦ (c + d) ≦ 0.9998, preferably 0.70 ≦ (c + d) ≦ 0.9998, More preferably, 0.77 ≦ (c + d) ≦ 0.9998. Among these, the magnesium content (c) is 0 <c ≦ 0.9998, preferably 0.20 ≦ c ≦ 0.9998, more preferably 0.47 ≦ c ≦ 0.9998, and the calcium content (D) is 0 ≦ d <0.9998, preferably 0 ≦ d ≦ 0.5, more preferably 0 ≦ d ≦ 0.3, and may lack calcium.
[0016]
The total amount (c + d) of the magnesium content (c) and the calcium content (d) is determined by the balance between the M content (a) and the nickel content (b). (C + d) exhibits an excellent effect on the reforming reaction at any ratio as long as it is within the above range. However, if the contents of calcium (d) and M (a) are large, the effect of suppressing carbonaceous precipitation is obtained. The catalytic activity is low as compared with the case where there is much magnesium (c). Therefore, if importance is attached to the activity, the calcium content (c) is more than 0.5 and the M content (a) is more than 0.1, the activity is not preferable.
[0017]
The composite oxide in the present invention is a kind of solid solution in which MgO and CaO have a rock salt type crystal structure, and a part of Mg or Ca atoms located in the lattice is substituted with Co, Ni and M, It does not mean a mixture of oxides of each element alone.
In the present invention, cobalt, nickel and M are in a highly dispersed state in this composite oxide.
[0018]
The dispersion in the present invention is generally defined in the catalyst field, and is supported as described in, for example, “Catalyst Course Vol. 5 Catalyst Design”, page 141 (Catalyst Society edition, published by Kodansha). It is determined as the ratio of the number of atoms exposed on the catalyst surface to the total number of atoms of the metal.
[0019]
The present invention will be specifically described with reference to the schematic diagram of FIG. 1. The surface of the catalyst 1 made of a composite oxide has innumerable fine particles 2, 2,... The microparticles 2 are made of cobalt, nickel and M metal elements or their compounds after the activation (reduction) treatment described later.
When the number of atoms of the cobalt, nickel and M metal elements or compounds thereof forming the microparticle 2 is A, and the number of atoms exposed on the surface of the particle 2 among these atoms is B, B / A is Dispersion.
[0020]
Assuming that the atoms exposed on the surface of the microparticles 2 are involved in the catalytic reaction, those having a dispersity close to 1 have many atoms distributed on the surface, and the active center is It is thought that it can increase and become highly active.
Further, when the particle diameter of the microparticles 2 becomes extremely small, most of the atoms forming the microparticles 2 are exposed on the surface of the particles 2, and the degree of dispersion approaches 1. Therefore, the particle size of the microparticles 2 can also serve as an index representing the degree of dispersion.
[0021]
In the catalyst of the present invention, the diameter of the fine particles 2 is less than 3.5 nm, which is a measurement limit of various measurement methods, for example, X-ray diffraction method, and therefore, the degree of dispersion is high and it is said to be in a highly dispersed state. be able to. For this reason, the number of atoms of cobalt, nickel, and M involved in the reaction is increased, the activity becomes high, the reaction proceeds stoichiometrically, and carbonaceous (carbon) precipitation is prevented.
[0022]
Next, the method for producing the reforming cobalt catalyst and the reforming nickel catalyst of the present invention will be described in detail.
The method for producing the catalyst of the present invention is carried out by a so-called coprecipitation method.
Production by the coprecipitation method begins with cobalt, nickel, magnesium, calcium, periodic table group 6A element, group 7A element, group 8 transition element excluding Co or Ni, group 1B element, group 2B element, A complete aqueous solution in which water-soluble salts such as organic salts such as acetates of Group 4B elements and lanthanoid elements and inorganic salts such as nitrates are dissolved in water is prepared. While this aqueous solution is stirred, a precipitant is added at 293 to 393 K to form a precipitate. In order to highly disperse the catalyst component, it is preferable to stir when the precipitate is generated, and it is preferable to complete the generation of the precipitate by stirring for 10 minutes or more after the precipitate is generated.
[0023]
The precipitating agent is preferably sodium and / or potassium carbonate, bicarbonate, oxalate or hydroxide. Ammonium carbonate, ammonium hydroxide, ammonia (ammonia water) and the like can also be used as a precipitant.
The addition of the precipitating agent raises the pH, and the compound composed of the above components precipitates in the form of a thermally decomposable hydroxide. The final pH of the mixture is preferably 6 or more, more preferably in the range of 8-11.
[0024]
When a precipitate is obtained, the precipitate is filtered, washed repeatedly with water or an aqueous ammonium carbonate solution, and then dried at a temperature of 373 K or higher.
Next, the dried precipitate is baked in air at a temperature of 673-873K, preferably 723-823K for 1-20 hours, preferably 2-10 hours to thermally decompose the thermally decomposable hydroxide. A fired product is obtained.
In the production method of the present invention, this firing temperature has an important meaning, and if the firing temperature is less than 673K, the intended fired product cannot be obtained. If it exceeds 873 K, the calcined product will not have sufficient mechanical strength and will be difficult to handle in the next step.
[0025]
Next, the obtained fired product is molded to obtain a molded product.
Next, this molded product is calcined in air at a temperature of 1223 to 1573 K, preferably 1223 to 1523 K for 1 to 20 hours, preferably 2 to 10 hours to obtain the target reforming catalyst.
In the production method of the present invention, the temperature at the time of calcination has an important meaning. When the calcination temperature is outside the above temperature range, a catalyst having sufficient mechanical strength cannot be obtained.
[0026]
Further, the catalyst thus obtained can be pulverized and used as a powder. However, if necessary, it can be molded by a compression molding machine and used as a tablet or a ring. These catalysts can also be used in combination with quartz sand, alumina, magnesia, calcia, and other diluents.
[0027]
Next, a method for producing a synthesis gas using such a reforming cobalt catalyst and a reforming nickel catalyst will be described.
First, the reforming catalyst is activated in advance. This activation treatment is performed by heating the catalyst in the presence of a reducing gas such as hydrogen gas at a temperature range of 773 to 1273 K, preferably 873 to 1273 K, more preferably 923 to 1273 K for about 0.5 to 30 hours. Done. The reducing gas may be diluted with an inert gas such as nitrogen gas.
This activation treatment can also be performed in a reactor that performs a reforming reaction.
[0028]
By this activation treatment, the fine particles 2, 2... On the surface of the catalyst 1 in FIG. 1 are reduced to become a Co, Ni or M metal element or a compound thereof, and the catalytic activity is expressed.
The activation treatment in the present invention is performed at a higher temperature than the activation of the conventional Co or Ni oxide-based catalyst. All conventional Co or Ni oxide-based catalysts are carried out at less than 773 K, and such activation treatment at a high temperature in the present invention may contribute to the above high dispersion.
[0029]
Hydrocarbons used as raw materials for synthesis gas include natural gas, petroleum gas, naphtha, heavy oil, crude oil, etc., hydrocarbons obtained from coal, coal sand, etc., and hydrocarbons such as methane are partly used. If it contains, it will not specifically limit. Two or more of these may be mixed.
Moreover, water (steam), carbon dioxide, oxygen, air or the like is used as the reforming substance, and two or more kinds may be mixed. Preferred modifiers are water or carbon dioxide or a mixture of water and carbon dioxide.
[0030]
The supply ratio of the hydrocarbon and the reforming substance in the reaction is expressed by a molar ratio based on the number of carbon atoms in the hydrocarbon, and the reforming substance / carbon ratio is 0.3 to 100, preferably 0.8. 3 to 10, more preferably 0.5 to 3, and in the present invention, it is not necessary to supply the modifying substance in a large excess. An inert gas such as nitrogen may coexist as a diluent in the mixed gas of the hydrocarbon and the reforming substance.
[0031]
As a specific reaction, a raw material gas composed of a hydrocarbon and a reforming substance is supplied to a reaction tube filled with the above-described reforming cobalt-based catalyst and reforming nickel-based catalyst, and the temperature is 773 to 1273K. The reaction is preferably carried out under conditions of 873 to 1273K, more preferably 923 to 1273K, and pressure conditions of 0.1 to 10 MPa, preferably 0.1 to 5 MPa, and more preferably 0.1 to 3 MPa.
[0032]
The space velocity of the raw material gas (GHSV: the raw material divided by the catalytic amount of the feed rate in terms of volume of the gas), 500~200000h -1, preferably in the range of 1000~100000h -1, more preferably 1000~70000H -1 Is desirable.
The catalyst bed can be arbitrarily selected from known forms such as a fixed bed, a moving bed, and a fluidized bed.
[0033]
In such a reforming catalyst and a method of producing a synthesis gas using the same, CoO, NiO or MOx is a complex oxide of MgO or MgO / CaO, and cobalt, nickel and M are highly dispersed. Therefore, even if a hydrocarbon such as methane and a reforming substance such as water vapor are reacted in a chemical equivalent amount or an amount close thereto, the deposition of carbonaceous matter (carbon) is suppressed and the synthesis gas is efficiently produced. Can be manufactured. For this reason, it is not necessary to supply a large excess of reforming substances such as water vapor, waste of the reforming substances is eliminated, and synthesis gas can be produced at low cost.
Further, since the catalyst is not contaminated with carbonaceous matter, a decrease in catalyst activity with time is suppressed, and the life of the catalyst is extended.
[0034]
Further, after drying the thermally decomposable hydroxide precipitate obtained by coprecipitation, primary firing was performed at a temperature in the range of 673K to 873K. Therefore, the homogenization of the crystal structure of the catalyst (resolving inconsistencies such as kinks and steps) and the diffusion in the solid proceed, resulting in further high dispersion of the active components (Co, Ni, M), and the precipitation of carbon. Can be prevented, and the catalyst life can be extended. In addition, since the catalyst is completely fired by secondary firing after decarboxylation and dehydration at the time of primary firing, a reforming catalyst having sufficient mechanical strength to withstand practical use can be obtained.
[0035]
Hereinafter, although an example is shown and the effect | action and effect of this invention are clarified, this invention is not limited to these examples.
Example 1
16.2 g of cobalt nitrate hexahydrate and 270.7 g of magnesium nitrate hexahydrate were dissolved in 500 ml of water. Subsequently, while maintaining the temperature of this solution at 323 K, 590 ml of 2 mol / L potassium carbonate aqueous solution was added to adjust the pH to 9 to produce a hydroxide precipitate consisting of two components of cobalt and magnesium. The precipitate was filtered, washed, and dried in air at 393 K for 12 hours or more. Subsequently, it baked at 723 K for 4 hours in the air, and the baked product was obtained. The fired product was molded into an arbitrary shape and then fired in air at 1453K for 5 hours to obtain a catalyst (A). The fracture strength of this catalyst (A) was 70 kg / piece.
(Example 2)
9.69 g of nickel nitrate hexahydrate and 276.3 g of magnesium nitrate hexahydrate were dissolved in 500 ml of water. Subsequently, while maintaining the temperature of this solution at 323 K, 590 ml of a 2 mol / L potassium carbonate aqueous solution was added to adjust the pH to 9, and a hydroxide precipitate consisting of two components of nickel and magnesium was produced. The precipitate was filtered, washed, and dried in air at 393 K for 12 hours or more. Subsequently, it baked at 723 K for 4 hours in the air, and the baked product was obtained. The fired product was molded into an arbitrary shape and then fired in air at 1453K for 5 hours to obtain a catalyst (B). The fracture strength of this catalyst (B) was 73 kg / piece.
(Example 3)
14.5 g of nickel nitrate hexahydrate, 272.1 g of magnesium nitrate hexahydrate, and 3.19 g of manganese nitrate hexahydrate were dissolved in 500 ml of water. Subsequently, while maintaining the temperature of this solution at 323 K, 590 ml of 2 mol / L potassium carbonate aqueous solution was added to adjust the pH to 9 to produce a hydroxide precipitate consisting of three components of nickel, magnesium and manganese. The precipitate was filtered, washed, and dried in air at 393 K for 12 hours or more. Subsequently, it baked at 723 K for 4 hours in the air, and the baked product was obtained. The fired product was molded into an arbitrary shape and then fired in air at 1453K for 5 hours to obtain a catalyst (C). The fracture strength of this catalyst (C) was 71 kg / piece.
[0036]
(Comparative Example 1)
A catalyst (D) was obtained in the same manner as in Example 1 except that the calcination temperature after drying the precipitate was 923K. The fracture strength of this catalyst (D) was 38 kg / piece.
(Comparative Example 2)
A catalyst (E) was obtained in the same manner as in Example 1 except that the calcination temperature after drying the precipitate was 1023K. The fracture strength of this catalyst (E) was 30 kg / piece.
[0037]
(Reaction example 1)
30 ml of the catalyst (A) prepared in Example 1 was charged into a pressurized fixed bed flow type reaction vessel, and reforming with methane carbon dioxide and water vapor was performed. The catalyst (A) was previously subjected to reduction treatment at 1173 K in a water vapor stream, and then a raw material gas of methane: carbon dioxide: water = 1: 0.4: 1 was pressure 2.1 MPa, temperature 1123 K, GHSV = 6000 / hr. The reaction was performed under the following conditions.
The methane conversion rate after 100 hours from the start of the reaction was 59% (the equilibrium conversion rate of methane under the reaction conditions was 59%), and the methane conversion rate after 3000 hours from the start of the reaction was 59%. .
(Reaction example 2)
30 ml of the catalyst (B) prepared in Example 2 was charged into a pressurized fixed bed flow type reaction vessel, and reforming with methane carbon dioxide and water vapor was performed. The catalyst (B) was previously subjected to reduction treatment at 1173 K in a steam flow, and then a raw material gas of methane: carbon dioxide: water = 1: 0.4: 1 was used, pressure 2.1 MPa, temperature 1123 K, GHSV = 6000 / hr. The reaction was performed under the following conditions.
The methane conversion rate after 100 hours from the start of the reaction was 59% (the equilibrium conversion rate of methane under the reaction conditions was 59%).
(Reaction example 3)
30 ml of the catalyst (C) prepared in Example 3 was charged into a pressurized fixed bed flow type reaction vessel, and reforming with methane carbon dioxide and water vapor was performed. The catalyst (C) was previously reduced at 1173 K in a water vapor flow, and then a raw material gas of methane: carbon dioxide: water = 1: 0.4: 1 was pressure 2.1 MPa, temperature 1123 K, GHSV = 6000 / hr. The reaction was performed under the following conditions.
The methane conversion rate after 100 hours from the start of the reaction was 59% (the equilibrium conversion rate of methane under the reaction conditions was 59%).
[0038]
【The invention's effect】
As described above, according to the present invention, as a reforming catalyst, CoO, NiO or MOx is used as a composite oxide with MgO or MgO / CaO and cobalt, nickel and M are highly dispersed. Even when the hydrocarbon and the reforming substance are reacted in a chemical equivalent amount or in an amount close thereto, the deposition of carbonaceous matter (carbon) can be suppressed, the synthesis gas can be obtained efficiently, and the production cost can be reduced. Further, since the catalyst is not contaminated with carbonaceous matter, a decrease in catalyst activity with time is suppressed, and the life of the catalyst is extended.
[0039]
Further, after drying the precipitate obtained by coprecipitation, primary firing was performed at a temperature in the range of 673-873K, and this fired product was molded and then secondary-fired at a temperature of 1223 to 1573K. Since the catalyst can be completely calcined by dehydration and secondary calcination, a reforming catalyst having sufficient mechanical strength to withstand practical use can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing the surface state of a catalyst of the present invention.

Claims (5)

下記式で表される組成を有する複合酸化物からなり、Coが該複合酸化物中で高分散化されていることを特徴とするリホーミング用触媒を得るための製法であって、
aCo・bMg・cCa・dO
(式中、a,b,c,dはモル分率であり、a+b+c=1、0.005≦a≦0.30、0.70≦(b+c)≦0.995、0<b≦0.995、0≦c≦0.995、d=元素が酸素と電荷均衡を保つのに必要な数である。)
上記各構成元素の水溶性塩の水溶液に共沈剤を添加して、水酸化物を沈殿せしめ、この沈殿物を乾燥後、温度673K〜873Kの範囲で一次焼成し、この焼成物を成形後、温度1223K〜1573Kの範囲で二次焼成することを特徴とするリホーミング用触媒の製法。
A production method for obtaining a reforming catalyst comprising a composite oxide having a composition represented by the following formula, wherein Co is highly dispersed in the composite oxide,
aCo ・ bMg ・ cCa ・ dO
(Where, a, b, c, d are mole fractions, a + b + c = 1, 0.005 ≦ a ≦ 0.30, 0.70 ≦ (b + c) ≦ 0.995, 0 <b ≦ 0. 995, 0 ≦ c ≦ 0.995, d = the number necessary for the element to maintain a charge balance with oxygen.)
A coprecipitation agent is added to the aqueous solution of the water-soluble salt of each of the above constituent elements to precipitate a hydroxide. After drying the precipitate, primary firing is performed at a temperature in the range of 673K to 873K, and the fired product is molded. Secondary reforming in the temperature range of 1223K to 1573K, a method for producing a reforming catalyst.
下記式で表される組成を有する複合酸化物からなり、Niが該複合酸化物中で高分散化されていることを特徴とするリホーミング用触媒を得るための製法であって、
aNi・bMg・cCa・dO
(式中、a,b,c,dはモル分率であり、a+b+c=1、0.005≦a≦0.30、0.70≦(b+c)≦0.995、0<b≦0.995、0≦c≦0.995、d=元素が酸素と電荷均衡を保つのに必要な数である。)
上記各構成元素の水溶性塩の水溶液に共沈剤を添加して、水酸化物を沈殿せしめ、この沈殿物を乾燥後、温度673K〜873Kの範囲で一次焼成し、この焼成物を成形後、温度1223K〜1573Kの範囲で二次焼成することを特徴とするリホーミング用触媒の製法。
A production method for obtaining a reforming catalyst comprising a complex oxide having a composition represented by the following formula, wherein Ni is highly dispersed in the complex oxide,
aNi ・ bMg ・ cCa ・ dO
(Where, a, b, c, d are mole fractions, a + b + c = 1, 0.005 ≦ a ≦ 0.30, 0.70 ≦ (b + c) ≦ 0.995, 0 <b ≦ 0. 995, 0 ≦ c ≦ 0.995, d = the number necessary for the element to maintain a charge balance with oxygen.)
A coprecipitation agent is added to the aqueous solution of the water-soluble salt of each of the above constituent elements to precipitate a hydroxide. After drying the precipitate, primary firing is performed at a temperature in the range of 673K to 873K, and the fired product is molded. Secondary reforming in the temperature range of 1223K to 1573K, a method for producing a reforming catalyst.
下記式で表される組成を有する複合酸化物からなり、MおよびNiが該複合酸化物中で高分散化されていることを特徴とするリホーミング用触媒を得るための製法であって、
aM・bNi・cMg・dCa・eO
(式中、a,b,c,d,eはモル分率であり、a+b+c+d=1、0.0001≦a≦0.10、0.0001≦b≦0.30、0.60≦(c+d)≦0.9998、0<c≦0.9998、0≦d<0.9998、e=元素が酸素と電荷均衡を保つのに必要な数である。また、Mはマンガンである。
上記各構成元素の水溶性塩の水溶液に共沈剤を添加して、水酸化物を沈殿せしめ、この沈殿物を乾燥後、温度673K〜873Kの範囲で一次焼成し、この焼成物を成形後、温度1223K〜1573Kの範囲で二次焼成することを特徴とするリホーミング用触媒の製法。
A process for obtaining a reforming catalyst comprising a complex oxide having a composition represented by the following formula, wherein M and Ni are highly dispersed in the complex oxide,
aM ・ bNi ・ cMg ・ dCa ・ eO
(Where, a, b, c, d and e are mole fractions, a + b + c + d = 1, 0.0001 ≦ a ≦ 0.10, 0.0001 ≦ b ≦ 0.30, 0.60 ≦ (c + d ) ≦ 0.9998, 0 <c ≦ 0.9998, 0 ≦ d <0.9998, e = the number necessary for the element to maintain a charge balance with oxygen, and M is manganese. )
A coprecipitation agent is added to the aqueous solution of the water-soluble salt of each of the above constituent elements to precipitate a hydroxide. After drying the precipitate, primary firing is performed at a temperature in the range of 673K to 873K, and the fired product is molded. Secondary reforming in the temperature range of 1223K to 1573K, a method for producing a reforming catalyst.
請求項1ないし3のいずれかに記載のリホーミング用触媒の製法で得られたリホーミング用触媒を用いて、炭化水素と改質物質から合成ガスを得ることを特徴とする合成ガスの製法。A process for producing a synthesis gas, characterized in that a synthesis gas is obtained from a hydrocarbon and a reforming substance using the reforming catalyst obtained by the process for producing a reforming catalyst according to any one of claims 1 to 3 . 請求項4に記載の合成ガスの製法において、炭化水素と改質物質との供給比を、改質物質/炭素比=0.3〜100とすることを特徴とする合成ガスの製法。5. The method for producing a synthesis gas according to claim 4 , wherein a supply ratio of the hydrocarbon and the reforming material is a reforming material / carbon ratio = 0.3 to 100.
JP2000318479A 2000-10-18 2000-10-18 Production method of reforming catalyst and production method of synthesis gas using the same Expired - Fee Related JP4505127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000318479A JP4505127B2 (en) 2000-10-18 2000-10-18 Production method of reforming catalyst and production method of synthesis gas using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000318479A JP4505127B2 (en) 2000-10-18 2000-10-18 Production method of reforming catalyst and production method of synthesis gas using the same

Publications (2)

Publication Number Publication Date
JP2002126530A JP2002126530A (en) 2002-05-08
JP4505127B2 true JP4505127B2 (en) 2010-07-21

Family

ID=18797101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000318479A Expired - Fee Related JP4505127B2 (en) 2000-10-18 2000-10-18 Production method of reforming catalyst and production method of synthesis gas using the same

Country Status (1)

Country Link
JP (1) JP4505127B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198960A1 (en) 2007-10-11 2010-06-23 Japan Petroleum Exploration Co., Ltd. Catalyst for hydrocarbon reforming and process for producing synthesis gas with the same
JP4639247B2 (en) * 2008-07-23 2011-02-23 石油資源開発株式会社 Hydrocarbon reforming catalyst, process for producing the same, and process for producing synthesis gas using the same
JP5659533B2 (en) * 2010-03-31 2015-01-28 新日鐵住金株式会社 Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5659536B2 (en) * 2010-03-31 2015-01-28 新日鐵住金株式会社 Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5659532B2 (en) * 2010-03-31 2015-01-28 新日鐵住金株式会社 Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5659534B2 (en) * 2010-03-31 2015-01-28 新日鐵住金株式会社 Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
JP5972678B2 (en) * 2012-06-14 2016-08-17 三菱化学株式会社 Synthesis gas production catalyst and synthesis gas production method
JP5776737B2 (en) * 2013-07-22 2015-09-09 新日鐵住金株式会社 Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977501A (en) * 1995-09-08 1997-03-25 Sekiyu Shigen Kaihatsu Kk Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials
JPH09131533A (en) * 1995-11-08 1997-05-20 Sekiyu Shigen Kaihatsu Kk Catalyst composition for production of synthetic gas and production of synthetic gas using same
JPH11290685A (en) * 1998-04-14 1999-10-26 Japan Petroleum Exploration Co Ltd Cobalt catalyst for reforming and preparation of synthetic gas using the catalyst
JPH11342335A (en) * 1998-06-01 1999-12-14 Akiyoshi Asaki Preparation of reforming catalyst for hydrocarbons
JP2000000469A (en) * 1998-04-14 2000-01-07 Japan Petroleum Exploration Co Ltd Nickel based catalyst for reforming and production of synthetic gas using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977501A (en) * 1995-09-08 1997-03-25 Sekiyu Shigen Kaihatsu Kk Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials
JPH09131533A (en) * 1995-11-08 1997-05-20 Sekiyu Shigen Kaihatsu Kk Catalyst composition for production of synthetic gas and production of synthetic gas using same
JPH11290685A (en) * 1998-04-14 1999-10-26 Japan Petroleum Exploration Co Ltd Cobalt catalyst for reforming and preparation of synthetic gas using the catalyst
JP2000000469A (en) * 1998-04-14 2000-01-07 Japan Petroleum Exploration Co Ltd Nickel based catalyst for reforming and production of synthetic gas using the same
JPH11342335A (en) * 1998-06-01 1999-12-14 Akiyoshi Asaki Preparation of reforming catalyst for hydrocarbons

Also Published As

Publication number Publication date
JP2002126530A (en) 2002-05-08

Similar Documents

Publication Publication Date Title
JP4355047B2 (en) Reforming catalyst and method for producing synthesis gas using the same
JP4335356B2 (en) Nickel-based catalyst for reforming and production method of synthesis gas using the same
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP4222827B2 (en) Hydrocarbon reforming method
JP3761947B2 (en) Catalyst composition for producing synthesis gas and method for producing synthesis gas using the same
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JP4505126B2 (en) Reforming catalyst manufacturing method
JP4262798B2 (en) Cobalt catalyst for reforming and synthesis gas production method using the same
JP2002126528A (en) Method for preparing reforming catalyst
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
EP0592958B1 (en) A process and a catalyst for producing of hydrogen
JPH0977501A (en) Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials
JP4505124B2 (en) Reforming catalyst manufacturing method
JP4505123B2 (en) Reforming catalyst manufacturing method
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
JP2002173304A (en) Method of producing synthetic gas by autothermal reforming
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
JP4505122B2 (en) Method for producing reforming catalyst
KR101969554B1 (en) Fe-Co based complex catalyst for producing Synthetic-Natural-Gas of higher heating level and Use thereof
JP4776403B2 (en) Hydrocarbon reforming catalyst
JP2002173303A (en) Method of producing synthetic gas
JP4663098B2 (en) Production method of hydrogen
JPH0371174B2 (en)
JP2004000848A (en) Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide
JP2007275756A (en) Reforming catalyst of hydrocarbon

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees