WO2012105355A1 - Production method for hydrogen gas - Google Patents

Production method for hydrogen gas Download PDF

Info

Publication number
WO2012105355A1
WO2012105355A1 PCT/JP2012/051351 JP2012051351W WO2012105355A1 WO 2012105355 A1 WO2012105355 A1 WO 2012105355A1 JP 2012051351 W JP2012051351 W JP 2012051351W WO 2012105355 A1 WO2012105355 A1 WO 2012105355A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxygen
catalyst
hydrogen gas
containing gas
Prior art date
Application number
PCT/JP2012/051351
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 畑
貴裕 土屋
広昭 笹野
茂 森本
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2012555801A priority Critical patent/JP6168775B2/en
Priority to KR1020137022961A priority patent/KR101869580B1/en
Publication of WO2012105355A1 publication Critical patent/WO2012105355A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing hydrogen gas. More specifically, the present invention relates to a method for producing hydrogen gas that can efficiently produce hydrogen gas.
  • Methanol is an energy source that can be easily transported and stored, and is expected as a raw material for generating hydrogen gas on-site.
  • a steam reforming method is generally known in which hydrogen gas is produced by bringing methanol into contact with water vapor in the presence of a catalyst in an oxygen-containing gas atmosphere.
  • the autothermal method is known as a method capable of efficiently producing hydrogen gas.
  • heat generated when methanol is partially oxidized and reformed to carbon dioxide and hydrogen gas is converted into an endothermic reaction in which methanol is reformed to carbon dioxide and hydrogen gas by contacting with water vapor.
  • the autothermal method when a copper-zinc catalyst is used as a catalyst, there is a drawback that the activity of the catalyst is lowered.
  • the present invention has been made in view of the prior art, and can stably produce a certain amount of hydrogen gas over a long period of time without requiring a complicated operation of adjusting the flow rate of the oxygen-containing gas.
  • An object of the present invention is to provide a method for producing hydrogen gas that can extend the catalyst life.
  • the present invention produces a reaction gas by contacting methanol and water with an oxygen-containing gas in the presence of a catalyst while supplying the oxygen-containing gas, and produces hydrogen gas by separating the hydrogen gas from the reaction gas.
  • the present invention relates to a method for producing hydrogen gas, wherein a copper oxide / aluminum oxide catalyst is used as the catalyst, and the supply of the oxygen-containing gas is temporarily stopped.
  • a constant amount of hydrogen gas can be produced stably over a long period of time without requiring complicated adjustment of the flow rate of the oxygen-containing gas, and the catalyst life can be reduced. There is an excellent effect that it can be extended.
  • a method for producing hydrogen gas by producing a reaction gas by bringing methanol, water, and an oxygen-containing gas into contact with each other in the presence of a catalyst while supplying the oxygen-containing gas, and separating the hydrogen gas from the reaction gas When the catalyst regeneration operation of regenerating the catalyst by temporarily stopping the supply of the oxygen-containing gas is performed, as described in Patent Document 1, a decrease in the catalyst activity is suppressed to some extent. it can. However, in such a method, when the regeneration operation is repeated, the catalyst activity is greatly reduced compared to the catalyst activity before the regeneration operation.
  • a reaction gas is produced by contacting methanol, water, and an oxygen-containing gas in the presence of a catalyst while supplying the oxygen-containing gas, and the hydrogen gas is separated from the reaction gas. As a result, hydrogen gas is produced.
  • Methanol and water are usually used by vaporizing.
  • the amount of water per mole of methanol is preferably 1.2 moles or more, more preferably from the viewpoint of efficiently generating hydrogen gas and increasing the yield of hydrogen gas by reducing the residual amount of carbon monoxide gas. Is not less than 1.5 mol, and even if the amount of water is too large, the yield of hydrogen gas is not improved so much, preferably from the viewpoint of increasing energy efficiency by reducing the amount of water having a large latent heat of vaporization, 2.5 mol or less, more preferably 2.0 mol or less.
  • methanol and water do not necessarily have to be heated at the same time, and methanol evaporation and water evaporation may be performed separately, or methanol and water are mixed and the resulting aqueous methanol solution is evaporated. You may let them.
  • methanol is usually used as methanol gas, and water is used as water vapor.
  • the temperature of methanol gas and water vapor when contacting with the oxygen-containing gas is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, from the viewpoint of promoting the oxidation reaction of methanol and reducing the residual amount of unreacted methanol. From the viewpoint of improving energy efficiency and improving the yield of hydrogen gas, it is preferably 300 ° C. or lower, more preferably 280 ° C. or lower.
  • a part of the methanol is represented by the formula (2) without involving oxygen gas: CH 3 OH ⁇ CO + 2H 2 (2) As expressed by carbon monoxide gas and hydrogen gas, or the formula (3): CH 3 OH + H 2 O ⁇ CO 2 + 3H 2 (3) As shown, it decomposes into carbon dioxide gas and hydrogen gas. Since these decomposition reactions are endothermic reactions, part of the heat generated by the oxidation reaction is canceled out. As a result, the temperature in the system is somewhat lower than the temperature when only the oxidation reaction occurs. In addition to these reactions, the formula (4): CO + H 2 O ⁇ CO 2 + H 2 (4) It is believed that a shift reaction represented by
  • Oxygen-containing gas has a small heat capacity compared to methanol and water, so it does not need to be heated in particular, but may be heated if necessary.
  • oxygen-containing gas examples include air, oxygen gas and the like, and mixed gas of inert gas such as nitrogen gas and argon gas and oxygen gas.
  • inert gas such as nitrogen gas and argon gas and oxygen gas.
  • present invention is limited to such examples. It is not a thing.
  • the amount of oxygen gas contained in the oxygen-containing gas per mole of methanol is preferably 0.05 mol or more, more preferably 0.1 mol or more, from the viewpoint of reducing the remaining amount of unreacted methanol. From the viewpoint of avoiding an increase in the reaction temperature due to the reaction between the hydrogen gas generated from methanol and the oxygen gas, and avoiding the consumption of the generated hydrogen gas due to the reaction with the oxygen gas. 25 mol or less, more preferably 0.2 mol or less.
  • a catalyst When reacting the raw material gas and the oxygen-containing gas, a catalyst is used from the viewpoint of increasing the production efficiency of hydrogen gas.
  • one major feature is that a copper oxide / aluminum oxide catalyst is used as the catalyst.
  • a copper oxide / aluminum oxide catalyst is used as the catalyst, the hydrogen gas is allowed to flow for a long time without performing complicated operations for adjusting the flow rate of the oxygen-containing gas as in the invention described in Patent Document 1.
  • the catalyst can be produced efficiently and the life of the catalyst can be extended. Further, when a copper oxide / aluminum oxide catalyst is used as a catalyst, there is an advantage that sintering is unlikely to occur even when heated to a high temperature of about 600 ° C.
  • the copper oxide / aluminum oxide catalyst is obtained by attaching copper oxide (CuO) to aluminum oxide (Al 2 O 3 ) particles of a support.
  • the mass ratio of copper oxide (CuO) to aluminum oxide (Al 2 O 3 ) [copper oxide (CuO) / aluminum oxide (Al 2 O 3 )] is sufficient for the catalytic activity of copper oxide (CuO) as an additive
  • it is preferably 0.005 or more, imparting sufficient mechanical strength to the added copper oxide (CuO), and the copper oxide (CuO) is used from above the catalyst during use. From the viewpoint of avoiding detachment as a powder, it is preferably 1 or less.
  • the copper oxide / aluminum oxide catalyst is preferably reduced prior to its use.
  • the copper oxide / aluminum oxide catalyst is reduced, the copper oxide is reduced to copper, so that the catalytic activity can be enhanced.
  • the method of reducing the copper oxide / aluminum oxide catalyst include a method of bringing the copper oxide / aluminum oxide catalyst into contact with a reducing gas, but the present invention is not limited to such a method.
  • the reducing gas include hydrogen gas, and mixed gas of hydrogen gas and inert gas such as nitrogen gas and argon gas. However, the present invention is not limited to such examples. .
  • the particle diameter of the copper oxide / aluminum oxide catalyst is preferably 0.5 mm or more, more preferably 1 mm or more from the viewpoint of improving the air permeability between the catalyst particles.
  • the amount of the copper oxide / aluminum oxide catalyst is preferably about 20 to 300 ml per 1 g / min of methanol that is usually sent to a reaction gas production apparatus that is generally used.
  • the reaction temperature rises with time at a location where an oxidation reaction occurs due to contact with an oxygen-containing gas.
  • the reactions represented by the formulas (2) to (4) proceed on the copper / aluminum oxide (Cu / Al 2 O 3 ), which is a reduced product obtained by reducing the copper oxide / aluminum oxide catalyst in advance.
  • copper / aluminum oxide (Cu / Al 2 O 3 ) is gradually oxidized by the oxygen-containing gas to become copper oxide / aluminum oxide (CuO / Al 2 O 3 ).
  • the reactions represented by the formulas (2) to (4) are difficult to proceed, the methanol oxidation reaction represented by the formula (1) occurs preferentially, so that exotherm appears significantly. It is thought that the catalyst life is shortened because the reaction temperature gradually increases.
  • the present inventors conducted extensive research and found that the supply of the oxygen-containing gas may be temporarily stopped while using a copper oxide / aluminum oxide catalyst as the catalyst.
  • a copper oxide / aluminum oxide catalyst as the catalyst.
  • the oxidation reaction of methanol by the oxygen gas contained in the oxygen-containing gas gradually stops, so the reaction temperature decreases.
  • the amount of oxygen gas in the reaction system is reduced. Therefore, copper / aluminum oxide is less likely to be oxidized by oxygen gas.
  • the copper oxide / aluminum oxide catalyst is reduced by contact with methanol, the copper oxide / aluminum oxide used in the copper oxide / aluminum oxide catalyst is reduced to copper / aluminum oxide having catalytic activity. . Therefore, it is considered that the catalytic activity of the copper oxide / aluminum oxide catalyst is recovered.
  • the reaction temperature is preferably 300 ° C. or higher from the viewpoint of efficiently reforming methanol into hydrogen, and preferably from the viewpoint of suppressing the reaction between generated hydrogen and oxygen contained in the oxygen-containing gas. Is 450 ° C. or lower.
  • the pressure during the reaction is not particularly limited, but usually it is preferably about 0.2 to 1.5 MPa in terms of gauge pressure.
  • the temperature of the copper oxide / aluminum oxide catalyst is lowered by temporarily stopping the supply of the oxygen-containing gas.
  • the copper oxide / aluminum oxide used in the copper oxide / aluminum oxide catalyst is reduced to copper / aluminum oxide.
  • the catalytic activity of the aluminum oxide catalyst is restored. Therefore, the reaction temperature returns to the temperature before stopping the supply of the oxygen-containing gas in a short time, and hydrogen gas can be efficiently produced again.
  • the time from the start of the supply of the oxygen-containing gas to the stop of the supply of the oxygen-containing gas is from the viewpoint of returning the catalyst temperature that decreases during the stop period of the supply of the oxygen-containing gas to near the temperature before the stop, Preferably, it is 10 seconds or more, more preferably 20 seconds or more, so that the amount of hydrogen gas generated from methanol is stabilized, and the catalyst temperature is kept at a certain temperature or more even during the stop period of the oxygen-containing gas. From the viewpoint of maintaining, it is preferably 10 minutes or less, more preferably 5 minutes or less.
  • the time for stopping the supply of the oxygen-containing gas is to reduce the catalyst activity of the copper oxide / aluminum oxide catalyst by reducing the copper oxide / aluminum oxide used in the copper oxide / aluminum oxide catalyst to copper / aluminum oxide. From the viewpoint of efficiently producing hydrogen gas by shortening the time for stopping the supply of the oxygen-containing gas, preferably 3 seconds or more, more preferably 5 seconds or more, preferably 60 seconds or less, more preferably 40 seconds or less.
  • the time for stopping the supply of the oxygen-containing gas with respect to the time required for one cycle from the start of the supply of the oxygen-containing gas to the start of the supply of the next oxygen-containing gas after the supply of the oxygen-containing gas is stopped
  • the ratio of formula (I): [Ratio of oxygen gas stop time] [(Time for stopping supply of oxygen gas) ⁇ (Time required for one cycle)] ⁇ 100
  • the time for supplying the oxygen-containing gas is preferably 7 seconds or more, and the time for stopping the supply of the oxygen-containing gas is preferably 3 seconds or less.
  • the reaction gas obtained by the above operation contains not only hydrogen gas but also impurity gases such as unreacted methanol vapor, carbon dioxide gas, carbon monoxide gas, and water vapor. Therefore, in order to produce hydrogen gas having high purity, hydrogen gas contained in the reaction gas is separated from the reaction gas obtained above.
  • an adsorbent When separating hydrogen gas, for example, an adsorbent can be used.
  • the adsorbent include a carbon-based adsorbent when removing carbon dioxide, methanol, and the like, and a zeolite when removing carbon monoxide, and removing water vapor and the like. In some cases, alumina and the like can be mentioned, but the present invention is not limited to such examples.
  • these adsorbents are preferably mixed and used in order to remove them by adsorbing unreacted methanol vapor, carbon dioxide gas, carbon monoxide gas, water vapor and other impurity gases.
  • the hydrogen gas can be separated according to, for example, a method for separating a target gas described in JP-A No. 2004-66125.
  • the adsorbed and removed impurity gas can be recovered as a residual gas, for example, after the production of hydrogen gas is stopped.
  • the residual gas contains hydrogen gas in addition to impurity gas. It is preferable that the residual gas is not disposed of as waste gas or discarded, but is effectively used by burning it. If methanol and water are heated using combustion heat generated when the residual gas is burned, methanol gas and water vapor can be produced efficiently. In addition, the heat of combustion in the residual gas can supplement the heat in the endothermic reaction in the reactions represented by the reaction formulas (2) to (4), so that hydrogen gas can be generated efficiently.
  • a platinum catalyst is preferable because of its high catalytic activity and excellent heat resistance.
  • the platinum catalyst may be platinum particles, may be one in which platinum is supported on a carrier such as alumina particles, or may be one in which platinum is supported on a carrier having a honeycomb structure.
  • air is not particularly limited as long as the hydrogen gas contained in the residual gas is sufficiently combusted. Since the temperature of the combustion gas generated by burning the residual gas can be controlled by this air amount, the temperature of the combustion gas can be adjusted by controlling the air amount. Further, the temperature of the combustion gas can be adjusted by introducing air into the generated combustion gas.
  • the heating temperature of methanol and water by the combustion heat generated when the residual gas is burned is preferably 250 ° C. or higher from the viewpoint of increasing the amount of hydrogen gas generated by reducing the residual amount of unreacted methanol, From the viewpoint of suppressing the deterioration of the catalyst, the temperature is preferably 600 ° C. or lower.
  • combustion catalysts including a platinum catalyst
  • the combustion catalyst include platinum, noble metals such as palladium, ruthenium, rhodium, and silver, and compounds of these metals, but the present invention is not limited only to such examples.
  • the combustion catalyst can be used by adhering to, for example, a metal honeycomb, a ceramic honeycomb, a ball pellet, or the like.
  • Example 1 In a reactor having a length of 20 cm and an inner diameter of 2.3 cm, a copper oxide / aluminum oxide catalyst [manufactured by Aldrich, mass ratio of copper oxide (CuO) and aluminum oxide (Al 2 O 3 ) [copper oxide (CuO) / After filling with aluminum oxide (Al 2 O 3 )]: 12/88], a nitrogen gas containing hydrogen gas was introduced into the reactor for about 10 hours to activate the copper oxide / aluminum oxide catalyst.
  • a copper oxide / aluminum oxide catalyst manufactured by Aldrich, mass ratio of copper oxide (CuO) and aluminum oxide (Al 2 O 3 ) [copper oxide (CuO) / After filling with aluminum oxide (Al 2 O 3 )]: 12/88
  • a nitrogen gas containing hydrogen gas was introduced into the reactor for about 10 hours to activate the copper oxide / aluminum oxide catalyst.
  • the internal temperature of the reactor was controlled at 300 ° C., methanol and water were introduced into the reactor at a flow rate of 3.8 g / min and 3.0 g / min, respectively, and air was supplied at a standard state (NTP) of 2
  • NTP standard state
  • the operation of introducing at a flow rate of 2 L / min was performed for 90 seconds, and then the operation of stopping the operation of introducing air for 10 seconds was repeated periodically as one cycle.
  • the molar ratio of water / methanol was 1.44 / 1
  • the molar ratio of oxygen / methanol was 0.16 / 1.
  • the ratio of the oxygen gas stop time represented by the formula (I) was 10%.
  • the gauge pressure in the reactor was controlled to 0.8 MPa. Meanwhile, the maximum temperature and hydrogen concentration in the reactor were examined. The hydrogen concentration was examined by analyzing the reaction gas discharged from the reactor by gas chromatography. The results are shown in Table 1.
  • Example 2 In Example 1, except that air was aerated at a flow rate of 2.2 L / min for 10 minutes in a standard state, and then the operation of stopping the ventilation of the air for 60 seconds was periodically repeated as one cycle. The same operation was performed. At that time, the ratio of the oxygen gas stop time represented by the formula (I) was about 9%. The results are shown in Table 2.
  • Example 1 Comparative Example 1 In Example 1, the reaction was performed in the same manner as in Example 1 except that air was supplied at a constant flow rate of 2.0 L / min in the standard state. The results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

When reactant gas is produced by bringing methanol and water into contact with oxygen-containing gas in the presence of a catalyst while supplying oxygen gas, and then hydrogen gas is produced by separating the hydrogen gas from the reactant gas, the supply of the oxygen-containing gas is temporarily stopped through the use of a copper oxide/aluminum oxide catalyst.

Description

水素ガスの製造方法Method for producing hydrogen gas
 本発明は、水素ガスの製造方法に関する。さらに詳しくは、水素ガスを効率よく製造することができる水素ガスの製造方法に関する。 The present invention relates to a method for producing hydrogen gas. More specifically, the present invention relates to a method for producing hydrogen gas that can efficiently produce hydrogen gas.
 メタノールは、輸送や貯蔵が容易なエネルギー源であり、オンサイトで水素ガスを発生させるための原料として期待されている。メタノールから水素ガスを製造する方法として、一般に、メタノールを酸素含有ガスの雰囲気中で触媒の存在下で水蒸気と接触させることによって水素ガスを製造する水蒸気改質法が知られている。水蒸気改質法のなかでは、オートサーマル法が、水素ガスを効率よく製造することができる方法として知られている。前記オートサーマル法では、メタノールを部分的に酸化させて二酸化炭素と水素ガスに改質する際に発生する熱を、メタノールを水蒸気と接触させることによって二酸化炭素と水素ガスに改質する吸熱反応に利用する。しかし、前記オートサーマル法において、触媒として銅-亜鉛系触媒を用いた場合、当該触媒の活性が低下するという欠点がある。 Methanol is an energy source that can be easily transported and stored, and is expected as a raw material for generating hydrogen gas on-site. As a method for producing hydrogen gas from methanol, a steam reforming method is generally known in which hydrogen gas is produced by bringing methanol into contact with water vapor in the presence of a catalyst in an oxygen-containing gas atmosphere. Among the steam reforming methods, the autothermal method is known as a method capable of efficiently producing hydrogen gas. In the autothermal method, heat generated when methanol is partially oxidized and reformed to carbon dioxide and hydrogen gas is converted into an endothermic reaction in which methanol is reformed to carbon dioxide and hydrogen gas by contacting with water vapor. Use. However, in the autothermal method, when a copper-zinc catalyst is used as a catalyst, there is a drawback that the activity of the catalyst is lowered.
 前記欠点を解消する方法として、触媒の活性低下率が所定値に到達したときに、当該触媒への酸素含有ガスの供給を一時的に停止する方法が提案されている(例えば、特許文献1の段落[0010]参照)。この方法によれば、酸素含有ガスの供給を一時的に停止することにより、触媒の活性低下が抑制される。しかし、この方法には、触媒の活性低下率が所定値に到達したときに当該記触媒への酸素含有ガスの供給を一時的に停止することによって触媒を再生させるという再生操作を繰り返したときに、特許文献1の図3の符号16で示されるように、触媒活性が再生操作前の触媒活性よりも大きく低下するという欠点がある。さらに、この方法には、特許文献1の図3に示されるように、水素濃度が所定値に到達したときに酸素含有ガス(空気)の流量の増大、停止、通気、停止および通気という煩雑な操作を必要とするという欠点がある。 As a method for eliminating the above-described drawbacks, a method has been proposed in which the supply of the oxygen-containing gas to the catalyst is temporarily stopped when the rate of decrease in the activity of the catalyst reaches a predetermined value (see, for example, Patent Document 1). (See paragraph [0010]). According to this method, the decrease in the activity of the catalyst is suppressed by temporarily stopping the supply of the oxygen-containing gas. However, in this method, when a regeneration operation is repeated in which the catalyst is regenerated by temporarily stopping the supply of the oxygen-containing gas to the catalyst when the rate of decrease in the activity of the catalyst reaches a predetermined value. As indicated by reference numeral 16 in FIG. 3 of Patent Document 1, there is a drawback in that the catalytic activity is significantly lower than the catalytic activity before the regeneration operation. Furthermore, as shown in FIG. 3 of Patent Document 1, this method has a complicated process of increasing, stopping, venting, stopping, and venting the oxygen-containing gas (air) when the hydrogen concentration reaches a predetermined value. There is a drawback of requiring operation.
特開2001-226103号公報JP 2001-226103 A
 本発明は、前記従来技術に鑑みてなされたものであり、煩雑な酸素含有ガスの流量の調節操作を必要とせずに、一定量の水素ガスを長時間にわたって安定して製造することができるとともに、触媒寿命を延ばすことができる水素ガスの製造方法を提供することを課題とする。 The present invention has been made in view of the prior art, and can stably produce a certain amount of hydrogen gas over a long period of time without requiring a complicated operation of adjusting the flow rate of the oxygen-containing gas. An object of the present invention is to provide a method for producing hydrogen gas that can extend the catalyst life.
 本発明は、酸素含有ガスを供給しながらメタノールおよび水と酸素含有ガスとを触媒の存在下で接触させることによって反応ガスを製造し、当該反応ガスから水素ガスを分離することによって水素ガスを製造する方法であって、前記触媒として酸化銅/酸化アルミニウム触媒を用い、酸素含有ガスの供給を一時的に停止することを特徴とする水素ガスの製造方法に関する。 The present invention produces a reaction gas by contacting methanol and water with an oxygen-containing gas in the presence of a catalyst while supplying the oxygen-containing gas, and produces hydrogen gas by separating the hydrogen gas from the reaction gas. The present invention relates to a method for producing hydrogen gas, wherein a copper oxide / aluminum oxide catalyst is used as the catalyst, and the supply of the oxygen-containing gas is temporarily stopped.
 本発明の水素ガスの製造方法によれば、煩雑な酸素含有ガスの流量の調節操作を必要とせずに、一定量の水素ガスを長時間にわたって安定して製造することができるとともに、触媒寿命を延ばすことができるという優れた効果が奏される。 According to the method for producing hydrogen gas of the present invention, a constant amount of hydrogen gas can be produced stably over a long period of time without requiring complicated adjustment of the flow rate of the oxygen-containing gas, and the catalyst life can be reduced. There is an excellent effect that it can be extended.
 一般に、酸素含有ガスを供給しながらメタノールと水および酸素含有ガスとを触媒の存在下で接触させることによって反応ガスを製造し、当該反応ガスから水素ガスを分離することによって水素ガスを製造する方法において、酸素含有ガスの供給を一時的に停止することによって触媒を再生させるという触媒の再生操作を行なったとき、特許文献1に記載されているように、触媒活性の低下をある程度抑制することができる。しかし、かかる方法において、当該再生操作を繰り返した場合には、触媒活性が再生操作前の触媒活性よりも大きく低下する。 Generally, a method for producing hydrogen gas by producing a reaction gas by bringing methanol, water, and an oxygen-containing gas into contact with each other in the presence of a catalyst while supplying the oxygen-containing gas, and separating the hydrogen gas from the reaction gas When the catalyst regeneration operation of regenerating the catalyst by temporarily stopping the supply of the oxygen-containing gas is performed, as described in Patent Document 1, a decrease in the catalyst activity is suppressed to some extent. it can. However, in such a method, when the regeneration operation is repeated, the catalyst activity is greatly reduced compared to the catalyst activity before the regeneration operation.
 そこで、本発明者らは、従来の触媒の再生操作に鑑みて鋭意研究を重ねたところ、種々ある触媒のなかで酸化銅/酸化アルミニウム触媒を用いるとともに、水素ガスの製造時に酸素含有ガスの供給を一時的に停止させた場合には、意外なことに、特許文献1に記載のような酸素含有ガス(空気)の流量の増量、停止、通気、停止および通気という煩雑な操作を採らなくても触媒活性の低下を抑制しつつ、一定量の水素ガスを長時間にわたって安定して製造することができるとともに、触媒寿命を延ばすことができることが見出された。本発明は、かかる知見に基づいて完成されたものである。 Therefore, the present inventors have conducted extensive research in view of the conventional catalyst regeneration operation. As a result, among the various catalysts, a copper oxide / aluminum oxide catalyst is used, and an oxygen-containing gas is supplied during the production of hydrogen gas. When the gas is temporarily stopped, it is surprising that the complicated operation of increasing the flow rate of oxygen-containing gas (air), stopping, venting, stopping and venting as described in Patent Document 1 is not taken. In addition, it has been found that a certain amount of hydrogen gas can be stably produced over a long period of time while suppressing a decrease in catalyst activity, and the life of the catalyst can be extended. The present invention has been completed based on such findings.
 本発明の水素ガスの製造方法では、酸素含有ガスを供給しながらメタノールおよび水と酸素含有ガスとを触媒の存在下で接触させることによって反応ガスを製造し、当該反応ガスから水素ガスを分離することによって水素ガスが製造される。 In the hydrogen gas production method of the present invention, a reaction gas is produced by contacting methanol, water, and an oxygen-containing gas in the presence of a catalyst while supplying the oxygen-containing gas, and the hydrogen gas is separated from the reaction gas. As a result, hydrogen gas is produced.
 メタノールおよび水は、通常、気化させることによって用いられる。メタノール1モルあたりの水の量は、水素ガスを効率よく生成させるとともに一酸化炭素ガスの残存量を低減させることによって水素ガスの収率を高める観点から、好ましくは1.2モル以上、より好ましくは1.5モル以上であり、水の量が多くなり過ぎても水素ガスの収率があまり向上せず、蒸発潜熱が大きい水の量を低減させることによってエネルギー効率を高める観点から、好ましくは2.5モル以下、より好ましくは2.0モル以下である。 Methanol and water are usually used by vaporizing. The amount of water per mole of methanol is preferably 1.2 moles or more, more preferably from the viewpoint of efficiently generating hydrogen gas and increasing the yield of hydrogen gas by reducing the residual amount of carbon monoxide gas. Is not less than 1.5 mol, and even if the amount of water is too large, the yield of hydrogen gas is not improved so much, preferably from the viewpoint of increasing energy efficiency by reducing the amount of water having a large latent heat of vaporization, 2.5 mol or less, more preferably 2.0 mol or less.
 なお、メタノールと水とを、必ずしも同時に加熱する必要がなく、メタノールの蒸発と水の蒸発とを別々に分けて行なってもよく、あるいはメタノールと水とを混合し、得られたメタノール水溶液を蒸発させてもよい。 Note that methanol and water do not necessarily have to be heated at the same time, and methanol evaporation and water evaporation may be performed separately, or methanol and water are mixed and the resulting aqueous methanol solution is evaporated. You may let them.
 本発明においては、通常、メタノールはメタノールガスとして用いられ、水は水蒸気として用いられる。酸素含有ガスと接触させる際のメタノールガスおよび水蒸気の温度は、メタノールの酸化反応を促進させるとともに未反応のメタノールの残存量を低減させる観点から、好ましくは150℃以上、より好ましくは200℃以上であり、エネルギー効率を高めるとともに、水素ガスの収率を向上させる観点から、好ましくは300℃以下、より好ましくは280℃以下である。 In the present invention, methanol is usually used as methanol gas, and water is used as water vapor. The temperature of methanol gas and water vapor when contacting with the oxygen-containing gas is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, from the viewpoint of promoting the oxidation reaction of methanol and reducing the residual amount of unreacted methanol. From the viewpoint of improving energy efficiency and improving the yield of hydrogen gas, it is preferably 300 ° C. or lower, more preferably 280 ° C. or lower.
 メタノールおよび水と酸素含有ガスとを接触させたとき、式(1):
     CH3OH + 0.5O2 → CO2 + 2H2    (1)
で表されるように、メタノールが酸化し、水素ガスと二酸化炭素ガスが生成する。このメタノールの酸化反応は、発熱反応であるため、系内の温度が上昇する。
When methanol and water are brought into contact with an oxygen-containing gas, the formula (1):
CH 3 OH + 0.5O 2 → CO 2 + 2H 2 (1)
As shown, the methanol is oxidized to produce hydrogen gas and carbon dioxide gas. Since the methanol oxidation reaction is an exothermic reaction, the temperature in the system rises.
 また、このメタノールの酸化反応と並行してメタノールの一部は、酸素ガスが関与することなく、式(2):
     CH3OH → CO + 2H2          (2)
で表されるように、一酸化炭素ガスと水素ガスに分解したり、式(3):
     CH3OH + H2O → CO2 + 3H2     (3)
で表されるように、二酸化炭素ガスと水素ガスに分解したりする。これらの分解反応は、いずれも吸熱反応であることから、前記酸化反応で発生した熱の一部が打ち消される。その結果、系内の温度は、前記酸化反応のみが起こる場合の温度と対比して、幾分かは低い温度となる。また、これらの反応以外にも、式(4):
     CO + H2O → CO2 + H2        (4)
で表されるシフト反応が起こると考えられている。
Further, in parallel with the methanol oxidation reaction, a part of the methanol is represented by the formula (2) without involving oxygen gas:
CH 3 OH → CO + 2H 2 (2)
As expressed by carbon monoxide gas and hydrogen gas, or the formula (3):
CH 3 OH + H 2 O → CO 2 + 3H 2 (3)
As shown, it decomposes into carbon dioxide gas and hydrogen gas. Since these decomposition reactions are endothermic reactions, part of the heat generated by the oxidation reaction is canceled out. As a result, the temperature in the system is somewhat lower than the temperature when only the oxidation reaction occurs. In addition to these reactions, the formula (4):
CO + H 2 O → CO 2 + H 2 (4)
It is believed that a shift reaction represented by
 酸素含有ガスは、メタノールおよび水と対比して熱容量が小さいので、特に加熱しなくてもよいが、必要により、加熱してもよい。 Oxygen-containing gas has a small heat capacity compared to methanol and water, so it does not need to be heated in particular, but may be heated if necessary.
 酸素含有ガスとしては、例えば、空気、酸素ガスなどをはじめ、窒素ガス、アルゴンガスなどの不活性ガスと酸素ガスとの混合ガスなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 Examples of the oxygen-containing gas include air, oxygen gas and the like, and mixed gas of inert gas such as nitrogen gas and argon gas and oxygen gas. However, the present invention is limited to such examples. It is not a thing.
 メタノール1モルあたりの酸素含有ガスに含まれている酸素ガスの量は、未反応のメタノールの残存量を低減させる観点から、好ましくは0.05モル以上、より好ましくは0.1モル以上であり、メタノールから生成した水素ガスと酸素ガスとの反応によって反応温度が高くなることを回避するとともに、生成した水素ガスが酸素ガスとの反応によって消費されることを回避する観点から、好ましくは0.25モル以下、より好ましくは0.2モル以下である。 The amount of oxygen gas contained in the oxygen-containing gas per mole of methanol is preferably 0.05 mol or more, more preferably 0.1 mol or more, from the viewpoint of reducing the remaining amount of unreacted methanol. From the viewpoint of avoiding an increase in the reaction temperature due to the reaction between the hydrogen gas generated from methanol and the oxygen gas, and avoiding the consumption of the generated hydrogen gas due to the reaction with the oxygen gas. 25 mol or less, more preferably 0.2 mol or less.
 原料ガスと酸素含有ガスとを反応させる際には、水素ガスの製造効率を高める観点から、触媒が用いられる。 When reacting the raw material gas and the oxygen-containing gas, a catalyst is used from the viewpoint of increasing the production efficiency of hydrogen gas.
 本発明においては、触媒として酸化銅/酸化アルミニウム触媒を用いる点に、1つの大きな特徴がある。本発明では、触媒として酸化銅/酸化アルミニウム触媒が用いられているので、特許文献1に記載の発明のような煩雑な酸素含有ガスの流量の調節操作を行なわなくても水素ガスを長時間にわたって効率よく製造することができるとともに、触媒を長寿命化させることができる。また、触媒として酸化銅/酸化アルミニウム触媒を用いた場合には、600℃程度の高温に加熱された場合であっても、シンタリングが起こりにくいという利点がある。 In the present invention, one major feature is that a copper oxide / aluminum oxide catalyst is used as the catalyst. In the present invention, since a copper oxide / aluminum oxide catalyst is used as the catalyst, the hydrogen gas is allowed to flow for a long time without performing complicated operations for adjusting the flow rate of the oxygen-containing gas as in the invention described in Patent Document 1. The catalyst can be produced efficiently and the life of the catalyst can be extended. Further, when a copper oxide / aluminum oxide catalyst is used as a catalyst, there is an advantage that sintering is unlikely to occur even when heated to a high temperature of about 600 ° C.
 酸化銅/酸化アルミニウム触媒は、担体の酸化アルミニウム(Al)粒子に酸化銅(CuO)を付着させたものである。酸化銅(CuO)と酸化アルミニウム(Al)との質量比〔酸化銅(CuO)/酸化アルミニウム(Al)〕は、添加剤としての酸化銅(CuO)の触媒活性が充分に発揮されるようにする観点から、0.005以上であることが好ましく、添加された酸化銅(CuO)に充分な機械的強度を付与し、使用中に酸化銅(CuO)が触媒上から粉体として脱離しないようにする観点から、1以下であることが好ましい。 The copper oxide / aluminum oxide catalyst is obtained by attaching copper oxide (CuO) to aluminum oxide (Al 2 O 3 ) particles of a support. The mass ratio of copper oxide (CuO) to aluminum oxide (Al 2 O 3 ) [copper oxide (CuO) / aluminum oxide (Al 2 O 3 )] is sufficient for the catalytic activity of copper oxide (CuO) as an additive From the viewpoint of being exerted on the catalyst, it is preferably 0.005 or more, imparting sufficient mechanical strength to the added copper oxide (CuO), and the copper oxide (CuO) is used from above the catalyst during use. From the viewpoint of avoiding detachment as a powder, it is preferably 1 or less.
 なお、酸化銅/酸化アルミニウム触媒は、その使用に先立って還元させることが好ましい。酸化銅/酸化アルミニウム触媒を還元させた場合には、酸化銅が銅に還元されることから、触媒活性を高めることができる。酸化銅/酸化アルミニウム触媒を還元させる方法としては、例えば、酸化銅/酸化アルミニウム触媒を還元性ガスと接触させる方法などが挙げられるが、本発明は、かかる方法のみに限定されるものではない。還元性ガスとしては、例えば、水素ガスをはじめ、水素ガスと窒素ガス、アルゴンガスなどの不活性ガスとの混合ガスなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。 The copper oxide / aluminum oxide catalyst is preferably reduced prior to its use. When the copper oxide / aluminum oxide catalyst is reduced, the copper oxide is reduced to copper, so that the catalytic activity can be enhanced. Examples of the method of reducing the copper oxide / aluminum oxide catalyst include a method of bringing the copper oxide / aluminum oxide catalyst into contact with a reducing gas, but the present invention is not limited to such a method. Examples of the reducing gas include hydrogen gas, and mixed gas of hydrogen gas and inert gas such as nitrogen gas and argon gas. However, the present invention is not limited to such examples. .
 酸化銅/酸化アルミニウム触媒の粒子径は、触媒粒子間の通気性を高める観点から、好ましくは0.5mm以上、より好ましくは1mm以上であり、酸化銅/酸化アルミニウム触媒と、メタノールガス、水蒸気および酸素含有ガスとの接触効率を高める観点から、好ましくは20mm以下、より好ましくは10mm以下である。 The particle diameter of the copper oxide / aluminum oxide catalyst is preferably 0.5 mm or more, more preferably 1 mm or more from the viewpoint of improving the air permeability between the catalyst particles. The copper oxide / aluminum oxide catalyst, methanol gas, water vapor, and From the viewpoint of increasing the contact efficiency with the oxygen-containing gas, it is preferably 20 mm or less, more preferably 10 mm or less.
 酸化銅/酸化アルミニウム触媒の量は、通常、一般に使用されている反応ガス製造器に送られるメタノール1g/分あたり20~300ml程度であることが好ましい。 The amount of the copper oxide / aluminum oxide catalyst is preferably about 20 to 300 ml per 1 g / min of methanol that is usually sent to a reaction gas production apparatus that is generally used.
 酸化銅/酸化アルミニウム触媒において、酸素含有ガスとの接触によって酸化反応が起こる箇所では、経時とともに反応温度が上昇するようになる。その際、式(2)~(4)で表される反応は、酸化銅/酸化アルミニウム触媒をあらかじめ還元させておいた還元体である銅/酸化アルミニウム(Cu/Al23)上で進行する。しかし、銅/酸化アルミニウム(Cu/Al23)は、次第に酸素含有ガスによって酸化され、酸化銅/酸化アルミニウム(CuO/Al23)となる。その結果、式(2)~(4)で表される反応が進行しがたくなることから、式(1)で表されるメタノールの酸化反応が優先的に起こるので、発熱が顕著に現れ、反応温度が次第に高くなっていくため、触媒寿命が短くなるものと考えられる。 In a copper oxide / aluminum oxide catalyst, the reaction temperature rises with time at a location where an oxidation reaction occurs due to contact with an oxygen-containing gas. At that time, the reactions represented by the formulas (2) to (4) proceed on the copper / aluminum oxide (Cu / Al 2 O 3 ), which is a reduced product obtained by reducing the copper oxide / aluminum oxide catalyst in advance. To do. However, copper / aluminum oxide (Cu / Al 2 O 3 ) is gradually oxidized by the oxygen-containing gas to become copper oxide / aluminum oxide (CuO / Al 2 O 3 ). As a result, since the reactions represented by the formulas (2) to (4) are difficult to proceed, the methanol oxidation reaction represented by the formula (1) occurs preferentially, so that exotherm appears significantly. It is thought that the catalyst life is shortened because the reaction temperature gradually increases.
 これについて、本発明者らが鋭意研究を重ねたところ、触媒として酸化銅/酸化アルミニウム触媒を用いつつ、酸素含有ガスの供給を一時的に停止すればよいことが見出された。このように酸化銅/酸化アルミニウム触媒への酸素含有ガスの供給を一時的に停止した場合には、酸素含有ガスに含まれている酸素ガスによるメタノールの酸化反応が次第に停止するので反応温度が低下するとともに、反応系内における酸素ガスの量が少なくなる。そのため、銅/酸化アルミニウムが酸素ガスによって酸化されがたくなる。加えて、酸化銅/酸化アルミニウム触媒がメタノールと接触することによって還元されるので、酸化銅/酸化アルミニウム触媒に用いられている酸化銅/酸化アルミニウムが触媒活性を有する銅/酸化アルミニウムに還元される。したがって、酸化銅/酸化アルミニウム触媒の触媒活性が回復するものと考えられる。 In this regard, the present inventors conducted extensive research and found that the supply of the oxygen-containing gas may be temporarily stopped while using a copper oxide / aluminum oxide catalyst as the catalyst. Thus, when the supply of the oxygen-containing gas to the copper oxide / aluminum oxide catalyst is temporarily stopped, the oxidation reaction of methanol by the oxygen gas contained in the oxygen-containing gas gradually stops, so the reaction temperature decreases. In addition, the amount of oxygen gas in the reaction system is reduced. Therefore, copper / aluminum oxide is less likely to be oxidized by oxygen gas. In addition, since the copper oxide / aluminum oxide catalyst is reduced by contact with methanol, the copper oxide / aluminum oxide used in the copper oxide / aluminum oxide catalyst is reduced to copper / aluminum oxide having catalytic activity. . Therefore, it is considered that the catalytic activity of the copper oxide / aluminum oxide catalyst is recovered.
 前記反応温度は、メタノールを効率よく水素に改質させる観点から、好ましくは300℃以上であり、生成した水素と酸素含有ガスに含まれている酸素とが反応することを抑制する観点から、好ましくは450℃以下である。また、反応の際の圧力は、特に限定されないが、通常、ゲージ圧で0.2~1.5MPa程度であることが好ましい。 The reaction temperature is preferably 300 ° C. or higher from the viewpoint of efficiently reforming methanol into hydrogen, and preferably from the viewpoint of suppressing the reaction between generated hydrogen and oxygen contained in the oxygen-containing gas. Is 450 ° C. or lower. The pressure during the reaction is not particularly limited, but usually it is preferably about 0.2 to 1.5 MPa in terms of gauge pressure.
 酸素含有ガスの供給を一時的に停止することにより、酸化銅/酸化アルミニウム触媒の温度が低下する。酸素含有ガスの供給の停止後に酸素含有ガスの供給を再開したときには、酸化銅/酸化アルミニウム触媒に用いられている酸化銅/酸化アルミニウムが銅/酸化アルミニウムに還元されていることから、酸化銅/酸化アルミニウム触媒の触媒活性が回復している。したがって、反応温度が短時間で酸素含有ガスの供給を停止する前の温度に復帰し、再度、水素ガスを効率よく製造することができる。 The temperature of the copper oxide / aluminum oxide catalyst is lowered by temporarily stopping the supply of the oxygen-containing gas. When the supply of the oxygen-containing gas is resumed after the supply of the oxygen-containing gas is stopped, the copper oxide / aluminum oxide used in the copper oxide / aluminum oxide catalyst is reduced to copper / aluminum oxide. The catalytic activity of the aluminum oxide catalyst is restored. Therefore, the reaction temperature returns to the temperature before stopping the supply of the oxygen-containing gas in a short time, and hydrogen gas can be efficiently produced again.
 酸素含有ガスの供給の開始から当該酸素含有ガスの供給の停止に至るまでの時間は、酸素含有ガスの供給の停止期間中に低下する触媒温度を、その停止前の温度付近まで戻す観点から、好ましくは10秒間以上、より好ましくは20秒間以上であり、メタノールから発生する水素ガスの量を安定化させるとともに、酸素含有ガスの停止期間中であっても触媒温度が一定温度以上となるように維持する観点から、好ましくは10分間以下、より好ましくは5分間以下である。 The time from the start of the supply of the oxygen-containing gas to the stop of the supply of the oxygen-containing gas is from the viewpoint of returning the catalyst temperature that decreases during the stop period of the supply of the oxygen-containing gas to near the temperature before the stop, Preferably, it is 10 seconds or more, more preferably 20 seconds or more, so that the amount of hydrogen gas generated from methanol is stabilized, and the catalyst temperature is kept at a certain temperature or more even during the stop period of the oxygen-containing gas. From the viewpoint of maintaining, it is preferably 10 minutes or less, more preferably 5 minutes or less.
 酸素含有ガスの供給を停止させる時間は、酸化銅/酸化アルミニウム触媒に用いられている酸化銅/酸化アルミニウムを銅/酸化アルミニウムに還元させることによって酸化銅/酸化アルミニウム触媒の触媒活性を回復させる観点から、好ましくは3秒間以上、より好ましくは5秒間以上であり、酸素含有ガスの供給を停止させる時間を短くすることによって水素ガスを効率よく製造する観点から、好ましくは60秒間以下、より好ましくは40秒間以下である。 The time for stopping the supply of the oxygen-containing gas is to reduce the catalyst activity of the copper oxide / aluminum oxide catalyst by reducing the copper oxide / aluminum oxide used in the copper oxide / aluminum oxide catalyst to copper / aluminum oxide. From the viewpoint of efficiently producing hydrogen gas by shortening the time for stopping the supply of the oxygen-containing gas, preferably 3 seconds or more, more preferably 5 seconds or more, preferably 60 seconds or less, more preferably 40 seconds or less.
 酸素含有ガスの供給を開始する時点から、当該酸素含有ガスの供給を停止させた後、次の酸素含有ガスの供給を開始するまでの1周期に要する時間に対する酸素含有ガスの供給を停止させる時間の比率、すなわち、式(I):
〔酸素ガス停止時間の比率〕
=〔(酸素ガスの供給を停止する時間)÷(1周期に要する時間)〕×100  (I)
で表される酸素ガス停止時間の比率は、酸化銅/酸化アルミニウム触媒の触媒活性を充分に回復させるとともに水素ガスを効率よく製造する観点から、30%以下であることが好ましい。例えば、前記1周期に要する時間を10秒間としたとき、酸素含有ガスを供給する時間が7秒間以上であり、酸素含有ガスの供給を停止する時間が3秒間以下であることが好ましい。
The time for stopping the supply of the oxygen-containing gas with respect to the time required for one cycle from the start of the supply of the oxygen-containing gas to the start of the supply of the next oxygen-containing gas after the supply of the oxygen-containing gas is stopped The ratio of formula (I):
[Ratio of oxygen gas stop time]
= [(Time for stopping supply of oxygen gas) ÷ (Time required for one cycle)] × 100 (I)
Is preferably 30% or less from the viewpoint of sufficiently recovering the catalytic activity of the copper oxide / aluminum oxide catalyst and efficiently producing hydrogen gas. For example, when the time required for one cycle is 10 seconds, the time for supplying the oxygen-containing gas is preferably 7 seconds or more, and the time for stopping the supply of the oxygen-containing gas is preferably 3 seconds or less.
 前記操作によって得られた反応ガスには、水素ガスのほか、未反応メタノールの蒸気、二酸化炭素ガス、一酸化炭素ガス、水蒸気などの不純物ガスが含まれている。そこで、高純度を有する水素ガスを製造するために、前記で得られた反応ガスから当該反応ガスに含まれている水素ガスが分離される。 The reaction gas obtained by the above operation contains not only hydrogen gas but also impurity gases such as unreacted methanol vapor, carbon dioxide gas, carbon monoxide gas, and water vapor. Therefore, in order to produce hydrogen gas having high purity, hydrogen gas contained in the reaction gas is separated from the reaction gas obtained above.
 水素ガスを分離する際には、例えば、吸着剤を用いることができる。吸着剤としては、例えば、二酸化炭素、メタノールなどを除去する場合には、炭素系吸着剤などが挙げられ、一酸化炭素を除去する場合には、ゼオライトなどが挙げられ、また水蒸気などを除去する場合には、アルミナなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。通常、これらの吸着剤は、未反応メタノールの蒸気、二酸化炭素ガス、一酸化炭素ガス、水蒸気などの不純物ガスを吸着することによって除去するために、混合して用いることが好ましい。 When separating hydrogen gas, for example, an adsorbent can be used. Examples of the adsorbent include a carbon-based adsorbent when removing carbon dioxide, methanol, and the like, and a zeolite when removing carbon monoxide, and removing water vapor and the like. In some cases, alumina and the like can be mentioned, but the present invention is not limited to such examples. Usually, these adsorbents are preferably mixed and used in order to remove them by adsorbing unreacted methanol vapor, carbon dioxide gas, carbon monoxide gas, water vapor and other impurity gases.
 水素ガスの分離は、より具体的には、例えば、特開2004-66125号公報に記載の目的ガスの分離方法などに準じて行なうことができる。 More specifically, the hydrogen gas can be separated according to, for example, a method for separating a target gas described in JP-A No. 2004-66125.
 一方、吸着除去された不純物ガスは、例えば、水素ガスの製造を停止した後、残存ガスとして回収することができる。残存ガスには、不純物ガスのほか水素ガスが含まれている。残存ガスは、廃棄ガスとして処分したり、廃棄したりするのではなく、燃焼することによって残存ガスの有効利用を図ることが好ましい。残存ガスを燃焼する際に発生する燃焼熱を利用してメタノールおよび水を加熱すれば、メタノールガスおよび水蒸気を効率よく製造することができる。また、残存ガスの燃焼熱により、反応式(2)~(4)で表される反応における吸熱反応の際の熱を補完することができることから、効率よく水素ガスを生成させることができる。 On the other hand, the adsorbed and removed impurity gas can be recovered as a residual gas, for example, after the production of hydrogen gas is stopped. The residual gas contains hydrogen gas in addition to impurity gas. It is preferable that the residual gas is not disposed of as waste gas or discarded, but is effectively used by burning it. If methanol and water are heated using combustion heat generated when the residual gas is burned, methanol gas and water vapor can be produced efficiently. In addition, the heat of combustion in the residual gas can supplement the heat in the endothermic reaction in the reactions represented by the reaction formulas (2) to (4), so that hydrogen gas can be generated efficiently.
 残存ガスを燃焼する際には、触媒を用いることが好ましい。触媒の中では、触媒活性が高く、耐熱性に優れていることから、白金触媒が好ましい。白金触媒は、白金粒子であってもよく、アルミナ粒子などの担体に白金が担持されたものであってもよく、あるいはハニカム構造を有する担体に白金が担持されたものであってもよい。残存ガスを燃焼する際には、残存ガスを燃焼させるために空気を用いることが好ましい。空気の量は、残存ガスに含まれている水素ガスが充分に燃焼する量であればよく、特に限定されない。残存ガスを燃焼させることによって発生する燃焼ガスの温度は、この空気量で制御することができることから、当該空気量を制御することによって燃焼ガスの温度を調節することができる。また、燃焼ガスの温度は、発生した燃焼ガスに空気を導入することによって調節することもできる。 It is preferable to use a catalyst when burning the residual gas. Among the catalysts, a platinum catalyst is preferable because of its high catalytic activity and excellent heat resistance. The platinum catalyst may be platinum particles, may be one in which platinum is supported on a carrier such as alumina particles, or may be one in which platinum is supported on a carrier having a honeycomb structure. When burning the residual gas, it is preferable to use air in order to burn the residual gas. The amount of air is not particularly limited as long as the hydrogen gas contained in the residual gas is sufficiently combusted. Since the temperature of the combustion gas generated by burning the residual gas can be controlled by this air amount, the temperature of the combustion gas can be adjusted by controlling the air amount. Further, the temperature of the combustion gas can be adjusted by introducing air into the generated combustion gas.
 残存ガスを燃焼する際に発生する燃焼熱によるメタノールおよび水の加熱温度は、未反応のメタノールの残存量を少なくして水素ガスの発生量を増大させる観点から、好ましくは250℃以上であり、触媒の劣化を抑制する観点から、好ましくは600℃以下である。 The heating temperature of methanol and water by the combustion heat generated when the residual gas is burned is preferably 250 ° C. or higher from the viewpoint of increasing the amount of hydrogen gas generated by reducing the residual amount of unreacted methanol, From the viewpoint of suppressing the deterioration of the catalyst, the temperature is preferably 600 ° C. or lower.
 なお、残存ガスを燃焼する際には、一般に、白金触媒をはじめとする次のような燃焼触媒を用いることができる。燃焼触媒としては、例えば、白金をはじめ、パラジウム、ルテニウム、ロジウム、銀などの貴金属やこれらの金属の化合物などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。燃焼触媒は、例えば、メタルハニカム、セラミックハニカム、ボールペレットなどに付着させて用いることができる。 In addition, when combusting residual gas, generally the following combustion catalysts including a platinum catalyst can be used. Examples of the combustion catalyst include platinum, noble metals such as palladium, ruthenium, rhodium, and silver, and compounds of these metals, but the present invention is not limited only to such examples. The combustion catalyst can be used by adhering to, for example, a metal honeycomb, a ceramic honeycomb, a ball pellet, or the like.
 以上説明したように、本発明によれば、触媒として酸化銅/酸化アルミニウム触媒を用い、酸素含有ガスの供給を一時的に停止するという操作が採られているので、煩雑な酸素含有ガスの流量の調節操作を必要とせずに、一定量の水素ガスを長時間にわたって製造することができるとともに、触媒寿命を延ばすことができる。 As described above, according to the present invention, since a copper oxide / aluminum oxide catalyst is used as the catalyst and the operation of temporarily stopping the supply of the oxygen-containing gas is taken, the complicated flow rate of the oxygen-containing gas is taken. Thus, a certain amount of hydrogen gas can be produced over a long period of time without requiring the adjustment operation, and the catalyst life can be extended.
 次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to such examples.
実施例1
 長さ20cm、内径2.3cmの反応器内に、酸化銅/酸化アルミニウム触媒[アルドリッチ社製、酸化銅(CuO)と酸化アルミニウム(Al)との質量比〔酸化銅(CuO)/酸化アルミニウム(Al)〕:12/88]を充填した後、水素ガスを含む窒素ガスを約10時間反応器内に導入することにより、酸化銅/酸化アルミニウム触媒を賦活させた。
Example 1
In a reactor having a length of 20 cm and an inner diameter of 2.3 cm, a copper oxide / aluminum oxide catalyst [manufactured by Aldrich, mass ratio of copper oxide (CuO) and aluminum oxide (Al 2 O 3 ) [copper oxide (CuO) / After filling with aluminum oxide (Al 2 O 3 )]: 12/88], a nitrogen gas containing hydrogen gas was introduced into the reactor for about 10 hours to activate the copper oxide / aluminum oxide catalyst.
 反応器の内温を300℃に制御し、当該反応器内に、メタノールおよび水をそれぞれ3.8g/分および3.0g/分の流量で導入するとともに、空気を標準状態(NTP)で2.2L/分の流量で導入する操作を90秒間行なった後、空気を導入する操作を10秒間停止する操作を1周期として周期的に繰り返した。そのとき、水/メタノールのモル比は1.44/1、酸素/メタノールのモル比は0.16/1であった。また、式(I)で表される酸素ガス停止時間の比率は、10%であった。なお、反応器内のゲージ圧を0.8MPaに制御した。その間、反応器内の最高温度および水素濃度を調べた。水素濃度は、反応器からの排出される反応ガスをガスクロマトグラフィで分析することによって調べた。それらの結果を表1に示す。 The internal temperature of the reactor was controlled at 300 ° C., methanol and water were introduced into the reactor at a flow rate of 3.8 g / min and 3.0 g / min, respectively, and air was supplied at a standard state (NTP) of 2 The operation of introducing at a flow rate of 2 L / min was performed for 90 seconds, and then the operation of stopping the operation of introducing air for 10 seconds was repeated periodically as one cycle. At that time, the molar ratio of water / methanol was 1.44 / 1, and the molar ratio of oxygen / methanol was 0.16 / 1. Moreover, the ratio of the oxygen gas stop time represented by the formula (I) was 10%. The gauge pressure in the reactor was controlled to 0.8 MPa. Meanwhile, the maximum temperature and hydrogen concentration in the reactor were examined. The hydrogen concentration was examined by analyzing the reaction gas discharged from the reactor by gas chromatography. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示された結果から、実施例1によれば、煩雑な酸素含有ガスの流量の調節操作を必要とせずに、一定した水素濃度を有する反応ガスを長時間にわたって安定して製造することができることがわかる。また、一定した水素濃度を有する反応ガスが長時間にわたって安定して生成していることから、触媒活性の低下が小さく、触媒寿命を延ばすことができていることがわかる。 From the results shown in Table 1, according to Example 1, a reactive gas having a constant hydrogen concentration can be stably produced over a long period of time without requiring complicated adjustment of the flow rate of the oxygen-containing gas. You can see that In addition, since the reaction gas having a constant hydrogen concentration is stably generated over a long period of time, it can be seen that the decrease in catalyst activity is small and the catalyst life can be extended.
実施例2
 実施例1において、空気を標準状態で2.2L/分の流量で10分間通気した後、当該空気の通気を60秒間停止する操作を1周期として周期的に繰り返したこと以外は、実施例1と同様の操作を行なった。そのとき、式(I)で表される酸素ガス停止時間の比率は、約9%であった。
その結果を表2に示す。
Example 2
In Example 1, except that air was aerated at a flow rate of 2.2 L / min for 10 minutes in a standard state, and then the operation of stopping the ventilation of the air for 60 seconds was periodically repeated as one cycle. The same operation was performed. At that time, the ratio of the oxygen gas stop time represented by the formula (I) was about 9%.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果から、実施例2によれば、実施例1から空気の通気時間および通気の停止時間を変化させても、空気の通気を停止するという操作が採られているので、煩雑な酸素含有ガスの流量の調節操作を必要とせずに、一定量の水素ガスを長時間にわたって製造することができることがわかる。また、一定した水素濃度を有する反応ガスが長時間にわたって安定して生成していることから、触媒活性の低下が小さく、触媒寿命を延ばすことができていることがわかる。 From the results shown in Table 2, according to the second embodiment, even if the air ventilation time and the ventilation stop time are changed from the first embodiment, the operation of stopping the air ventilation is employed. It can be seen that a certain amount of hydrogen gas can be produced over a long period of time without requiring a complicated operation for adjusting the flow rate of the oxygen-containing gas. In addition, since the reaction gas having a constant hydrogen concentration is stably generated over a long period of time, it can be seen that the decrease in catalyst activity is small and the catalyst life can be extended.
比較例1
 実施例1において、空気を標準状態で2.0L/分の一定流量で供給したこと以外は、実施例1と同様にして反応を行なった。その結果を表3に示す。
Comparative Example 1
In Example 1, the reaction was performed in the same manner as in Example 1 except that air was supplied at a constant flow rate of 2.0 L / min in the standard state. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示された結果から、比較例1によれば、空気の供給を継続して行なった場合には、経時とともに反応温度が高くなり、水素濃度が低下することがわかる。また、水素濃度が低下していることから、触媒活性が低下し、触媒寿命が短くなっていることがわかる。 From the results shown in Table 3, it can be seen that, according to Comparative Example 1, when the supply of air is continued, the reaction temperature increases with time and the hydrogen concentration decreases. Moreover, since hydrogen concentration is falling, it turns out that catalyst activity falls and the catalyst lifetime is shortened.
 以上の結果から、実施例1および2によれば、煩雑な酸素含有ガスの流量の調節操作を必要とせずに、一定量の水素ガスを長時間にわたって安定して製造することができるとともに、触媒寿命を延ばすことができることがわかる。 From the above results, according to Examples 1 and 2, a constant amount of hydrogen gas can be stably produced over a long period of time without requiring complicated adjustment of the flow rate of the oxygen-containing gas. It can be seen that the life can be extended.

Claims (5)

  1.  酸素含有ガスを供給しながら触媒の存在下でメタノールと水を接触させることによって反応ガスを製造し、当該反応ガスから水素ガスを分離することによって水素ガスを製造する方法であって、前記触媒として酸化銅/酸化アルミニウム触媒を用い、酸素含有ガスの供給を一時的に停止することを特徴とする水素ガスの製造方法。 A method of producing hydrogen gas by contacting methanol and water in the presence of a catalyst while supplying an oxygen-containing gas, and producing hydrogen gas by separating the hydrogen gas from the reaction gas, A method for producing hydrogen gas, characterized in that the supply of oxygen-containing gas is temporarily stopped using a copper oxide / aluminum oxide catalyst.
  2.  酸化銅/酸化アルミニウム触媒をあらかじめ還元させた後に使用する請求項1に記載の水素ガスの製造方法。 The method for producing hydrogen gas according to claim 1, wherein the copper oxide / aluminum oxide catalyst is used after being reduced in advance.
  3.  酸素含有ガスの供給の開始から当該酸素含有ガスの供給の停止に至るまでの時間を10秒~10分間に制御する請求項1または2に記載の水素ガスの製造方法。 3. The method for producing hydrogen gas according to claim 1, wherein the time from the start of the supply of the oxygen-containing gas to the stop of the supply of the oxygen-containing gas is controlled to 10 seconds to 10 minutes.
  4.  酸素含有ガスの供給を停止させる時間が3~60秒間である請求項1~3のいずれかに記載の水素ガスの製造方法。 4. The method for producing hydrogen gas according to claim 1, wherein the supply of the oxygen-containing gas is stopped for 3 to 60 seconds.
  5.  酸素含有ガスの供給を開始する時点から、当該酸素含有ガスの供給を停止させた後、次の酸素含有ガスの供給を開始するまでの1周期に要する時間に対する酸素含有ガスの供給を停止させる時間の比率が30%以下である請求項1~4のいずれかに記載の水素ガスの製造方法。 The time for stopping the supply of the oxygen-containing gas with respect to the time required for one cycle from the start of the supply of the oxygen-containing gas to the start of the supply of the next oxygen-containing gas after the supply of the oxygen-containing gas is stopped The method for producing hydrogen gas according to any one of claims 1 to 4, wherein the ratio of is not more than 30%.
PCT/JP2012/051351 2011-01-31 2012-01-23 Production method for hydrogen gas WO2012105355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012555801A JP6168775B2 (en) 2011-01-31 2012-01-23 Method for producing hydrogen gas
KR1020137022961A KR101869580B1 (en) 2011-01-31 2012-01-23 Production method for hydrogen gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-017867 2011-01-31
JP2011017867 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012105355A1 true WO2012105355A1 (en) 2012-08-09

Family

ID=46602574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051351 WO2012105355A1 (en) 2011-01-31 2012-01-23 Production method for hydrogen gas

Country Status (4)

Country Link
JP (2) JP6168775B2 (en)
KR (1) KR101869580B1 (en)
TW (1) TWI511920B (en)
WO (1) WO2012105355A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236001A (en) * 1985-08-07 1987-02-17 Mitsubishi Heavy Ind Ltd Reforming method for methanol
JPH04200640A (en) * 1990-05-25 1992-07-21 Agency Of Ind Science & Technol Reproduction of methanol reforming catalyst
JP2001226103A (en) * 2000-02-18 2001-08-21 Nissan Motor Co Ltd Fuel reforming device
JP2005342543A (en) * 2003-05-20 2005-12-15 Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system
WO2009107592A1 (en) * 2008-02-25 2009-09-03 住友精化株式会社 Process and apparatus for production of hydrogen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1298089T3 (en) * 2000-06-22 2005-03-21 Consejo Superior Investigacion Process for producing hydrogen by partial methanol oxidation
TW200836836A (en) * 2007-03-12 2008-09-16 Univ Nat Central Hydrogen production via partial oxidation of methanol over Au/Al2O3-CuO catalysts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236001A (en) * 1985-08-07 1987-02-17 Mitsubishi Heavy Ind Ltd Reforming method for methanol
JPH04200640A (en) * 1990-05-25 1992-07-21 Agency Of Ind Science & Technol Reproduction of methanol reforming catalyst
JP2001226103A (en) * 2000-02-18 2001-08-21 Nissan Motor Co Ltd Fuel reforming device
JP2005342543A (en) * 2003-05-20 2005-12-15 Idemitsu Kosan Co Ltd Oxygen-containing hydrocarbon reforming catalyst, process for producing hydrogen or synthesis gas by using the same and fuel cell system
WO2009107592A1 (en) * 2008-02-25 2009-09-03 住友精化株式会社 Process and apparatus for production of hydrogen

Also Published As

Publication number Publication date
KR20140023895A (en) 2014-02-27
TWI511920B (en) 2015-12-11
TW201245037A (en) 2012-11-16
JP6168775B2 (en) 2017-07-26
JP2016196410A (en) 2016-11-24
KR101869580B1 (en) 2018-06-20
JPWO2012105355A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP7319965B2 (en) Autothermal ammonia decomposition method
JP5373410B2 (en) Ammonia synthesis method
JP4697941B2 (en) Method for producing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbons
JP2008036451A (en) Catalyst support and catalyst for methane reformation and method for preparing the same
Lin et al. Preparation of a highly efficient carbon-supported ruthenium catalyst by carbon monoxide treatment
CN114341083A (en) Method and system for producing methane
WO2022145277A1 (en) Appartus and method for direct decomposition of hydrocarbons
JP6168775B2 (en) Method for producing hydrogen gas
JP4713895B2 (en) Method for producing iodide
JP2012101982A (en) Hydrogen gas production apparatus
JP5659067B2 (en) Method for producing hydrogen gas
TWI501920B (en) Production method and apparatus for hydrogen
WO2022045327A1 (en) Methanol production method
JP4203326B2 (en) Operation method of synthesis gas production
JP4835070B2 (en) Carbon dioxide absorbent having steam reforming catalyst function, method for producing the same, and method for reforming fuel gas in hydrogen production system
JP5387175B2 (en) Carbon monoxide production method
TWI518031B (en) Hydrogen production methods
WO2015029543A1 (en) Hydrogen production method
JP2009119307A (en) Catalyst regeneration method
JP2008279357A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
CN118847103A (en) Preparation method of catalyst for removing high-concentration oxygen in argon and application of catalyst in argon deoxidization process
JP4819083B2 (en) Unsupported hydrocarbon direct cracking catalyst
JP5525420B2 (en) Oxygen synthesis method, catalyst, and reactor
JP2007516924A (en) Process for treating methane-carbon dioxide mixtures
TW200848364A (en) Process for removing no and N2O from gas mixtures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555801

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137022961

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12742511

Country of ref document: EP

Kind code of ref document: A1