JP2004000848A - Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide - Google Patents

Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide Download PDF

Info

Publication number
JP2004000848A
JP2004000848A JP2002160179A JP2002160179A JP2004000848A JP 2004000848 A JP2004000848 A JP 2004000848A JP 2002160179 A JP2002160179 A JP 2002160179A JP 2002160179 A JP2002160179 A JP 2002160179A JP 2004000848 A JP2004000848 A JP 2004000848A
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
hydrogen gas
gas
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002160179A
Other languages
Japanese (ja)
Inventor
Katsuomi Takehira
竹平 勝臣
Tetsuya Shishido
宍戸 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Industrial Promotion Organization
Original Assignee
Hiroshima Industrial Promotion Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Industrial Promotion Organization filed Critical Hiroshima Industrial Promotion Organization
Priority to JP2002160179A priority Critical patent/JP2004000848A/en
Publication of JP2004000848A publication Critical patent/JP2004000848A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for removing CO gas contained in hydrogen gas by reacting the CO gas with water vapor efficiently at a low temperature. <P>SOLUTION: The catalyst for removing carbon monoxide contained in hydrogen gas as carbon dioxide by reacting the carbon monoxide with water vapor comprises aluminum oxide and a metal oxide comprising magnesium oxide and zinc oxide and carrying metallic copper. In the catalyst, the atomic ratio of magnesium to the total of zinc and magnesium [Mg/(Zn+Mg)] is 0.05-35. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素ガス中に含まれる一酸化炭素を水蒸気と反応させて炭酸ガスとして除去するための触媒及び方法に関するものである。
【0002】
【従来の技術】
水素を燃料とする固体高分子型燃料電池は、クリーン且つ効率的な家庭用あるいは自動車用等の小規模分散型電力供給源として期待されている。固体高分子型燃料電池に、供給する水素はオンサイトでのメタノールや炭化水素の改質により供給する場合に、改質ガスに含まれる微量のCOによってPt電極が被毒され効率が低下する。近年、COによる被毒に強い電極触媒の開発(一例としてPt−Ru系電極)が行われているが、未だ許容される改質ガス中のCO濃度は、20ppm程度であり、改質ガス中のCOの除去は、水素燃料電池システムを構築する上で極めて重要な課題となっている。改質ガス中のCO濃度の低減には、下記に示すCOシフト反応(式1)とCO選択酸化反応(式2)の組み合わせが利用される。
CO(g)+HO(g)→CO(g)+H(g)     (1)
(ΔH298=−9.8kcal/mol)
CO(g)+1/2O(g)→CO(g)         (2)
水素ガス中のCO濃度は、通常、前記COシフト反応で1%以下、CO選択酸化反応で10ppm以下にまで低減される。
【0003】
水性ガスシフト反応は工業的に重要な反応で、CO除去及びH/CO比調整法として用いられており、前記で表される可逆的な発熱反応である。COシフト反応は熱力学的平衡の制約を強く受ける反応であり、低温ほど平衡転化率は高くなる。工業的には高温用の鉄・クロム系触媒(320〜450℃)と低温用の銅・亜鉛系触媒(150〜300℃)が使用されているが、熱力学的平衡の点で有利な低温用触媒に移行しつつある。銅・亜鉛系触媒ついては、熱的および酸化的雰囲気に対する耐久性の向上が望まれている。
【0004】
【発明が解決しようとする課題】
本発明は、水素ガス中に含まれるCOガスを低温度で効率よく水蒸気と反応させて除去するための触媒及び方法を提供することをその課題とする。
【0005】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。
即ち、本発明によれば、水素ガス中に含まれる一酸化炭素を水蒸気と反応させて炭酸ガスとして除去するための触媒であって、酸化アルミニウム、酸化マグネシウム及び酸化亜鉛からなる金属酸化物に金属銅を担持させたものからなり、該亜鉛と該マグネシウムの合計量に対する該マグネシウムの原子比[Mg]/([Zn]+[Mg])が0.05〜35の範囲にあることを特徴とする前記触媒が提供される。
また、本発明によれば、水素ガス中に含まれる一酸化炭素を触媒の存在下で水蒸気と反応させて炭酸ガスとして除去する方法において、該触媒として前記(1)に記載の触媒を用いることを特徴とする水素ガス中に含まれる一酸化炭素の除去方法が提供される。
【0006】
【発明の実施の形態】
本発明の触媒は、酸化亜鉛と酸化マグネシウムと酸化アルミニウムからなる金属酸化物に金属銅を担持させた触媒(Cu/ZnO/MgO/Al)である。
この触媒において、金属酸化物中の酸化マグネシウムの割合は、亜鉛とマグネシウムとの合計量に対するマグネシウム原子比[Mg]/([Mg]+[Zn]で表わして、0.01〜0.35、好ましくは0.02〜0.3、より好ましくは0.04〜0.25である。
【0007】
本発明の触媒において、金属銅の割合は、触媒中の全金属に対する銅の原子比[[Cu]/([Cu]+[Zn]+[Mg]+[Al])]で表して、0.1〜0.9、好ましくは0.4〜0.6である。金属銅の平均粒径は5.0〜60.0nm、好ましくは5.0〜40.0nmである。また、その金属銅の表面積は35〜45m/gである。触媒のBET表面積は、65〜75m/gである。
亜鉛の割合は、亜鉛とアルミニウムに対する亜鉛の原子比[[Zn]/([Zn]+[Al])]で表わして、0.5〜0.95、好ましくは0.7〜0.9である。
【0008】
本発明の触媒は、従来公知の共沈法又は尿素均一沈殿法により調製することができる(「触媒」、43(2)、90(2001)。
共沈法による触媒調製においては、各金属の硝酸塩水溶液を調製する工程、この水溶液および水酸化ナトリウム水溶液を炭酸水素ナトリウムに水溶液に同時に加えて沈殿を生成させる工程、この沈殿を空気中で焼成する工程および焼成物を水素還元する工程を合む。
前記沈殿工程における水酸化ナトリウム水溶液の滴下量は、通常その水溶液のpHが9.0〜12.0、好ましくは9.5〜11.0の範囲になるような量である。
前記沈殿物の焼成工程における焼成温度は、250〜500℃、好ましくは280〜400℃である。その焼成物の水素還元工程において、その水素還元温度は、酸化銅が選択的に金属銅に還元される温度、通常150〜400℃、好ましくは、180℃〜350℃である。
【0009】
尿素均一沈殿法による触媒調製においては、各金属の硝酸塩水溶液を調製する工程、この水溶液に尿素を加えて各金属の水酸化物の沈殿を生成させる工程、この沈殿を空気中で焼成する工程および焼成物を水素還元する工程を含む。
前記沈殿工程における尿素の添加割合は、各金属の沈殿を形成させる割合、通常その水溶液のpHが5.5〜8.5、好ましくは6.0〜8.0の範囲になるような量である。
前記沈殿物の焼成工程における焼成温度は、250〜500℃、好ましくは、280〜400℃である。その焼成物の水素還元工程において、その水素還元温度は、酸化銅が選択的に金属銅に還元される温度、通常150〜400℃、好ましくは180℃〜350℃である。
【0010】
本発明の触媒は、粉末状である他、顆粒状、円柱状、筒体状、ハニカム型等の各種の形状であることができる。
【0011】
本発明の触媒を用いて水素ガス中の一酸化炭素(CO)水蒸気(HO)を反応させるには、COを含む水素ガスと水蒸気との混合ガスを本発明の触媒と接触させればよい。この場合、その接触温度(反応温度)は、100〜300℃、好ましくは150〜250℃である。また、そのガス空間速度(GHSV)は、500〜30000mlmin−1、好ましくは800〜20000mlmin−1である。水蒸気の使用割合は、CO1モル当り、1〜5モル、好ましくは1.1〜3モルである。水素ガス中に含まれるCOは、1.0〜3.0モル%、特に1.2〜2.0モル%である。
本発明の方法は、固定床反応方式や流動床方式等の各種の反応方式で実施することができる。
【0012】
【実施例】
次に本発明を実施例によりさらに詳細に説明する。
【0013】
実施例1
(触媒の調製例)
尿素均一沈殿法により各種の触媒を調製した。この場合、各金属は以下に示す硝酸塩として用いた。
(1)Cu:Cu(NO・3H
(2)Mg:Mg(NO・6H
(3)Zn:Zn(NO・6H
(4)Al:Al(NO・9H
【0014】
前記金属硝酸塩および尿素40gを1.0リットルの純水に加えて、表1に示す組成の金属を含む水溶液を調製した。次にこの水溶液を攪拌しながら、90℃に加熱し、24時間保持した。生成した沈殿を濾別、水洗後、110℃で乾燥して触媒前駆体を得た。
この沈澱を含む水溶液を90℃で12時間保持した後、その沈澱を濾別し、水洗し、110℃で乾燥して、触媒前駆体を得た。この触媒前駆体を空気中で300℃で5時間焼成した。得られた焼成物を粉砕し、成形した後、20%v/vの水素ガスを用いて温度350℃で0.5時間還元して還元物を得た。このものは、そのCu成分が微粒子状でMg、Zn及びAlを含む酸化物中に存在する構造を有していることを確認した。そのCu成分の粒径は、9.0nm以下の超微粒子状であった。
【0015】
前記のようにして得られた各触媒の性状を表1に示す。
表1において、Mg/(Zn+Mg)(原子比)は、調製された触媒をICPにより測定した値である。また、Cuの表面積は、NOパルス法により求めたものである。
【0016】
【表1】

Figure 2004000848
【0017】
実施例2
(反応例)
実施例1で得た各粉末状触媒(平均粒径:450nm)の性能を評価するために、該触媒の存在下でCOに対して水蒸気を反応させた。この反応は、以下のようにして行った。
粉末状触媒200mgを石英管(直径:15mm)に充填して触媒管を作った。
この触媒管(反応器)に対して、先ず、Nガスを流通させ、昇温速度:20℃/分で150℃に昇温した後、CO/水蒸気/窒素ガスからなる混合ガスを流通させて反応を開始した。この場合の混合ガスの組成(モル比)は、CO/HO/N=1.45/4.35/94.2であった。反応応力は(0.1)MPaであり、混合ガスのGHSVは、15000mlmin−1であった。
前記反応開始1時間後の反応結果を表2に示す。
【0018】
【表2】
Figure 2004000848
【0019】
実施例3
実施例1に示したNo.2の触媒を用いるとともに、混合ガスとして、CO/スチーム/H(モル比=1.45/4.35/94.2)からなる混合ガスを用いた以外は実施例2と同様にして実験を行った。その結果、80.5%のCO転化率が得られた。
【0020】
【発明の効果】
本発明によれば、活性の向上したCOシフト反応用触媒が提供される。この触媒によれば、水素ガス中のCOを高い転化率でCOとして除去することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst and a method for reacting carbon monoxide contained in hydrogen gas with water vapor to remove carbon monoxide as carbon dioxide gas.
[0002]
[Prior art]
BACKGROUND ART A polymer electrolyte fuel cell using hydrogen as fuel is expected as a clean and efficient small-scale distributed power supply source for home use or automobile use. When hydrogen supplied to the polymer electrolyte fuel cell is supplied by on-site reforming of methanol or hydrocarbons, the Pt electrode is poisoned by a small amount of CO contained in the reformed gas, and the efficiency is reduced. In recent years, an electrode catalyst resistant to poisoning by CO has been developed (for example, a Pt-Ru-based electrode), but the CO concentration in the reformed gas that is still allowable is about 20 ppm, Removal of CO has become an extremely important issue in building a hydrogen fuel cell system. To reduce the CO concentration in the reformed gas, a combination of a CO shift reaction (Equation 1) and a CO selective oxidation reaction (Equation 2) shown below is used.
CO (g) + H 2 O (g) → CO 2 (g) + H 2 (g) (1)
(ΔH 298 = −9.8 kcal / mol)
CO (g) + 1 / 2O 2 (g) → CO 2 (g) (2)
The CO concentration in the hydrogen gas is usually reduced to 1% or less in the CO shift reaction and to 10 ppm or less in the CO selective oxidation reaction.
[0003]
The water gas shift reaction is an industrially important reaction, which is used as a method for removing CO and adjusting the H 2 / CO ratio, and is a reversible exothermic reaction described above. The CO shift reaction is a reaction that is strongly restricted by thermodynamic equilibrium, and the equilibrium conversion increases as the temperature decreases. Industrially, a high temperature iron / chromium catalyst (320-450 ° C) and a low temperature copper / zinc catalyst (150-300 ° C) are used, but low temperature is advantageous in terms of thermodynamic equilibrium. Are shifting to catalysts for industrial use. It is desired that copper / zinc catalysts have improved durability against thermal and oxidizing atmospheres.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a catalyst and a method for efficiently reacting and removing CO gas contained in hydrogen gas with water vapor at a low temperature and removing the same.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
That is, according to the present invention, a catalyst for reacting carbon monoxide contained in hydrogen gas with water vapor to remove it as carbon dioxide gas, the metal oxide comprising aluminum oxide, magnesium oxide and zinc oxide It is made of a material carrying copper, and has an atomic ratio [Mg] / ([Zn] + [Mg]) of the magnesium to the total amount of the zinc and the magnesium in the range of 0.05 to 35. Is provided.
Further, according to the present invention, in the method for removing carbon monoxide contained in hydrogen gas with water vapor in the presence of a catalyst to remove carbon monoxide as carbon dioxide gas, the catalyst according to (1) is used as the catalyst. A method for removing carbon monoxide contained in hydrogen gas is provided.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst of the present invention is a catalyst (Cu / ZnO / MgO / Al 2 O 3 ) in which metal copper is supported on a metal oxide composed of zinc oxide, magnesium oxide and aluminum oxide.
In this catalyst, the ratio of magnesium oxide in the metal oxide is 0.01 to 0.35, expressed as a magnesium atomic ratio [Mg] / ([Mg] + [Zn]) based on the total amount of zinc and magnesium. Preferably it is 0.02-0.3, More preferably, it is 0.04-0.25.
[0007]
In the catalyst of the present invention, the ratio of metallic copper is represented by the atomic ratio of copper to all metals in the catalyst [[Cu] / ([Cu] + [Zn] + [Mg] + [Al])], 0.1 to 0.9, preferably 0.4 to 0.6. The average particle size of metallic copper is 5.0 to 60.0 nm, preferably 5.0 to 40.0 nm. The surface area of the metallic copper is 35 to 45 m 2 / g. BET surface area of the catalyst is 65~75m 2 / g.
The ratio of zinc is represented by the atomic ratio of zinc to zinc and aluminum [[Zn] / ([Zn] + [Al])], and is 0.5 to 0.95, preferably 0.7 to 0.9. is there.
[0008]
The catalyst of the present invention can be prepared by a conventionally known coprecipitation method or urea uniform precipitation method ("Catalyst", 43 (2), 90 (2001)).
In the preparation of a catalyst by the coprecipitation method, a step of preparing a nitrate aqueous solution of each metal, a step of simultaneously adding this aqueous solution and an aqueous solution of sodium hydroxide to an aqueous solution of sodium hydrogen carbonate to generate a precipitate, and calcining the precipitate in the air The step and the step of reducing the calcined product with hydrogen are combined.
The amount of the aqueous sodium hydroxide solution added in the precipitation step is generally such that the pH of the aqueous solution is in the range of 9.0 to 12.0, preferably 9.5 to 11.0.
The firing temperature in the firing step of the precipitate is 250 to 500 ° C, preferably 280 to 400 ° C. In the hydrogen reduction step of the calcined product, the hydrogen reduction temperature is a temperature at which copper oxide is selectively reduced to metallic copper, usually 150 to 400 ° C, preferably 180 to 350 ° C.
[0009]
In the catalyst preparation by the urea uniform precipitation method, a step of preparing a nitrate aqueous solution of each metal, a step of adding urea to this aqueous solution to generate a precipitate of a hydroxide of each metal, a step of calcining the precipitate in air, and A step of reducing the calcined product with hydrogen.
The addition ratio of urea in the precipitation step is a ratio for forming a precipitate of each metal, usually in such an amount that the pH of the aqueous solution is in the range of 5.5 to 8.5, preferably 6.0 to 8.0. is there.
The firing temperature in the step of firing the precipitate is from 250 to 500 ° C, preferably from 280 to 400 ° C. In the hydrogen reduction step of the calcined product, the hydrogen reduction temperature is a temperature at which copper oxide is selectively reduced to metallic copper, usually 150 to 400 ° C, preferably 180 to 350 ° C.
[0010]
The catalyst of the present invention may be in various forms such as a granular form, a cylindrical form, a cylindrical form, and a honeycomb form, in addition to a powder form.
[0011]
In order to react carbon monoxide (CO) water vapor (H 2 O) in hydrogen gas using the catalyst of the present invention, a mixed gas of hydrogen gas containing CO and water vapor is brought into contact with the catalyst of the present invention. Good. In this case, the contact temperature (reaction temperature) is 100 to 300 ° C, preferably 150 to 250 ° C. The gas hourly space velocity (GHSV) is 500 to 30000 mlmin -1 , preferably 800 to 20,000 mlmin -1 . The usage ratio of steam is 1 to 5 moles, preferably 1.1 to 3 moles per mole of CO. The amount of CO contained in the hydrogen gas is 1.0 to 3.0 mol%, particularly 1.2 to 2.0 mol%.
The method of the present invention can be carried out in various reaction systems such as a fixed bed reaction system and a fluidized bed system.
[0012]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[0013]
Example 1
(Example of catalyst preparation)
Various catalysts were prepared by the urea homogeneous precipitation method. In this case, each metal was used as a nitrate shown below.
(1) Cu: Cu (NO 3) 2 · 3H 2 O
(2) Mg: Mg (NO 3) 2 · 6H 2 O
(3) Zn: Zn (NO 3 ) 2 .6H 2 O
(4) Al: Al (NO 3) 3 · 9H 2 O
[0014]
40 g of the metal nitrate and urea were added to 1.0 liter of pure water to prepare an aqueous solution containing a metal having the composition shown in Table 1. Next, this aqueous solution was heated to 90 ° C. with stirring and maintained for 24 hours. The resulting precipitate was separated by filtration, washed with water, and dried at 110 ° C. to obtain a catalyst precursor.
After keeping the aqueous solution containing the precipitate at 90 ° C. for 12 hours, the precipitate was separated by filtration, washed with water, and dried at 110 ° C. to obtain a catalyst precursor. The catalyst precursor was calcined in air at 300 ° C. for 5 hours. The obtained fired product was pulverized and molded, and then reduced using a hydrogen gas of 20% v / v at a temperature of 350 ° C. for 0.5 hour to obtain a reduced product. This was confirmed to have a structure in which the Cu component was present in the form of fine particles in an oxide containing Mg, Zn and Al. The particle size of the Cu component was in the form of ultrafine particles of 9.0 nm or less.
[0015]
Table 1 shows the properties of each catalyst obtained as described above.
In Table 1, Mg / (Zn + Mg) (atomic ratio) is a value obtained by measuring the prepared catalyst by ICP. The surface area of Cu was determined by the N 2 O pulse method.
[0016]
[Table 1]
Figure 2004000848
[0017]
Example 2
(Example of reaction)
In order to evaluate the performance of each of the powdered catalysts (average particle diameter: 450 nm) obtained in Example 1, steam was reacted with CO in the presence of the catalyst. This reaction was performed as follows.
A catalyst tube was prepared by filling 200 mg of the powdered catalyst into a quartz tube (diameter: 15 mm).
First, N 2 gas is passed through the catalyst tube (reactor), the temperature is raised to 150 ° C. at a rate of temperature rise of 20 ° C./min, and then a mixed gas composed of CO / steam / nitrogen gas is passed. To initiate the reaction. The composition (molar ratio) of the mixed gas in this case was CO / H 2 O / N 2 = 1.45 / 4.35 / 94.2. The reaction stress was (0.1) MPa, and the GHSV of the mixed gas was 15000 ml min -1 .
Table 2 shows the reaction results one hour after the start of the reaction.
[0018]
[Table 2]
Figure 2004000848
[0019]
Example 3
No. 1 shown in the first embodiment. Experiment 2 was carried out in the same manner as in Example 2, except that the mixed gas of CO / steam / H 2 (molar ratio = 1.45 / 4.35 / 94.2) was used as the mixed gas while using the catalyst of Example 2. Was done. As a result, a CO conversion of 80.5% was obtained.
[0020]
【The invention's effect】
According to the present invention, a catalyst for a CO shift reaction having improved activity is provided. According to this catalyst, CO in hydrogen gas can be removed as CO 2 at a high conversion rate.

Claims (3)

水素ガス中に含まれる一酸化炭素を水蒸気と反応させて炭酸ガスとして除去するための触媒であって、酸化アルミニウム、酸化マグネシウム及び酸化亜鉛からなる金属酸化物に金属銅を担持させたものからなり、該亜鉛と該マグネシウムの合計量に対する該マグネシウムの原子比[Mg]/([Zn]+[Mg])が0.01〜0.35の範囲にあることを特徴とする前記触媒。A catalyst for reacting carbon monoxide contained in hydrogen gas with water vapor to remove it as carbon dioxide gas, comprising a metal oxide composed of aluminum oxide, magnesium oxide and zinc oxide with metal copper supported thereon. And the atomic ratio [Mg] / ([Zn] + [Mg]) of the magnesium to the total amount of the zinc and the magnesium is in the range of 0.01 to 0.35. 触媒を構成する全金属に対する銅の原子比([Cu]/[Cu]+[Zn]+[Mg]+[Al])が、0.1〜0.9の範囲にあることを特徴とする請求項1に記載の触媒。The atomic ratio of copper to all metals constituting the catalyst ([Cu] / [Cu] + [Zn] + [Mg] + [Al]) is in the range of 0.1 to 0.9. The catalyst according to claim 1. 水素ガス中に含まれる一酸化炭素を触媒の存在下で水蒸気と反応させて炭酸ガスとして除去する方法において、該触媒として請求項1又は2に記載の触媒を用いることを特徴とする水素ガス中に含まれる一酸化炭素の除去方法。A method for removing carbon monoxide contained in hydrogen gas by reacting with water vapor in the presence of a catalyst as carbon dioxide gas, wherein the catalyst according to claim 1 or 2 is used as the catalyst. For removing carbon monoxide contained in methane.
JP2002160179A 2002-05-31 2002-05-31 Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide Pending JP2004000848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160179A JP2004000848A (en) 2002-05-31 2002-05-31 Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160179A JP2004000848A (en) 2002-05-31 2002-05-31 Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide

Publications (1)

Publication Number Publication Date
JP2004000848A true JP2004000848A (en) 2004-01-08

Family

ID=30429685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160179A Pending JP2004000848A (en) 2002-05-31 2002-05-31 Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide

Country Status (1)

Country Link
JP (1) JP2004000848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223985A (en) * 2005-02-17 2006-08-31 Catalysts & Chem Ind Co Ltd Water gas shift reaction catalyst
JP2009028694A (en) * 2007-07-30 2009-02-12 Mitsubishi Heavy Ind Ltd Co shift catalyst, its manufacturing method, fuel reforming apparatus and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223985A (en) * 2005-02-17 2006-08-31 Catalysts & Chem Ind Co Ltd Water gas shift reaction catalyst
JP2009028694A (en) * 2007-07-30 2009-02-12 Mitsubishi Heavy Ind Ltd Co shift catalyst, its manufacturing method, fuel reforming apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP5678041B2 (en) Methanol steam reforming catalyst
JP5778309B2 (en) Hydrogen production catalyst and hydrogen production method using the same
WO2007029862A1 (en) Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
Sohrabi et al. Synthesis, characterization, and catalytic activity of Ni/CeMnO2 catalysts promoted by copper, cobalt, potassium and iron for ethanol steam reforming
WO2004103555A1 (en) Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system
JP2003320254A (en) Catalyst for water gas shift reaction and steam reforming reaction of methanol
EP1312412B1 (en) Process for producing hydrogen-containing gas
JPH11106770A (en) Method and apparatus for power generation with dimethyl ether modification gas
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
EP1298089B1 (en) Method for obtaining hydrogen by partial methanol oxidation
JP4505127B2 (en) Production method of reforming catalyst and production method of synthesis gas using the same
JP2004000848A (en) Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JPH10194703A (en) Catalyst for producing synthesis gas and production of synthesis gas
JP4328941B2 (en) Method for producing hydrogen-containing gas
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JPS59189937A (en) Preparation of steam reforming catalyst of methanol
JP2003265961A (en) Catalyst and method for steam-reforming of methanol
JP2004136223A (en) Catalyst for dimethyl ether reformation and production method for hydrogen-containing gas using the catalyst
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JP4799312B2 (en) Synthesis gas production catalyst
JP3773967B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP4209868B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP2003154270A (en) Hydrogen production catalyst and method for producing hydrogen using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050405

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317