WO2004103555A1 - Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system - Google Patents

Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system Download PDF

Info

Publication number
WO2004103555A1
WO2004103555A1 PCT/JP2004/006903 JP2004006903W WO2004103555A1 WO 2004103555 A1 WO2004103555 A1 WO 2004103555A1 JP 2004006903 W JP2004006903 W JP 2004006903W WO 2004103555 A1 WO2004103555 A1 WO 2004103555A1
Authority
WO
WIPO (PCT)
Prior art keywords
reforming
reforming catalyst
oxygen
catalyst
spinel
Prior art date
Application number
PCT/JP2004/006903
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Eguchi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2004103555A1 publication Critical patent/WO2004103555A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Oxygen-containing hydrocarbon reforming catalyst method for producing hydrogen or synthesis gas using the same, and fuel cell system
  • the present invention relates to an oxygen-containing hydrocarbon reforming catalyst, a method for producing hydrogen or synthetic gas using the same, and a fuel cell system, and more specifically, a metal oxide having a copper-containing spinel structure having excellent heat resistance, Or a reforming catalyst of an oxygen-containing hydrocarbon containing this and a solid acidic substance and having a greatly improved activity per unit surface area, and performing various reforms on the oxygen-containing hydrocarbon using the reforming catalyst,
  • the present invention relates to a method for efficiently producing hydrogen or synthesis gas, and a fuel cell system using the reforming catalyst.
  • Synthetic gas is composed of carbon monoxide and hydrogen, and is used as a raw material gas for methanol synthesis, oxo synthesis, Fischer-Tropsch synthesis, etc., and is also widely used as a raw material for ammonia synthesis and various chemical products.
  • This synthesis gas has conventionally been produced by gasification of coal or by steam reforming or partial oxidation reforming of hydrocarbons using natural gas as a raw material.
  • coal gasification methods had problems such as the necessity of a complicated and expensive coal gasifier and a large-scale plant.
  • the reaction involves a large endotherm, so a high temperature of about 700 to 120 ° C is required for the progress of the reaction, and a special reforming furnace is required.
  • the catalyst used is required to have high heat resistance.
  • high temperatures are required for partial oxidation reforming of hydrocarbons. To do so, a special partial oxidation furnace was required, and a large amount of soot was generated during the reaction, which caused problems in its treatment and deterioration of the catalyst.
  • Hydrogen sources for this fuel cell include liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel derived from natural gas, and petroleum naphtha and kerosene. Research on petroleum hydrocarbons has been conducted.
  • a variety of catalysts have been disclosed for the production of hydrogen and synthesis gas by using oxygen-containing hydrocarbons such as dimethyl ether as raw materials and subjecting them to various reforming processes.
  • oxygen-containing hydrocarbons such as dimethyl ether
  • a method for producing a synthesis gas used see, for example, Japanese Patent Application Laid-Open No. 10-174869
  • a catalyst for producing hydrogen from an oxygen-containing hydrocarbon and steam using a Cu-containing catalyst and a catalyst using the same
  • a method for producing hydrogen for example, see Japanese Patent Application Laid-Open No.
  • H10-174871 a catalyst for reforming an oxygen-containing hydrocarbon comprising a solid acid on which a metal containing Cu is supported (for example, see 200 1-96 159, Japanese Patent Application Laid-Open No. 2001-91660), to produce hydrogen from oxygen-containing hydrocarbons and steam, which consist of a mixture of a Cu-containing substance and a solid acidic substance
  • a catalyst and a method for producing hydrogen using the same see, for example, Japanese Patent Application Laid-Open Publication No. 2003-10684
  • Catalyst for producing synthesis gas and method for producing synthesis gas using the same is disclosed.
  • the present invention has been made under such circumstances, and is intended to provide an oxygen-containing hydrocarbon reforming catalyst containing copper, having excellent heat resistance, and having greatly improved activity per unit surface area. It is an object of the present invention to provide a method for efficiently producing hydrogen or a synthesis gas by subjecting an oxygen-containing hydrocarbon to various reforming using the same. It is another object of the present invention to provide an excellent fuel cell system comprising a reformer provided with such an excellent reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel. Things.
  • the present inventor has conducted intensive studies to achieve the above object, and as a result, the copper-containing catalyst has a spinel structure.
  • a catalyst having a high heat resistance and a significantly improved activity per unit surface area can be obtained, and the object can be achieved.
  • the present invention has been completed based on such findings.
  • reforming catalyst I An oxygen-containing hydrocarbon reforming catalyst containing copper and a metal oxide having a spinel structure (hereinafter, referred to as reforming catalyst I),
  • reforming catalyst II an oxygen-containing hydrocarbon reforming catalyst (hereinafter, referred to as reforming catalyst II) comprising copper, a metal oxide having a spinel structure, and a solid acidic substance.
  • oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether and methylethyl ether.
  • a method for producing hydrogen or synthesis gas comprising reforming oxygen-containing hydrocarbons with carbon dioxide using the reforming catalysts of (1) and (2) above, and
  • a fuel cell system comprising: a reformer provided with the reforming catalyst according to the above (1) and (2); and a fuel cell using hydrogen produced by the reformer as a fuel.
  • FIG. 1 is a schematic flowchart of the fuel cell system of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the oxygen-containing hydrocarbon reforming catalyst of the present invention includes (1) a reforming catalyst I containing copper and a metal oxide having a subinel structure, and (2) a copper-containing reforming catalyst having a spinel structure.
  • a reforming catalyst II containing a mixture of a metal oxide having the same and a solid acidic substance.
  • oxygen-containing hydrocarbon in the present invention preferred are alcohols such as methanol and ethanol, and ethers such as dimethyl ether and methylethyl ether. Of these, dimethyl ether is particularly preferred.
  • the metal oxide having a spinel structure has a cubic system in one typical crystal structure type found in AB 2 0 4 type metal complex oxide.
  • AB 2 0 4 typically A is a divalent metal, B is Ru trivalent metal der.
  • a metal oxide having a spinel structure containing copper is used.
  • a metal oxide Cu-Mn-type spinel and the like from the viewpoint of catalytic activity and heat resistance.
  • Preferred are 11-6 type spinels and Cu-Cr type spinels.
  • Examples of the C UMN type spinels, for example, C uMn 2 O 4, etc. can Rukoto cited as the C u _ F e type spinel, and the like for example, C u F e 2 0 4.
  • the C u- C r type spinel, and the like for example, C u C r 2 ⁇ 4.
  • C u A 1 2 0 4, ternary C u (F e C r) 2 0 4, C u (F e A 1) 2 O 4, C u (Mn F e) 2 0 4 scan Pinel can also be used.
  • Such a metal oxide having a spinel structure containing copper has a higher heat resistance than a non-spinel structure metal containing copper, and has a higher catalytic activity per unit surface area when used for reforming an oxygen-containing hydrocarbon. Is much higher.
  • the oxygen-containing hydrocarbon reforming catalyst I of the present invention contains the above-described metal oxide having a spinel structure containing copper.On the other hand, the oxygen-containing hydrocarbon reforming catalyst I of the present invention contains And a metal oxide having a spinel structure containing copper and a solid acidic substance.
  • the solid acidic substance in the reforming catalyst II is a solid substance exhibiting characteristics of brenstead acid or Lewis acid, and specifically, alumina, silica-alumina, silica 'titania, zeolite, aluminum silicophosphate ( S AP O). These may be used alone or in combination of two or more. Among them, alumina is preferred from the viewpoint of the activity of the obtained catalyst.
  • Alumina used as this solid acidic substance is commercially available, ⁇ , Any one of the crystal forms of 7, ⁇ , and K can be used. Further, those obtained by calcining alumina hydrate such as boehmite, pyrite and gibbsite can also be used. Alternatively, aluminum hydroxide may be precipitated by adding an alkaline buffer solution of about ⁇ 8 to 10 to aluminum nitrate and calcining the precipitate, or calcining aluminum chloride. Good.
  • a sol-gel method in which an alkoxide such as aluminum isopropoxide is dissolved in an alcohol such as 2-propanol and an inorganic acid such as hydrochloric acid is added as a catalyst for hydrolysis to prepare an alumina gel, which is dried and calcined. Can also be used.
  • an alkoxide such as aluminum isopropoxide
  • an alcohol such as 2-propanol
  • an inorganic acid such as hydrochloric acid
  • the reforming catalyst II of the present invention may be a simple mixture of a metal oxide having a spinel structure containing copper and the solid acidic substance, or the solid acidic substance may be used as a carrier, and may contain ⁇ . It may carry a metal oxide having a spinel structure.
  • the content of copper in the reforming catalyst II is not particularly limited, but is usually in the range of 1 to 50% by mass, preferably 2 to 30% by mass as Cu in terms of catalytic activity and the like. .
  • a compound containing copper having a non-spinel structure is optionally contained as a metal oxide having a spinel structure containing copper as long as the object of the present invention is not impaired. Can be used.
  • a method for preparing a reforming catalyst I of the present invention will be described as an example the case of preparing a catalyst comprising C u M n 2 ⁇ 4 spinel.
  • a water-soluble copper salt such as copper nitrate is used as a copper source
  • a water-soluble manganese salt such as manganese nitrate is used as a manganese source, and these are substantially in a stoichiometric ratio, that is, Cu and Mn.
  • a chelating agent such as citric acid is added to the aqueous solution, and the mixture is heated to evaporate the water to form a gel.
  • this gel is subjected to a heat treatment to decompose nitrate, citrate, etc. in the gel, resulting in an oxide.
  • the fine powder is calcined in air at a temperature of about 300 to 500 ° C for about 1 to 5 hours, and then calcined at a temperature of about 500 to 1,000 ° C for about 5 to 15 hours.
  • a catalyst comprising CuMn 2 O 4 spinel is obtained. Also when fired at 7 00 ° C higher temperature than is said to be Mn 2 0 3 and C u 5 Mn 5 0 4 scan mixtures Pinel, can be used as catalysts also in this case.
  • a copper source can be used such that Cu is in stoichiometric excess with respect to Mn.
  • the resulting catalyst becomes oxides of copper and (C u 2 0 or C u O or a mixture thereof) with a mixture of spinel-type oxides, also this one can be used as the reforming catalyst I You.
  • a catalyst comprising C u F e 2 0 4 spinel instead of the manganese source, it may be used iron source, such as a water-soluble iron salts such as iron nitrate. Further, by using a mixture of an iron source and a manganese source instead of the manganese source, a catalyst comprising Cu (FeMn) 2 O 4 spinel can be obtained. This can of course be used as the reforming catalyst I.
  • These reforming catalysts I are usually used in the form of pellets of an appropriate size.
  • the alumina support is a solid acidic material
  • C uMn 2 0 4 spinel you preparing a catalyst comprising supported on example will be described with a case C uMn 2 0 4 spinel you preparing a catalyst comprising supported on example .
  • a water-soluble copper salt such as copper nitrate is used as a copper source
  • a water-soluble manganese salt such as manganese nitrate is used as a manganese source, and these are used in a substantially stoichiometric ratio, that is, Cu and Mn.
  • a predetermined amount of alumina powder is added to the aqueous solution, uniformly dispersed, and then heated to evaporate water to obtain a powder.
  • a CuFe 2 O 4 spinel-supported alumina catalyst can be obtained, and by using a mixture of an iron source and a manganese source instead of the manganese source. , it can be obtained Cu (F eMn) 2 O 4 spinel on alumina catalyst.
  • reforming catalysts II are usually used in the form of pellets of an appropriate size.
  • reforming catalyst II when a mixture of a metal oxide and alumina spinel structure containing reforming catalyst II 1S copper of the present invention, for example, C UMN 2 ⁇ 4 spinel, C u F e 2 0 4 spinel ⁇ Pi C Even if the reforming catalyst II is prepared by mixing an appropriate-sized pellet made of at least one selected from u (F e Mn) 2 O 4 spinel and the like and an appropriate-sized alumina pellet.
  • the reforming catalyst II may be prepared by molding into a pellet of an appropriate size.
  • the activity can be further improved by reducing the reforming catalyst.
  • the reduction treatment includes a gas phase reduction method in which the treatment is performed in an air stream containing hydrogen and a wet reduction method in which the treatment is performed with a reducing agent.
  • the former reduction treatment is usually carried out at a temperature of 150 to 500 ° C, preferably 200 to 300 ° C, for 30 minutes to 24 hours, preferably 1 to 10 hours, under a stream of hydrogen.
  • An inert gas such as nitrogen, helium, or argon may coexist in addition to hydrogen gas.
  • the latter wet reduction method includes Birch reduction using liquid ammonia Z alcohol / Na, liquid ammonia alcohol ZLi, Benkeser reduction using methyl amiso / Li, Zn / HCl, A1 / NaOH. / H 2 0, N a H , L i a 1 H 4 , or a substitution product thereof, human Doroshiran acids, hydrogen coercive ⁇ containing sodium or derivatives thereof, diborane, formic acid, formalin, with a reducing agent such as human Doraji down There is a way to handle it. In this case, the reaction is usually carried out at room temperature to 1 oo ° C for 10 minutes to 24 hours, preferably for 30 minutes to 10 hours.
  • the catalyst is reduced by the generated hydrogen and CO during the reaction.
  • the catalyst is reduced by the pretreatment for reduction or by the generated gas, so that Cu or other elements are desorbed from the spinel structure, and the spinel structure is in a state where some or all of the spinel structure is not retained.
  • the reforming catalyst I and / or the reforming catalyst II according to the present invention is used to convert an oxygen-containing hydrocarbon such as dimethyl ether into (1) steam reforming, 2) Autothermal reforming, (3) partial oxidation reforming, or (4) carbon dioxide reforming to produce hydrogen or synthesis gas.
  • an oxygen-containing hydrocarbon such as dimethyl ether
  • reaction of steam reforming of dimethyl ether is considered to proceed according to the following reaction formula.
  • reaction conditions may be selected so that the reaction (4) occurs.
  • the reaction condition may be selected so that the reaction (5) occurs.
  • the molar ratio of water vapor / dimethyl ether is theoretically 3, but is preferably about 3 to 6.
  • the molar ratio of water vapor / dimethyl ether is theoretically 1, but preferably about 1-2.
  • the reaction temperature is usually selected in the range of 200 to 500 ° C, preferably 250 to 450 ° C. If the temperature is lower than 200 ° C, the conversion of dimethyl ether may be low. If the temperature is higher than 500 ° C, the activity of the catalyst may be deteriorated.
  • GHSV gas hourly space velocity
  • the GHSV is 1 00 h 1 less than the production efficiency is low, 'to not practically preferred, 1 0, 000 if h 1 a exceeds too low dimethyl ether conversion, practically undesirable.
  • the reaction pressure is usually from normal pressure to IMPa. If the pressure is too high, the conversion of dimethyl ether tends to decrease.
  • the oxidation reaction of dimethyl ether and the reaction with steam occur in the same reactor or in continuous reactors.
  • the reaction conditions for hydrogen production and synthesis gas production are slightly different, but in general, the oxygen Z dimethyl ether molar ratio is preferably selected from the range of 0.1 to ⁇ , and the steam dimethyl ether molar ratio is , Preferably in the range of 0.5-3 Selected. If the oxygen dimethyl ether molar ratio is less than 0.1, the heat of reaction may not be sufficiently supplied due to heat generation, while if it exceeds 1, complete oxidation may occur and the hydrogen concentration may decrease. If the steam / dimethyl ether molar ratio is less than 0.5, the hydrogen concentration may decrease. On the other hand, if it exceeds 3, the supply of heat may be insufficient.
  • the reaction temperature is usually selected in the range of 200 to 800 ° C, preferably 250 to 500 ° C.
  • the GHSV and the reaction pressure are the same as in the case of the steam reforming.
  • the oxygen-to-dimethyl ether molar ratio is preferably 0.3 to 1. It is selected in the range of 5. If the oxygen / dimethyl ether molar ratio is less than 0.3, the conversion of dimethyl ether may not be sufficiently high, while if it exceeds 1.5, complete oxidation occurs, causing a reduction in the hydrogen concentration.
  • the reaction temperature is usually selected in the range of 200 to 900 ° C, preferably 250 to 600 ° C.
  • the GHSV and the reaction pressure are the same as in the case of the steam reforming.
  • the reaction conditions are slightly different between hydrogen production and synthesis gas production, but in general, the molar ratio of CO 2 Z dimethyl ether is preferably 0.8. To 2, more preferably 0.9 to 1.5. If the CO 2 dimethyl ether mole ratio is less than 0.8, the conversion of dimethyl ether may not be sufficiently high, while if it exceeds 2 , a large amount of C02 remains in the product and the hydrogen partial pressure decreases. on the, may remove the C_ ⁇ 2 is required, it has an unwanted. In this reaction, steam can be introduced, and the introduction of hydrogen It is possible to increase the degree. Further, the reaction temperature, GHSV and reaction pressure are the same as in the case of the steam reforming.
  • a third invention of the present application is a fuel cell system comprising: a reformer including the above-described reforming catalyst; and a fuel cell using hydrogen produced by the reformer as fuel. This will be described with reference to FIG.
  • the fuel in the fuel tank 21 is introduced into the desulfurizer 23 via the fuel pump 22.
  • the desulfurizer 23 can be filled with, for example, activated carbon, zeolite or a metal-based adsorbent.
  • the fuel desulfurized in the desulfurizer 23 is mixed with water from the water tank through the water pump 24, introduced into the vaporizer 1 and vaporized, and then mixed with the air sent out from the air blower 135. It is sent to the reformer 31.
  • the reformer 31 is filled with the above-mentioned reforming catalyst, and is converted from the fuel mixture (a mixture containing oxygen-containing hydrocarbon, steam and oxygen) fed into the reformer 31 as described above. Hydrogen is produced by either of the reactions.
  • the hydrogen produced in this way is reduced through the CO 2 converter 32 and the CO 2 selective oxidizer 3 3 to such an extent that the CO concentration does not affect the characteristics of the fuel cell.
  • catalysts used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst in the CO selective oxidizer 33. Catalysts, platinum catalysts or mixed catalysts thereof.
  • the fuel cell 34 is a polymer electrolyte fuel cell having a polymer electrolyte 34 C between a negative electrode 34 A and a positive electrode 34 B.
  • the hydrogen-rich gas obtained by the above method is applied to the negative electrode side, and the air sent from the air blower 135 is applied to the positive electrode side. (Not shown) Introduced.
  • a water-water separator 36 is connected to the positive electrode 34B side to separate water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side, and to separate the water. It can be used to generate steam.
  • an exhaust heat recovery device 37 can be provided to recover and effectively use this heat.
  • the exhaust heat recovery device 37 is provided with a heat exchanger 37 A attached to the fuel cell 34 for removing heat generated during the reaction, and a heat exchanger for exchanging the heat taken by the heat exchanger 37 A with water.
  • the hot water obtained in can be used effectively in other facilities.
  • 11 is a water supply pipe
  • 12 is a fuel introduction pipe
  • 15 is a connection pipe.
  • the gel thus formed is continuously heated at 140 ° C. to decompose nitrate and citric acid to obtain an oxide fine powder, which is then temporarily put in air at 400 ° C. for 2 hours. Baking, and then further baking in air at 900 ° C for 10 hours in a baking furnace
  • the gel thus formed is continuously heated at 140 ° C. to decompose nitrate and citric acid to obtain an oxide fine powder, and then temporarily set at 400 ° C. in air for 2 hours. After baking, further baking was performed at 500 ° C. for 3 hours in air in a baking furnace.
  • the obtained powder was calcined in air at 400 ° C. for 2 hours, and then further calcined in air at 900 ° C. for 10 hours in a firing furnace.
  • the obtained powder was calcined at 400 ° C for 2 hours in the air, and then further calcined in a firing furnace at 900 ° C for 10 hours in the air.
  • Example 5 Cu- Mn spinel type oxide catalyst (Cu!. 5 Mn!. 5 0 4 mixture of spinel and Mn 2 0 3) 1 0 g of alumina (Sumitomo Chemical Co., Ltd., " resulting AKP- G 0 1 5 ") 4. by mixing in a mortar 445 g, 20 weight 0/0 containing C u, the C u- Mn mixed catalyst of the spinel oxide catalyst and a 1 2 0 3 Was. (Example 5)
  • the gel thus formed is heated at 140 ° C for 7 hours to decompose nitrate and citric acid to obtain fine oxide powder, and then calcined in air at 400 ° C for 2 hours. Thereafter, firing was further performed at 900 ° C for 10 hours in air in a firing furnace.
  • the resulting C u- F e spinel type oxide catalyst (Cu F e 2 0 4) 1 0 g of alumina (manufactured by Sumitomo Chemical Co., Ltd., "AKP- GO 1 5") 4. 2 3 5 g to obtain a mixed catalyst of C u F e 2 0 4 spinel and a 1 2 0 3 of the C u containing 20 wt% by mixing in a mortar.
  • citrate monohydrate manufactured by Sigma-Aldrich Japan
  • the thus produced gel was heated for 7 hours at 1 40 D C, after the yield of the oxide powder by decomposing the nitrate Ne ⁇ Piku E phosphate, between 2:00 at 400 ° C in air It was calcined and then further fired in a firing furnace at 900 ° C. for 10 hours in air.
  • the resulting Cu- C r spinel type oxide catalyst (Cu C r 2 0 4) 1 0 g of alumina (manufactured by Sumitomo Chemical Co., Ltd., "AKP- GO 1 5") 4. mortar 74 g mixed to obtain a mixed catalyst of C u C r 2 0 4 spinel and a 1 2 O 3 containing C u 2 0 wt% by.
  • the catalysts obtained in Examples 1 to 7 and Comparative Example 1 were formed to a size of 6 to 14 mesh.
  • the reactor was filled with 1 milliliter each.
  • the catalysts of Examples 2, 3, 6, 7 and Comparative Example 1 were heated at 250 ° C. for 1 hour in a mixed gas of hydrogen and nitrogen having a hydrogen content of 10% by volume to reduce hydrogen reduction. went.
  • the catalysts of Examples 1, 4 and 5 were not subjected to hydrogen reduction.
  • Dimethyl ether (DME), steam and nitrogen were supplied to the reactor at a rate of 15 milliliters Z, 45 milliliters, and 40 milliliters / minute, respectively, and the DME steam was reformed at 400 ° C or 450 ° C.
  • the quality went.
  • the GH SV (gas hourly space velocity) based on the total gas amount was 6, OOO h- 1 and the GHS V based on DME was 900 h- 1 .
  • DME conversion rate [(Inlet DME flow rate-Outlet DME flow rate) Inlet DME flow rate] X 100
  • the catalyst of Example 1 containing spinel has a higher reaction rate than the catalyst of Comparative Example 1 containing no spinel.
  • the catalyst of Example 27 containing spinel has a higher conversion of DME than the catalyst of Comparative Example 1 containing no spinel.
  • a metal oxide having a copper-containing spinel structure having excellent heat resistance, or an oxygen-containing hydrocarbon reforming catalyst containing this and a solid acidic substance and having a greatly improved activity per unit surface is provided. It is possible to provide a method for efficiently producing hydrogen or synthesis gas by subjecting an oxygen-containing hydrocarbon to various reforming using the reforming catalyst. Further, it is possible to manufacture an excellent fuel cell system having a reformer provided with such an excellent reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

An oxyhydrocarbon reforming catalyst which contains copper, excels in heat resistance and is markedly improved in the activity per area; and a process for producing hydrogen or synthetic gas therewith. There is further provided a fuel cell system including a reforming unit having the excellent reforming catalyst accommodated therein and a fuel cell using hydrogen produced by the reforming unit as fuel. In particular, the oxyhydrocarbon reforming catalyst contains a metal oxide containing copper and having spinel structure, or contains the same and a solid acid substance. There is further provided a process for producing hydrogen or synthetic gas by carrying out any of steam reforming (1), self thermal reforming (2), partial oxidation reforming (3) and carbon dioxide reforming (4) of an oxyhydrocarbon with the use of the above reforming catalyst. Still further, there is provided a fuel cell system including a reforming unit having the above excellent reforming catalyst accommodated therein and a fuel cell using hydrogen produced by the reforming unit as fuel.

Description

明 細 書 酸素含有炭化水素の改質触媒、 それを用いた水素又は合成ガスの製造方法 及ぴ燃料電池システム 技術分野  Description Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
本発明は、 酸素含有炭化水素の改質触媒、 それを用いた水素又は合成ガ スの製造方法及び燃料電池システムに関し、 さらに詳しくは、 耐熱性に優 れる銅含有スピネル構造を有する金属酸化物、 又はこのものと固体酸性物 質とを含み、 単位表面積当たりの活性が大きく向上した酸素含有炭化水素 の改質触媒、 及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施 し、 水素又は合成ガスを効率よく製造する方法、 並びにこの改質触媒を利 用した燃料電池システムに関する。 背景技術  The present invention relates to an oxygen-containing hydrocarbon reforming catalyst, a method for producing hydrogen or synthetic gas using the same, and a fuel cell system, and more specifically, a metal oxide having a copper-containing spinel structure having excellent heat resistance, Or a reforming catalyst of an oxygen-containing hydrocarbon containing this and a solid acidic substance and having a greatly improved activity per unit surface area, and performing various reforms on the oxygen-containing hydrocarbon using the reforming catalyst, The present invention relates to a method for efficiently producing hydrogen or synthesis gas, and a fuel cell system using the reforming catalyst. Background art
合成ガスは、一酸化炭素と水素からなり、メタノール合成、ォキソ合成、 フィ ッシャー ' トロプシュ合成などの原料ガスとして用いられるほか、 ァ ンモニァ合成や各種化学製品の原料として広く用いられている。  Synthetic gas is composed of carbon monoxide and hydrogen, and is used as a raw material gas for methanol synthesis, oxo synthesis, Fischer-Tropsch synthesis, etc., and is also widely used as a raw material for ammonia synthesis and various chemical products.
この合成ガスは、 従来石炭のガス化による方法、 あるいは天然ガスなど を原料とする炭化水素類の水蒸気改質法や部分酸化改質法などにより製造 されてきた。 しかしながら、 石炭のガス化方法においては、 複雑で高価な 石炭ガス化炉が必要である上、 大規模なプラントになるなどの問題があつ た。 また、 炭化水素類の水蒸気改質法においては、 反応が大きな吸熱を伴 うため、 反応の進行に 7 0 0〜1 2 0 0 °C程度の高温を必要とし、 特殊な 改質炉が必要となる上、 使用される触媒に高い耐熱性が要求されるなどの 問題があった。 さらに、 炭化水素類の部分酸化改質においても、 高温を必 要とするために、 特殊な部分酸化炉が必要となり、 また反応に伴って大量 の煤が生成することから、 その処理が問題となる上、 触媒が劣化しやすい などの問題があった。 This synthesis gas has conventionally been produced by gasification of coal or by steam reforming or partial oxidation reforming of hydrocarbons using natural gas as a raw material. However, coal gasification methods had problems such as the necessity of a complicated and expensive coal gasifier and a large-scale plant. In addition, in the hydrocarbon steam reforming method, the reaction involves a large endotherm, so a high temperature of about 700 to 120 ° C is required for the progress of the reaction, and a special reforming furnace is required. In addition, there is a problem that the catalyst used is required to have high heat resistance. In addition, high temperatures are required for partial oxidation reforming of hydrocarbons. To do so, a special partial oxidation furnace was required, and a large amount of soot was generated during the reaction, which caused problems in its treatment and deterioration of the catalyst.
そこで、 このような問題を解決するために、 近年、 ジメチルエーテルな どの酸素含有炭化水素を原料として用い、 これに各種の改質を施し、 合成 ガスを製造することが試みられている。  In order to solve such a problem, in recent years, attempts have been made to produce a synthesis gas by using an oxygen-containing hydrocarbon such as dimethyl ether as a raw material and subjecting it to various reforming.
一方、 近年、 環境問題から新エネルギー技術が脚光を浴びており、 この 新エネルギー技術の一つとして燃料電池が注目を集めている。 この燃料電 池は、 水素と酸素を電気化学的に反応させることにより、 化学エネルギー を電気エネルギーに変換させるものであって、 エネルギーの利用効率が高 いという特徴を有しており、民生用、産業用あるいは自動車用などとして、 実用化研究が積極的になされている。  On the other hand, in recent years, new energy technologies have been spotlighted due to environmental issues, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the characteristic of high energy use efficiency. Practical research is being actively conducted on industrial and automotive applications.
この燃料電池の水素源としては、 メタノール、 メタンを主体とする液化 天然ガス、 この天然ガスを主成分とする都市ガス、 天然ガスを原料とする 合成液体燃料、 さらには石油系のナフサや灯油などの石油系炭化水素の研 究がなされている。  Hydrogen sources for this fuel cell include liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel derived from natural gas, and petroleum naphtha and kerosene. Research on petroleum hydrocarbons has been conducted.
これらの石油系炭化水素を用いて水素を製造する場合、 一般に、 該炭化 水素に対して、 触媒の存在下に水蒸気改質処理や部分酸化改質処理などが 施されるが、 この場合、 前記のような問題が生じる。 したがって、 水素の 製造においても、 ジメチルエーテルなどの酸素含有炭化水素を原料として 用いる方法が、 種々試みられている。  When hydrogen is produced using these petroleum hydrocarbons, the hydrocarbons are generally subjected to a steam reforming treatment or a partial oxidation reforming treatment in the presence of a catalyst. The following problems occur. Therefore, in the production of hydrogen, various methods using an oxygen-containing hydrocarbon such as dimethyl ether as a raw material have been attempted.
ジメチルエーテルなどの酸素含有炭化水素を原料として、 これに各種の 改質を施して、水素や合成ガスを製造する際に使用される触媒については、 これまで各種のものが開示されているが、その中で C u系の触媒を用いて、 酸素含有炭化水素を改質する技術としては、例えば C u含有触媒を用いて、 酸素含有炭化水素と二酸化炭素から合成ガスを製造させる触媒及びそれを 用いた合成ガスの製造方法 (例えば、 特開平 1 0— 1 7486 9号公報参 照)、 Cu含有触媒を用いて、酸素含有炭化水素と水蒸気から水素を製造さ せる触媒及ぴそれを用いた水素の製造方法 (例えば、 特開平 1 0— 1 74 8 7 1号公報参照)、固体酸に Cuを含む金属が担持されたものからなる酸 素含有炭化水素の改質触媒 (例えば、 特開 200 1— 9 6 1 5 9号公報、 特開 200 1— 9 6 1 60号公報参照)、 C u含有物質と固体酸性物質との 混合物からなる、 酸素含有炭化水素と水蒸気から水素を製造させる触媒及 びそれを用いた水素の製造方法 (例えば、 特開 200 3— 1 0 684号公 報参照)、 C u含有物質と固体酸性物との混合物からなる、酸素含有炭化水 素と水蒸気から合成ガスを製造させる触媒及びそれを用いた合成ガスの製 造方法 (例えば、 特開 200 3— 3 3 6 5 6号公報参照) などが開示され ている。 A variety of catalysts have been disclosed for the production of hydrogen and synthesis gas by using oxygen-containing hydrocarbons such as dimethyl ether as raw materials and subjecting them to various reforming processes. As a technology for reforming an oxygen-containing hydrocarbon using a Cu-based catalyst, for example, a catalyst for producing a synthesis gas from an oxygen-containing hydrocarbon and carbon dioxide using a Cu-containing catalyst, A method for producing a synthesis gas used (see, for example, Japanese Patent Application Laid-Open No. 10-174869), a catalyst for producing hydrogen from an oxygen-containing hydrocarbon and steam using a Cu-containing catalyst, and a catalyst using the same A method for producing hydrogen (for example, see Japanese Patent Application Laid-Open No. H10-174871), a catalyst for reforming an oxygen-containing hydrocarbon comprising a solid acid on which a metal containing Cu is supported (for example, see 200 1-96 159, Japanese Patent Application Laid-Open No. 2001-91660), to produce hydrogen from oxygen-containing hydrocarbons and steam, which consist of a mixture of a Cu-containing substance and a solid acidic substance A catalyst and a method for producing hydrogen using the same (see, for example, Japanese Patent Application Laid-Open Publication No. 2003-10684), from an oxygen-containing hydrocarbon and steam comprising a mixture of a Cu-containing substance and a solid acidic substance. Catalyst for producing synthesis gas and method for producing synthesis gas using the same (see, for example, JP-A-2003-33 No. 656) is disclosed.
しかしながら、 これらの技術において用いられる C u系触媒は、 いずれ も耐熱性が不十分であり、 したがって、 反応活性を向.上させるために反応 温度を上げると触媒が劣化するのを免れないという問題があった。 発明の開示  However, the Cu-based catalysts used in these technologies all have insufficient heat resistance, so that increasing the reaction temperature in order to increase the reaction activity inevitably leads to catalyst deterioration. was there. Disclosure of the invention
本発明は、 このような状況下でなされたもので、 銅を含有し、 かつ耐熱 性に優れ、 単位表面積当たりの活性が大きく向上した酸素含有炭化水素の 改質触媒、及びこの改貧触媒を用いて酸素含有炭化水素に各種改質を施し、 水素又は合成ガスを効率よく製造する方法を提供することを目的とするも のである。 また、 このような優れた改質触媒を備えた改質器と、 該改質器 により製造される水素を燃料とする燃料電池とを有する、 優れた燃料電池 システムを提供することを目的とするものである。  The present invention has been made under such circumstances, and is intended to provide an oxygen-containing hydrocarbon reforming catalyst containing copper, having excellent heat resistance, and having greatly improved activity per unit surface area. It is an object of the present invention to provide a method for efficiently producing hydrogen or a synthesis gas by subjecting an oxygen-containing hydrocarbon to various reforming using the same. It is another object of the present invention to provide an excellent fuel cell system comprising a reformer provided with such an excellent reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel. Things.
本発明者は、 前記目的を達成するために、 鋭意研究を重ねた結果、 銅含 有触媒をスピネル構造とすることにより、 またこの銅含有スピネル構造の 触媒と固体酸性物質とを組み合わせることにより、 耐熱性が高くなると共 に、 単位表面積当たりの活性が大きく向上した触媒が得られ、 その目的を 達成し得ることを見出した。 本発明は、 かかる知見に基づいて完成したも のである。 The present inventor has conducted intensive studies to achieve the above object, and as a result, the copper-containing catalyst has a spinel structure. By combining a catalyst and a solid acidic substance, it has been found that a catalyst having a high heat resistance and a significantly improved activity per unit surface area can be obtained, and the object can be achieved. The present invention has been completed based on such findings.
すなわち、 本発明は、  That is, the present invention
(1) 銅を含み、 かつスピネル構造を有する金属酸化物を含有することを 特徴とする酸素含有炭化水素の改質触媒 (以下、 改質触媒 I と称す。)、 (1) An oxygen-containing hydrocarbon reforming catalyst containing copper and a metal oxide having a spinel structure (hereinafter, referred to as reforming catalyst I),
(2) 銅を含み、 かつスピネル構造を有する金属酸化物及び固体酸性物質 とを含有することを特徴とする酸素含有炭化水素の改質触媒 (以下、 改質 触媒 II と称す。)、 (2) an oxygen-containing hydrocarbon reforming catalyst (hereinafter, referred to as reforming catalyst II) comprising copper, a metal oxide having a spinel structure, and a solid acidic substance.
(3) 銅を含み、 かつスピネル構造を有する金属酸化物が、 〇11ー^111型 スピネルである上記 (1)、 (2) の酸素含有炭化水素の改質触媒、  (3) The reforming catalyst for an oxygen-containing hydrocarbon according to (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a 〇11- ^ 111 type spinel,
(4) 銅を含み、 かつスピネル構造を有する金属酸化物が、 〇11 _ 6型 スピネルである上記 (1)、 (2) の酸素含有炭化水素の改質触媒、  (4) The oxygen-containing hydrocarbon reforming catalyst according to (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a 〇11 -6 type spinel,
(5) 銅を含み、 かつスピネル構造を有する金属酸化物が、 〇11ー〇 1:型 スピネルである上記 (1)、 (2) の酸素含有炭化水素の改質触媒、  (5) The oxygen-containing hydrocarbon reforming catalyst according to (1) or (2) above, wherein the metal oxide containing copper and having a spinel structure is a {11-1: 1: type spinel;
(6) 銅を含み、 かつスピネル構造を有する金属酸化物が、 Cu— Mn— F e型スピネルである上記 (1 )、 (2) の酸素含有炭化水素の改質触媒。 (6) The reforming catalyst for an oxygen-containing hydrocarbon according to (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a Cu—Mn—Fe spinel.
(7) 固体酸性物質がアルミナである上記 (2) の酸素含有炭化水素の改 質触媒、 (7) The reforming catalyst for an oxygen-containing hydrocarbon according to the above (2), wherein the solid acidic substance is alumina,
(8) 上記 (1)、 (2) の改質触媒を還元することにより得られる酸素含 有炭化水素の改質触媒、  (8) An oxygen-containing hydrocarbon reforming catalyst obtained by reducing the reforming catalysts of (1) and (2) above,
(9) 酸素含有炭化水素が、 メタノール、 エタノール、 ジメチルエーテル 及びメチルェチルエーテルから選ばれる少なくとも一種である上記 (1)、 (9) The above (1), wherein the oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether and methylethyl ether.
(2) の酸素含有炭化水素の改質触媒、 (2) an oxygen-containing hydrocarbon reforming catalyst,
(1 0) 上記 (1)、 (2) の改質触媒を用い、 酸素含有炭化水素を永蒸気 改質することを特徴とする水素又は合成ガスの製造方法、 (10) Using the reforming catalysts of (1) and (2) above, evaporate oxygen-containing hydrocarbons into permanent steam. A method for producing hydrogen or synthesis gas, characterized by reforming
(1 1) 上記 (1)、 (2) の改質触媒を用い、 酸素含有炭化水素を自己熱 改質することを特徴とする水素又は合成ガスの製造方法、  (1 1) A method for producing hydrogen or synthesis gas, wherein the oxygen-containing hydrocarbon is autothermally reformed using the reforming catalyst according to (1) or (2).
(1 2) 上記 (1)、 (2) の改質触媒を用い、 酸素含有炭化水素を部分酸 化改質することを特徴とする水素又は合成ガスの製造方法、  (1 2) A method for producing hydrogen or synthesis gas, comprising partially oxidizing and reforming an oxygen-containing hydrocarbon using the reforming catalyst according to (1) or (2).
(1 3) 上記 (1)、 (2) の改質触媒を用い、 酸素含有炭化水素を二酸化 炭素改質することを特徴とする水素又は合成ガスの製造方法、 及び  (13) A method for producing hydrogen or synthesis gas, comprising reforming oxygen-containing hydrocarbons with carbon dioxide using the reforming catalysts of (1) and (2) above, and
(1 4) 上記 (1 )、 (2) の改質触媒を備える改質器と、 該改質器により 製造される水素を燃料とする燃料電池とを有することを特徴とする燃料電 池システム、  (14) A fuel cell system comprising: a reformer provided with the reforming catalyst according to the above (1) and (2); and a fuel cell using hydrogen produced by the reformer as a fuel. ,
を提供するものである。 図面の簡単な説明 Is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の燃料電池システムの概略の流れ図である。 発明を実施するための最良の形態 FIG. 1 is a schematic flowchart of the fuel cell system of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の酸素含有炭化水素の改質触媒には、 ( 1 )銅を含み、かつスビネ ル構造を有する金属酸化物を含有する改質触媒 I、 及び (2) 銅を含み、 かつスピネル構造を有する金属酸化物と、 固体酸性物質との混合物を含有 する改質触媒 IIの二つの態様がある。  The oxygen-containing hydrocarbon reforming catalyst of the present invention includes (1) a reforming catalyst I containing copper and a metal oxide having a subinel structure, and (2) a copper-containing reforming catalyst having a spinel structure. There are two embodiments of a reforming catalyst II containing a mixture of a metal oxide having the same and a solid acidic substance.
なお、 本発明における酸素含有炭化水素としては、 メタノール、 ェタノ 一ノレなどのアルコール類、 ジメチルエーテル、 メチルェチルエーテルなど のエーテル類を好ましく挙げることができる。 この中でジメチルエーテル が特に好ましい。  As the oxygen-containing hydrocarbon in the present invention, preferred are alcohols such as methanol and ethanol, and ethers such as dimethyl ether and methylethyl ether. Of these, dimethyl ether is particularly preferred.
本発明において、 スピネル構造を有する金属酸化物とは、 AB 204型の 金属複酸化物にみられる代表的結晶構造型の一つで立方晶系を有している。 前記 AB 204において、 通常 Aは二価の金属であり、 Bは三価の金属であ る。 In the present invention, the metal oxide having a spinel structure has a cubic system in one typical crystal structure type found in AB 2 0 4 type metal complex oxide. In the AB 2 0 4, typically A is a divalent metal, B is Ru trivalent metal der.
本発明においては、 銅を含むスピネル構造の金属酸化物が用いられ、 こ のような金属酸化物としては、 触媒活性及び耐熱性などの点から、 C u— Mn型スピネル、 。11ー 6型スピネル、 C u— C r型スピネルが好まし い。 前記 C u— Mn型スピネルとしては、 例えば C uMn 2O4などを挙げ ることができ、 C u _ F e型スピネルとしては、 例えば C u F e 204など を挙げることができる。 C u— C r型スピネルとしては、 例えば C u C r 24などを挙げることができる。 さらに、 C u A 1 204や、 三成分系の C u (F e C r ) 204、 C u (F e A 1 ) 2 O4、 C u (Mn F e ) 204ス ピネルも用いることができる。 C u (Mn F e ) 2 O4型スピネルとしては、 C u (Mn 1 5 F e 0. 5) 04、 C u (Mn x. 0 F e ^ 0) 〇4、 C u (M n 2/3 F e 4/3) 04、 C u (Mn 0. 5 F e ^ 5) 04などが挙げられる。 このような銅を含むスピネル構造の金属酸化物は、 銅を含む非スピネル 構造のものに比べて、 耐熱性に優れ、 かつ酸素含有炭化水素の改質に用い る場合、 単位表面積当たりの触媒活性がはるかに高い。 In the present invention, a metal oxide having a spinel structure containing copper is used. As such a metal oxide, Cu-Mn-type spinel and the like from the viewpoint of catalytic activity and heat resistance. Preferred are 11-6 type spinels and Cu-Cr type spinels. Examples of the C UMN type spinels, for example, C uMn 2 O 4, etc. can Rukoto cited as the C u _ F e type spinel, and the like for example, C u F e 2 0 4. The C u- C r type spinel, and the like for example, C u C r 24. Furthermore, and C u A 1 2 0 4, ternary C u (F e C r) 2 0 4, C u (F e A 1) 2 O 4, C u (Mn F e) 2 0 4 scan Pinel can also be used. C u (Mn F e) The 2 O 4 type spinel, C u (Mn 1 5 F e 0. 5) 0 4, C u (Mn x. 0 F e ^ 0) 〇 4, C u (M n 2/3 F e 4/3) 0 4, C u (Mn 0. 5 F e ^ 5) 0 4 and the like. Such a metal oxide having a spinel structure containing copper has a higher heat resistance than a non-spinel structure metal containing copper, and has a higher catalytic activity per unit surface area when used for reforming an oxygen-containing hydrocarbon. Is much higher.
本発明の酸素含有炭化水素の改質触媒 Iは、 前記の銅を含むスピネル構 造の金属酸化物を含有するものであり、 一方、 本発明の酸素含有炭化水素 の改質触媒 Πは、前記の銅を含むスピネル構造の金属酸化物及ぴ固体酸性 物質とを含有するものである。この改質触媒 IIにおける固体酸性物質とは、 固体でありながらブレンステツド酸又はルイス酸の特性を示すものであり、 具体的にはアルミナ、 シリカ ·アルミナ、 シリカ 'チタニア、ゼォライ ト、 シリコリン酸アルミニウム (S AP O) などが挙げられる。 これらは一種 用いてもよく、 二種以上を組み合わせて用いてもよいが、 これらの中で、 得られる触媒の活性などの点から、 アルミナが好適である。  The oxygen-containing hydrocarbon reforming catalyst I of the present invention contains the above-described metal oxide having a spinel structure containing copper.On the other hand, the oxygen-containing hydrocarbon reforming catalyst I of the present invention contains And a metal oxide having a spinel structure containing copper and a solid acidic substance. The solid acidic substance in the reforming catalyst II is a solid substance exhibiting characteristics of brenstead acid or Lewis acid, and specifically, alumina, silica-alumina, silica 'titania, zeolite, aluminum silicophosphate ( S AP O). These may be used alone or in combination of two or more. Among them, alumina is preferred from the viewpoint of the activity of the obtained catalyst.
この固体酸性物質として用いられるアルミナとしては、 市販のひ、 β、 7 、 θ、 K;、 のいずれの結晶形態のものも使用できる。 また、 ベー マイ ト、 パイァライ ト、 ギブサイ ト等のアルミナ水和物を焼成したものも 使用できる。 この他に、 硝酸アルミニウムに ρ Η 8〜 1 0程度のアルカリ 緩衝液を加えて水酸化物の沈殿を生成させ、 これを焼成したものを使用し てもよいし、 塩化アルミニウムを焼成してもよい。 また、 アルミニウムィ ソプロポキシド等のアルコキシドを 2—プロパノール等のアルコールに溶 解させ加水分解用の触媒として塩酸等の無機酸を添加してアルミナゲルを 調製し、 これを乾燥、 焼成するゾル ·ゲル法によって調製したものを使用 することもできる。 Alumina used as this solid acidic substance is commercially available, β, Any one of the crystal forms of 7, θ, and K can be used. Further, those obtained by calcining alumina hydrate such as boehmite, pyrite and gibbsite can also be used. Alternatively, aluminum hydroxide may be precipitated by adding an alkaline buffer solution of about ρΗ8 to 10 to aluminum nitrate and calcining the precipitate, or calcining aluminum chloride. Good. Also, a sol-gel method in which an alkoxide such as aluminum isopropoxide is dissolved in an alcohol such as 2-propanol and an inorganic acid such as hydrochloric acid is added as a catalyst for hydrolysis to prepare an alumina gel, which is dried and calcined. Can also be used.
本発明の改質触媒 IIは、銅を含むスピネル構造の金属酸化物と前記固体 酸性物質を、 単に混合したものであってもよいし、 該固体酸性物質を担体 として用い、 これに鲖を含むスピネル構造の金属酸化物を担持させたもの であってもよい。この改質触媒 IIにおける銅の含有量としては特に制限は ないが、 触媒活性などの点から、 C uとして、 通常 1〜5 0質量%、 好ま しくは 2〜 3 0質量%の範囲である。  The reforming catalyst II of the present invention may be a simple mixture of a metal oxide having a spinel structure containing copper and the solid acidic substance, or the solid acidic substance may be used as a carrier, and may contain 鲖. It may carry a metal oxide having a spinel structure. The content of copper in the reforming catalyst II is not particularly limited, but is usually in the range of 1 to 50% by mass, preferably 2 to 30% by mass as Cu in terms of catalytic activity and the like. .
また、本発明の改質触媒 I及ぴ IIにおいては、銅を含むスピネル構造の 金属酸化物として、 非スピネル構造の銅を含む化合物を、 本発明の目的が 損なわれない範囲で、 所望により含有するものも用いることができる。 次に、 本発明の改質触媒 Iの調製方法の一例について、 C u M n 24ス ピネルからなる触媒を調製する場合を例に挙げて説明する。 In the reforming catalysts I and II of the present invention, a compound containing copper having a non-spinel structure is optionally contained as a metal oxide having a spinel structure containing copper as long as the object of the present invention is not impaired. Can be used. Next, an example of a method for preparing a reforming catalyst I of the present invention, will be described as an example the case of preparing a catalyst comprising C u M n 24 spinel.
まず、 銅源として、 硝酸銅などの水溶性銅塩を、 マンガン源として、 硝 酸マンガンなどの水溶性マンガン塩を用い、 これらを実質上化学量論的な 割合、 すなわち C uと M nのモル比が、 実質上 1 : 2になるように含む水 溶液を調製する。 次いで、 この水溶液に、 クェン酸などのキレート剤を加 えたのち、 加熱して水を蒸発させてゲルを生成させる。 次に、 このゲルを 加熱処理して、 ゲル中の硝酸根ゃクェン酸などを分解して得られた酸化物 微粉末を、 空気中で 300〜500°C程度の温度で 1〜5時間程度仮焼し たのち、 さらに 5 00〜1, 000°C程度の温度で 5〜1 5時間程度焼成 することにより、 C uMn 2O4スピネルからなる触媒が得られる。 また 7 00 °C以上の高温で焼成した場合は、 Mn 203と C u 5Mn 504ス ピネルの混合物になると言われているが、 この場合も触媒として使用可能 である。 First, a water-soluble copper salt such as copper nitrate is used as a copper source, and a water-soluble manganese salt such as manganese nitrate is used as a manganese source, and these are substantially in a stoichiometric ratio, that is, Cu and Mn. Prepare an aqueous solution containing a molar ratio of substantially 1: 2. Next, a chelating agent such as citric acid is added to the aqueous solution, and the mixture is heated to evaporate the water to form a gel. Next, this gel is subjected to a heat treatment to decompose nitrate, citrate, etc. in the gel, resulting in an oxide. The fine powder is calcined in air at a temperature of about 300 to 500 ° C for about 1 to 5 hours, and then calcined at a temperature of about 500 to 1,000 ° C for about 5 to 15 hours. A catalyst comprising CuMn 2 O 4 spinel is obtained. Also when fired at 7 00 ° C higher temperature than is said to be Mn 2 0 3 and C u 5 Mn 5 0 4 scan mixtures Pinel, can be used as catalysts also in this case.
この方法においては、 C uが Mnに対して化学量論的な割合より過剰に なるように、 銅源を用いることができる。 この場合、 得られた触媒は、 銅 の酸化物 (C u 20又は C u Oあるいはそれらの混合物) とスピネル型酸 化物との混合物となり、 このものも、 改質触媒 I として用いることができ る。 In this method, a copper source can be used such that Cu is in stoichiometric excess with respect to Mn. In this case, the resulting catalyst becomes oxides of copper and (C u 2 0 or C u O or a mixture thereof) with a mixture of spinel-type oxides, also this one can be used as the reforming catalyst I You.
また、 C u F e 204スピネルからなる触媒を調製する場合には、 前記マ ンガン源の代わりに、 硝酸鉄などの水溶性鉄塩等の鉄源を用いればよい。 さらに、 前記マンガン源の代わりに、 鉄源とマンガン源との混合物を用い ることにより、 Cu (F eMn) 2 O 4スピネルからなる触媒を得ることが できる。 このものも、 もちろん改質触媒 I として用いることができる。 これらの改質触媒 Iは、 通常適当な大きさのペレツト状に成型されて用 いられる。 Also, when preparing a catalyst comprising C u F e 2 0 4 spinel, instead of the manganese source, it may be used iron source, such as a water-soluble iron salts such as iron nitrate. Further, by using a mixture of an iron source and a manganese source instead of the manganese source, a catalyst comprising Cu (FeMn) 2 O 4 spinel can be obtained. This can of course be used as the reforming catalyst I. These reforming catalysts I are usually used in the form of pellets of an appropriate size.
次に、本発明の改質触媒 IIの調製方法の一例について、 固体酸性物質で あるアルミナ担体に、 C uMn 204スピネルが担持してなる触媒を調製す る場合を例に挙げて説明する。 Next, an example of a method for preparing a reforming catalyst II of the present invention, the alumina support is a solid acidic material will be described with a case C uMn 2 0 4 spinel you preparing a catalyst comprising supported on example .
まず、 銅源として、 硝酸銅な'どの水溶性銅塩を、 マンガン源として、 硝 酸マンガンなどの水溶性マンガン塩を用い、 これらを実質上化学量論的な 割合、 すなわち C uと Mnのモル比が、 実質上 1 : 2になるように含む水 溶液を調製する。 次いで、 この水溶液に、 所定量のアルミナ粉末を加え、 均質に分散させたのち、 加熱して水を蒸発させて粉末を得る。 次に、 この 粉末を、 空気中で 3 00〜5 00°C程度の温度で 1〜5時間程度仮焼した のち、 さらに 500〜1, 000 °C程度の温度で 5〜 1 5時間程度焼成す ることにより、 Cuと Mnを含有するスピネル担持アルミナ触媒が得られ る。 First, a water-soluble copper salt such as copper nitrate is used as a copper source, and a water-soluble manganese salt such as manganese nitrate is used as a manganese source, and these are used in a substantially stoichiometric ratio, that is, Cu and Mn. Prepare an aqueous solution containing a molar ratio of substantially 1: 2. Next, a predetermined amount of alumina powder is added to the aqueous solution, uniformly dispersed, and then heated to evaporate water to obtain a powder. Then this The powder is calcined in air at a temperature of about 300 to 500 ° C for about 1 to 5 hours, and then calcined at a temperature of about 500 to 1,000 ° C for about 5 to 15 hours. Thus, a spinel-supported alumina catalyst containing Cu and Mn is obtained.
また、 前記マンガン源の代わりに、 鉄源を用いることにより、 Cu F e 2 O 4スピネル担持アルミナ触媒を得ることができ、マンガン源の代わりに、 鉄源とマンガン源との混合物を用いることにより、 Cu (F eMn) 2O4 スピネル担持アルミナ触媒を得ることができる。 Further, by using an iron source instead of the manganese source, a CuFe 2 O 4 spinel-supported alumina catalyst can be obtained, and by using a mixture of an iron source and a manganese source instead of the manganese source. , it can be obtained Cu (F eMn) 2 O 4 spinel on alumina catalyst.
これらの改質触媒 IIは、通常適当な大きさのペレツト状に成型されて用 いられる。  These reforming catalysts II are usually used in the form of pellets of an appropriate size.
さらに、本発明の改質触媒 II 1S 銅を含むスピネル構造の金属酸化物と アルミナとの混合物である場合には、 例えば、 C uMn24スピネル、 C u F e 204スピネル及ぴ C u (F e Mn) 2O4スピネルなどの中から選ば れる少なくとも一種からなる適当な大きさのペレツトと、 適当な大きさの アルミナペレツトとを混合して改質触媒 IIを調製してもよいし、 C uMn 204スピネル、 C u F e 204スピネル及ぴ C u (F eMn) 24スピネ ルの中から選ばれる少なくとも一種の粉末と、 アルミナ粉末とを均質に混 合したのち、適当な大きさのペレツトに成型して改質触媒 IIを調製しても よい。 Furthermore, when a mixture of a metal oxide and alumina spinel structure containing reforming catalyst II 1S copper of the present invention, for example, C UMN 24 spinel, C u F e 2 0 4 spinel及Pi C Even if the reforming catalyst II is prepared by mixing an appropriate-sized pellet made of at least one selected from u (F e Mn) 2 O 4 spinel and the like and an appropriate-sized alumina pellet. good to, C UMN 2 0 4 spinel, C u F e 2 0 4 spinel及Pi C u (F eMn) 24 and at least one powder selected from the group consisting of spinel Le, homogeneously mixed-and alumina powder After that, the reforming catalyst II may be prepared by molding into a pellet of an appropriate size.
本発明においては、 上記改質触媒を還元することにより、 さらに活性を 向上させることができる。 還元処理は、 水素を含む気流中で処理する気相 還元方法と、 還元剤で処理する湿式還元方法がある。 前者の還元処理は、 通常水素を含む気流下、 1 5 0〜500°C、好ましくは、 200〜300°C の温度で 30分〜 24時間、 好ましくは、 1〜1 0時間実施する。 水素ガ ス以外に、 窒素、 ヘリウム、 アルゴンなどの不活性ガスを共存させてもよ レ、。 後者の湿式還元法としては、 液体アンモニア Zアルコール/ N a , 液体 アンモニア アルコール ZL iを用いる B i r c h還元、 メチルァミソ / L i等を用いる B e n k e s e r還元、 Z n/HC l , A 1 /N a OH/ H20, N a H, L i A 1 H4又はその置換体、 ヒ ドロシラン類、 水素化ホ ゥ素ナトリ ウム又はその置換体、 ジボラン、 蟻酸、 ホルマリン、 ヒ ドラジ ン等の還元剤で処理する方法がある。この場合、通常、室温〜 1 o o°cで、 1 0分〜 24時間、 好ましくは、 30分〜 1 0時間行うものである。 In the present invention, the activity can be further improved by reducing the reforming catalyst. The reduction treatment includes a gas phase reduction method in which the treatment is performed in an air stream containing hydrogen and a wet reduction method in which the treatment is performed with a reducing agent. The former reduction treatment is usually carried out at a temperature of 150 to 500 ° C, preferably 200 to 300 ° C, for 30 minutes to 24 hours, preferably 1 to 10 hours, under a stream of hydrogen. An inert gas such as nitrogen, helium, or argon may coexist in addition to hydrogen gas. The latter wet reduction method includes Birch reduction using liquid ammonia Z alcohol / Na, liquid ammonia alcohol ZLi, Benkeser reduction using methyl amiso / Li, Zn / HCl, A1 / NaOH. / H 2 0, N a H , L i a 1 H 4 , or a substitution product thereof, human Doroshiran acids, hydrogen coercive © containing sodium or derivatives thereof, diborane, formic acid, formalin, with a reducing agent such as human Doraji down There is a way to handle it. In this case, the reaction is usually carried out at room temperature to 1 oo ° C for 10 minutes to 24 hours, preferably for 30 minutes to 10 hours.
また、 反応原料を流すことによって、 生成した水素や COによって反応 中にも触媒は還元される。  In addition, by flowing the reaction raw materials, the catalyst is reduced by the generated hydrogen and CO during the reaction.
本発明においては、'触媒は還元前処理あるいは生成ガスによって還元さ れることで、 C uあるいは他の元素はスピネル構造から脱離し、 スピネル 構造は一部あるいは全部が保持されていない状態になっているが、 最初に スピネル構造を有する C u触媒を使用することが本発明の重要な点である。 本発明の水素又は合成ガスの製造方法においては、 前述の本発明の改質 触媒 I及ぴノ又は改質触媒 II を用いてジメチルエーテルなどの酸素含有 炭化水素を、 (1) 水蒸気改質、 (2) 自己熱改質、 (3) 部分酸化改質又は (4) 二酸化炭素改質することにより、 水素又は合成ガスを製造する。 次に、 各改質方法についてジメチルエーテルを用いた場合を例に挙げて 説明する。  In the present invention, the catalyst is reduced by the pretreatment for reduction or by the generated gas, so that Cu or other elements are desorbed from the spinel structure, and the spinel structure is in a state where some or all of the spinel structure is not retained. However, it is an important point of the present invention to first use a Cu catalyst having a spinel structure. In the method for producing hydrogen or synthesis gas according to the present invention, the reforming catalyst I and / or the reforming catalyst II according to the present invention is used to convert an oxygen-containing hydrocarbon such as dimethyl ether into (1) steam reforming, 2) Autothermal reforming, (3) partial oxidation reforming, or (4) carbon dioxide reforming to produce hydrogen or synthesis gas. Next, each reforming method will be described with reference to an example in which dimethyl ether is used.
[水蒸気改質]  [Steam reforming]
本発明の改質触媒を用いる場合、 ジメチルエーテルの水蒸気改質は、 以 下に示す反応式に従って、 反応が進行するものと思われる。  When the reforming catalyst of the present invention is used, the reaction of steam reforming of dimethyl ether is considered to proceed according to the following reaction formula.
CH3OCH3 + H20 → 2 CH3 OH · · · ( 1 )CH 3 OCH 3 + H 2 0 → 2 CH 3 OH
2 CH3OH + 2 H2 O → 2 C O 2 + 6 H2 · · - (2) 2 C 02 + 2 H2 → 2 C O + 2 H20 · · - (3) したがって、 水素を製造する場合には、 前記 (3) の反応が進行しにく いように、 すなわち 2 CH 3 OH + 2 H 2 O → 2 CO 2 + 6 H 2 --(2) 2 C 0 2 + 2 H 2 2 2 CO + 2 H 2 0 In this case, the reaction (3) is difficult to proceed. So, that is,
CH3OCH3 + 3 H2 O → 2 C02 + 6 Η2 · · - (4) の反応が起こるように反応条件を選択すればよい。 CH 3 OCH 3 + 3 H 2 O → 2 C0 2 + 6 Η 2 · ·-The reaction conditions may be selected so that the reaction (4) occurs.
一方、 合成ガスを製造する場合には、 前記 (1)、 (2) 及び (3) の反 応が生じるように、 すなわち  On the other hand, in the case of producing synthesis gas, the reactions (1), (2) and (3) are performed so that
CH3 O CH3 + H20 → 2 C O + 4 H2 · · - (5) の反応が起こるように反応条件を選択すればよい。 CH 3 O CH 3 + H 2 0 → 2 CO + 4 H 2 ··· The reaction condition may be selected so that the reaction (5) occurs.
水素を製造する場合、 水蒸気/ジメチルエーテルモル比は、 理論的には 3であるが、 3〜6程度が好ましく、 一方、 合成ガスを製造する場合、 水 蒸気ノジメチルエーテルモル比は、 理論的には 1であるが、 1〜2程度が 好ましい。  In the case of producing hydrogen, the molar ratio of water vapor / dimethyl ether is theoretically 3, but is preferably about 3 to 6.On the other hand, in the case of producing synthesis gas, the molar ratio of water vapor / dimethyl ether is theoretically 1, but preferably about 1-2.
反応温度は、 通常 200〜500°C、 好ましくは 2 50〜450°Cの範 囲で選定される。 この温度が 20 0°C未満ではジメチルエーテルの転化率 が低くなるおそれがあり、 500°Cを超えると触媒の活性劣化が生じる原 因となる。 GHSV (ガス時空間速度) は、 ジメチルエーテル基準で 1 0 0〜: 1 0 , 000 h 1の範囲が好ましい。 この GHSVが 1 00 h 1未満 では生産効率が低く、'実用的に好ましくないし、 1 0, 000 h 1を超え るとジメチルエーテルの転化率が低くなりすぎ、 実用的に好ましくない。 また、 反応圧力は、 通常、 常圧〜 IMP a程度である。 この圧力が高すぎ るとジメチルエーテルの転化率が低下する傾向がある。 The reaction temperature is usually selected in the range of 200 to 500 ° C, preferably 250 to 450 ° C. If the temperature is lower than 200 ° C, the conversion of dimethyl ether may be low. If the temperature is higher than 500 ° C, the activity of the catalyst may be deteriorated. GHSV (gas hourly space velocity) is a dimethyl ether reference 1 0 0: 1 0, the range of 000 h 1 are preferred. The GHSV is 1 00 h 1 less than the production efficiency is low, 'to not practically preferred, 1 0, 000 if h 1 a exceeds too low dimethyl ether conversion, practically undesirable. The reaction pressure is usually from normal pressure to IMPa. If the pressure is too high, the conversion of dimethyl ether tends to decrease.
[自己熱改質]  [Autothermal reforming]
自己熱改質反応においては、 ジメチルエーテルの酸化反応と水蒸気との 反応が同一リアクター内で、 又は連続したリアクター内で起こる。 この場 合、水素製造と合成ガス製造では、反応条件は若干異なるが、一般的には、 酸素 Zジメチルエーテルモル比は、 好ましくは 0. ι〜ιの範囲で選定さ れ、 水蒸気 ジメチルエーテルモル比は、 好ましくは 0. 5〜3の範囲で 選定される。 酸素ノジメチルエーテルモル比が 0. 1未満では発熱による 反応熱の供給が十分にできない場合があり、 一方 1を超えると完全酸化が 生じて水素濃度が低下するおそれが生じる。 また、 水蒸気ノジメチルエー テルモル比が 0. 5未満では水素濃度が低下する場合があり、 一方 3を超 えると発熱の供給が足らなくなるおそれが生じる。 In the autothermal reforming reaction, the oxidation reaction of dimethyl ether and the reaction with steam occur in the same reactor or in continuous reactors. In this case, the reaction conditions for hydrogen production and synthesis gas production are slightly different, but in general, the oxygen Z dimethyl ether molar ratio is preferably selected from the range of 0.1 to ι, and the steam dimethyl ether molar ratio is , Preferably in the range of 0.5-3 Selected. If the oxygen dimethyl ether molar ratio is less than 0.1, the heat of reaction may not be sufficiently supplied due to heat generation, while if it exceeds 1, complete oxidation may occur and the hydrogen concentration may decrease. If the steam / dimethyl ether molar ratio is less than 0.5, the hydrogen concentration may decrease. On the other hand, if it exceeds 3, the supply of heat may be insufficient.
反応温度は、 通常 200〜800°C、 好ましくは 2 50〜 500°Cの範 囲で選定される。 また、 GH S V及び反応圧力については、 前記水蒸気改 質の場合と同様である。  The reaction temperature is usually selected in the range of 200 to 800 ° C, preferably 250 to 500 ° C. The GHSV and the reaction pressure are the same as in the case of the steam reforming.
[部分酸化改質]  [Partial oxidation reforming]
部分酸化改質反応は、 ジメチルエーテルの部分酸化反応が起こり、 水素 製造と合成ガス製造では、 反応条件が若干異なるが、 一般的には、 酸素ノ ジメチルエーテルモル比は、 好ましくは 0. 3〜 1. 5の範囲で選定され る。 この酸素/ジメチルエーテルモル比が 0. 3未満ではジメチルエーテ ルの転化率が十分に高くならない場合があり、 一方 1. 5を超えると完全 酸化が起こり、 水素濃度が低下する原因となる。 反応温度は、 通常 200 〜900°C、 好ましくは 2 50〜600°Cの範囲で選定される。 また、 G H S V及ぴ反応圧力については、 前記水蒸気改質の場合と同様である。  In the partial oxidation reforming reaction, a partial oxidation reaction of dimethyl ether occurs, and the reaction conditions are slightly different between hydrogen production and synthesis gas production.In general, the oxygen-to-dimethyl ether molar ratio is preferably 0.3 to 1. It is selected in the range of 5. If the oxygen / dimethyl ether molar ratio is less than 0.3, the conversion of dimethyl ether may not be sufficiently high, while if it exceeds 1.5, complete oxidation occurs, causing a reduction in the hydrogen concentration. The reaction temperature is usually selected in the range of 200 to 900 ° C, preferably 250 to 600 ° C. The GHSV and the reaction pressure are the same as in the case of the steam reforming.
[二酸化炭素改質] .  [Carbon dioxide reforming].
二酸化炭素改質反応は、ジメチルエーテルと二酸化炭素の反応が起こり、 水素製造と合成ガス製造では、 反応条件は若干異なるが、 一般的には、 C 02Zジメチルエーテルモル比は、 好ましくは 0. 8〜2、 より好ましく は 0. 9〜 1. 5の範囲で選定される。 この CO 2 ジメチルエーテルモ ル比が 0. 8未満ではジメチルエーテルの転化率が十分に高くならないお それがあり、 一方 2を超えると生成物中に C02が多く残り、 水素の分圧 が低下する原因となる上、 C〇2の除去が必要な場合があり、 好ましくな い。 この反応では、 水蒸気を導入することができ、 この導入により水素濃 度を高めることが可能となる。 また、 反応温度、 G H S V及び反応圧力に ついては、 前記水蒸気改質の場合と同様である。 In the carbon dioxide reforming reaction, a reaction between dimethyl ether and carbon dioxide occurs.The reaction conditions are slightly different between hydrogen production and synthesis gas production, but in general, the molar ratio of CO 2 Z dimethyl ether is preferably 0.8. To 2, more preferably 0.9 to 1.5. If the CO 2 dimethyl ether mole ratio is less than 0.8, the conversion of dimethyl ether may not be sufficiently high, while if it exceeds 2 , a large amount of C02 remains in the product and the hydrogen partial pressure decreases. on the, may remove the C_〇 2 is required, it has an unwanted. In this reaction, steam can be introduced, and the introduction of hydrogen It is possible to increase the degree. Further, the reaction temperature, GHSV and reaction pressure are the same as in the case of the steam reforming.
本願の第三発明は、'前述の改質触媒を備える改質器と、 該改質器により 製造される水素を燃料とする燃料電池とを有することを特徴とする燃料電 池システムであり、 図 1により説明する。  A third invention of the present application is a fuel cell system comprising: a reformer including the above-described reforming catalyst; and a fuel cell using hydrogen produced by the reformer as fuel. This will be described with reference to FIG.
燃料タンク 2 1内の燃料は燃料ポンプ 2 2を経て脱硫器 2 3に導入され る。 脱硫器 2 3には例えば活性炭、 ゼォライ ト又は金属系の吸着剤などを 充填することができる。 脱硫器 2 3で脱硫された燃料は水タンクから水ポ ンプ 2 4を経た水と混合した後気化器 1に導入されて気化され、 次いで空 気ブロア一 3 5から送り出された空気と混合され改質器 3 1に送り込まれ る。 改質器 3 1には前述の改質触媒が充填されており、 改質器 3 1に送り 込まれた燃料混合物 (酸素含有炭化水素、 水蒸気及び酸素を含む混合気) から、 前述した改質反応のいずれかによつて水素が製造される。  The fuel in the fuel tank 21 is introduced into the desulfurizer 23 via the fuel pump 22. The desulfurizer 23 can be filled with, for example, activated carbon, zeolite or a metal-based adsorbent. The fuel desulfurized in the desulfurizer 23 is mixed with water from the water tank through the water pump 24, introduced into the vaporizer 1 and vaporized, and then mixed with the air sent out from the air blower 135. It is sent to the reformer 31. The reformer 31 is filled with the above-mentioned reforming catalyst, and is converted from the fuel mixture (a mixture containing oxygen-containing hydrocarbon, steam and oxygen) fed into the reformer 31 as described above. Hydrogen is produced by either of the reactions.
このようにして製造された水素は C O変成器 3 2、 C O選択酸化器 3 3 を通じて C O濃度が燃料電池の特性に及ぼさない程度まで低減される。 こ れらの反応器に用いる触媒例としては、 C O変成器 3 2には、 鉄一クロム 系触媒、 銅一亜鉛系触媒あるいは貴金属系触媒が挙げられ、 C O選択酸化 器 3 3には、 ルテニウム系触媒、 白金系触媒あるいはそれらの混合触媒が 挙げられる。 なお、 改質反応で製造された水素中の C O濃度が低い場合、 C O変成器 3 2を取り付けなくてもよい。  The hydrogen produced in this way is reduced through the CO 2 converter 32 and the CO 2 selective oxidizer 3 3 to such an extent that the CO concentration does not affect the characteristics of the fuel cell. Examples of catalysts used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst in the CO selective oxidizer 33. Catalysts, platinum catalysts or mixed catalysts thereof. When the C 2 O concentration in the hydrogen produced by the reforming reaction is low, it is not necessary to attach the C 2 O 3 converter 32.
燃科電池 3 4は負極 3 4 Aと正極 3 4 Bとの間に高分子電解質 3 4 Cを 備えた固体高分子形燃料電池である。 負極側には上記の方法で得られた水 素リッチガスが、 正極側には空気ブロア一 3 5から送られる空気が、 それ ぞれ必要であれば適当な加湿処理を行った後 (加湿装置は図示せず) 導入 される。  The fuel cell 34 is a polymer electrolyte fuel cell having a polymer electrolyte 34 C between a negative electrode 34 A and a positive electrode 34 B. The hydrogen-rich gas obtained by the above method is applied to the negative electrode side, and the air sent from the air blower 135 is applied to the positive electrode side. (Not shown) Introduced.
この時、 負極側では水素ガスがプロトンとなり電子を放出する反応が進 行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、 両極 34A、 34 B間に直流電流が発生する。 その場合、 負極には、 白金 黒もしくは活性炭担持の P t触媒あるいは P t— Ru合金触媒などが使用 され、正極には、白金黒もしくは活性炭担持の P t触媒などが使用される。 負極 34 A側に改質器 3 1のパーナ 3 1 Aを接続して余った水素を燃料 とすることができる。 また、 正極 34 B側に気水分離器 3 6を接続し、 正 極 34 B側に供給された空気中の酸素と水素との結合により生じた水と排 気ガスとを分離し、 水を水蒸気の生成に利用することができる。 燃料電池 34では発電に伴って熱が発生するため、 排熱回収装置 3 7を付設してこ の熱を回収して有効利用することができる。 排熱回収装置 3 7は、 燃料電 池 34に付設され反応時に生じた熱を奪う熱交換器 3 7 Aと、 この熱交換 器 3 7 Aで奪った熱を水と熱交換するための熱交換器 3 7 Bと、 冷却器 3 7 Cと、 これら熱交換器 3 7 A、 3 7 B及び冷却器 3 7 Cへ冷媒を循環さ せるポンプ 3 7Dとを備え、 熱交換器 3 7 Bにおいて得られる温水は他の 設備などで有効に利用することができる。 At this time, on the negative electrode side, the reaction of hydrogen gas becoming protons and releasing electrons proceeds. On the positive electrode side, oxygen gas obtains electrons and protons and the reaction of turning into water progresses, and a DC current is generated between both electrodes 34A and 34B. In that case, a platinum black or activated carbon-supported Pt catalyst or a Pt-Ru alloy catalyst is used for the negative electrode, and a platinum black or activated carbon-supported Pt catalyst or the like is used for the positive electrode. By connecting the parner 31 A of the reformer 31 to the negative electrode 34 A side, excess hydrogen can be used as fuel. In addition, a water-water separator 36 is connected to the positive electrode 34B side to separate water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side, and to separate the water. It can be used to generate steam. In the fuel cell 34, heat is generated as a result of power generation. Therefore, an exhaust heat recovery device 37 can be provided to recover and effectively use this heat. The exhaust heat recovery device 37 is provided with a heat exchanger 37 A attached to the fuel cell 34 for removing heat generated during the reaction, and a heat exchanger for exchanging the heat taken by the heat exchanger 37 A with water. Heat exchanger 37 B, a heat exchanger 37 B, a cooler 37 C, a pump 37 D for circulating the refrigerant to the heat exchangers 37 A, 37 B and the cooler 37 C. The hot water obtained in can be used effectively in other facilities.
なお、 図 1において、 1 1は水供給管、 1 2は燃料導入管、 1 5は接続 管を示す。 実施例  In FIG. 1, 11 is a water supply pipe, 12 is a fuel introduction pipe, and 15 is a connection pipe. Example
次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 こ れらの例によってなんら限定されるものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
〔実施例 1〕  (Example 1)
1 リ ッ トルビーカーに、 硝酸銅 [ナカライテスタ社製、 9 9. 5 % C u (N03) 2 · 3 Η2θ] 1 3. 2 8 g (5 5ミ リモル) 及ぴ硝酸マンガン [シグマアルドリッチジャパン社製、 9 8. 0 %Mn (N03) 2 · 6 H2 O] 3 1. 5 5 g (1 08ミ リモル) と、 蒸留水 300ミリ リツトルを加 え、 6 0°Cで 2時間攪拌した。 次いで、 この溶液にクェン酸一水和物 [シ グマアルドリツチジャパン社製] 3 4. 6 5 g ( 1 6 5ミリモル) を加え、 6 0°Cで 1時間攪拌したのち、 8 0°Cに昇温して水を蒸発させた。 1 Li Tsu Torubika, copper nitrate [Nacalai tester manufactured, 9 9. 5% C u ( N0 3) 2 · 3 Η 2 θ] 1 3. 2 8 g (5 5 Mi Rimoru)及Pi manganese nitrate [sigma Aldrich Japan, 9 8. a 0% Mn (N0 3) 2 · 6 H 2 O] 3 1. 5 5 g (1 08 Mi Rimoru), distilled water 300 millimeters liters pressurized Then, the mixture was stirred at 60 ° C for 2 hours. Next, 34.65 g (165 mmol) of citrate monohydrate [manufactured by Sigma-Aldrich Japan] was added to the solution, and the mixture was stirred at 60 ° C for 1 hour, and then stirred at 80 ° C. And the water was evaporated.
このようにして生成したゲルを 1 4 0°Cで加熱し続け、 硝酸根及びクェ ン酸を分解させて酸化物微粉末を得たのち、 空気中にて 4 0 0°Cで 2時間 仮焼し、 その後、 さらに焼成炉にて空気中、 9 0 0°Cで 1 0時間焼成を行 つた  The gel thus formed is continuously heated at 140 ° C. to decompose nitrate and citric acid to obtain an oxide fine powder, which is then temporarily put in air at 400 ° C. for 2 hours. Baking, and then further baking in air at 900 ° C for 10 hours in a baking furnace
このようにして、 ς u— Mnスピネル型酸化物触媒 (C U L 5Mn x. 5 04スピネルと Mn 203の混合物) を得た。 There was thus obtained the ς u- Mn spinel type oxide catalyst (CUL 5 Mn x. 5 0 4 mixture of spinel and Mn 2 0 3).
〔比較例 1〕  (Comparative Example 1)
1 リ ッ トルビーカ ^に、 硝酸銅 [ナカライテスタ社製、 9 9. 5 % C u (NO 3) 2 · 3 Η20] 2 2. 9 3 g ( 9 5 ミ リモル) 及び硝酸アルミ二 ゥム [和光純薬工業社製、 9 8. 0%A 1 (N03) 3 · 9H20] 1 0 5. 1 4 g (2 7 5 ミ リモル) と蒸留水 3 0 0 ミ リ リ ッ トルを加え、 6 0 で 2時間攪拌した。 次いで、 この溶液にクェン酸一水和物 [シグマアルドリ ツチジャパン社製] 1 1 7. 0 4 g (5 5 7ミリモル) を加え、 6 0。Cで 1時間攪拌し、 その後、 8 0°Cに昇温して水を蒸発させた。 1 Li Tsu Torubika ^, copper nitrate [Nacalai tester manufactured, 9 9. 5% C u ( NO 3) 2 · 3 Η 2 0] 2 2. 9 3 g (9 5 Mi Rimoru) and aluminum nitrate two © arm [manufactured by Wako Pure Chemical Industries, Ltd., 9 8. 0% a 1 ( N0 3) 3 · 9H 2 0] 1 0 5. 1 4 g (2 7 5 Mi Rimoru) and distilled water 3 0 0 millimeter Li Tsu The mixture was stirred at 60 for 2 hours. Then, to this solution was added 114.04 g (557 mmol) of citrate monohydrate [manufactured by Sigma-Aldrich Co., Ltd.], and the mixture was added with 60%. The mixture was stirred at C for 1 hour, and then heated to 80 ° C to evaporate water.
このようにして生成したゲルを 1 40°Cで加熱し続け、 硝酸根及ぴクェ ン酸を分解させて酸化物微粉末を得たのち、 空気中にて 4 0 0°Cで 2時間 仮焼し、 その後、 さらに焼成炉にて空気中、 5 0 0°Cで 3時間焼成を行つ た。  The gel thus formed is continuously heated at 140 ° C. to decompose nitrate and citric acid to obtain an oxide fine powder, and then temporarily set at 400 ° C. in air for 2 hours. After baking, further baking was performed at 500 ° C. for 3 hours in air in a baking furnace.
このようにして、 3 0質量0 /oC u担持アルミナ触媒 (非スピネル) を得 た。 Thus, a 30 mass 0 / oCu supported alumina catalyst (non-spinel) was obtained.
〔実施例 2〕  (Example 2)
1 リ ッ トルビーカーに、 硝酸銅 [ナカライテスク社製、 9 9. 5 % C u (NO 3) 2 · 3 H20] 6. 4 1 0 g (2 6 ミ リモル) 及ぴ硝酸マンガン [シグマアルドリッチジャパン社製、 9 8. 0 %Μη (Ν03) 2 · 6Η2 Ο] 7. 7 3 2 g (26ミリモル) と、蒸留水 300ミ リ リツ トルを加え、 60°Cで 2時間攪拌した。 次いで、 この溶液に A 1 203 [住友化学工業社 製、 「AKP_G0 1 5」] 30. O gを加え、 80 °Cで水を蒸発させ、 粉 末を得た。 1 In a little beaker, add copper nitrate [Nacalai Tesque, 99.5% Cu (NO 3 ) 2 · 3H 20 ] 6.40 g (26 mimol) and manganese nitrate [Sigma-Aldrich Japan K.K., 9 8. 0% Μη (Ν0 3) 2 · 6Η 2 Ο] and 7. 7 3 2 g (26 mmol), distilled water 300 millimeter rate torr addition, 2 60 ° C Stirred for hours. Then, this solution A 1 2 0 3 [manufactured by Sumitomo Chemical Co., Ltd., "AKP_G0 1 5"] added 30. O g, water is evaporated at 80 ° C, to obtain a powder flour.
次に、 得られた粉末を 400°Cで 2時間空気中で仮焼し、 その後、 さら に焼成炉にて空気中、' 900°Cで 1 0時間焼成した。  Next, the obtained powder was calcined in air at 400 ° C. for 2 hours, and then further calcined in air at 900 ° C. for 10 hours in a firing furnace.
,このようにして、 C uを 5質量0 /0含有する C u 5Mn x. 504スピネル 担持アルミナ触媒を得た。 , Was thus obtained the C u 5 Mn x. 5 0 4 spinel on alumina catalyst to 5 mass 0/0 containing C u.
〔実施例 3〕  (Example 3)
1 リ ットルビーカーに、 硝酸銅 [ナカライテスタ社製、 9 9. 5 % C u (NO3) 2 ' 3H2O] 4. 3 70 g (1 8ミリモル) 及び硝酸第二鉄 口 光純薬工業社製、 9 9. 0 % F e (N03) 3 · 9H20] 1 4. 6 5 g (3 6ミリモル) と、 蒸留水 3 00ミリ リツトルを加え、 60°Cで 2時間攪拌 した。 次いで、 この溶液に A 1 203 [住友化学工業社製、 「AKP— GO 1 5」] 30. O gを加え、 80°Cで水を蒸発させ、 粉末を得た。 1 Li Ttorubika, copper nitrate [Nacalai tester manufactured, 9 9. 5% C u ( NO 3) 2 '3H 2 O] 4. 3 70 g (1 8 mmol) and ferric nitrate port light Pure Chemical Industries, Ltd. Ltd., 9 9. and 0% F e (N0 3) 3 · 9H 2 0] 1 4. 6 5 g (3 6 mmol), distilled water 3 00 milli liters, and the mixture was stirred for 2 hours at 60 ° C. Then, this solution A 1 2 0 3 [manufactured by Sumitomo Chemical Co., Ltd., "AKP- GO 1 5"] 30. O g was added, water is evaporated at 80 ° C, to obtain a powder.
次に、 得られた粉末を 400°Cで 2時間空気中で仮焼し、 その後、 さら に焼成炉にて空気中、.9 00°Cで 1 0時間焼成した。  Next, the obtained powder was calcined at 400 ° C for 2 hours in the air, and then further calcined in a firing furnace at 900 ° C for 10 hours in the air.
このようにして、 C uを 5質量0 /0含有する C u F e 204スピネル担持ァ ルミナ触媒を得た。 There was thus obtained the C u F e 2 0 4 spinel supported § alumina catalyst to 5 mass 0/0 containing C u.
〔実施例 4〕  (Example 4)
実施例 1と同様にして調製した Cu— Mnスピネル型酸化物触媒 (Cu !. 5Mn !. 504スピネルと Mn 203の混合物) 1 0 gとアルミナ (住友 化学工業社製、 「AKP— G 0 1 5」) 4. 445 gを乳鉢で混合すること により、 C uを 20質量0 /0含有する、 C u— Mnスピネル酸化物触媒と A 1 203の混合触媒を得た。 〔実施例 5〕 It was prepared in the same manner as in Example 1 Cu- Mn spinel type oxide catalyst (Cu!. 5 Mn!. 5 0 4 mixture of spinel and Mn 2 0 3) 1 0 g of alumina (Sumitomo Chemical Co., Ltd., " resulting AKP- G 0 1 5 ") 4. by mixing in a mortar 445 g, 20 weight 0/0 containing C u, the C u- Mn mixed catalyst of the spinel oxide catalyst and a 1 2 0 3 Was. (Example 5)
1 リットルビーカーに、 硝酸銅 [ナカライテスタ社製、 99. 5 % C u (NO 3) 2 · 3 H20] 26. 56 g (109ミリモル) と硝酸マンガン [シグマアルドリッチジャパン社製、 98. 0 %Mn (N03) 2 · 6 H2 0] 3 1. 55 g (54ミリモル)、 及び硝酸第二鉄 [和光純薬工業社製、 99. 0 % F e (Ν03) 3 · 9Η20] 67. 33 g (1 65ミ リモル) と、蒸留水 3◦ 0ミリ リツトノレをカ卩え、 60°Cで 2時間攪拌した。次いで、 この溶液にクェン酸一水和物 [シグマアルドリッチジャパン社製] 85. 84 g (409ミ リモル) を加え、 60°Cで 1時間攪拌したのち、 80 °C に昇温して水を蒸発させた。 In a 1-liter beaker, add 26.56 g (109 mmol) of copper nitrate [Nacalai Tester, 99.5% Cu (NO 3 ) 2 · 3H 20 ] and manganese nitrate [Sigma Aldrich Japan, 98. 0% Mn (N0 3) 2 · 6 H 2 0] 3 1. 55 g (54 mmol), and ferric nitrate [manufactured by Wako Pure Chemical Industries, Ltd., 99. 0% F e (Ν0 3) 3 · 9Η 20 ] 67.33 g (165 millimoles) of distilled water and 3 リ 0 milliliters of distilled water were mixed and stirred at 60 ° C for 2 hours. Next, 85.84 g (409 mimol) of citrate monohydrate [manufactured by Sigma-Aldrich Japan] was added to this solution, and the mixture was stirred at 60 ° C for 1 hour, and then heated to 80 ° C to remove water. Evaporated.
このようにして生成したゲルを 140°Cで 7時間加熱し、 硝酸根及びク ェン酸を分解させて酸化物微粉末を得たのち、 空気中にて 400°Cで 2時 間仮焼し、 その後、 さらに焼成炉にて空気中、 900°Cで 1 0時間焼成を 行った。  The gel thus formed is heated at 140 ° C for 7 hours to decompose nitrate and citric acid to obtain fine oxide powder, and then calcined in air at 400 ° C for 2 hours. Thereafter, firing was further performed at 900 ° C for 10 hours in air in a firing furnace.
焼成後、 得られた Cu— Mn— F eスピネル型酸化物触媒 (CuMn0.After calcination, the obtained Cu—Mn—Fe spinel oxide catalyst (CuMn 0 .
5 F e 504) 10 gとアルミナ(住友化学工業社製「AKP _G 0 1 5 j) 4. 445 gを乳鉢で混合することにより Cuを 20質量%含有する〇11 Mn0. 5 F e !. 504スピネルと A 1203の混合触媒を得た。 , 5 F e 5 0 4) 10 g of alumina (manufactured by Sumitomo Chemical Co., Ltd. "AKP _G 0 1 5 j) 4. Rei_11 containing 20 wt% of Cu by mixing in a mortar 445 g Mn 0. 5 F e!. 5 0 4 to obtain a mixed catalyst of the spinel and a 1 2 0 3.,
〔実施例 6〕 (Example 6)
1 リ ッ トルビーカーに、 硝酸銅 [ナカライテスタ社製、 99. 5 % C u (NO 3) 2 · 3Η20] 20. 30 g (84ミリモル) 及ぴ硝酸第二鉄 [和 光純薬工業社製、 99. 0 % F e (Ν03) 3 · 9Η20] 68. 24 g (11 In a little beaker, add copper nitrate [99.5% Cu (NO 3 ) 2 · 3Η 20 ] manufactured by Nacalai Tester, Inc. 20.30 g (84 mmol) and ferric nitrate [Wako Pure Chemical Industries, Ltd. 99.0% F e (Ν0 3 ) 3 · 9Η 20 ] 68.24 g (1
68ミ リモル) と、 蒸留水 300ミ リ リ ツ トルを加え、 60 °Cで 2時間攪 拌した。 次いで、 この溶液にクェン酸一水和物 [シグマアルドリッチジャ パン社製] 70. 56 g (336ミ リモル) を加え、 60°Cで 1時間攪拌 したのち、 80°Cに昇温して水を蒸発させた。 このようにして生成したゲルを 1 40°Cで 7時間加熱し、 硝酸根及びク ェン酸を分解させて酸化物微粉末を得たのち、 空気中にて 400°Cで 2時 間仮焼し、 その後、 さらに焼成炉にて空気中、 900°Cで 1 0時間焼成を 行った。 68 millimoles) and 300 milliliters of distilled water were added and stirred at 60 ° C for 2 hours. Then, 70.56 g (336 mimol) of citrate monohydrate [manufactured by Sigma-Aldrich Japan] was added to the solution, and the mixture was stirred at 60 ° C for 1 hour. Was evaporated. The gel thus formed is heated at 140 ° C for 7 hours to decompose nitrate and citric acid to obtain an oxide fine powder, and then temporarily in air at 400 ° C for 2 hours. After baking, it was further fired in a firing furnace at 900 ° C for 10 hours in air.
焼成後、 得られた C u— F eスピネル型酸化物触媒 (Cu F e 204) 1 0 gとアルミナ (住友化学工業社製、 「AKP— GO 1 5」) 4. 2 3 5 g を乳鉢で混合することにより C uを 20質量%含有する C u F e 204ス ピネルと A 1 203の混合触媒を得た。 After calcination, the resulting C u- F e spinel type oxide catalyst (Cu F e 2 0 4) 1 0 g of alumina (manufactured by Sumitomo Chemical Co., Ltd., "AKP- GO 1 5") 4. 2 3 5 g to obtain a mixed catalyst of C u F e 2 0 4 spinel and a 1 2 0 3 of the C u containing 20 wt% by mixing in a mortar.
〔実施例 7〕  (Example 7)
1 リ ッ トルビーカーに、 硝酸銅 [ナカライテスタ社製、 9 9. 5 % C u (NO 3) 2 · 3 Η2θ] 20. 98 g (8 7ミ リモル) 及び硝酸クロム [ナ 力ライテスタ社製、 9 9. 5 % C r (Ν03) 3 · 9Η20] 70. 5 6 g ( 1 74ミ リモル) と、 蒸留水 300ミ リ リ ツ トルを加え、 60°Cで 2時 間攪拌した。 次いで、 この溶液にクェン酸一水和物 [シグマアルドリッチ ジャパン社製] 73. 0 8 g (348ミリモル) を加え、 60°Cで 1時間 攪拌したのち、 80°Cに昇温して水を蒸発させた。 1 Li Tsu Torubika, copper nitrate [Nacalai tester manufactured, 9 9. 5% C u ( NO 3) 2 · 3 Η 2 θ] 20. 98 g (8 7 Mi Rimoru) and chromium nitrate [Na force Raitesuta Inc. Ltd., 9 9. a 5% C r (Ν0 3) 3 · 9Η 2 0] 70. 5 6 g (1 74 Mi Rimoru), distilled water 300 millimeter Li Tsu torr addition, between 2:00 at 60 ° C Stirred. Next, 73.08 g (348 mmol) of citrate monohydrate [manufactured by Sigma-Aldrich Japan] was added to the solution, and the mixture was stirred at 60 ° C for 1 hour, and heated to 80 ° C to remove water. Evaporated.
このようにして生成したゲルを 1 40DCで 7時間加熱し、 硝酸根及ぴク ェン酸を分解させて酸化物微粉末を得たのち、 空気中にて 400°Cで 2時 間仮焼し、 その後、 さらに焼成炉にて空気中、 9 00°Cで 1 0時間焼成を 行った。 The thus produced gel was heated for 7 hours at 1 40 D C, after the yield of the oxide powder by decomposing the nitrate Ne及Piku E phosphate, between 2:00 at 400 ° C in air It was calcined and then further fired in a firing furnace at 900 ° C. for 10 hours in air.
焼成後、 得られた Cu— C rスピネル型酸化物触媒 (Cu C r 204) 1 0 gとアルミナ (住友化学工業社製、 「AKP— GO 1 5」) 4. 74 gを 乳鉢で混合することにより C uを 2 0質量%含有する C u C r 204スピ ネルと A 1 2 O 3の混合触媒を得た。 After calcination, the resulting Cu- C r spinel type oxide catalyst (Cu C r 2 0 4) 1 0 g of alumina (manufactured by Sumitomo Chemical Co., Ltd., "AKP- GO 1 5") 4. mortar 74 g mixed to obtain a mixed catalyst of C u C r 2 0 4 spinel and a 1 2 O 3 containing C u 2 0 wt% by.
〔試験例 1〕  (Test Example 1)
実施例 1〜 7及び比較例 1で得た触媒を 6〜 1 4メッシュの大きさに成 型し、 それぞれ 1ミリリツトルを反応器に充填した。 The catalysts obtained in Examples 1 to 7 and Comparative Example 1 were formed to a size of 6 to 14 mesh. The reactor was filled with 1 milliliter each.
実施例 2、 3、 6、 7及び比較例 1の触媒については、 水素含有量 1 0 容量%の水素と窒素の混合ガス中で、 2 50°Cにて 1時間加熱して水素還 元を行った。 なお、 実施例 1、 実施例 4及ぴ実施例 5の触媒については水 素還元を行わなかった。  The catalysts of Examples 2, 3, 6, 7 and Comparative Example 1 were heated at 250 ° C. for 1 hour in a mixed gas of hydrogen and nitrogen having a hydrogen content of 10% by volume to reduce hydrogen reduction. went. The catalysts of Examples 1, 4 and 5 were not subjected to hydrogen reduction.
ジメチルエーテル (DME) と水蒸気と窒素を、 それぞれ 1 5ミリ リツ トル Z分、 4 5ミリ リツトル 分及び 40ミリリツトル/分の速度で反応 器に供給し、 400°C又は 450°Cで DMEの水蒸気改質を行った。 この 際、全ガス量基準の G.H S V (ガス時空間速度)は 6, O O O h— 1であり、 DME基準の GHS Vは 900 h—1であった。 Dimethyl ether (DME), steam and nitrogen were supplied to the reactor at a rate of 15 milliliters Z, 45 milliliters, and 40 milliliters / minute, respectively, and the DME steam was reformed at 400 ° C or 450 ° C. The quality went. At this time, the GH SV (gas hourly space velocity) based on the total gas amount was 6, OOO h- 1 and the GHS V based on DME was 900 h- 1 .
DME反応速度及び DME転化率を、 下記の式に従って算出し、 触媒の 性能を評価した。 結果を第 1表に示す。  The DME reaction rate and DME conversion were calculated according to the following equations, and the performance of the catalyst was evaluated. The results are shown in Table 1.
く DME反応速度 ( ΐΆ θ 1 / s - m2- c a t) > DME reaction rate (ΐΆ θ 1 / s-m 2 -cat)>
DME反応速度 = DME流量 mo 1 / s ) X 0. 0 1 DME転化率 (%) 反応器中の触媒の表面積 (m2) DME reaction rate = DME flow rate mo 1 / s) X 0.01 DME conversion (%) Surface area of catalyst in reactor (m 2 )
ただし、 However,
反応器中の触媒の表面積-使用触媒体積 (m 1 ) X触媒比重 (gZm 1 ) X BET比表面積 (m2/g) Surface area of catalyst in reactor-catalyst volume used (m 1) X specific gravity of catalyst (gZm 1) X BET specific surface area (m 2 / g)
く DME転化率 (%) > DME conversion rate (%)>
D ME転化率 = [(入口 DME流量一出口 DM E流量) 入口 D ME流量] X 1 00 DME conversion rate = [(Inlet DME flow rate-Outlet DME flow rate) Inlet DME flow rate] X 100
Figure imgf000021_0001
第 1表から分かるように、 スピネル含有の実施例 1の触媒は、 非スピネ ル含有の比較例 1の触媒に比べて反応速度が大きい。 また、 スピネル含有 の実施例 2 7の触媒は、 非スピネル含有の比較例 1の触媒に比べて、 D M Eの転化率が高い。 産業上の利用可能性
Figure imgf000021_0001
As can be seen from Table 1, the catalyst of Example 1 containing spinel has a higher reaction rate than the catalyst of Comparative Example 1 containing no spinel. In addition, the catalyst of Example 27 containing spinel has a higher conversion of DME than the catalyst of Comparative Example 1 containing no spinel. Industrial applicability
本発明によれば、 耐熱性に優れる銅含有スピネル構造を有する金属酸化 物、 又はこのものと固体酸性物質とを含有し、 単位表面当たりの活性が大 きく向上した酸素含有炭化水素の改質触媒、 及びこの改質触媒を用いて酸 素含有炭化水素に各種改質を施し、 水素又は合成ガスを効率よく製造する 方法を提供することができる。 また、 このような優れた改質触媒を備えた 改質器と、 該改質器により製造される水素を燃料とする燃料電池とを有す る、 優れた燃料電池システムを製造することができる。  According to the present invention, a metal oxide having a copper-containing spinel structure having excellent heat resistance, or an oxygen-containing hydrocarbon reforming catalyst containing this and a solid acidic substance and having a greatly improved activity per unit surface is provided. It is possible to provide a method for efficiently producing hydrogen or synthesis gas by subjecting an oxygen-containing hydrocarbon to various reforming using the reforming catalyst. Further, it is possible to manufacture an excellent fuel cell system having a reformer provided with such an excellent reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel. .

Claims

請 求 の 範 囲 The scope of the claims
1. 銅を含み、 かつスピネル構造を有する金属酸化物を含有することを特 徴とする酸素含有炭化水素の改質触媒。 1. An oxygen-containing hydrocarbon reforming catalyst containing copper and a metal oxide having a spinel structure.
2. 銅を含み、 かつスピネル構造を有する金属酸化物と固体酸性物質とを 含有することを特徴とする酸素含有炭化水素の改質触媒。 2. An oxygen-containing hydrocarbon reforming catalyst comprising copper, a metal oxide having a spinel structure, and a solid acidic substance.
3. 銅を含み、 かつスピネル構造を有する金属酸化物が、 C u— Mn型ス ピネルである請求項 1又は 2に記載の酸素含有炭化水素の改質触媒。 3. The oxygen-containing hydrocarbon reforming catalyst according to claim 1, wherein the metal oxide containing copper and having a spinel structure is a Cu—Mn spinel.
4. 銅を含み、 かつスピネル構造を有する金属酸化物が、 じ 11ー? 6型ス ピネルである請求項 1又は 2に記載の酸素含有炭化水素の改質触媒。 4. Metal oxides containing copper and having a spinel structure 3. The reforming catalyst for an oxygen-containing hydrocarbon according to claim 1, which is a 6-type spinel.
5 . 銅を含み、 かつスピネル構造を有する金属酸化物が、 〇11ー0 1:型ス ピネルである請求項 1.又は 2に記載の酸素含有炭化水素の改質触媒。 5. The oxygen-containing hydrocarbon reforming catalyst according to claim 1 or 2, wherein the metal oxide containing copper and having a spinel structure is a spinel of type 11-01.
6. 銅を含み、 かつスピネル構造を有する金属酸化物が、 C u _Mn— F e型スピネルである請求項 1又は 2に記載の酸素含有炭化水素の改質触媒。 6. The reforming catalyst for an oxygen-containing hydrocarbon according to claim 1, wherein the metal oxide containing copper and having a spinel structure is a Cu_Mn-Fe type spinel.
7. 固体酸性物質がアルミナである請求項 2記載の酸素含有炭化水素の改 質触媒。 ' 7. The reforming catalyst for an oxygen-containing hydrocarbon according to claim 2, wherein the solid acidic substance is alumina. '
8. 請求項 1又は 2に記載の改質触媒を還元することにより得られる酸素 含有炭化水素の改質触媒。 8. An oxygen-containing hydrocarbon reforming catalyst obtained by reducing the reforming catalyst according to claim 1 or 2.
9 . 酸素含有炭化水素が、 メタノール、 エタノール、 ジメチルエーテル及 ぴメチルェチルエーテルから選ばれる少なくとも一種である請求項 1又は 2に記載の酸素含有炭化水素の改質触媒。 9. The reforming catalyst for an oxygen-containing hydrocarbon according to claim 1, wherein the oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether, and methylethyl ether.
1 0 . 請求項 1又は 2に記載の改質触媒を用い、 酸素含有炭化水素を水蒸 気改質することを特徴とする水素又は合成ガスの製造方法。 10. A method for producing hydrogen or synthesis gas, comprising reforming an oxygen-containing hydrocarbon with steam using the reforming catalyst according to claim 1 or 2.
1 1 . 請求項 1又は 2に記載の改質触媒を用い、 酸素含有炭化水素を自己 熱改質することを特徴とする水素又は合成ガスの製造方法。 11. A method for producing hydrogen or synthesis gas, wherein the reforming catalyst according to claim 1 or 2 is used for autothermal reforming of an oxygen-containing hydrocarbon.
1 2 . 請求項 1又は 2に記載の改質触媒を用い酸素含有炭化水素を部分酸 化改質することを特徴とする水素又は合成ガスの製造方法。 12. A method for producing hydrogen or synthesis gas, comprising subjecting an oxygen-containing hydrocarbon to partial oxidation reforming using the reforming catalyst according to claim 1 or 2.
1 3 . 請求項 1又は 2に記載の改質触媒を用い、 酸素含有炭化水素を二酸 化炭素改質することを特徴とする水素又は合成ガスの製造方法。 13. A method for producing hydrogen or synthesis gas, comprising reforming an oxygen-containing hydrocarbon with carbon dioxide using the reforming catalyst according to claim 1 or 2.
1 4 . 請求項 1又は 2に記載の改質触媒を備える改質器と、 該改質器によ り製造される水素を燃料とする燃料電池とを有する.ことを特徴とする燃料 電池システム。 14. A fuel cell system comprising: a reformer provided with the reforming catalyst according to claim 1 or 2; and a fuel cell using hydrogen produced by the reformer as a fuel. .
PCT/JP2004/006903 2003-05-20 2004-05-14 Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system WO2004103555A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-142573 2003-05-20
JP2003142573 2003-05-20
JP2003309696 2003-09-02
JP2003-309696 2003-09-02
JP2003-322949 2003-09-16
JP2003322949 2003-09-16
JP2004015343A JP4774197B2 (en) 2003-05-20 2004-01-23 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP2004-015343 2004-01-23

Publications (1)

Publication Number Publication Date
WO2004103555A1 true WO2004103555A1 (en) 2004-12-02

Family

ID=33479782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006903 WO2004103555A1 (en) 2003-05-20 2004-05-14 Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system

Country Status (4)

Country Link
JP (1) JP4774197B2 (en)
KR (1) KR101016891B1 (en)
TW (1) TW200500138A (en)
WO (1) WO2004103555A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104122A1 (en) * 2005-03-28 2006-10-05 Tohoku University High performance catalyst using composite oxide and method for preparation thereof
KR100649737B1 (en) * 2005-10-17 2006-11-27 삼성전기주식회사 Hydrogen fuel cells having thin film multi-layers
JP2007069105A (en) * 2005-09-06 2007-03-22 Toshiba Corp Catalyst and its manufacturing method
JP2010029856A (en) * 2009-09-14 2010-02-12 Toshiba Corp Catalyst and manufacturing method of catalyst
CN104785269A (en) * 2015-04-20 2015-07-22 广东石油化工学院 Method for preparing catalyst for hydrogen production by ethanol steam reforming
US9789471B2 (en) 2013-05-08 2017-10-17 Korea Research Institute Of Chemical Technology Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100732538B1 (en) * 2005-08-24 2007-06-27 요업기술원 Method for directly producing a hydrogen from hydrocarbon utilizing catalyst
JP2008221200A (en) * 2007-02-16 2008-09-25 Japan Science & Technology Agency Reforming catalyst of oxygen-containing hydrocarbon, manufacturing method of hydrogen or synthetic gas using it and fuel cell system
JP5178143B2 (en) * 2007-04-11 2013-04-10 独立行政法人科学技術振興機構 Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
KR100938779B1 (en) * 2007-12-04 2010-01-27 한국에너지기술연구원 The Method for Producing Synthesis Gas and Hydrogen Using methane
WO2009107592A1 (en) * 2008-02-25 2009-09-03 住友精化株式会社 Process and apparatus for production of hydrogen
TW201429037A (en) * 2008-05-14 2014-07-16 Nippon Oil Corp Desulfurizing device and fuel cell system
KR101869580B1 (en) * 2011-01-31 2018-06-20 스미토모 세이카 가부시키가이샤 Production method for hydrogen gas
JP5659067B2 (en) * 2011-04-04 2015-01-28 住友精化株式会社 Method for producing hydrogen gas
JP5956377B2 (en) * 2012-06-07 2016-07-27 株式会社豊田中央研究所 Method for producing hydrocarbon reforming catalyst
WO2016203371A1 (en) * 2015-06-15 2016-12-22 Clean Diesel Technologies, Inc. Performance improvement of copper and manganese containing ternary spinel as noble metal free three way catalysts
CN106391036B (en) * 2016-10-28 2018-10-23 成都理工大学 A kind of solid solution catalyst and preparation method of acetic acid self-heating reforming hydrogen manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel
JPS6354420B2 (en) * 1980-03-28 1988-10-27 Norsk Hydro As
EP1298089A1 (en) * 2000-06-22 2003-04-02 Consejo Superior De Investigaciones Cientificas Method for obtaining hydrogen by partial methanol oxidation
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739773A1 (en) * 1997-09-10 1999-03-11 Basf Ag Process and catalyst for steam reforming of methanol
JP2003010685A (en) * 2001-06-27 2003-01-14 Nkk Corp Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
JP2003033656A (en) * 2001-07-25 2003-02-04 Nkk Corp Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas
DE10225945A1 (en) * 2002-06-11 2003-12-24 Basf Ag Process for the production of hydrogenous gases

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel
JPS6354420B2 (en) * 1980-03-28 1988-10-27 Norsk Hydro As
EP1298089A1 (en) * 2000-06-22 2003-04-02 Consejo Superior De Investigaciones Cientificas Method for obtaining hydrogen by partial methanol oxidation
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104122A1 (en) * 2005-03-28 2006-10-05 Tohoku University High performance catalyst using composite oxide and method for preparation thereof
JP2007069105A (en) * 2005-09-06 2007-03-22 Toshiba Corp Catalyst and its manufacturing method
JP4607715B2 (en) * 2005-09-06 2011-01-05 株式会社東芝 Catalyst and method for producing catalyst
KR100649737B1 (en) * 2005-10-17 2006-11-27 삼성전기주식회사 Hydrogen fuel cells having thin film multi-layers
JP2010029856A (en) * 2009-09-14 2010-02-12 Toshiba Corp Catalyst and manufacturing method of catalyst
JP4665044B2 (en) * 2009-09-14 2011-04-06 株式会社東芝 Fuel reforming catalyst, reformer, and fuel cell system
US9789471B2 (en) 2013-05-08 2017-10-17 Korea Research Institute Of Chemical Technology Monolith catalyst for carbon dioxide reforming reaction, preparation method for same, and preparation method for synthesis gas using same
CN104785269A (en) * 2015-04-20 2015-07-22 广东石油化工学院 Method for preparing catalyst for hydrogen production by ethanol steam reforming
CN104785269B (en) * 2015-04-20 2017-04-26 广东石油化工学院 Method for preparing catalyst for hydrogen production by ethanol steam reforming

Also Published As

Publication number Publication date
KR20060009366A (en) 2006-01-31
KR101016891B1 (en) 2011-02-22
TW200500138A (en) 2005-01-01
JP2005342543A (en) 2005-12-15
JP4774197B2 (en) 2011-09-14
TWI351312B (en) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2004103555A1 (en) Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system
JP5421770B2 (en) Catalyst precursor material and catalyst using the same
JP2008221200A (en) Reforming catalyst of oxygen-containing hydrocarbon, manufacturing method of hydrogen or synthetic gas using it and fuel cell system
JP2001046872A (en) Methanol reforming catalyst, its production thereof and methanol reforming method
WO1999017875A1 (en) Catalyst for producing hydrogen or synthesis gas and method of producing hydrogen or synthesis gas
WO2008056621A1 (en) Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
Usman et al. Recent advances in the methanol synthesis via methane reforming processes
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP5178143B2 (en) Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
JP4745557B2 (en) Desulfurization agent for removing sulfur compounds in fuel gas, fuel cell power generation system using this desulfurization agent
JPWO2006054527A1 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2006346535A (en) Co removal catalyst and fuel cell system
JP3796744B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP4328941B2 (en) Method for producing hydrogen-containing gas
JP2009119307A (en) Catalyst regeneration method
JP2006043587A (en) Reforming catalyst of oxygen-containing hydrocarbon, reforming method of oxygen-containing hydrocarbon using it, and fuel cell system
JP2006252929A (en) Co modification catalyst for dss operating fuel cell, its manufacturing method, and fuel cell system
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JP4359748B2 (en) Method for producing hydrogen-containing gas
JP2004000848A (en) Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide
JP2005185989A (en) Reforming catalyst of oxygen containing hydrocarbon, method for manufacturing hydrogen or synthetic gas using the same and fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057022073

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048137704

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057022073

Country of ref document: KR

122 Ep: pct application non-entry in european phase