JP2005342543A - Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system - Google Patents

Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system Download PDF

Info

Publication number
JP2005342543A
JP2005342543A JP2004015343A JP2004015343A JP2005342543A JP 2005342543 A JP2005342543 A JP 2005342543A JP 2004015343 A JP2004015343 A JP 2004015343A JP 2004015343 A JP2004015343 A JP 2004015343A JP 2005342543 A JP2005342543 A JP 2005342543A
Authority
JP
Japan
Prior art keywords
oxygen
reforming catalyst
catalyst
reforming
containing hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004015343A
Other languages
Japanese (ja)
Other versions
JP4774197B2 (en
Inventor
Koichi Eguchi
浩一 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004015343A priority Critical patent/JP4774197B2/en
Priority to PCT/JP2004/006903 priority patent/WO2004103555A1/en
Priority to KR1020057022073A priority patent/KR101016891B1/en
Priority to TW093114133A priority patent/TW200500138A/en
Publication of JP2005342543A publication Critical patent/JP2005342543A/en
Application granted granted Critical
Publication of JP4774197B2 publication Critical patent/JP4774197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To produce an oxygen-containing hydrocarbon reforming catalyst which contains copper and has excellent heat resistance and remarkably improved activity per unit surface area and to provide a process for producing hydrogen or a synthesis gas, and an excellent fuel cell system provided with a reformer having the excellent reforming catalyst and a fuel cell in which the hydrogen to be produced by the reformer is used as fuel. <P>SOLUTION: The oxygen-containing hydrocarbon reforming catalyst contains a metal oxide containing copper and having a spinel structure or contains the same and a solid acid substance. Hydrogen or the synthesis gas is produced by carrying out any of steam reforming (1), self thermal reforming (2), partial oxidation reforming (3) and carbon dioxide reforming of an oxygen-containing hydrocabon by the use of this reforming catalyst. The excellent fuel cell system is provided with the reformer having the excellent reforming catalyst and the fuel cell in which the hydrogen to be produced by the reformer is used as fuel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素含有炭化水素の改質触媒、それを用いた水素又は合成ガスの製造方法及び燃料電池システムに関し、さらに詳しくは、耐熱性に優れる銅含有スピネル構造を有する金属酸化物、又はこのものと固体酸性物質とを含み、単位表面積当たりの活性が大きく向上した酸素含有炭化水素の改質触媒、及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施し、水素又は合成ガスを効率よく製造する方法、並びにこの改質触媒を利用した燃料電池システムに関する。   The present invention relates to a reforming catalyst for oxygen-containing hydrocarbons, a method for producing hydrogen or synthesis gas using the same, and a fuel cell system. More specifically, the present invention relates to a metal oxide having a copper-containing spinel structure excellent in heat resistance, or this A reforming catalyst for oxygen-containing hydrocarbons containing a solid acid substance and a material having a significantly improved activity per unit surface area, and various reforming of oxygen-containing hydrocarbons using this reforming catalyst to produce hydrogen or synthesis gas And a fuel cell system using the reforming catalyst.

合成ガスは、一酸化炭素と水素からなり、メタノール合成、オキソ合成、フィッシャートロプシュ合成などの原料ガスとして用いられるほか、アンモニア合成や各種化学製品の原料として広く用いられている。
この合成ガスは、従来石炭のガス化による方法、あるいは天然ガスなどを原料とする炭化水素類の水蒸気改質法や部分酸化改質法などにより製造されてきた。しかしながら、石炭のガス化方法においては、複雑で高価な石炭ガス化炉が必要である上、大規模なプラントになるなどの問題があった。また、炭化水素類の水蒸気改質法においては、反応が大きな吸熱を伴うため、反応の進行に700〜1200℃程度の高温を必要とし、特殊な改質炉が必要となる上、使用される触媒に高い耐熱性が要求されるなどの問題があった。さらに、炭化水素類の部分酸化改質においても、高温を必要とするために、特殊な部分酸化炉が必要となり、また反応に伴って大量の煤が生成することから、その処理が問題となる上、触媒が劣化しやすいなどの問題があった。
Syngas consists of carbon monoxide and hydrogen, and is used as a raw material gas for methanol synthesis, oxo synthesis, Fischer-Tropsch synthesis, etc., and is widely used as a raw material for ammonia synthesis and various chemical products.
This synthesis gas has been conventionally produced by a method of gasification of coal, a steam reforming method or a partial oxidation reforming method of hydrocarbons using natural gas or the like as a raw material. However, the coal gasification method has problems such as a complicated and expensive coal gasification furnace and a large-scale plant. Moreover, in the steam reforming method of hydrocarbons, since the reaction involves a large endotherm, a high temperature of about 700 to 1200 ° C. is required for the progress of the reaction, and a special reforming furnace is required and used. There were problems such as high heat resistance required for the catalyst. Furthermore, even in the partial oxidation reforming of hydrocarbons, a special partial oxidation furnace is required because it requires a high temperature, and a large amount of soot is generated with the reaction, so that the treatment becomes a problem. In addition, there is a problem that the catalyst is easily deteriorated.

そこで、このような問題を解決するために、近年、ジメチルエーテルなどの酸素含有炭化水素を原料として用い、これに各種の改質を施し、合成ガスを製造することが試みられている。
一方、近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目を集めている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換させるものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池の水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のナフサや灯油などの石油系炭化水素の研究がなされている。
Therefore, in order to solve such problems, attempts have been made in recent years to produce synthesis gas by using oxygen-containing hydrocarbons such as dimethyl ether as a raw material and subjecting it to various modifications.
On the other hand, in recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
The hydrogen source of this fuel cell includes liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel derived from natural gas, and petroleum-based naphtha and kerosene. Research on petroleum-based hydrocarbons has been conducted.

これらの石油系炭化水素を用いて水素を製造する場合、一般に、該炭化水素に対して、触媒の存在下に水蒸気改質処理や部分酸化改質処理などが施されるが、この場合、前記のような問題が生じる。したがって、水素の製造においても、ジメチルエーテルなどの酸素含有炭化水素を原料として用いる方法が、種々試みられている。
ジメチルエーテルなどの酸素含有炭化水素を原料として、これに各種の改質を施して、水素や合成ガスを製造する際に使用される触媒については、これまで各種のものが開示されているが、その中でCu系の触媒を用いて、酸素含有炭化水素を改質する技術としては、例えばCu含有触媒を用いて、酸素含有炭化水素と二酸化炭素から合成ガスを製造させる触媒及びそれを用いた合成ガスの製造方法(例えば、特許文献1参照)、Cu含有触媒を用いて、酸素含有炭化水素と水蒸気から水素を製造させる触媒及びそれを用いた水素の製造方法(例えば、特許文献2参照)、固体酸にCuを含む金属が担持されたものからなる酸素含有炭化水素の改質触媒(例えば、特許文献3、特許文献4参照)、Cu含有物質と固体酸性物質との混合物からなる、酸素含有炭化水素と水蒸気から水素を製造させる触媒及びそれを用いた水素の製造方法(例えば、特許文献5参照)、Cu含有物質と固体酸性物との混合物からなる、酸素含有炭化水素と水蒸気から合成ガスを製造させる触媒及びそれを用いた合成ガスの製造方法(例えば、特許文献6参照)などが開示されている。
しかしながら、これらの技術において用いられるCu系触媒は、いずれも耐熱性が不十分であり、したがって、反応活性を向上させるために反応温度を上げると触媒が劣化するのを免れないという問題があった。
When hydrogen is produced using these petroleum hydrocarbons, generally, the hydrocarbon is subjected to steam reforming treatment or partial oxidation reforming treatment in the presence of a catalyst. The following problems arise. Therefore, in the production of hydrogen, various methods using an oxygen-containing hydrocarbon such as dimethyl ether as a raw material have been tried.
Various catalysts have been disclosed so far, using oxygen-containing hydrocarbons such as dimethyl ether as raw materials, and various modifications to these to produce hydrogen and synthesis gas. As a technology for reforming oxygen-containing hydrocarbons using a Cu-based catalyst, a catalyst for producing synthesis gas from oxygen-containing hydrocarbons and carbon dioxide using, for example, a Cu-containing catalyst, and synthesis using the same A gas production method (for example, see Patent Document 1), a catalyst for producing hydrogen from an oxygen-containing hydrocarbon and water vapor using a Cu-containing catalyst, and a method for producing hydrogen using the same (for example, see Patent Document 2), From an oxygen-containing hydrocarbon reforming catalyst comprising a solid acid-supported metal containing Cu (see, for example, Patent Document 3 and Patent Document 4), a mixture of a Cu-containing material and a solid acidic material A catalyst for producing hydrogen from an oxygen-containing hydrocarbon and water vapor, a method for producing hydrogen using the catalyst (see, for example, Patent Document 5), an oxygen-containing hydrocarbon comprising a mixture of a Cu-containing substance and a solid acidic substance, A catalyst for producing a synthesis gas from water vapor and a method for producing a synthesis gas using the same are disclosed (for example, see Patent Document 6).
However, all of the Cu-based catalysts used in these technologies have insufficient heat resistance, and therefore there is a problem that the catalyst is subject to deterioration when the reaction temperature is raised in order to improve the reaction activity. .

特開平10−174869号公報JP-A-10-174869 特開平10−174871号公報Japanese Patent Application Laid-Open No. 10-174871 特開2001−96159号公報JP 2001-96159 A 特開2001−96160号公報JP 2001-96160 A 特開2003−10684号公報JP 2003-10684 A 特開2003−33656号公報Japanese Patent Laid-Open No. 2003-33656

本発明は、このような状況下でなされたもので、銅を含有し、かつ耐熱性に優れ、単位表面積当たりの活性が大きく向上した酸素含有炭化水素の改質触媒、及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施し、水素又は合成ガスを効率よく製造する方法を提供することを目的とするものである。また、このような優れた改質触媒を備えた改質器と、該改質器により製造される水素を燃料とする燃料電池とを有する、優れた燃料電池システムを提供することを目的とするものである。   The present invention has been made under such circumstances, and includes an oxygen-containing hydrocarbon reforming catalyst containing copper, having excellent heat resistance, and having greatly improved activity per unit surface area, and this reforming catalyst. An object of the present invention is to provide a method for efficiently producing hydrogen or synthesis gas by using oxygen-containing hydrocarbons for various reforming. Another object of the present invention is to provide an excellent fuel cell system having a reformer equipped with such an excellent reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel. Is.

本発明者は、前記目的を達成するために、鋭意研究を重ねた結果、銅含有触媒をスピネル構造とすることにより、またこの銅含有スピネル構造の触媒と固体酸性物質とを組み合わせることにより、耐熱性が高くなると共に、単位表面積当たりの活性が大きく向上した触媒が得られ、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)銅を含み、かつスピネル構造を有する金属酸化物を含有することを特徴とする酸素含有炭化水素の改質触媒(以下、改質触媒Iと称す。)、
(2)銅を含み、かつスピネル構造を有する金属酸化物及び固体酸性物質とを含有することを特徴とする酸素含有炭化水素の改質触媒(以下、改質触媒IIと称す。)、
(3)銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Mn型スピネルである上記(1)、(2)の酸素含有炭化水素の改質触媒、
As a result of intensive studies to achieve the above object, the present inventor has made a copper-containing catalyst into a spinel structure, and combined the catalyst with a copper-containing spinel structure with a solid acidic substance. It has been found that a catalyst having improved properties and greatly improved activity per unit surface area can be obtained and the object can be achieved. The present invention has been completed based on such findings.
That is, the present invention
(1) An oxygen-containing hydrocarbon reforming catalyst (hereinafter referred to as reforming catalyst I), which contains a metal oxide containing copper and having a spinel structure;
(2) An oxygen-containing hydrocarbon reforming catalyst (hereinafter referred to as reforming catalyst II), characterized by containing a metal oxide having a spinel structure and a solid acidic substance containing copper.
(3) The oxygen-containing hydrocarbon reforming catalyst according to the above (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a Cu-Mn type spinel,

(4)銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Fe型スピネルである上記(1)、(2)の酸素含有炭化水素の改質触媒、
(5)銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Cr型スピネルである上記(1)、(2)の酸素含有炭化水素の改質触媒、
(6)銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Mn−Fe型スピネルである上記(1)、(2)の酸素含有炭化水素の改質触媒。
(7)固体酸性物質がアルミナである上記(2)〜(6)の酸素含有炭化水素の改質触媒、
(8)上記(1)〜(7)の改質触媒を還元することにより得られる酸素含有炭化水素の改質触媒、
(9)酸素含有炭化水素が、メタノール、エタノール、ジメチルエーテル及びメチルエチルエーテルから選ばれる少なくとも一種である上記(1)〜(8)の酸素含有炭化水素の改質触媒、
(10)上記(1)〜(9)の改質触媒を用い、酸素含有炭化水素を水蒸気改質することを特徴とする水素又は合成ガスの製造方法、
(11)上記(1)〜(9)の改質触媒を用い、酸素含有炭化水素を自己熱改質することを特徴とする水素又は合成ガスの製造方法、
(12)上記(1)〜(9)の改質触媒を用い、酸素含有炭化水素を部分酸化改質することを特徴とする水素又は合成ガスの製造方法、
(13)上記(1)〜(9)の改質触媒を用い、酸素含有炭化水素を二酸化炭素改質することを特徴とする水素又は合成ガスの製造方法、及び
(14)上記(1)〜(9)の改質触媒を備える改質器と、該改質器により製造される水素を燃料とする燃料電池とを有することを特徴とする燃料電池システム、
を提供するものである。
(4) The oxygen-containing hydrocarbon reforming catalyst according to the above (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a Cu-Fe type spinel,
(5) The oxygen-containing hydrocarbon reforming catalyst according to the above (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a Cu—Cr type spinel,
(6) The oxygen-containing hydrocarbon reforming catalyst according to the above (1) or (2), wherein the metal oxide containing copper and having a spinel structure is a Cu-Mn-Fe type spinel.
(7) The oxygen-containing hydrocarbon reforming catalyst according to the above (2) to (6), wherein the solid acidic substance is alumina,
(8) An oxygen-containing hydrocarbon reforming catalyst obtained by reducing the reforming catalyst of (1) to (7) above,
(9) The oxygen-containing hydrocarbon reforming catalyst according to the above (1) to (8), wherein the oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether and methyl ethyl ether,
(10) A method for producing hydrogen or synthesis gas, characterized by steam reforming an oxygen-containing hydrocarbon using the reforming catalyst of the above (1) to (9),
(11) A method for producing hydrogen or synthesis gas, wherein the reforming catalyst according to (1) to (9) above is used to autothermally reform an oxygen-containing hydrocarbon,
(12) A method for producing hydrogen or synthesis gas, characterized by partially oxidizing and reforming an oxygen-containing hydrocarbon using the reforming catalyst according to (1) to (9) above,
(13) A method for producing hydrogen or synthesis gas, which comprises reforming an oxygen-containing hydrocarbon with carbon dioxide using the reforming catalyst according to (1) to (9) above, and (14) (1) to (1) above A fuel cell system comprising: a reformer including the reforming catalyst according to (9); and a fuel cell using hydrogen produced by the reformer as a fuel;
Is to provide.

本発明によれば、耐熱性に優れる銅含有スピネル構造を有する金属酸化物、又はこのものと固体酸性物質とを含有し、単位表面当たりの活性が大きく向上した酸素含有炭化水素の改質触媒、及びこの改質触媒を用いて酸素含有炭化水素に各種改質を施し、水素又は合成ガスを効率よく製造する方法を提供することができる。また、このような優れた改質触媒を備えた改質器と、該改質器により製造される水素を燃料とする燃料電池とを有する、優れた燃料電池システムを製造することができる。   According to the present invention, a metal oxide having a copper-containing spinel structure excellent in heat resistance, or an oxygen-containing hydrocarbon reforming catalyst containing this and a solid acidic substance, and having greatly improved activity per unit surface, In addition, it is possible to provide a method for efficiently producing hydrogen or synthesis gas by subjecting oxygen-containing hydrocarbons to various reformations using this reforming catalyst. Further, an excellent fuel cell system having a reformer equipped with such an excellent reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel can be manufactured.

本発明の酸素含有炭化水素の改質触媒には、(1)銅を含み、かつスピネル構造を有する金属酸化物を含有する改質触媒I、及び(2)銅を含み、かつスピネル構造を有する金属酸化物と、固体酸性物質との混合物を含有する改質触媒IIの二つの態様がある。
なお、本発明における酸素含有炭化水素としては、メタノール、エタノールなどのアルコール類、ジメチルエーテル、メチルエチルエーテルなどのエーテル類を好ましく挙げることができる。この中でジメチルエーテルが特に好ましい。
本発明において、スピネル構造を有する金属酸化物とは、AB24型の金属複酸化物にみられる代表的結晶構造型の一つで立方晶系を有している。前記AB24において、通常AはII価の金属であり、Bは三価の金属である。
本発明においては、銅を含むスピネル構造の金属酸化物が用いられ、このような金属酸化物としては、触媒活性及び耐熱性などの点から、Cu−Mn型スピネル、Cu−Fe型スピネル、Cu−Cr型スピネルが好ましい。前記Cu−Mn型スピネルとしては、例えばCuMn24などを挙げることができ、Cu−Fe型スピネルとしては、例えばCuFe24などを挙げることができる。Cu−Cr型スピネルとしては、例えばCuCr24などを挙げることができる。さらに、CuAl24や、三成分系のCu(FeCr)24、Cu(FeAl)24、Cu(MnFe)24スピネルも用いることができる。Cu(MnFe)24型スピネルとしては、Cu(Mn1.5Fe0.5)O4、Cu(Mn1.0Fe1.0)O4、Cu(Mn2/3Fe4/3)O4、Cu(Mn0.5Fe1.5)O4などが挙げられる。
The oxygen-containing hydrocarbon reforming catalyst of the present invention includes (1) a reforming catalyst I containing copper and containing a metal oxide having a spinel structure, and (2) containing copper and having a spinel structure. There are two embodiments of the reforming catalyst II containing a mixture of a metal oxide and a solid acidic substance.
In addition, as oxygen-containing hydrocarbon in this invention, ethers, such as alcohols, such as methanol and ethanol, dimethyl ether, and methyl ethyl ether, can be mentioned preferably. Of these, dimethyl ether is particularly preferred.
In the present invention, the metal oxide having a spinel structure is one of the typical crystal structure types found in AB 2 O 4 type metal double oxides and has a cubic system. In the AB 2 O 4 , A is usually a divalent metal and B is a trivalent metal.
In the present invention, a metal oxide having a spinel structure containing copper is used, and as such a metal oxide, Cu—Mn type spinel, Cu—Fe type spinel, Cu, and the like from the viewpoint of catalytic activity and heat resistance. -Cr type spinel is preferred. Examples of the Cu—Mn type spinel include CuMn 2 O 4 , and examples of the Cu—Fe type spinel include CuFe 2 O 4 . Examples of the Cu—Cr type spinel include CuCr 2 O 4 . Furthermore, CuAl 2 O 4 , ternary Cu (FeCr) 2 O 4 , Cu (FeAl) 2 O 4 , and Cu (MnFe) 2 O 4 spinel can also be used. Cu (MnFe) 2 O 4 type spinel includes Cu (Mn 1.5 Fe 0.5 ) O 4 , Cu (Mn 1.0 Fe 1.0 ) O 4 , Cu (Mn 2/3 Fe 4/3 ) O 4 , Cu (Mn 0.5 Fe 1.5 ) O 4 and the like.

このような銅を含むスピネル構造の金属酸化物は、銅を含む非スピネル構造のものに比べて、耐熱性に優れ、かつ酸素含有炭化水素の改質に用いる場合、単位表面積当たりの触媒活性がはるかに高い。
本発明の酸素含有炭化水素の改質触媒Iは、前記の銅を含むスピネル構造の金属酸化物を含有するものであり、一方、本発明の酸素含有炭化水素の改質触媒IIは、前記の銅を含むスピネル構造の金属酸化物及び固体酸性物質とを含有するものである。この改質触媒IIにおける固体酸性物質とは、固体でありながらブレンステッド酸又はルイス酸の特性を示すものであり、具体的にはアルミナ、シリカ・アルミナ、シリカ・チタニア、ゼオライト、シリコリン酸アルミニウム(SAPO)などが挙げられる。これらは一種用いてもよく、二種以上を組み合わせて用いてもよいが、これらの中で、得られる触媒の活性などの点から、アルミナが好適である。
Such a spinel structure metal oxide containing copper is superior in heat resistance to that of a non-spinel structure containing copper, and has a catalytic activity per unit surface area when used for reforming oxygen-containing hydrocarbons. Much higher.
The oxygen-containing hydrocarbon reforming catalyst I of the present invention contains a metal oxide having a spinel structure containing copper, while the oxygen-containing hydrocarbon reforming catalyst II of the present invention includes It contains a metal oxide having a spinel structure containing copper and a solid acidic substance. The solid acidic substance in the reforming catalyst II is a solid that exhibits the characteristics of Bronsted acid or Lewis acid. Specifically, alumina, silica-alumina, silica-titania, zeolite, aluminum silicolinate ( SAPO). One of these may be used, or two or more may be used in combination. Among these, alumina is preferable from the viewpoint of the activity of the resulting catalyst.

この固体酸性物質として用いられるアルミナとしては、市販のα、β、γ、η、θ、κ、χのいずれの結晶形態のものも使用できる。また、ベーマイト、バイアライト、ギブサイト等のアルミナ水和物を焼成したものも使用できる。この他に、硝酸アルミニウムにpH8〜10程度のアルカリ緩衝液を加えて水酸化物の沈殿を生成させ、これを焼成したものを使用してもよいし、塩化アルミニウムを焼成してもよい。また、アルミニウムイソプロポキシド等のアルコキシドを2−プロパノール等のアルコールに溶解させ加水分解用の触媒として塩酸等の無機酸を添加してアルミナゲルを調製し、これを乾燥、焼成するゾル・ゲル法によって調製したものを使用することもできる。
本発明の改質触媒IIは、銅を含むスピネル構造の金属酸化物と前記固体酸性物質を、単に混合したものであってもよいし、該固体酸性物質を担体として用い、これに銅を含むスピネル構造の金属酸化物を担持させたものであってもよい。この改質触媒IIにおける銅の含有量としては特に制限はないが、触媒活性などの点から、Cuとして、通常1〜50質量%、好ましくは2〜30質量%の範囲である。
As the alumina used as the solid acidic substance, commercially available α, β, γ, η, θ, κ, and χ crystal forms can be used. Moreover, what baked alumina hydrates, such as boehmite, bayerite, and gibbsite, can also be used. In addition to this, an alkaline buffer solution having a pH of about 8 to 10 may be added to aluminum nitrate to form a hydroxide precipitate, which may be fired, or aluminum chloride may be fired. Also, a sol-gel method in which an alkoxide such as aluminum isopropoxide is dissolved in an alcohol such as 2-propanol, an inorganic acid such as hydrochloric acid is added as a catalyst for hydrolysis to prepare an alumina gel, and this is dried and fired. It is also possible to use those prepared by
The reforming catalyst II of the present invention may be a simple mixture of a metal oxide having a spinel structure containing copper and the solid acidic substance, or the solid acidic substance is used as a support and contains copper. A metal oxide having a spinel structure may be supported. Although there is no restriction | limiting in particular as content of copper in this reforming catalyst II, From points, such as catalyst activity, it is 1-50 mass% normally as Cu, Preferably it is the range of 2-30 mass%.

また、本発明の改質触媒I及びIIにおいては、銅を含むスピネル構造の金属酸化物として、非スピネル構造の銅を含む化合物を、本発明の目的が損なわれない範囲で、所望により含有するものも用いることができる。
次に、本発明の改質触媒Iの調製方法の一例について、CuMn24スピネルからなる触媒を調製する場合を例に挙げて説明する。
まず、銅源として、硝酸銅などの水溶性銅塩を、マンガン源として、硝酸マンガンなどの水溶性マンガン塩を用い、これらを実質上化学量論的な割合、すなわちCuとMnのモル比が、実質上1:2になるように含む水溶液を調製する。次いで、この水溶液に、クエン酸などのキレート剤を加えたのち、加熱して水を蒸発させてゲルを生成させる。次に、このゲルを加熱処理して、ゲル中の硝酸根やクエン酸などを分解して得られた酸化物微粉末を、空気中で300〜500℃程度の温度で1〜5時間程度仮焼したのち、さらに500〜1,000℃程度の温度で5〜15時間程度焼成することにより、CuMn24スピネルからなる触媒が得られる。また700℃以上の高温で焼成した場合は、Mn23とCu1.5Mn1.54スピネルの混合物になると言われているが、この場合も触媒として使用可能である。
Further, the reforming catalysts I and II of the present invention contain, as desired, a compound containing copper having a non-spinel structure as a metal oxide having a spinel structure containing copper as long as the object of the present invention is not impaired. Things can also be used.
Next, an example of a method for preparing the reforming catalyst I of the present invention will be described by taking as an example the case of preparing a catalyst made of CuMn 2 O 4 spinel.
First, a water-soluble copper salt such as copper nitrate is used as the copper source, and a water-soluble manganese salt such as manganese nitrate is used as the manganese source, and these are substantially stoichiometric, that is, the molar ratio of Cu and Mn. An aqueous solution containing 1: 2 is prepared. Next, a chelating agent such as citric acid is added to the aqueous solution, and then heated to evaporate the water to form a gel. Next, this gel is heat-treated, and oxide fine powder obtained by decomposing nitrate radicals and citric acid in the gel is temporarily treated in air at a temperature of about 300 to 500 ° C. for about 1 to 5 hours. After calcination, a catalyst made of CuMn 2 O 4 spinel is obtained by further calcination at a temperature of about 500 to 1,000 ° C. for about 5 to 15 hours. Moreover, when it is fired at a high temperature of 700 ° C. or higher, it is said that it becomes a mixture of Mn 2 O 3 and Cu 1.5 Mn 1.5 O 4 spinel, but this case can also be used as a catalyst.

この方法においては、CuがMnに対して化学量論的な割合より過剰になるように、銅源を用いることができる。この場合、得られた触媒は、銅の酸化物(Cu2O又はCuOあるいはそれらの混合物)とスピネル型酸化物との混合物となり、このものも、改質触媒Iとして用いることができる。
また、CuFe24スピネルからなる触媒を調製する場合には、前記マンガン源の代わりに、硝酸鉄などの水溶性鉄塩等の鉄源を用いればよい。さらに、前記マンガン源の代わりに、鉄源とマンガン源との混合物を用いることにより、Cu(FeMn)24スピネルからなる触媒を得ることができる。このものも、もちろん改質触媒Iとして用いることができる。
これらの改質触媒Iは、通常適当な大きさのペレット状に成型されて用いられる。
In this method, a copper source can be used so that Cu is in excess of the stoichiometric ratio with respect to Mn. In this case, the obtained catalyst is a mixture of a copper oxide (Cu 2 O or CuO or a mixture thereof) and a spinel oxide, and this can also be used as the reforming catalyst I.
Also, when preparing a catalyst comprising CuFe 2 O 4 spinel, instead of the manganese source, it may be used iron source, such as a water-soluble iron salts such as iron nitrate. Furthermore, a catalyst made of Cu (FeMn) 2 O 4 spinel can be obtained by using a mixture of an iron source and a manganese source instead of the manganese source. Of course, this can also be used as the reforming catalyst I.
These reforming catalysts I are usually used in the form of pellets of an appropriate size.

次に、本発明の改質触媒IIの調製方法の一例について、固体酸性物質であるアルミナ担体に、CuMn24スピネルが担持してなる触媒を調製する場合を例に挙げて説明する。
まず、銅源として、硝酸銅などの水溶性銅塩を、マンガン源として、硝酸マンガンなどの水溶性マンガン塩を用い、これらを実質上化学量論的な割合、すなわちCuとMnのモル比が、実質上1:2になるように含む水溶液を調製する。次いで、この水溶液に、所定量のアルミナ粉末を加え、均質に分散させたのち、加熱して水を蒸発させて粉末を得る。次に、この粉末を、空気中で300〜500℃程度の温度で1〜5時間程度仮焼したのち、さらに500〜1,000℃程度の温度で5〜15時間程度焼成することにより、CuとMnを含有するスピネル担持アルミナ触媒が得られる。
Next, an example of a method for preparing the reforming catalyst II of the present invention will be described by taking as an example the case of preparing a catalyst in which a CuMn 2 O 4 spinel is supported on an alumina carrier that is a solid acidic substance.
First, a water-soluble copper salt such as copper nitrate is used as the copper source, and a water-soluble manganese salt such as manganese nitrate is used as the manganese source, and these are substantially stoichiometric, that is, the molar ratio of Cu and Mn. An aqueous solution containing 1: 2 is prepared. Next, a predetermined amount of alumina powder is added to this aqueous solution and dispersed uniformly, and then heated to evaporate water to obtain a powder. Next, the powder is calcined in air at a temperature of about 300 to 500 ° C. for about 1 to 5 hours, and further calcined at a temperature of about 500 to 1,000 ° C. for about 5 to 15 hours. And a spinel-supported alumina catalyst containing Mn.

また、前記マンガン源の代わりに、鉄源を用いることにより、CuFe24スピネル担持アルミナ触媒を得ることができ、マンガン源の代わりに、鉄源とマンガン源との混合物を用いることにより、Cu(FeMn)24スピネル担持アルミナ触媒を得ることができる。
これらの改質触媒IIは、通常適当な大きさのペレット状に成型されて用いられる。
さらに、本発明の改質触媒IIが、銅を含むスピネル構造の金属酸化物とアルミナとの混合物である場合には、例えば、CuMn24スピネル、CuFe24スピネル及びCu(FeMn)24スピネルなどの中から選ばれる少なくとも一種からなる適当な大きさのペレットと、適当な大きさのアルミナペレットとを混合して改質触媒IIを調製してもよいし、CuMn24スピネル、CuFe24スピネル及びCu(FeMn)24スピネルの中から選ばれる少なくとも一種の粉末と、アルミナ粉末とを均質に混合したのち、適当な大きさのペレットに成型して改質触媒IIを調製してもよい。
Further, by using an iron source instead of the manganese source, a CuFe 2 O 4 spinel-supported alumina catalyst can be obtained. By using a mixture of an iron source and a manganese source instead of the manganese source, Cu A (FeMn) 2 O 4 spinel-supported alumina catalyst can be obtained.
These reforming catalysts II are usually used in the form of pellets of an appropriate size.
Further, when the reforming catalyst II of the present invention is a mixture of a metal oxide having a spinel structure containing copper and alumina, for example, CuMn 2 O 4 spinel, CuFe 2 O 4 spinel and Cu (FeMn) 2. The reforming catalyst II may be prepared by mixing an appropriately sized pellet made of at least one selected from O 4 spinel and the like, and an appropriately sized alumina pellet, or a CuMn 2 O 4 spinel. Then, at least one powder selected from CuFe 2 O 4 spinel and Cu (FeMn) 2 O 4 spinel and alumina powder are homogeneously mixed, and then molded into a pellet of an appropriate size and reformed catalyst II. May be prepared.

本発明においては、上記改質触媒を還元することにより、さらに活性を向上させることができる。還元処理は、水素を含む気流中で処理する気相還元方法と、還元剤で処理する湿式還元方法がある。前者の還元処理は、通常水素を含む気流下、150〜500℃、好ましくは、200〜300℃の温度で30分〜24時間、好ましくは、1〜10時間実施する。水素ガス以外に、窒素、ヘリウム、アルゴンなどの不活性ガスを共存させてもよい。
後者の湿式還元法としては、液体アンモニア/アルコール/Na,液体アンモニア/アルコール/Liを用いるBirch還元、メチルアミン/Li等を用いるBenkeser還元、Zn/HCl,Al/NaOH/H2O,NaH,LiAlH4又はその置換体、ヒドロシラン類、水素化ホウ素ナトリウム又はその置換体、ジボラン、蟻酸、ホルマリン、ヒドラジン等の還元剤で処理する方法がある。この場合、通常、室温〜100℃で、10分〜24時間、好ましくは、30分〜10時間行うものである。
In the present invention, the activity can be further improved by reducing the reforming catalyst. The reduction treatment includes a gas phase reduction method in which treatment is performed in an air stream containing hydrogen and a wet reduction method in which treatment is performed with a reducing agent. The former reduction treatment is usually carried out at a temperature of 150 to 500 ° C., preferably 200 to 300 ° C. for 30 minutes to 24 hours, preferably 1 to 10 hours under an air stream containing hydrogen. In addition to hydrogen gas, an inert gas such as nitrogen, helium, or argon may coexist.
As the latter wet reduction method, liquid ammonia / alcohol / Na, Birch reduction using liquid ammonia / alcohol / Li, Benkeser reduction using methylamine / Li, Zn / HCl, Al / NaOH / H 2 O, NaH, There is a method of treating with a reducing agent such as LiAlH 4 or a substituted product thereof, hydrosilanes, sodium borohydride or a substituted product thereof, diborane, formic acid, formalin and hydrazine. In this case, the reaction is usually performed at room temperature to 100 ° C. for 10 minutes to 24 hours, preferably 30 minutes to 10 hours.

また、反応原料を流すことによって、生成した水素やCOによって反応中にも触媒は還元される。
本発明においては、触媒は還元前処理あるいは生成ガスによって還元されることで、Cuあるいは他の元素はスピネル構造から脱離し、スピネル構造は一部あるいは全部が保持されていない状態になっているが、最初にスピネル構造を有するCu触媒を使用することが本発明の重要な点である。
In addition, by flowing the reaction raw material, the catalyst is reduced during the reaction by the generated hydrogen and CO.
In the present invention, the catalyst is reduced by pre-reduction treatment or product gas, so that Cu or other elements are desorbed from the spinel structure, and the spinel structure is in a state where a part or all of the spinel structure is not retained. First, it is an important point of the present invention to use a Cu catalyst having a spinel structure.

本発明の水素又は合成ガスの製造方法においては、前述の本発明の改質触媒I及び/又は改質触媒IIを用いてジメチルエーテルなどの酸素含有炭化水素を、(1)水蒸気改質、(2)自己熱改質、(3)部分酸化改質又は(4)二酸化炭素改質することにより、水素又は合成ガスを製造する。
次に、各改質方法についてジメチルエーテルを用いた場合を例に挙げて説明する。
[水蒸気改質]
本発明の改質触媒を用いる場合、ジメチルエーテルの水蒸気改質は、以下に示す反応式に従って、反応が進行するものと思われる。
CH3OCH3 + H2O → 2CH3OH ・・・(1)
2CH3OH + 2H2O → 2CO2 + 6H2 ・・・(2)
2CO2 + 2H2 → 2CO + 2H2O ・・・(3)
したがって、水素を製造する場合には、前記(3)の反応が進行しにくいように、すなわち
CH3OCH3 + 3H2O → 2CO2 + 6H2 ・・・(4)
の反応が起こるように反応条件を選択すればよい。
In the method for producing hydrogen or synthesis gas of the present invention, the above-described reforming catalyst I and / or reforming catalyst II of the present invention is used to convert oxygen-containing hydrocarbons such as dimethyl ether into (1) steam reforming, (2 Hydrogen or synthesis gas is produced by self-thermal reforming, (3) partial oxidation reforming or (4) carbon dioxide reforming.
Next, the case of using dimethyl ether will be described as an example for each reforming method.
[Steam reforming]
In the case of using the reforming catalyst of the present invention, the steam reforming of dimethyl ether is considered to proceed according to the following reaction formula.
CH 3 OCH 3 + H 2 O → 2CH 3 OH (1)
2CH 3 OH + 2H 2 O → 2CO 2 + 6H 2 (2)
2CO 2 + 2H 2 → 2CO + 2H 2 O (3)
Therefore, when producing hydrogen, the reaction of the above (3) is difficult to proceed, that is, CH 3 OCH 3 + 3H 2 O → 2CO 2 + 6H 2 (4)
The reaction conditions may be selected so that the following reaction occurs.

一方、合成ガスを製造する場合には、前記(1)、(2)及び(3)の反応が生じるように、すなわち
CH3OCH3 + H2O → 2CO + 4H2 ・・・(5)
の反応が起こるように反応条件を選択すればよい。
水素を製造する場合、水蒸気/ジメチルエーテルモル比は、理論的には3であるが、3〜6程度が好ましく、一方、合成ガスを製造する場合、水蒸気/ジメチルエーテルモル比は、理論的には1であるが、1〜2程度が好ましい。
反応温度は、通常200〜500℃、好ましくは250〜450℃の範囲で選定される。この温度が200℃未満ではジメチルエーテルの転化率が低くなるおそれがあり、500℃を超えると触媒の活性劣化が生じる原因となる。GHSV(ガス時空間速度)は、ジメチルエーテル基準で100〜10,000h-1の範囲が好ましい。このGHSVが100h-1未満では生産効率が低く、実用的に好ましくないし、10,000h-1を超えるとジメチルエーテルの転化率が低くなりすぎ、実用的に好ましくない。また、反応圧力は、通常、常圧〜1MPa程度である。この圧力が高すぎるとジメチルエーテルの転化率が低下する傾向がある。
On the other hand, when producing synthesis gas, the reactions of (1), (2) and (3) occur, that is, CH 3 OCH 3 + H 2 O → 2CO + 4H 2 (5)
The reaction conditions may be selected so that the following reaction occurs.
When producing hydrogen, the water vapor / dimethyl ether molar ratio is theoretically 3 but is preferably about 3-6, while when producing synthesis gas, the water vapor / dimethyl ether molar ratio is theoretically 1 However, about 1-2 is preferable.
The reaction temperature is usually selected in the range of 200 to 500 ° C, preferably 250 to 450 ° C. If this temperature is less than 200 ° C., the conversion rate of dimethyl ether may be lowered, and if it exceeds 500 ° C., it may cause deterioration of the activity of the catalyst. GHSV (gas hourly space velocity) is preferably in the range of 100 to 10,000 h −1 on the basis of dimethyl ether. The GHSV is low production efficiency is less than 100h -1, to not practically preferable, too low dimethylether conversion exceeds 10,000 h -1, practically undesirable. The reaction pressure is usually about normal pressure to 1 MPa. If this pressure is too high, the conversion of dimethyl ether tends to decrease.

[自己熱改質]
自己熱改質反応においては、ジメチルエーテルの酸化反応と水蒸気との反応が同一リアクター内で、又は連続したリアクター内で起こる。この場合、水素製造と合成ガス製造では、反応条件は若干異なるが、一般的には、酸素/ジメチルエーテルモル比は、好ましくは0.1〜1の範囲で選定され、水蒸気/ジメチルエーテルモル比は、好ましくは0.5〜3の範囲で選定される。酸素/ジメチルエーテルモル比が0.1未満では発熱による反応熱の供給が十分にできない場合があり、一方1を超えると完全酸化が生じて水素濃度が低下するおそれが生じる。また、水蒸気/ジメチルエーテルモル比が0.5未満では水素濃度が低下する場合があり、一方3を超えると発熱の供給が足らなくなるおそれが生じる。
反応温度は、通常200〜800℃、好ましくは250〜500℃の範囲で選定される。また、GHSV及び反応圧力については、前記水蒸気改質の場合と同様である。
[Self-thermal reforming]
In the autothermal reforming reaction, the oxidation reaction of dimethyl ether and the reaction of water vapor occur in the same reactor or in a continuous reactor. In this case, although the reaction conditions are slightly different between hydrogen production and synthesis gas production, in general, the oxygen / dimethyl ether molar ratio is preferably selected in the range of 0.1 to 1, and the water vapor / dimethyl ether molar ratio is Preferably it is selected in the range of 0.5-3. If the oxygen / dimethyl ether molar ratio is less than 0.1, reaction heat may not be sufficiently supplied by exotherm, while if it exceeds 1, complete oxidation may occur and the hydrogen concentration may decrease. Further, when the water vapor / dimethyl ether molar ratio is less than 0.5, the hydrogen concentration may decrease. On the other hand, when the water vapor / dimethyl ether molar ratio exceeds 3, the supply of heat may be insufficient.
The reaction temperature is usually selected in the range of 200 to 800 ° C, preferably 250 to 500 ° C. The GHSV and the reaction pressure are the same as in the case of the steam reforming.

[部分酸化改質]
部分酸化改質反応は、ジメチルエーテルの部分酸化反応が起こり、水素製造と合成ガス製造では、反応条件が若干異なるが、一般的には、酸素/ジメチルエーテルモル比は、好ましくは0.3〜1.5の範囲で選定される。この酸素/ジメチルエーテルモル比が0.3未満ではジメチルエーテルの転化率が十分に高くならない場合があり、一方1.5を超えると完全酸化が起こり、水素濃度が低下する原因となる。反応温度は、通常200〜900℃、好ましくは250〜600℃の範囲で選定される。また、GHSV及び反応圧力については、前記水蒸気改質の場合と同様である。
[Partial oxidation reforming]
In the partial oxidation reforming reaction, a partial oxidation reaction of dimethyl ether occurs, and reaction conditions differ slightly between hydrogen production and synthesis gas production. In general, the oxygen / dimethyl ether molar ratio is preferably 0.3 to 1. 5 is selected. If the oxygen / dimethyl ether molar ratio is less than 0.3, the conversion rate of dimethyl ether may not be sufficiently high. On the other hand, if the oxygen / dimethyl ether molar ratio exceeds 1.5, complete oxidation occurs and causes a decrease in hydrogen concentration. The reaction temperature is usually selected in the range of 200 to 900 ° C, preferably 250 to 600 ° C. The GHSV and the reaction pressure are the same as in the case of the steam reforming.

[二酸化炭素改質]
二酸化炭素改質反応は、ジメチルエーテルと二酸化炭素の反応が起こり、水素製造と合成ガス製造では、反応条件は若干異なるが、一般的には、CO2/ジメチルエーテルモル比は、好ましくは0.8〜2、より好ましくは0.9〜1.5の範囲で選定される。このCO2/ジメチルエーテルモル比が0.8未満ではジメチルエーテルの転化率が十分に高くならないおそれがあり、一方2を超えると生成物中にCO2が多く残り、水素の分圧が低下する原因となる上、CO2の除去が必要な場合があり、好ましくない。この反応では、水蒸気を導入することができ、この導入により水素濃度を高めることが可能となる。また、反応温度、GHSV及び反応圧力については、前記水蒸気改質の場合と同様である。
[CO2 reforming]
In the carbon dioxide reforming reaction, a reaction between dimethyl ether and carbon dioxide occurs, and in the hydrogen production and synthesis gas production, although the reaction conditions are slightly different, in general, the CO 2 / dimethyl ether molar ratio is preferably 0.8 to 2, more preferably in the range of 0.9 to 1.5. If the CO 2 / dimethyl ether molar ratio is less than 0.8, the conversion rate of dimethyl ether may not be sufficiently high. On the other hand, if the CO 2 / dimethyl ether molar ratio is more than 2 , a large amount of CO 2 remains in the product and the partial pressure of hydrogen decreases. Moreover, removal of CO 2 may be necessary, which is not preferable. In this reaction, water vapor can be introduced, and the hydrogen concentration can be increased by this introduction. The reaction temperature, GHSV and reaction pressure are the same as in the case of the steam reforming.

本願の第三発明は、前述の改質触媒を備える改質器と、該改質器により製造される水素を燃料とする燃料電池とを有することを特徴とする燃料電池システムであり、図1により説明する。
燃料タンク21内の燃料は燃料ポンプ22を経て脱硫器23に導入される。脱硫器23には例えば活性炭、ゼオライト又は金属系の吸着剤などを充填することができる。脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合した後気化器1に導入されて気化され、次いで空気ブロアー35から送り出された空気と混合され改質器31に送り込まれる。改質器31には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(酸素含有炭化水素、水蒸気及び酸素を含む混合気)から、前述した改質反応のいずれかによって水素が製造される。
A third invention of the present application is a fuel cell system comprising a reformer including the above-described reforming catalyst and a fuel cell using hydrogen produced by the reformer as a fuel. Will be described.
The fuel in the fuel tank 21 is introduced into the desulfurizer 23 via the fuel pump 22. The desulfurizer 23 can be filled with, for example, activated carbon, zeolite, or a metal-based adsorbent. The fuel desulfurized by the desulfurizer 23 is mixed with water from the water tank through the water pump 24, then introduced into the vaporizer 1, vaporized, then mixed with the air sent from the air blower 35, and sent to the reformer 31. It is. The reformer 31 is filled with the above-described reforming catalyst, and any of the above-described reforming reactions is performed from the fuel mixture (a mixture containing oxygen-containing hydrocarbons, steam, and oxygen) fed into the reformer 31. As a result, hydrogen is produced.

このようにして製造された水素はCO変成器32、CO選択酸化器33を通じてCO濃度が燃料電池の特性に及ぼさない程度まで低減される。これらの反応器に用いる触媒例としては、CO変成器32には、鉄−クロム系触媒、銅−亜鉛系触媒あるいは貴金属系触媒が挙げられ、CO選択酸化器33には、ルテニウム系触媒、白金系触媒あるいはそれらの混合触媒が挙げられる。なお、改質反応で製造された水素中のCO濃度が低い場合、CO変成器32を取り付けなくてもよい。   The hydrogen produced in this way is reduced to the extent that the CO concentration does not reach the characteristics of the fuel cell through the CO converter 32 and the CO selective oxidizer 33. Examples of catalysts used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, platinum in the CO selective oxidizer 33. Or a mixed catalyst thereof. If the CO concentration in the hydrogen produced by the reforming reaction is low, the CO converter 32 need not be attached.

燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子形燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロアー35から送られる空気が、それぞれ必要であれば適当な加湿処理を行った後(加湿装置は図示せず)導入される。
この時、負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。その場合、負極には、白金黒もしくは活性炭担持のPt触媒あるいはPt−Ru合金触媒などが使用され、正極には、白金黒もしくは活性炭担持のPt触媒などが使用される。
The fuel cell 34 is a solid polymer fuel cell including a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B. The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 35 is introduced into the positive electrode side after performing appropriate humidification treatment if necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. To do. In that case, platinum black or a Pt catalyst supported on activated carbon or a Pt—Ru alloy catalyst is used for the negative electrode, and platinum black or a Pt catalyst supported on activated carbon is used for the positive electrode.

負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。また、正極34B側に気水分離器36を接続し、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水を水蒸気の生成に利用することができる。燃料電池34では発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。排熱回収装置37は、燃料電池34に付設され反応時に生じた熱を奪う熱交換器37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られる温水は他の設備などで有効に利用することができる。   The surplus hydrogen can be used as fuel by connecting the burner 31A of the reformer 31 to the negative electrode 34A side. Further, an air / water separator 36 is connected to the positive electrode 34B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side are separated, and water is used for generation of water vapor. can do. Since heat is generated in the fuel cell 34 with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use. The exhaust heat recovery device 37 is attached to the fuel cell 34 and deprives the heat generated during the reaction, a heat exchanger 37A for depriving heat, the heat exchanger 37B for exchanging the heat deprived by the heat exchanger 37A with water, 37C and a pump 37D that circulates the refrigerant to the heat exchangers 37A and 37B and the cooler 37C, and the hot water obtained in the heat exchanger 37B can be effectively used in other facilities.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例1
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]13.28g(55ミリモル)及び硝酸マンガン[シグマアルドリッチジャパン社製、98.0%Mn(NO32・6H2O]31.55g(108ミリモル)と、蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にクエン酸一水和物[シグマアルドリッチジャパン社製]34.65g(165ミリモル)を加え、60℃で1時間攪拌したのち、80℃に昇温して水を蒸発させた。
このようにして生成したゲルを140℃で加熱し続け、硝酸根及びクエン酸を分解させて酸化物微粉末を得たのち、空気中にて400℃で2時間仮焼し、その後、さらに焼成炉にて空気中、900℃で10時間焼成を行った。
このようにして、Cu−Mnスピネル型酸化物触媒(Cu1.5Mn1.54スピネルとMn23の混合物)を得た。
Example 1
In a 1 liter beaker, copper nitrate [manufactured by Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 13.28 g (55 mmol) and manganese nitrate [manufactured by Sigma-Aldrich Japan, 98.0% Mn (NO 3 ) 2 · 6H 2 O] 31.55 g (108 mmol) and 300 ml of distilled water were added and stirred at 60 ° C. for 2 hours. Next, citric acid monohydrate [manufactured by Sigma-Aldrich Japan] 34.65 g (165 mmol) was added to this solution, and the mixture was stirred at 60 ° C. for 1 hour, and then heated to 80 ° C. to evaporate water.
The gel thus produced was continuously heated at 140 ° C., and nitrate nitrate and citric acid were decomposed to obtain fine oxide powder, followed by calcining in air at 400 ° C. for 2 hours, and then further firing. Firing was performed at 900 ° C. for 10 hours in air in a furnace.
Thus, a Cu—Mn spinel type oxide catalyst (a mixture of Cu 1.5 Mn 1.5 O 4 spinel and Mn 2 O 3 ) was obtained.

比較例1
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]22.93g(95ミリモル)及び硝酸アルミニウム[和光純薬工業社製、98.0%Al(NO33・9H2O]105.14g(275ミリモル)と蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にクエン酸一水和物[シグマアルドリッチジャパン社製]117.04g(557ミリモル)を加え、60℃で1時間攪拌し、その後、80℃に昇温して水を蒸発させた。
このようにして生成したゲルを140℃で加熱し続け、硝酸根及びクエン酸を分解させて酸化物微粉末を得たのち、空気中にて400℃で2時間仮焼し、その後、さらに焼成炉にて空気中、500℃で3時間焼成を行った。
このようにして、30質量%Cu担持アルミナ触媒(非スピネル)を得た。
Comparative Example 1
In a 1 liter beaker, copper nitrate [manufactured by Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 22.93 g (95 mmol) and aluminum nitrate [manufactured by Wako Pure Chemical Industries, 98.0% Al (NO 3 ) 3 .9H 2 O] (105.14 g, 275 mmol) and 300 ml of distilled water were added, and the mixture was stirred at 60 ° C. for 2 hours. Next, 117.04 g (557 mmol) of citric acid monohydrate [manufactured by Sigma-Aldrich Japan] was added to this solution, stirred at 60 ° C. for 1 hour, and then heated to 80 ° C. to evaporate water. .
The gel thus produced was continuously heated at 140 ° C., and nitrate nitrate and citric acid were decomposed to obtain fine oxide powder, followed by calcining in air at 400 ° C. for 2 hours, and then further firing. Firing was carried out at 500 ° C. for 3 hours in air in a furnace.
In this way, a 30% by mass Cu-supported alumina catalyst (non-spinel) was obtained.

実施例2
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]6.410g(26ミリモル)及び硝酸マンガン[シグマアルドリッチジャパン社製、98.0%Mn(NO32・6H2O]7.732g(26ミリモル)と、蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にAl23[住友化学工業社製、「AKP−G015」]30.0gを加え、80℃で水を蒸発させ、粉末を得た。
次に、得られた粉末を400℃で2時間空気中で仮焼し、その後、さらに焼成炉にて空気中、900℃で10時間焼成した。
このようにして、Cuを5質量%含有するCu1.5Mn1.54スピネル担持アルミナ触媒を得た。
Example 2
In a 1 liter beaker, copper nitrate [manufactured by Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 6.410 g (26 mmol) and manganese nitrate [manufactured by Sigma-Aldrich Japan, 98.0% Mn (NO 3 ) 2 · 6H 2 O] 7.732 g (26 mmol) and 300 ml of distilled water were added, and the mixture was stirred at 60 ° C. for 2 hours. Next, 30.0 g of Al 2 O 3 [manufactured by Sumitomo Chemical Co., Ltd., “AKP-G015”] was added to this solution, and water was evaporated at 80 ° C. to obtain a powder.
Next, the obtained powder was calcined in air at 400 ° C. for 2 hours, and then further calcined in air at 900 ° C. for 10 hours in a firing furnace.
Thus, a Cu 1.5 Mn 1.5 O 4 spinel-supported alumina catalyst containing 5% by mass of Cu was obtained.

実施例3
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]4.370g(18ミリモル)及び硝酸第二鉄[和光純薬工業社製、99.0%Fe(NO33・9H2O]14.65g(36ミリモル)と、蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にAl23[住友化学工業社製、「AKP−G015」]30.0gを加え、80℃で水を蒸発させ、粉末を得た。
次に、得られた粉末を400℃で2時間空気中で仮焼し、その後、さらに焼成炉にて空気中、900℃で10時間焼成した。
このようにして、Cuを5質量%含有するCuFe24スピネル担持アルミナ触媒を得た。
Example 3
In a 1 liter beaker, copper nitrate [manufactured by Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 4.370 g (18 mmol) and ferric nitrate [manufactured by Wako Pure Chemical Industries, Ltd., 99. and 0% Fe (NO 3) 3 · 9H 2 O] 14.65g (36 mmol), 300 ml of distilled water, and the mixture was stirred for 2 hours at 60 ° C.. Next, 30.0 g of Al 2 O 3 [manufactured by Sumitomo Chemical Co., Ltd., “AKP-G015”] was added to this solution, and water was evaporated at 80 ° C. to obtain a powder.
Next, the obtained powder was calcined in air at 400 ° C. for 2 hours, and then further calcined in air at 900 ° C. for 10 hours in a firing furnace.
Thus, a CuFe 2 O 4 spinel-supported alumina catalyst containing 5% by mass of Cu was obtained.

実施例4
実施例1と同様にして調製したCu−Mnスピネル型酸化物触媒(Cu1.5Mn1.54スピネルとMn23の混合物)10gとアルミナ(住友化学工業社製、「AKP−G015」)4.445gを乳鉢で混合することにより、Cuを20質量%含有する、Cu−Mnスピネル酸化物触媒とAl23の混合触媒を得た。
Example 4
Cu-Mn spinel type oxide catalyst (mixture of Cu 1.5 Mn 1.5 O 4 spinel and Mn 2 O 3 ) 10 g prepared in the same manner as in Example 1 and alumina (“AKP-G015” manufactured by Sumitomo Chemical Co., Ltd.) 4 .445 g was mixed in a mortar to obtain a mixed catalyst of Cu—Mn spinel oxide catalyst and Al 2 O 3 containing 20% by mass of Cu.

実施例5
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]26.56g(109ミリモル)と硝酸マンガン[シグマアルドリッチジャパン社製、98.0%Mn(NO32・6H20]31.55g(54ミリモル)、及び硝酸第二鉄[和光純薬工業社製、99.0%Fe(NO33・9H2O]67.33g(165ミリモル)と、蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にクエン酸一水和物[シグマアルドリッチジャパン社製]85.84g(409ミリモル)を加え、60℃で1時間攪拌したのち、80℃に昇温して水を蒸発させた。
このようにして生成したゲルを140℃で7時間加熱し、硝酸根及びクエン酸を分解させて酸化物微粉末を得たのち、空気中にて400℃で2時間仮焼し、その後、さらに焼成炉にて空気中、900℃で10時間焼成を行った。
焼成後、得られたCu−Mn−Feスピネル型酸化物触媒(CuMn0.5Fe1.54)10gとアルミナ(住友化学工業社製「AKP−G015」)4.445gを乳鉢で混合することによりCuを20質量%含有するCuMn0.5Fe1.54スピネルとAl23の混合触媒を得た。
Example 5
In a 1 liter beaker, copper nitrate [manufactured by Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 26.56 g (109 mmol) and manganese nitrate [manufactured by Sigma-Aldrich Japan, 98.0% Mn (NO 3 ) 2 · 6H 2 0] 31.55 g (54 mmol), and ferric nitrate [Wako Pure Chemical Industries, 99.0% Fe (NO 3 ) 3 · 9H 2 O] 67.33 g ( 165 mmol) and 300 ml of distilled water were added and stirred at 60 ° C. for 2 hours. Next, 85.84 g (409 mmol) of citric acid monohydrate [manufactured by Sigma-Aldrich Japan] was added to this solution, stirred for 1 hour at 60 ° C., and then heated to 80 ° C. to evaporate water.
The gel thus formed was heated at 140 ° C. for 7 hours to decompose nitrate radicals and citric acid to obtain fine oxide powder, and then calcined in air at 400 ° C. for 2 hours. Firing was performed at 900 ° C. for 10 hours in air in a firing furnace.
After firing, 10 g of the obtained Cu—Mn—Fe spinel oxide catalyst (CuMn 0.5 Fe 1.5 O 4 ) and 4.445 g of alumina (“AKP-G015” manufactured by Sumitomo Chemical Co., Ltd.) were mixed in a mortar to form Cu. A mixed catalyst of CuMn 0.5 Fe 1.5 O 4 spinel and Al 2 O 3 containing 20% by mass was obtained.

実施例6
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]20.30g(84ミリモル)及び硝酸第二鉄[和光純薬工業社製、99.0%Fe(NO33・9H20]68.24g(168ミリモル)と、蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にクエン酸一水和物[シグマアルドリッチジャパン社製]70.56g(336ミリモル)を加え、60℃で1時間攪拌したのち、80℃に昇温して水を蒸発させた。
このようにして生成したゲルを140℃で7時間加熱し、硝酸根及びクエン酸を分解させて酸化物微粉末を得たのち、空気中にて400℃で2時間仮焼し、その後、さらに焼成炉にて空気中、900℃で10時間焼成を行った。
焼成後、得られたCu−Feスピネル型酸化物触媒(CuFe24)10gとアルミナ(住友化学工業社製、「AKP−G015」)4.235gを乳鉢で混合することによりCuを20質量%含有するCuFe24スピネルとAl23の混合触媒を得た。
Example 6
In a 1 liter beaker, copper nitrate [Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 20.30 g (84 mmol) and ferric nitrate [Wako Pure Chemical Industries, 99. and 0% Fe (NO 3) 3 · 9H 2 0] 68.24g (168 mmol), 300 ml of distilled water, and the mixture was stirred for 2 hours at 60 ° C.. Next, 70.56 g (336 mmol) of citric acid monohydrate [manufactured by Sigma-Aldrich Japan] was added to this solution, and the mixture was stirred at 60 ° C. for 1 hour, and then heated to 80 ° C. to evaporate water.
The gel thus formed was heated at 140 ° C. for 7 hours to decompose nitrate radicals and citric acid to obtain fine oxide powder, and then calcined in air at 400 ° C. for 2 hours. Firing was performed at 900 ° C. for 10 hours in air in a firing furnace.
After firing, 10 g of the obtained Cu—Fe spinel oxide catalyst (CuFe 2 O 4 ) and 4.235 g of alumina (“AKP-G015” manufactured by Sumitomo Chemical Co., Ltd.) are mixed in a mortar to obtain 20 mass of Cu. % CuFe 2 O 4 spinel and Al 2 O 3 mixed catalyst was obtained.

実施例7
1リットルビーカーに、硝酸銅[ナカライテスク社製、99.5%Cu(NO32・3H2O]20.98g(87ミリモル)及び硝酸クロム[ナカライテスク社製、99.5%Cr(NO33・9H20]70.56g(174ミリモル)と、蒸留水300ミリリットルを加え、60℃で2時間攪拌した。次いで、この溶液にクエン酸一水和物[シグマアルドリッチジャパン社製]73.08g(348ミリモル)を加え、60℃で1時間攪拌したのち、80℃に昇温して水を蒸発させた。
このようにして生成したゲルを140℃で7時間加熱し、硝酸根及びクエン酸を分解させて酸化物微粉末を得たのち、空気中にて400℃で2時間仮焼し、その後、さらに焼成炉にて空気中、900℃で10時間焼成を行った。
焼成後、得られたCu−Crスピネル型酸化物触媒(CuCr24)10gとアルミナ(住友化学工業社製、「AKP−G015」)4.74gを乳鉢で混合することによりCuを20質量%含有するCuCr24スピネルとAl23の混合触媒を得た。
Example 7
In a 1 liter beaker, copper nitrate [manufactured by Nacalai Tesque, 99.5% Cu (NO 3 ) 2 .3H 2 O] 20.98 g (87 mmol) and chromium nitrate [manufactured by Nacalai Tesque, 99.5% Cr ( NO 3) and 3 · 9H 2 0] 70.56g ( 174 mmol), 300 ml of distilled water, and the mixture was stirred for 2 hours at 60 ° C.. Subsequently, 73.08 g (348 mmol) of citric acid monohydrate [manufactured by Sigma-Aldrich Japan] was added to this solution, and the mixture was stirred at 60 ° C. for 1 hour, and then heated to 80 ° C. to evaporate water.
The gel thus formed was heated at 140 ° C. for 7 hours to decompose nitrate radicals and citric acid to obtain fine oxide powder, and then calcined in air at 400 ° C. for 2 hours. Firing was performed at 900 ° C. for 10 hours in air in a firing furnace.
After firing, 10 g of the obtained Cu—Cr spinel oxide catalyst (CuCr 2 O 4 ) and 4.74 g of alumina (manufactured by Sumitomo Chemical Co., Ltd., “AKP-G015”) are mixed in a mortar to obtain 20 mass of Cu. % CuCr 2 O 4 spinel and Al 2 O 3 mixed catalyst was obtained.

試験例1
実施例1〜7及び比較例1で得た触媒を6〜14メッシュの大きさに成型し、それぞれ1ミリリットルを反応器に充填した。
実施例2、3、6、7及び比較例1の触媒については、水素含有量10容量%の水素と窒素の混合ガス中で、250℃にて1時間加熱して水素還元を行った。なお、実施例1、実施例4及び実施例5の触媒については水素還元を行わなかった。
ジメチルエーテル(DME)と水蒸気と窒素を、それぞれ15ミリリットル/分、45ミリリットル/分及び40ミリリットル/分の速度で反応器に供給し、400℃又は450℃でDMEの水蒸気改質を行った。この際、全ガス量基準のGHSV(ガス時空間速度)は6,000h-1であり、DME基準のGHSVは900h-1であった。
DME反応速度及びDME転化率を、下記の式に従って算出し、触媒の性能を評価した。結果を第1表に示す。
Test example 1
The catalysts obtained in Examples 1 to 7 and Comparative Example 1 were molded to a size of 6 to 14 mesh, and 1 ml each was charged into the reactor.
The catalysts of Examples 2, 3, 6, 7 and Comparative Example 1 were subjected to hydrogen reduction by heating at 250 ° C. for 1 hour in a mixed gas of hydrogen and nitrogen having a hydrogen content of 10% by volume. In addition, hydrogen reduction was not performed about the catalyst of Example 1, Example 4, and Example 5. FIG.
Dimethyl ether (DME), steam and nitrogen were supplied to the reactor at a rate of 15 ml / min, 45 ml / min and 40 ml / min, respectively, and DME was steam reformed at 400 ° C. or 450 ° C. At this time, the total gas amount-based GHSV (gas hourly space velocity) was 6,000 h −1 , and the DME-based GHSV was 900 h −1 .
The DME reaction rate and DME conversion rate were calculated according to the following formula to evaluate the performance of the catalyst. The results are shown in Table 1.

<DME反応速度(μmol/s・m2−cat)>
DME反応速度=DME流量(μmol/s)×0.01DME転化率(%)/反応器中の触媒の表面積(m2
ただし、
反応器中の触媒の表面積=使用触媒体積(ml)×触媒比重(g/ml)×BET比表面積(m2/g)
<DME転化率(%)>
DME転化率=[(入口DME流量−出口DME流量)/入口DME流量]×100
<DME reaction rate (μmol / s · m 2 -cat)>
DME reaction rate = DME flow rate (μmol / s) × 0.01 DME conversion (%) / surface area of catalyst in reactor (m 2 )
However,
Surface area of catalyst in reactor = used catalyst volume (ml) x catalyst specific gravity (g / ml) x BET specific surface area (m 2 / g)
<DME conversion rate (%)>
DME conversion rate = [(inlet DME flow rate−outlet DME flow rate) / inlet DME flow rate] × 100

Figure 2005342543
Figure 2005342543

第1表から分かるように、スピネル含有の実施例1の触媒は、非スピネル含有の比較例1の触媒に比べて反応速度が大きい。また、スピネル含有の実施例2〜7の触媒は、非スピネル含有の比較例1の触媒に比べて、DMEの転化率が高い。   As can be seen from Table 1, the spinel-containing Example 1 catalyst has a higher reaction rate than the non-spinel-containing Comparative Example 1 catalyst. Further, the spinel-containing Examples 2 to 7 have a higher conversion rate of DME than the non-spinel-containing catalyst of Comparative Example 1.

本発明の燃料電池システムの概略の流れ図である。2 is a schematic flowchart of the fuel cell system of the present invention.

符号の説明Explanation of symbols

1:気化器
11:水供給管
12:燃料導入管
15:接続管
21:燃料タンク
22:燃料ポンプ
23:脱硫器
24:水ポンプ
31:改質器
31A:改質器のバーナ
32:CO変成器
33:CO選択酸化器
34:燃料電池
34A:燃料電池負極
34B:燃料電池正極
34C:燃料電池高分子電解質
35:空気ブロワー
36:気水分離器
37:排熱回収装置
37A:熱交換器
37B:熱交換器
37C:冷却器
37D:冷媒循環ポンプ

1: Vaporizer 11: Water supply pipe 12: Fuel introduction pipe 15: Connection pipe 21: Fuel tank 22: Fuel pump 23: Desulfurizer 24: Water pump 31: Reformer 31A: Reformer burner 32: CO conversion 33: CO selective oxidizer 34: Fuel cell 34A: Fuel cell negative electrode 34B: Fuel cell positive electrode 34C: Fuel cell polymer electrolyte 35: Air blower 36: Air / water separator 37: Waste heat recovery device 37A: Heat exchanger 37B : Heat exchanger 37C: Cooler 37D: Refrigerant circulation pump

Claims (14)

銅を含み、かつスピネル構造を有する金属酸化物を含有することを特徴とする酸素含有炭化水素の改質触媒。 An oxygen-containing hydrocarbon reforming catalyst comprising copper and a metal oxide having a spinel structure. 銅を含み、かつスピネル構造を有する金属酸化物と固体酸性物質とを含有することを特徴とする酸素含有炭化水素の改質触媒。 An oxygen-containing hydrocarbon reforming catalyst comprising a metal oxide containing a spinel structure containing copper and a solid acidic substance. 銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Mn型スピネルである請求項1又は2に記載の酸素含有炭化水素の改質触媒。 The oxygen-containing hydrocarbon reforming catalyst according to claim 1 or 2, wherein the metal oxide containing copper and having a spinel structure is a Cu-Mn type spinel. 銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Fe型スピネルである請求項1又は2に記載の酸素含有炭化水素の改質触媒。 The oxygen-containing hydrocarbon reforming catalyst according to claim 1 or 2, wherein the metal oxide containing copper and having a spinel structure is a Cu-Fe type spinel. 銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Cr型スピネルである請求項1又は2に記載の酸素含有炭化水素の改質触媒。 The oxygen-containing hydrocarbon reforming catalyst according to claim 1 or 2, wherein the metal oxide containing copper and having a spinel structure is a Cu-Cr type spinel. 銅を含み、かつスピネル構造を有する金属酸化物が、Cu−Mn−Fe型スピネルである請求項1又は2に記載の酸素含有炭化水素の改質触媒。 The oxygen-containing hydrocarbon reforming catalyst according to claim 1 or 2, wherein the metal oxide containing copper and having a spinel structure is a Cu-Mn-Fe type spinel. 固体酸性物質がアルミナである請求項2〜6のいずれかに記載の酸素含有炭化水素の改質触媒。 The oxygen-containing hydrocarbon reforming catalyst according to any one of claims 2 to 6, wherein the solid acidic substance is alumina. 請求項1〜7のいずれかに記載の改質触媒を還元することにより得られる酸素含有炭化水素の改質触媒。 An oxygen-containing hydrocarbon reforming catalyst obtained by reducing the reforming catalyst according to any one of claims 1 to 7. 酸素含有炭化水素が、メタノール、エタノール、ジメチルエーテル及びメチルエチルエーテルから選ばれる少なくとも一種である請求項1〜8のいずれかに記載の酸素含有炭化水素の改質触媒。 The oxygen-containing hydrocarbon reforming catalyst according to any one of claims 1 to 8, wherein the oxygen-containing hydrocarbon is at least one selected from methanol, ethanol, dimethyl ether and methyl ethyl ether. 請求項1〜9のいずれかに記載の改質触媒を用い、酸素含有炭化水素を水蒸気改質することを特徴とする水素又は合成ガスの製造方法。 A method for producing hydrogen or synthesis gas, wherein the reforming catalyst according to any one of claims 1 to 9 is used to steam reform an oxygen-containing hydrocarbon. 請求項1〜9のいずれかに記載の改質触媒を用い、酸素含有炭化水素を自己熱改質することを特徴とする水素又は合成ガスの製造方法。 A method for producing hydrogen or synthesis gas, wherein the reforming catalyst according to any one of claims 1 to 9 is used to autothermally reform an oxygen-containing hydrocarbon. 請求項1〜9のいずれかに記載の改質触媒を用い酸素含有炭化水素を部分酸化改質することを特徴とする水素又は合成ガスの製造方法。 A method for producing hydrogen or synthesis gas, wherein the reforming catalyst according to any one of claims 1 to 9 is used for partial oxidation reforming of an oxygen-containing hydrocarbon. 請求項1〜9のいずれかに記載の改質触媒を用い、酸素含有炭化水素を二酸化炭素改質することを特徴とする水素又は合成ガスの製造方法。 A method for producing hydrogen or synthesis gas, comprising reforming an oxygen-containing hydrocarbon with carbon dioxide using the reforming catalyst according to claim 1. 請求項1〜9のいずれかに記載の改質触媒を備える改質器と、該改質器により製造される水素を燃料とする燃料電池とを有することを特徴とする燃料電池システム。


A fuel cell system comprising: a reformer comprising the reforming catalyst according to any one of claims 1 to 9; and a fuel cell using hydrogen produced by the reformer as fuel.


JP2004015343A 2003-05-20 2004-01-23 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system Expired - Fee Related JP4774197B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004015343A JP4774197B2 (en) 2003-05-20 2004-01-23 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
PCT/JP2004/006903 WO2004103555A1 (en) 2003-05-20 2004-05-14 Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system
KR1020057022073A KR101016891B1 (en) 2003-05-20 2004-05-14 Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas therewith and fuel cell system
TW093114133A TW200500138A (en) 2003-05-20 2004-05-19 Oxyhydrocarbon reforming catalyst, process for producing hydrogen or synthetic gas using the same and fuel cell system

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2003142573 2003-05-20
JP2003142573 2003-05-20
JP2003309696 2003-09-02
JP2003309696 2003-09-02
JP2003322949 2003-09-16
JP2003322949 2003-09-16
JP2004015343A JP4774197B2 (en) 2003-05-20 2004-01-23 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system

Publications (2)

Publication Number Publication Date
JP2005342543A true JP2005342543A (en) 2005-12-15
JP4774197B2 JP4774197B2 (en) 2011-09-14

Family

ID=33479782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004015343A Expired - Fee Related JP4774197B2 (en) 2003-05-20 2004-01-23 Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system

Country Status (4)

Country Link
JP (1) JP4774197B2 (en)
KR (1) KR101016891B1 (en)
TW (1) TW200500138A (en)
WO (1) WO2004103555A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099847A1 (en) * 2007-02-16 2008-08-21 Japan Science And Technology Agency Reforming catalyst for oxygen-containing hydrocarbon, method for producing hydrogen or synthetic gas using the same, and fuel cell system
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
WO2009107592A1 (en) * 2008-02-25 2009-09-03 住友精化株式会社 Process and apparatus for production of hydrogen
WO2012105355A1 (en) * 2011-01-31 2012-08-09 住友精化株式会社 Production method for hydrogen gas
JP2012218946A (en) * 2011-04-04 2012-11-12 Sumitomo Seika Chem Co Ltd Method for producing hydrogen gas
JP2014012267A (en) * 2012-06-07 2014-01-23 Toyota Central R&D Labs Inc Catalyst for reforming hydrocarbon, exhaust gas cleaning apparatus using the same and manufacturing method of catalyst for reforming hydrocarbon
WO2016203371A1 (en) * 2015-06-15 2016-12-22 Clean Diesel Technologies, Inc. Performance improvement of copper and manganese containing ternary spinel as noble metal free three way catalysts
CN106391036A (en) * 2016-10-28 2017-02-15 成都理工大学 Solid solution catalyst for acetic acid self-heating hydrogen production by reforming and preparation method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142575A (en) * 2005-03-28 2008-06-26 Tohoku Univ High performance catalyst using composite oxide and method for preparation thereof
KR100732538B1 (en) * 2005-08-24 2007-06-27 요업기술원 Method for directly producing a hydrogen from hydrocarbon utilizing catalyst
JP4607715B2 (en) * 2005-09-06 2011-01-05 株式会社東芝 Catalyst and method for producing catalyst
KR100649737B1 (en) * 2005-10-17 2006-11-27 삼성전기주식회사 Hydrogen fuel cells having thin film multi-layers
KR100938779B1 (en) * 2007-12-04 2010-01-27 한국에너지기술연구원 The Method for Producing Synthesis Gas and Hydrogen Using methane
TW201429038A (en) * 2008-05-14 2014-07-16 Nippon Oil Corp Desulfurizing device and fuel cell system
JP4665044B2 (en) * 2009-09-14 2011-04-06 株式会社東芝 Fuel reforming catalyst, reformer, and fuel cell system
KR101480801B1 (en) 2013-05-08 2015-01-12 한국화학연구원 Monolith type reforming catalyst, preparation method thereof and process for syn gas
CN104785269B (en) * 2015-04-20 2017-04-26 广东石油化工学院 Method for preparing catalyst for hydrogen production by ethanol steam reforming

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel
JPS6354420B2 (en) * 1980-03-28 1988-10-27 Norsk Hydro As
JPH11169714A (en) * 1997-09-10 1999-06-29 Basf Ag Catalyst for steam reforming of methanol
JP2003010685A (en) * 2001-06-27 2003-01-14 Nkk Corp Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
JP2003033656A (en) * 2001-07-25 2003-02-04 Nkk Corp Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas
EP1298089A1 (en) * 2000-06-22 2003-04-02 Consejo Superior De Investigaciones Cientificas Method for obtaining hydrogen by partial methanol oxidation
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol
WO2003104143A1 (en) * 2002-06-11 2003-12-18 Basf Aktiengesellschaft Method for producing hydrogenous gases

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227085A (en) * 1975-08-27 1977-03-01 Nippon Soken Inc Catalyst for reforming of hydrocarbon fuel
JPS6354420B2 (en) * 1980-03-28 1988-10-27 Norsk Hydro As
JPH11169714A (en) * 1997-09-10 1999-06-29 Basf Ag Catalyst for steam reforming of methanol
EP1298089A1 (en) * 2000-06-22 2003-04-02 Consejo Superior De Investigaciones Cientificas Method for obtaining hydrogen by partial methanol oxidation
JP2004500980A (en) * 2000-06-22 2004-01-15 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Production of hydrogen by partial oxidation of methanol.
JP2003010685A (en) * 2001-06-27 2003-01-14 Nkk Corp Hydrogen manufacturing catalyst, method for manufacturing the same and hydrogen manufacturing method
JP2003033656A (en) * 2001-07-25 2003-02-04 Nkk Corp Synthesis gas manufacturing catalyst and method of manufacturing synthesis gas
JP2003320254A (en) * 2002-05-01 2003-11-11 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction and steam reforming reaction of methanol
WO2003104143A1 (en) * 2002-06-11 2003-12-18 Basf Aktiengesellschaft Method for producing hydrogenous gases
JP2005536421A (en) * 2002-06-11 2005-12-02 ビーエーエスエフ アクチェンゲゼルシャフト Production of hydrogen gas

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099847A1 (en) * 2007-02-16 2008-08-21 Japan Science And Technology Agency Reforming catalyst for oxygen-containing hydrocarbon, method for producing hydrogen or synthetic gas using the same, and fuel cell system
KR101486095B1 (en) * 2007-04-11 2015-01-23 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
WO2008126844A1 (en) * 2007-04-11 2008-10-23 Japan Science And Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
JP2008279427A (en) * 2007-04-11 2008-11-20 Japan Science & Technology Agency Catalyst for reforming oxygen-containing hydrocarbon, and hydrogen or synthetic gas production method and fuel cell system using the catalyst
WO2009107592A1 (en) * 2008-02-25 2009-09-03 住友精化株式会社 Process and apparatus for production of hydrogen
JP5710964B2 (en) * 2008-02-25 2015-04-30 住友精化株式会社 Method and apparatus for producing hydrogen
KR20140023895A (en) * 2011-01-31 2014-02-27 스미토모 세이카 가부시키가이샤 Production method for hydrogen gas
JPWO2012105355A1 (en) * 2011-01-31 2014-07-03 住友精化株式会社 Method for producing hydrogen gas
WO2012105355A1 (en) * 2011-01-31 2012-08-09 住友精化株式会社 Production method for hydrogen gas
KR101869580B1 (en) * 2011-01-31 2018-06-20 스미토모 세이카 가부시키가이샤 Production method for hydrogen gas
JP2012218946A (en) * 2011-04-04 2012-11-12 Sumitomo Seika Chem Co Ltd Method for producing hydrogen gas
JP2014012267A (en) * 2012-06-07 2014-01-23 Toyota Central R&D Labs Inc Catalyst for reforming hydrocarbon, exhaust gas cleaning apparatus using the same and manufacturing method of catalyst for reforming hydrocarbon
WO2016203371A1 (en) * 2015-06-15 2016-12-22 Clean Diesel Technologies, Inc. Performance improvement of copper and manganese containing ternary spinel as noble metal free three way catalysts
CN106391036A (en) * 2016-10-28 2017-02-15 成都理工大学 Solid solution catalyst for acetic acid self-heating hydrogen production by reforming and preparation method

Also Published As

Publication number Publication date
JP4774197B2 (en) 2011-09-14
WO2004103555A1 (en) 2004-12-02
KR20060009366A (en) 2006-01-31
TW200500138A (en) 2005-01-01
TWI351312B (en) 2011-11-01
KR101016891B1 (en) 2011-02-22

Similar Documents

Publication Publication Date Title
JP4774197B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP2008221200A (en) Reforming catalyst of oxygen-containing hydrocarbon, manufacturing method of hydrogen or synthetic gas using it and fuel cell system
JP5421770B2 (en) Catalyst precursor material and catalyst using the same
WO2006101079A1 (en) Desulfurizing agent and method of desulfurization with the same
WO1999017875A1 (en) Catalyst for producing hydrogen or synthesis gas and method of producing hydrogen or synthesis gas
Usman et al. Recent advances in the methanol synthesis via methane reforming processes
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
WO2008056621A1 (en) Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
WO2010113506A1 (en) Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP5178143B2 (en) Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
US11795055B1 (en) Systems and methods for processing ammonia
JPWO2006054527A1 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP2005007383A (en) Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell
JP4127685B2 (en) Carbon monoxide selective methanator, carbon monoxide shift reactor and fuel cell system
JP2009119307A (en) Catalyst regeneration method
US20240132346A1 (en) Systems and methods for processing ammonia
JP5275113B2 (en) Hydrocarbon desulfurizing agent precursor and production method thereof, hydrocarbon desulfurization agent firing precursor and production method thereof, hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP5275114B2 (en) Hydrocarbon desulfurization agent and production method thereof, hydrocarbon desulfurization method, and fuel cell system
JP2006043587A (en) Reforming catalyst of oxygen-containing hydrocarbon, reforming method of oxygen-containing hydrocarbon using it, and fuel cell system
JP2005185989A (en) Reforming catalyst of oxygen containing hydrocarbon, method for manufacturing hydrogen or synthetic gas using the same and fuel cell system
JP2007301452A (en) Oxygen-containing hydrocarbon reforming catalyst, method for manufacturing hydrogen or synthesized gas, and fuel cell system
JP4359748B2 (en) Method for producing hydrogen-containing gas
JP2005125147A (en) Methanol reforming catalyst and its manufacturing method
JP2004000848A (en) Catalyst and method for removing carbon monoxide contained in hydrogen gas as carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees