JP2002059005A - Methanol modifying catalyst, method for manufacturing the same and methanol modifying method - Google Patents

Methanol modifying catalyst, method for manufacturing the same and methanol modifying method

Info

Publication number
JP2002059005A
JP2002059005A JP2000248960A JP2000248960A JP2002059005A JP 2002059005 A JP2002059005 A JP 2002059005A JP 2000248960 A JP2000248960 A JP 2000248960A JP 2000248960 A JP2000248960 A JP 2000248960A JP 2002059005 A JP2002059005 A JP 2002059005A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
zinc
methanol
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000248960A
Other languages
Japanese (ja)
Inventor
Fumihiro Haga
史浩 羽賀
Isao Ehama
勲 江浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000248960A priority Critical patent/JP2002059005A/en
Publication of JP2002059005A publication Critical patent/JP2002059005A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To produce a methanol modifying catalyst having high activity, selectivity and durability, excellent in hydrogen manufacturing efficiency and capable of also realizing a compact fuel modifying apparatus, to provide a method for manufacturing the same and a methanol modifying method. SOLUTION: The methanol modifying catalyst is obtained by dispersing zinc oxide and/or aluminum oxide and copper oxide in a mixed solution of a water soluble compound of platinum and/or palladium and a water soluble compound of zinc to form oxides of platinum and/or palladium and zinc. Zinc oxide contained in the oxides and the water-soluble compound of platinum and/or palladium form an alloy by heat treatment. Zinc oxide and/or aluminum oxide and copper oxide are dispersed in the mixed solution of the water soluble compound of platinum and/or palladium and the water soluble compound of zinc in a predetermined ratio and this mixed solution is dried and baked to manufacture the methanol modifying catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールを改質
して、水素含有ガスを製造するための燃料改質装置に用
いられる触媒に係り、更に詳細には、固体高分子型燃料
電池やリン酸型燃料電池等の燃料製造などに適してい
て、未反応の残留メタノールが少なく、一酸化炭素(C
O)の生成量を低く抑えることができ、また燃料改質装
置の起動性を向上し得る燃料改質装置用のメタノール改
質触媒、その製造方法及びメタノール改質方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst used in a fuel reformer for producing hydrogen-containing gas by reforming methanol. It is suitable for the production of fuels such as acid fuel cells, etc.
The present invention relates to a methanol reforming catalyst for a fuel reformer, which can reduce the amount of O) generated and can improve the startability of the fuel reformer, a method for producing the same, and a methanol reforming method.

【0002】[0002]

【従来の技術】従来から、メタノール燃料が触媒の存在
下で比較的容易に水素を主成分とするガスに改質される
ことはよく知られている。特に、次式(1) CHOH+HO→CO+3H−11.8kcal/mol…(1) で表される、水蒸気改質と称される水の共存下における
反応により、高い水素含有量のガスに改質される。
2. Description of the Related Art It is well known that methanol fuel is relatively easily reformed into a gas containing hydrogen as a main component in the presence of a catalyst. In particular, a high hydrogen content is obtained by a reaction represented by the following formula (1): CH 3 OH + H 2 O → CO 2 + 3H 2 -11.8 kcal / mol (1) in the presence of water called steam reforming. Reformed into a quantity of gas.

【0003】ところが、水蒸気改質反応は吸熱反応であ
るため、この反応を行う改質装置では、バーナやヒータ
等を設置して加熱を行い、改質反応に必要な熱量を供給
しなければならず、装置構成が複雑・大型化するのみな
らず、起動性や応答性にも劣るという問題があった。ま
た、このことは、従来技術による改質触媒では、水蒸気
改質反応を進行させるのに要する熱量を反応管の外部か
ら供給されなければならず、この結果、このような改質
触媒を使用する以上、改質装置のコンパクト化、起動性
及び応答性などが不十分になることを意味している。
[0003] However, since the steam reforming reaction is an endothermic reaction, in a reforming apparatus that performs this reaction, a burner, a heater, or the like must be installed to perform heating to supply the heat required for the reforming reaction. In addition, there is a problem that not only the device configuration becomes complicated and large, but also the startability and the response are poor. This also means that in the reforming catalyst according to the prior art, the amount of heat required to advance the steam reforming reaction must be supplied from outside the reaction tube, and as a result, such a reforming catalyst is used. As described above, this means that the reformer becomes insufficient in compactness, startability, responsiveness, and the like.

【0004】かかる問題に対しては、吸熱反応である上
記(1)式で表される燃料の水蒸気改質反応と、発熱反
応である次式(2) CHOH+1/2O→CO+2H…(2) で表される酸化反応とをほぼ同時に進行させるオートサ
ーマル改質反応の利用がが有望視されており、種々検討
されている。
[0004] In order to solve such a problem, the steam reforming reaction of the fuel represented by the above formula (1), which is an endothermic reaction, and the following formula (2), which is an exothermic reaction, CH 3 OH + 1 / 2O 2 → CO 2 + 2H 2 ... (2) substantially utilization of progression is to autothermal reforming reaction simultaneously an oxidation reaction and which is expressed by are promising, have been studied.

【0005】しかし、このオートサーマル反応において
は、燃料と水に空気又は酸素を供給して反応を行う必要
があり、この際、水蒸気改質反応に高選択性を示し汎用
されていた銅−亜鉛系触媒を用いると、酸素の存在によ
る活性劣化及び発熱反応による熱劣化が起こり、特に長
時間の連続運転を実施した場合には、その活性及び選択
性が連続的に低下することになる。また、かかる不具合
は特に高温(250℃以上)の反応下で顕著であり、よ
って、比較的高温下でのオートサーマル反応の長時間実
施は困難であるなどという問題が生じた。
[0005] However, in this autothermal reaction, it is necessary to supply air or oxygen to the fuel and water to carry out the reaction. In this case, copper-zinc, which has a high selectivity to the steam reforming reaction and has been widely used, is required. When a system catalyst is used, activity degradation due to the presence of oxygen and thermal degradation due to an exothermic reaction occur. Particularly, when a long-time continuous operation is performed, the activity and selectivity are continuously reduced. In addition, such a problem is remarkable particularly in a reaction at a high temperature (250 ° C. or higher), and therefore, there is a problem that it is difficult to perform an autothermal reaction at a relatively high temperature for a long time.

【0006】この問題に対し、従来は、触媒に耐熱性を
付与すべく、アルミナや酸化物などの担体に白金及びパ
ラジウムなどの貴金属を担持した触媒(特開昭58−1
74237号公報、同58−177153号公報及び同
59−199043号公報)や、ニッケルを主成分とす
る触媒(特開昭50−49021号公報、同51−68
488号公報及び同51−122102号公報)が提案
されてる。
To solve this problem, a catalyst in which noble metals such as platinum and palladium are supported on a carrier such as alumina or oxide in order to impart heat resistance to the catalyst (Japanese Patent Laid-Open No. 58-1)
74237, 58-177153 and 59-199043) and a catalyst containing nickel as a main component (JP-A-50-49021, 51-68).
488 and 51-122102) have been proposed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな貴金属やニッケルなどの銅以外の金属を活性成分と
する触媒の存在下に上記オートサーマル反応を実施する
と、次式(3) CHOH→CO+2H…(3) で表されるメタノールの分解反応が主として進行してし
まい、水素の製造という観点からは効率的ではないとい
う課題があった。
However, when the above-mentioned autothermal reaction is carried out in the presence of a catalyst containing a metal other than copper such as noble metal or nickel as an active component, the following formula (3): CH 3 OH → The decomposition reaction of methanol represented by CO + 2H 2 (3) mainly proceeds, and there is a problem that it is not efficient from the viewpoint of hydrogen production.

【0008】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、活性、選択性及び耐久性が高く、しかも水素の製造
効率に優れ、コンパクトな燃料改質装置をも実現し得る
メタノール改質触媒、その製造方法及びメタノール改質
方法を提供することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and it is an object of the present invention to provide high activity, selectivity, and durability, high hydrogen production efficiency, and compactness. An object of the present invention is to provide a methanol reforming catalyst capable of realizing a simple fuel reforming apparatus, a method for producing the same, and a methanol reforming method.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究した結果、亜鉛酸化物及び/又は
アルミニウム酸化物と銅酸化物とを、白金及び/又はパ
ラジウムの水溶性化合物と亜鉛の水溶性化合物の混合溶
液中に分散させ、次いでこの酸化物存在下に白金及び/
又はパラジウムと亜鉛の酸化物を形成することにより、
高活性及び高選択性を有し、長期間に亘って高い安定性
を保持する耐久性の高い触媒が得られることを見出し、
本発明を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have found that zinc oxide and / or aluminum oxide and copper oxide can be dissolved in platinum and / or palladium in water. Is dispersed in a mixed solution of a compound and a water-soluble compound of zinc, and then platinum and / or zinc is added in the presence of the oxide.
Or by forming an oxide of palladium and zinc,
It has high activity and high selectivity, and finds that a highly durable catalyst that maintains high stability over a long period of time can be obtained,
The present invention has been completed.

【0010】即ち、本発明のメタノール改質触媒は、亜
鉛酸化物及び/又はアルミニウム酸化物と銅酸化物と
を、白金及び/又はパラジウムの水溶性化合物と、亜鉛
の水溶性化合物の混合溶液中に分散し、白金及び/又は
パラジウムと亜鉛の酸化物を形成することにより得られ
ることを特徴とする。
That is, the methanol reforming catalyst of the present invention comprises a zinc oxide and / or aluminum oxide and a copper oxide in a mixed solution of a water-soluble compound of platinum and / or palladium and a water-soluble compound of zinc. And forming an oxide of platinum and / or palladium and zinc.

【0011】また、本発明のメタノール改質触媒の好適
形態は、上記酸化物に含まれる亜鉛酸化物と、上記白金
及び/又はパラジウムの水溶性化合物とが、熱処理によ
って合金を形成することを特徴とする。
A preferred embodiment of the methanol reforming catalyst of the present invention is characterized in that the zinc oxide contained in the oxide and the water-soluble compound of platinum and / or palladium form an alloy by heat treatment. And

【0012】更に、本発明のメタノール改質触媒の製造
方法は、上記メタノール改質触媒を製造する方法であっ
て、亜鉛酸化物及び/又はアルミニウム酸化物と銅酸化
物とを所定の割合で、白金及び/又はパラジウムの水溶
性化合物と、亜鉛の水溶性化合物の混合溶液に分散し、
この混合溶液を乾燥、焼成することを特徴とする。
Further, the method for producing a methanol reforming catalyst according to the present invention is a method for producing the above methanol reforming catalyst, wherein zinc oxide and / or aluminum oxide and copper oxide are mixed at a predetermined ratio. Dispersed in a mixed solution of a water-soluble compound of platinum and / or palladium and a water-soluble compound of zinc,
The mixed solution is dried and fired.

【0013】更にまた、本発明のメタノール改質方法
は、上記メタノール改質触媒を使用することを特徴とす
る。
Furthermore, a methanol reforming method of the present invention is characterized by using the above-mentioned methanol reforming catalyst.

【0014】[0014]

【発明の実施の形態】以下、本発明のメタノール改質触
媒について詳細に説明する。なお、本明細書において
「%」は特記しない限り質量百分率を示す。上述の如
く、このメタノール改質触媒は、亜鉛酸化物及び/又は
アルミニウム酸化物と銅酸化物とを、白金及び/又はパ
ラジウムの水溶性化合物と、亜鉛の水溶性化合物の混合
溶液中に分散し、白金及び/又はパラジウムと亜鉛の酸
化物を形成することにより得られる。ここで、上記混合
溶液に分散する酸化物、即ち、亜鉛酸化物及び/又はア
ルミニウム酸化物と銅酸化物としては、亜鉛及び/又は
アルミニウム成分と銅成分を含む酸化物であれば特に限
定されるものではないが、具体的には、銅酸化物と亜鉛
酸化物の混合物、銅酸化物とアルミニウム酸化物の混合
物、銅−亜鉛の複合酸化物、銅−アルミニウムの複合酸
化物及びこれらの混合系が例示でき、この場合、不可避
的不純物や他の添加成分が適宜含まれていてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the methanol reforming catalyst of the present invention will be described in detail. In this specification, “%” indicates mass percentage unless otherwise specified. As described above, this methanol reforming catalyst disperses zinc oxide and / or aluminum oxide and copper oxide in a mixed solution of a water-soluble compound of platinum and / or palladium and a water-soluble compound of zinc. , Platinum and / or oxides of palladium and zinc. Here, the oxide dispersed in the mixed solution, that is, zinc oxide and / or aluminum oxide and copper oxide is not particularly limited as long as it is an oxide containing zinc and / or aluminum component and copper component. Although not specifically described, specifically, a mixture of copper oxide and zinc oxide, a mixture of copper oxide and aluminum oxide, a composite oxide of copper-zinc, a composite oxide of copper-aluminum, and a mixed system thereof In this case, unavoidable impurities and other additional components may be appropriately contained.

【0015】本発明のメタノール改質触媒が優れた特性
を有することの詳細は必ずしも明確ではないが、現時点
では以下のように推察される。まず、銅又は銅酸化物上
に白金やパラジウムが高分散されることにより、銅の酸
化(又は更なる酸化)が抑制されるので、触媒の耐久性
が向上する。また、白金やパラジウムが亜鉛酸化物と緊
密な混合ないし結合状態を形成するので、白金及び/又
はパラジウムと亜鉛の酸化物から成る活性種を生成する
ものと考えられる。
Although the details of the excellent properties of the methanol reforming catalyst of the present invention are not always clear, it is presumed as follows at present. First, oxidation (or further oxidation) of copper is suppressed by highly dispersing platinum or palladium on copper or copper oxide, and thus the durability of the catalyst is improved. Further, since platinum and palladium form a tightly mixed or bound state with zinc oxide, it is considered that active species composed of platinum and / or palladium and zinc oxide are generated.

【0016】なお、これらの現象は、白金及び/又はパ
ラジウムと、上記亜鉛酸化物及び/又はアルミニウム酸
化物と銅酸化物において有意に発現し、これら以外、例
えば、アルミナに白金及びパラジウムを担持した触媒で
は、上記(3)式で表されるメタノール分解反応が主体
となり、一酸化炭素が生成してしまう。これに対し、本
発明のメタノール改質触媒は、上記(1)及び(2)式
の反応を選択的に促進するため、一酸化炭素の生成反応
が抑制され、選択性が向上する。
Incidentally, these phenomena are significantly manifested in platinum and / or palladium, the above-mentioned zinc oxide and / or aluminum oxide and copper oxide, and other than these, for example, platinum and palladium supported on alumina. In the catalyst, a methanol decomposition reaction represented by the above formula (3) is mainly performed, and carbon monoxide is generated. On the other hand, the methanol reforming catalyst of the present invention selectively promotes the reactions of the above formulas (1) and (2), thereby suppressing the reaction for producing carbon monoxide and improving the selectivity.

【0017】また、本発明においては、上記酸化物にア
ルミニウム成分を加えることが可能であるが、この場
合、かかる酸化物の具体例としては、銅酸化物、亜鉛酸
化物及びアルミニウム酸化物の混合物、銅−亜鉛−アル
ミニウムの複合酸化物並びにこれらの混合系が例示でき
る。かかる3成分による酸化物を用いることによって
も、耐熱性及び耐久帯性に優れたメタノール改質触媒が
提供される。
In the present invention, an aluminum component can be added to the above oxide. In this case, specific examples of the oxide include a mixture of copper oxide, zinc oxide and aluminum oxide. , Copper-zinc-aluminum composite oxides and their mixed systems. The use of such a three-component oxide also provides a methanol reforming catalyst having excellent heat resistance and durability.

【0018】なお、本発明の改質メタノール改質触媒に
おいては、上述した銅−亜鉛の2成分や銅−亜鉛−アル
ミニウムの3成分の酸化物に含まれる亜鉛酸化物、及び
白金及び/又はパラジウムの酸化物とともに形成される
亜鉛酸化物と白金及び/又はパラジウムが、熱処理によ
って当該亜鉛と合金を形成していることが望ましい。か
かる合金化により、上記(1)式及び(2)式の反応を
選択的に促進するため一酸化炭素生成が抑制される。ま
た、上述した銅又は銅酸化物の酸化が更に抑制されるの
で、触媒の耐久性が更に改善される。
In the reforming methanol reforming catalyst of the present invention, zinc oxide contained in the above-described two-component oxide of copper-zinc and the three-component oxide of copper-zinc-aluminum, and platinum and / or palladium It is desirable that zinc oxide and platinum and / or palladium formed together with the oxide of the above form an alloy with the zinc by heat treatment. Such alloying selectively promotes the reactions of the above formulas (1) and (2), thereby suppressing the production of carbon monoxide. Further, since the oxidation of copper or copper oxide described above is further suppressed, the durability of the catalyst is further improved.

【0019】次に、本発明のメタノール改質触媒におけ
る各種成分の配合量について説明する。このメタノール
改質触媒では、意図するメタノール転化率や一酸化炭素
濃度低減が実現できれば、各種成分の配合比は特に限定
されるものでないが、代表的に、銅含有量を10〜60
%、白金及び/又はパラジウムの含有量を0.5〜10
%、残分を亜鉛とすることが好ましい。銅含有量が10
%未満では、メタノール転化率が減少しCO濃度が増加
することがあり、60%を超えると、CO濃度が増加す
ることがある。また、白金及び/又はパラジウム含有量
が0.5%未満では、メタノール転化率が減少すること
があり、10%を超えると、CO濃度が増加することが
ある。
Next, the mixing amounts of various components in the methanol reforming catalyst of the present invention will be described. In this methanol reforming catalyst, the mixing ratio of various components is not particularly limited as long as intended reduction of methanol conversion and carbon monoxide concentration can be realized.
%, The content of platinum and / or palladium is 0.5 to 10%.
%, And the balance is preferably zinc. Copper content is 10
%, The methanol conversion may decrease and the CO concentration may increase, and if it exceeds 60%, the CO concentration may increase. If the content of platinum and / or palladium is less than 0.5%, the methanol conversion may decrease, and if it exceeds 10%, the CO concentration may increase.

【0020】本発明のメタノール改質触媒は、上述した
銅、亜鉛及びパラジウム等を必須成分とするものである
が、これ以外にも他の成分、例えば、反応比表面積を増
大し得るアルミナやシリカ等の高比表面積基材を加える
ことが可能である。また、触媒形状も特に限定されるも
のではなく、粒状やペレット状とすることができるが、
セラミックス製や金属製の一体構造型担体(モノリス担
体等)を用いることも可能である。なお、かかるモノリ
ス担体を用いる場合には、触媒成分を100〜300g
/L程度の割合で担持することが好ましい。
The methanol reforming catalyst of the present invention comprises the above-mentioned components such as copper, zinc and palladium as essential components. Other components such as alumina and silica which can increase the reaction specific surface area are also used. It is possible to add a high specific surface area substrate such as. Further, the shape of the catalyst is not particularly limited, and may be in the form of granules or pellets.
It is also possible to use a ceramic or metal integrated structure type carrier (monolithic carrier or the like). In addition, when using such a monolithic carrier, 100 to 300 g of the catalyst component is used.
/ L is preferably supported.

【0021】また、本発明のメタノール改質触媒の調製
方法も特に限定されるものではなく、従来から行われて
いる共沈法、含浸法及び沈殿法など、並びにこれらと実
質的に同一の方法を適用することができる。
The method for preparing the methanol reforming catalyst of the present invention is not particularly limited either. Conventional methods such as coprecipitation, impregnation, and precipitation, and methods substantially the same as these methods are used. Can be applied.

【0022】次に、本発明のメタノール改質触媒の製造
方法について説明する。この改質触媒は、Zn及び/又
はAlとCuとを含んで成る酸化物を所定の割合で、P
t及び/又はPdの水溶性化合物と、Znの水溶性化合
物の混合溶液に分散し、この混合溶液を乾燥、焼成して
得られる。具体的には、例えば、Zn及び/又はAlと
Cuとの硝酸塩の水溶液にアルカリ物質(例えば、炭酸
ナトリウム)を滴下して、沈殿を生成する。この沈殿を
充分に水で洗浄し、ろ過し、乾燥した後、300〜60
0℃で焼成し、金属酸化物を得る。Pt及び/又はPd
水溶液に硝酸亜鉛を溶解して得られた混合溶液に、先ほ
どの金属酸化物を添加して十分に攪拌混合する。その
後、乾燥して、300〜600℃で焼成して触媒粉末を
得る。次いで、得られた触媒粉末を粉砕混合しスラリ―
を得る。しかる後、得られたスラリーを一体型担体に塗
布した後、空気中300〜600℃で焼成することによ
り、性能の安定したメタノール改質触媒を得ることがで
きる。
Next, a method for producing the methanol reforming catalyst of the present invention will be described. This reforming catalyst comprises an oxide containing Zn and / or Al and Cu at a predetermined ratio in P
It is obtained by dispersing in a mixed solution of a water-soluble compound of t and / or Pd and a water-soluble compound of Zn, and drying and firing this mixed solution. Specifically, for example, an alkaline substance (for example, sodium carbonate) is dropped into an aqueous solution of a nitrate of Zn and / or Al and Cu to generate a precipitate. This precipitate is sufficiently washed with water, filtered, dried, and
Calcination at 0 ° C. to obtain a metal oxide. Pt and / or Pd
The metal oxide is added to a mixed solution obtained by dissolving zinc nitrate in an aqueous solution, and sufficiently stirred and mixed. Then, it is dried and calcined at 300 to 600 ° C. to obtain a catalyst powder. Next, the obtained catalyst powder is pulverized and mixed, and a slurry is prepared.
Get. Thereafter, the obtained slurry is applied to an integrated carrier, and then calcined at 300 to 600 ° C. in air, whereby a methanol reforming catalyst having stable performance can be obtained.

【0023】本発明のメタノール改質方法では、上述の
メタノール改質触媒を用いて上記(1)及び(2)式の
反応を選択的に促進させることで、一酸化炭素の生成を
抑制させるとともに水素を効率良く生成させて、メタノ
ールを改質する。これより、燃焼効率の良い改質ガスを
得ることができ、燃焼機関などの燃料として用いること
もできる。
In the methanol reforming method of the present invention, the production of carbon monoxide is suppressed by selectively promoting the reactions of the above formulas (1) and (2) using the above-mentioned methanol reforming catalyst. It reforms methanol by efficiently producing hydrogen. Thus, a reformed gas having high combustion efficiency can be obtained, and can be used as a fuel for a combustion engine or the like.

【0024】[0024]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0025】(実施例1)共沈法により、硝酸亜鉛と硝
酸銅から銅の含有量が30%になるCuO−ZnO粉末
を調製した。次いで、この粉末を硝酸パラジウム及び硝
酸亜鉛水溶液に分散担持・乾燥・焼成し、Pd担持量が
1%、Zn担持量が5%の触媒粉末を得た。この触媒粉
末195gと8%の硝酸酸性アルミナゾル5gを混合し
てスラリーを得、得られたスラリーを、セラミック製モ
ノリス担体表面に触媒粉末重量が200g/Lの割合に
なるように塗布し、150℃で10分間乾燥した後、空
気中400℃で焼成して触媒層を形成し、本例の触媒を
得た。
(Example 1) A CuO-ZnO powder having a copper content of 30% was prepared from zinc nitrate and copper nitrate by a coprecipitation method. Next, this powder was dispersed and supported in an aqueous solution of palladium nitrate and zinc nitrate, dried and calcined to obtain a catalyst powder having a Pd loading of 1% and a Zn loading of 5%. A slurry was obtained by mixing 195 g of this catalyst powder and 5 g of 8% nitric acid acidic alumina sol, and the obtained slurry was applied to the surface of a ceramic monolith carrier so that the catalyst powder weight was 200 g / L, and the temperature was 150 ° C. And dried at 400 ° C. in air to form a catalyst layer, thereby obtaining a catalyst of this example.

【0026】(実施例2)上記触媒粉末のPd担持量を
2%、Zn担持量を10%とした以外は、実施例1と同
様の操作を繰り返し、本例の触媒を得た。
(Example 2) The same operation as in Example 1 was repeated except that the amount of Pd supported was 2% and the amount of Zn supported was 10%, to obtain a catalyst of this example.

【0027】(実施例3)上記触媒粉末のPd担持量を
10%、Zn担持量を30%とした以外は、実施例1と
同様の操作を繰り返し、本例の触媒を得た。
Example 3 The same operation as in Example 1 was repeated, except that the amount of Pd supported on the catalyst powder was 10% and the amount of Zn supported was 30%, to obtain a catalyst of this example.

【0028】(実施例4)上記CuO−ZnO粉末中の
Cu含有量を10%とし、上記触媒粉末のPd担持量を
2%、Zn担持量を10%とした以外は、実施例1と同
様の操作を繰り返し、本例の触媒を得た。
Example 4 The same as Example 1 except that the Cu content in the CuO-ZnO powder was 10%, the amount of Pd supported on the catalyst powder was 2%, and the amount of Zn supported was 10%. Was repeated to obtain a catalyst of this example.

【0029】(実施例5)上記CuO−ZnO粉末中の
Cu含有量を60%とし、上記触媒粉末のPd担持量を
2%、Zn担持量を10%とした以外は、実施例1と同
様の操作を繰り返し、本例の触媒を得た。
Example 5 The same as Example 1 except that the Cu content in the CuO-ZnO powder was 60%, the Pd loading on the catalyst powder was 2%, and the Zn loading was 10%. Was repeated to obtain a catalyst of this example.

【0030】(比較例1)上記触媒粉末のPd担持量を
0.1%、Zn担持量を0.5%とした以外は、実施例
1と同様の操作を繰り返し、本例の触媒を得た。
Comparative Example 1 The same operation as in Example 1 was repeated except that the amount of Pd supported on the catalyst powder was changed to 0.1% and the amount of supported Zn was changed to 0.5% to obtain the catalyst of this example. Was.

【0031】(比較例2)上記触媒粉末のPd担持量を
20%、Zn担持量を30%とした以外は、実施例1と
同様の操作を繰り返し、本例の触媒を得た。
Comparative Example 2 The same operation as in Example 1 was repeated, except that the amount of Pd supported was 20% and the amount of Zn supported was 30%, to obtain a catalyst of this example.

【0032】(比較例3)上記CuO−ZnO粉末中の
Cu含有量を5%とし、上記触媒粉末のPd担持量を2
%、Zn担持量を10%とした以外は、実施例1と同様
の操作を繰り返し、本例の触媒を得た。
(Comparative Example 3) The Cu content in the CuO-ZnO powder was set to 5%, and the Pd carrying amount of the catalyst powder was set to 2%.
% And the amount of supported Zn were set to 10%, and the same operation as in Example 1 was repeated to obtain a catalyst of this example.

【0033】(比較例4)上記CuO−ZnO粉末中の
Cu含有量を70%とし、上記触媒粉末のPd担持量を
2%、Zn担持量を10%とした以外は、実施例1と同
様の操作を繰り返し、本例の触媒を得た。
(Comparative Example 4) The same as Example 1 except that the Cu content in the CuO-ZnO powder was 70%, the supported amount of Pd in the catalyst powder was 2%, and the supported amount of Zn was 10%. Was repeated to obtain a catalyst of this example.

【0034】(実施例6)共沈法により、硝酸亜鉛と硝
酸銅と硝酸アルミニウムから銅の含有量が30%、アル
ミニウム含有量が5%になるCuO−ZnO−Al
粉末を調製した。次いで、この粉末に硝酸パラジウム
及び硝酸亜鉛の水溶液を噴霧・乾燥・焼成し、Pd担持
量が2%、Zn担持量が10%の触媒粉末を得た。この
触媒粉末195gと8%の硝酸酸性アルミナゾル5gを
混合してスラリーを得、得られたスラリーを、セラミッ
ク製モノリス担体表面に触媒粉末重量が200g/Lの
割合になるように塗布し、150℃で10分間乾燥した
後、空気中400℃で焼成して触媒層を形成し、本例の
触媒を得た。
(Example 6) CuO-ZnO-Al 2 O having a copper content of 30% and an aluminum content of 5% from zinc nitrate, copper nitrate and aluminum nitrate by coprecipitation method
Three powders were prepared. Next, an aqueous solution of palladium nitrate and zinc nitrate was sprayed, dried and fired on the powder to obtain a catalyst powder having a Pd loading of 2% and a Zn loading of 10%. A slurry was obtained by mixing 195 g of this catalyst powder and 5 g of 8% nitric acid acidic alumina sol, and the obtained slurry was applied to the surface of a ceramic monolith carrier so that the catalyst powder weight was 200 g / L, and the temperature was 150 ° C. And dried at 400 ° C. in air to form a catalyst layer, thereby obtaining a catalyst of this example.

【0035】(比較例5)上記CuO−ZnO粉末にP
dやZnを担持せず、そのまま触媒粉末として用いた以
外は、実施例1と同様の操作を繰り返し、本例の触媒を
得た。
(Comparative Example 5) P was added to the above CuO-ZnO powder.
The same operation as in Example 1 was repeated, except that d and Zn were not supported and the catalyst powder was used as it was, to obtain a catalyst of this example.

【0036】[性能評価]上記各例の触媒を水素気流中
400℃で1時間還元した後、固定床常圧流通式反応装
置に設置し、メタノールのオートサーマル改質反応を行
った。この際、反応温度は350℃とし、S/C比(水
蒸気/メタノールのモル比)を1.5、O /C(酸素
/メタノールのモル比)を0.15とした。得られた改
質ガスのガス組成をガスクロマトグラフで分析し、得ら
れた結果をCO濃度及び転化率として表1及び表2に示
した。なお、実施例6及び比較例5の触媒については、
反応50時間後におけるCO濃度と転化率を示した。ま
た、参考のため、各例の触媒組成を併記した。
[Evaluation of Performance] The catalysts of the above examples were placed in a hydrogen stream.
After reducing at 400 ° C for 1 hour, fixed bed normal pressure flow type reaction equipment
To perform an autothermal reforming reaction of methanol.
Was. At this time, the reaction temperature was 350 ° C., and the S / C ratio (water
Steam / methanol molar ratio) is 1.5, O 2/ C (oxygen
/ Mole ratio of methanol) to 0.15. Obtained breaks
Gas composition of gaseous gas analyzed by gas chromatograph.
The results obtained are shown in Tables 1 and 2 as CO concentration and conversion.
did. In addition, about the catalyst of Example 6 and the comparative example 5,
The CO concentration and conversion after 50 hours of the reaction were shown. Ma
For reference, the catalyst composition of each example is also shown.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】表1及び表2に示す結果から明らかなよう
に、本発明の範囲に属する各実施例のメタノール改質触
媒は、パラジウム含有量が0.1%と少ない比較例1の
触媒や、パラジウム含有量が20%と多い比較例2の触
媒や、銅含有量が5%と少ない比較例3の触媒や、銅含
有量が70%と多い比較例4の触媒や、CuOとZnO
の比較例5の触媒と比較して、CO濃度が低く、触媒活
性に優れ、且つ耐久性に優れたメタノール改質触媒であ
ることが確認された。
As is clear from the results shown in Tables 1 and 2, the methanol reforming catalysts of the examples belonging to the scope of the present invention include the catalyst of Comparative Example 1 having a small palladium content of 0.1%, The catalyst of Comparative Example 2 having a high palladium content of 20%, the catalyst of Comparative Example 3 having a low copper content of 5%, the catalyst of Comparative Example 4 having a high copper content of 70%, CuO and ZnO
As compared with the catalyst of Comparative Example 5, it was confirmed that the catalyst was a methanol reforming catalyst having a low CO concentration, excellent catalytic activity, and excellent durability.

【0040】以上、本発明を好適実施例により詳細に説
明したが、本発明はこれら実施例に限定されるものでは
なく、本発明の要旨の範囲内において種々の変形が可能
である。例えば、本発明の改質触媒を用いれば、ヒータ
などの外部加熱装置が不要な燃料改質装置が容易に得ら
れ、燃料改質装置のコンパクト化、高起動性及び高応答
性などを実現できる。
Although the present invention has been described in detail with reference to preferred embodiments, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the present invention. For example, when the reforming catalyst of the present invention is used, a fuel reforming device that does not require an external heating device such as a heater can be easily obtained, and the fuel reforming device can be made compact, and high startup performance and high responsiveness can be realized. .

【0041】[0041]

【発明の効果】以上説明してきたように、本発明によれ
ば、亜鉛酸化物及び/又はアルミニウム酸化物と銅酸化
物とを、白金及び/又はパラジウムの水溶性化合物と亜
鉛の水溶性化合物の混合溶液中に分散させ、次いでこの
酸化物存在下に白金及び/又はパラジウムと亜鉛の酸化
物を形成することとしたため、活性、選択性及び耐久性
が高く、しかも水素の製造効率に優れ、コンパクトな燃
料改質装置をも実現し得るメタノール改質触媒、その製
造方法及びメタノール改質方法を提供することができ
る。
As described above, according to the present invention, a zinc oxide and / or an aluminum oxide and a copper oxide are combined with a water-soluble compound of platinum and / or palladium and a water-soluble compound of zinc. Since it is dispersed in a mixed solution and then forms an oxide of platinum and / or palladium and zinc in the presence of this oxide, it has high activity, selectivity and durability, and is excellent in hydrogen production efficiency and compact. It is possible to provide a methanol reforming catalyst capable of realizing a simple fuel reforming device, a method for producing the same, and a methanol reforming method.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA02 EA06 EC01 EC03 4G069 AA02 AA03 AA08 AA09 BA01A BA01B BB12B BB12C BC31A BC31B BC31C BC35A BC35B BC35C BC72A BC72B BC72C BC75A BC75B BC75C CC25 EA19 FB09 FB29 5H026 AA04 AA06 5H027 AA04 AA06 BA01 BA16  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4G040 EA02 EA06 EC01 EC03 4G069 AA02 AA03 AA08 AA09 BA01A BA01B BB12B BB12C BC31A BC31B BC31C BC35A BC35B BC35C BC72A BC72B BC72C BC75A BC75B BC75A04 A26A19 FB19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛酸化物及び/又はアルミニウム酸化
物と銅酸化物とを、白金及び/又はパラジウムの水溶性
化合物と、亜鉛の水溶性化合物の混合溶液中に分散し、 白金及び/又はパラジウムと亜鉛の酸化物を形成するこ
とにより得られることを特徴とするメタノール改質触
媒。
A zinc oxide and / or aluminum oxide and a copper oxide are dispersed in a mixed solution of a water-soluble compound of platinum and / or palladium and a water-soluble compound of zinc. A methanol reforming catalyst obtained by forming an oxide of zinc and zinc.
【請求項2】 上記酸化物に含まれる亜鉛酸化物と、上
記白金及び/又はパラジウムの水溶性化合物とが、熱処
理によって合金を形成することを特徴とする請求項1記
載のメタノール改質触媒。
2. The methanol reforming catalyst according to claim 1, wherein the zinc oxide contained in the oxide and the water-soluble compound of platinum and / or palladium form an alloy by heat treatment.
【請求項3】 銅の含有量が10〜60%であることを
特徴とする請求項1又は2記載のメタノール改質触媒。
3. The methanol reforming catalyst according to claim 1, wherein the content of copper is 10 to 60%.
【請求項4】 白金及び/又はパラジウムの含有量が
0.5〜10%であることを特徴とする請求項1〜3の
いずれか1つの項に記載のメタノール改質触媒。
4. The methanol reforming catalyst according to claim 1, wherein the content of platinum and / or palladium is 0.5 to 10%.
【請求項5】 請求項1〜4のいずれか1つの項に記載
のメタノール改質触媒を製造する方法であって、 亜鉛酸化物及び/又はアルミニウム酸化物と銅酸化物と
を所定の割合で、白金及び/又はパラジウムの水溶性化
合物と、亜鉛の水溶性化合物の混合溶液に分散し、この
混合溶液を乾燥、焼成することを特徴とするメタノール
改質触媒製造方法。
5. The method for producing a methanol reforming catalyst according to claim 1, wherein zinc oxide and / or aluminum oxide and copper oxide are mixed at a predetermined ratio. A method for producing a methanol reforming catalyst, comprising dispersing in a mixed solution of a water-soluble compound of platinum, palladium and / or palladium and a water-soluble compound of zinc, and drying and calcining the mixed solution.
【請求項6】 請求項1〜4のいずれか1つの項に記載
のメタノール改質触媒を使用することを特徴とするメタ
ノール改質方法。
6. A methanol reforming method using the methanol reforming catalyst according to claim 1. Description:
JP2000248960A 2000-08-18 2000-08-18 Methanol modifying catalyst, method for manufacturing the same and methanol modifying method Pending JP2002059005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248960A JP2002059005A (en) 2000-08-18 2000-08-18 Methanol modifying catalyst, method for manufacturing the same and methanol modifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248960A JP2002059005A (en) 2000-08-18 2000-08-18 Methanol modifying catalyst, method for manufacturing the same and methanol modifying method

Publications (1)

Publication Number Publication Date
JP2002059005A true JP2002059005A (en) 2002-02-26

Family

ID=18738768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248960A Pending JP2002059005A (en) 2000-08-18 2000-08-18 Methanol modifying catalyst, method for manufacturing the same and methanol modifying method

Country Status (1)

Country Link
JP (1) JP2002059005A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244963A (en) * 2006-03-14 2007-09-27 Ihi Corp Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer
CN105435809A (en) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 A hydrogenation catalyst, a preparing method thereof, applications of the hydrogenation catalyst and a hydrogenation reaction method
JP2019193913A (en) * 2018-05-01 2019-11-07 公立大学法人首都大学東京 Hydrogen manufacturing catalyst
CN116440930A (en) * 2023-06-14 2023-07-18 昆明骏发新能源科技有限公司 Catalyst used in methanol fuel modification and catalytic modification production process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244963A (en) * 2006-03-14 2007-09-27 Ihi Corp Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer
CN105435809A (en) * 2014-08-27 2016-03-30 中国石油化工股份有限公司 A hydrogenation catalyst, a preparing method thereof, applications of the hydrogenation catalyst and a hydrogenation reaction method
JP2019193913A (en) * 2018-05-01 2019-11-07 公立大学法人首都大学東京 Hydrogen manufacturing catalyst
JP7257019B2 (en) 2018-05-01 2023-04-13 東京都公立大学法人 Hydrogen production catalyst
CN116440930A (en) * 2023-06-14 2023-07-18 昆明骏发新能源科技有限公司 Catalyst used in methanol fuel modification and catalytic modification production process
CN116440930B (en) * 2023-06-14 2023-08-29 昆明骏发新能源科技有限公司 Catalyst used in methanol fuel modification and catalytic modification production process

Similar Documents

Publication Publication Date Title
JP3743995B2 (en) Methanol reforming catalyst
JP4851655B2 (en) Process for the conversion of carbon monoxide in gaseous mixtures containing hydrogen and catalysts therefor
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
JP2008149313A (en) Catalyst for fuel reforming reaction and method for manufacturing hydrogen using the same
TWI294413B (en) Method for converting co and hydrogen into methane and water
JPWO2005094988A1 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
US20070140953A1 (en) Process conditions for Pt-Re bimetallic water gas shift catalysts
US6926881B2 (en) Process for producing hydrogen-containing gas
JP2013546140A (en) Method for removing CO, H2, and CH4 from anode exhaust gas of a fuel cell and catalyst system useful for removing these gases
JP4724973B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
US20060111457A1 (en) Process for the production of a hydrogen-rich reformate gas by methanol autothermal reforming reaction
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JPH0748101A (en) Production of hydrogen-containing gas for fuel cell
JP5494910B2 (en) Hydrogen production catalyst and production method thereof
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP3796744B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2000342968A (en) Catalyst and producing method
JP2003135968A (en) Reforming catalyst and method for manufacturing the same
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP2001232198A (en) Catalyst and manufacturing method of catalyst
JP2002079103A (en) Fuel reforming catalyst
JP4799312B2 (en) Synthesis gas production catalyst
JPS60122038A (en) Catalyst for reforming methanol