WO2015029543A1 - Hydrogen production method - Google Patents

Hydrogen production method Download PDF

Info

Publication number
WO2015029543A1
WO2015029543A1 PCT/JP2014/065802 JP2014065802W WO2015029543A1 WO 2015029543 A1 WO2015029543 A1 WO 2015029543A1 JP 2014065802 W JP2014065802 W JP 2014065802W WO 2015029543 A1 WO2015029543 A1 WO 2015029543A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption tower
desorption
hydrogen
tower
Prior art date
Application number
PCT/JP2014/065802
Other languages
French (fr)
Japanese (ja)
Inventor
光利 中谷
瓏 尤
康一 志摩
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2015534039A priority Critical patent/JPWO2015029543A1/en
Publication of WO2015029543A1 publication Critical patent/WO2015029543A1/en
Priority to PH12016500321A priority patent/PH12016500321A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/403Further details for adsorption processes and devices using three beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a method for producing hydrogen. More specifically, the present invention relates to a method for producing hydrogen in which hydrogen is produced by reacting a hydrocarbon compound with water and oxygen in the presence of a catalyst.
  • Hydrocarbon compounds such as methanol are energy sources that can be easily transported and stored, and are used as raw materials for generating hydrogen gas on-site.
  • a method for producing hydrogen gas from a hydrocarbon-based compound such as methanol a steam reforming method, a partial oxidation method, and a partial oxidation-steam reforming reaction method are generally known.
  • the steam reforming method is a method for producing hydrogen gas by bringing methanol vapor into contact with steam in the presence of a catalyst. Since this steam reforming reaction involves a relatively large endotherm, there is a drawback that the heat supply system such as a heat exchanger has a heavy load and takes a long time to start.
  • the partial oxidation method is a method for producing hydrogen gas by bringing methanol vapor into contact with oxygen gas in the presence of a catalyst. Since this partial oxidation method is a reaction with a relatively large exotherm, there is a drawback that it is likely to cause a decrease in the activity of the catalyst.
  • the partial oxidation-steam reforming reaction method is a method for producing hydrogen gas by bringing methanol vapor into contact with steam and oxygen in the presence of a catalyst.
  • this partial oxidation-steam reforming reaction method the heat generated when methanol is partially oxidized (partial oxidation reaction) to form carbon dioxide and hydrogen is converted into carbon dioxide by steam reforming in which methanol vapor and steam are brought into contact. Therefore, there is an advantage that the load of a heat supply system such as a heat exchanger can be reduced.
  • the partial oxidation reaction which is an exothermic reaction
  • the steam reforming reaction which is an endothermic reaction
  • a raw material gas containing methanol, water and oxygen is supplied to a reactor filled with a catalyst.
  • a partial oxidation reaction with a high reaction rate proceeds in a portion upstream of the raw material gas in the flow direction, and a steam reforming with a low reaction rate occurs in a portion downstream of the raw material gas in the flow direction.
  • the quality reaction proceeds.
  • the catalyst existing in the upstream portion of the reactor in the flow direction of the raw material gas becomes high temperature under the influence of the partial oxidation reaction accompanied by heat generation.
  • the catalyst which became high temperature will generate
  • Patent Document 1 discloses a method of temporarily stopping the supply of oxygen-containing gas to the catalyst. Copper which is a catalyst is oxidized by a partial oxidation reaction to become copper oxide. Further, copper oxide is reduced to copper by reducing gas generated by the steam reforming reaction. In the method for producing hydrogen disclosed in Patent Document 1, only the steam reforming reaction is performed by temporarily stopping the supply of the oxygen-containing gas, and the copper oxide produced by the partial oxidation reaction is reduced to copper to produce steam. The activity of the reforming reaction is increased again, and the temperature rise of the catalyst is suppressed.
  • Patent Document 2 discloses a CuPdO 2 / ZnO-based catalyst as a catalyst used when producing hydrogen.
  • the technique disclosed in Patent Document 2 aims to suppress partial oxidation reaction accompanied by heat generation and catalyst deterioration.
  • Patent Document 2 has problems such as an increase in the amount of catalyst used, an increase in unreacted methanol, and a decrease in the amount of hydrogen generated.
  • An object of the present invention is to increase the catalyst life in a hydrogen production method in which hydrogen is produced by a partial oxidation reaction and a steam reforming reaction (decomposition reaction) of a hydrocarbon compound such as methanol. It is providing the manufacturing method which can be manufactured stably over a long period of time.
  • the present invention includes a combustion process in which a combustion gas flows into a combustor and burns, A vaporizer is heated by combustion heat generated by combustion of combustion gas in the combustor, and a liquid raw material containing a hydrocarbon compound and water is caused to flow into the heated vaporizer to vaporize the liquid raw material.
  • a vaporization step of obtaining a gas fluid The gas fluid obtained in the vaporization step is mixed with a gas raw material containing oxygen, and the mixed gas fluid is caused to flow into a reactor filled with a catalyst, thereby partially oxidizing the hydrocarbon-based compound and steam.
  • a hydrogen generation step in which a reforming reaction proceeds to obtain a reaction product mainly composed of hydrogen;
  • the reaction product obtained in the hydrogen generation step is allowed to flow into the adsorption tower filled with the adsorbent under the pressure of the adsorption start pressure, and adsorbent removes the secondary component in the reaction product.
  • the pressure in the adsorption tower is changed from the adsorption start pressure to the desorption start pressure, and then in multiple stages from the desorption start pressure to the desorption end pressure. It is preferable to change the flow rate of the desorption gas flowing out of the adsorption tower by reducing the pressure.
  • the method of manufacturing a hydrogen present invention, the desorption step, the adsorption tower when depressurizing in multiple steps, represented the first stage of the pressure reduction rate P A is not more than 35% by the following formula (I) Preferably there is.
  • Decompression rate P A (%) [(P S ⁇ P E ) / P S ] ⁇ 100 (I) (Wherein, P S represents a desorption start pressure (kPaG), P E represents the first stage of the desorption completion pressure (kPaG).)
  • the method for producing hydrogen includes a combustion process, a vaporization process, a hydrogen generation process, an adsorption process, a desorption process, and a desorption gas supply process.
  • combustion gas flows into the combustor and burns.
  • vaporization step a liquid raw material containing a hydrocarbon-based compound and water is caused to flow into a vaporizer heated by combustion heat generated by combustion in the combustor, whereby the liquid raw material is vaporized to generate a gas fluid (vaporization). Fluid).
  • the gas fluid obtained in the vaporization process and the gas raw material containing oxygen are allowed to flow into a reactor filled with a catalyst, thereby performing a partial oxidation reaction and a steam reforming reaction of a hydrocarbon compound. Proceed to generate hydrogen to obtain a reaction product containing hydrogen as a main component.
  • the reaction product obtained in the hydrogen production step is caused to flow into the adsorption tower filled with the adsorbent under the pressure of the adsorption start pressure.
  • the adsorption step subcomponents in the reaction product are adsorbed on the adsorbent, and the purified hydrogen flows out of the adsorption tower.
  • the pressure in the adsorption tower is changed to a desorption start pressure lower than the adsorption start pressure.
  • the pressure in the adsorption tower is changed from the desorption start pressure to multiple stages, the adsorbed components including the adsorbent adsorbed on the adsorbent are desorbed from the adsorbent, and the desorbed gas including the desorbed adsorbed component is adsorbed. It flows out while changing the flow rate outside the tower.
  • the desorption gas that has flowed out of the adsorption tower in the desorption step is supplied into the combustor as the combustion gas.
  • the desorption gas supplied into the combustor as the combustion gas contains subcomponents and hydrogen in the reaction product.
  • a liquid raw material containing a hydrocarbon compound and water is vaporized by a vaporizer.
  • the vaporized gas fluid and a gas raw material containing oxygen are supplied to the reactor, and hydrogen is generated by the partial oxidation reaction and steam reforming reaction (decomposition reaction) of the hydrocarbon compound in the reactor.
  • the As a heat source for vaporizing the liquid raw material in the vaporizer combustion heat generated in the combustor is used.
  • the combustion heat generated in the combustor is generated by burning the desorption gas (mixed gas containing subcomponents and hydrogen) discharged from the adsorption tower and desorbed from the adsorbent in the adsorption tower as a combustion gas.
  • the desorption gas desorbed from the adsorbent is caused to flow out of the adsorption tower while changing the flow rate, and the desorption gas flowing out of the adsorption tower is supplied to the combustor as a combustion gas.
  • produces in a combustor changes with the change of the flow volume of the desorption gas which flows out out of an adsorption tower.
  • the heating amount for vaporizing the liquid raw material in the vaporizer changes.
  • the partial oxidation reaction and steam reforming reaction (decomposition reaction) of hydrocarbon compounds with different reaction rates proceed, and the effect of partial oxidation reaction with exotherm on the catalyst filled in the reactor.
  • the part where the temperature rises most is generated.
  • the gas fluid whose temperature has changed flows into the reactor, so that the position of the hot spot in the reactor can be changed. For this reason, it can prevent that the same area
  • the position of the hot spot in the reactor moves to the downstream side when the temperature of the catalyst decreases with respect to the flow direction in which the gas fluid flows in the reactor, and moves to the upstream side when the temperature of the catalyst increases.
  • the amount of heat for vaporizing the liquid raw material containing the hydrocarbon compound and water is increased or decreased by changing the outflow amount of the desorption gas desorbed from the adsorbent and flowing out from the adsorption tower. For this reason, the calorie
  • produced by combustion of the combustion gas is increased / decreased, and the temperature of the gas fluid heated externally raises / lowers.
  • the temperature of the gas fluid increases and decreases, the temperature of the catalyst surface with which the gas fluid contacts in the reactor increases and decreases. Along with this, the position of the hot spot generated by the partial oxidation reaction varies up and down in the flow direction of the gas fluid.
  • the pressure in the adsorption tower is reduced in multiple stages from the desorption start pressure to the desorption end pressure.
  • the flow rate of the desorption gas flowing out of the adsorption tower can be varied.
  • the amount of combustion heat generated in the combustor changes, and the amount of heating for vaporizing the liquid raw material in the vaporizer can be changed.
  • the gas fluid whose temperature has changed can be caused to flow into the reactor, and the position of the hot spot in the reactor can be changed.
  • the desorption step when to reduce the pressure in the adsorption tower in multiple stages, pressure reduction rate P A in the first stage of the formula (I) is 35% or less.
  • the flow rate of the desorption gas flowing out of the adsorption tower can be varied.
  • the amount of combustion heat generated in the combustor changes, and the amount of heating for vaporizing the liquid raw material in the vaporizer can be changed.
  • the gas fluid whose temperature has changed can be caused to flow into the reactor, and the position of the hot spot in the reactor can be changed.
  • FIG. 3 is a diagram showing a configuration of a hydrogen gas separation unit 3.
  • 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 3 is a diagram showing a configuration of a hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. It is a graph which shows the temperature change in the heat retention part 4 of each Example and a comparative example. It is a graph which shows the temperature change in the reactive gas production
  • FIG. 1 is a process diagram showing a method for producing hydrogen according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of a hydrogen production apparatus 100 for realizing the method for producing hydrogen according to the present invention.
  • FIG. 3 is a diagram illustrating a configuration of the hydrogen gas separation unit 3.
  • the method for producing hydrogen according to the present embodiment is a method for producing hydrogen by reacting a hydrocarbon compound such as methanol with water and oxygen in the presence of a catalyst.
  • the hydrogen production apparatus 100 includes a raw material vaporization unit 1 that functions as a vaporizer, a reaction gas generation unit 2 having a reactor 2A, a hydrogen gas separation unit 3 having an adsorption tower, and a heat retaining unit 4.
  • methanol is used as a hydrocarbon compound is demonstrated.
  • the hydrogen production method includes a vaporization step s1, a hydrogen generation step s2, a hydrogen gas separation step s3, a recovery step s4, a desorption gas supply step s5, and a desorption gas combustion step corresponding to the combustion step. and s6.
  • a mixed gas containing methanol vapor and water vapor is generated by vaporizing methanol and water.
  • methanol and water are sent from the pump 5 to the raw material vaporization unit 1 via the first pipe 6, for example.
  • the first pipe 6 is provided with a first valve 7 a and a second valve 7 b that open or close a flow path in the first pipe 6.
  • Methanol and water flow through the first pipe 6 from the pump 5 toward the raw material vaporization unit 1 with the first valve 7a and the second valve 7b being opened, and are supplied to the raw material vaporization unit 1.
  • the amount of water per mole of methanol is preferably 1.2 mol or more, more preferably from the viewpoint of efficiently generating hydrogen gas and increasing the yield of hydrogen gas by reducing the residual amount of carbon monoxide gas. Is 1.5 mol or more.
  • the amount of water becomes too large, the yield of hydrogen gas does not improve so much, and from the viewpoint of increasing energy efficiency by reducing the amount of water with a large latent heat of evaporation, preferably 2.5 mol or less, more Preferably it is 2.0 mol or less.
  • the liquid temperature of methanol and water sent to the raw material vaporization unit 1 is not particularly limited, and may be room temperature or higher than room temperature.
  • the liquid temperatures of methanol and water are preferably as high as possible from the viewpoint of improving the yield of hydrogen gas.
  • the upper limit temperature of the liquid temperature is preferably not more than the boiling point of methanol from the viewpoint of increasing energy efficiency.
  • vaporization of methanol and the vaporization of water may be performed separately, or methanol and water are mixed, and the methanol mixed solution May be vaporized.
  • a metal tube having a spiral shape may be mentioned, but it is not limited to such an example.
  • the metal used for the metal tube include stainless steel and copper, brass and the like because of excellent thermal conductivity.
  • the raw material vaporization unit 1 is disposed in a container-like heat retaining unit 4 so that heat generated by burning a desorption gas described later in the gas combustion unit 9 can be efficiently transmitted.
  • a mixed gas (gas fluid) containing methanol vapor and water vapor obtained by vaporizing methanol and water flows through the second pipe 10 toward the reaction gas generation unit 2. It is aired.
  • oxygen as a raw material for generating hydrogen gas is used as an oxygen-containing gas (gas raw material).
  • gas raw material air or oxygen gas is used as the oxygen-containing gas.
  • a mixed gas containing methanol vapor and water vapor and flowing in the second pipe 10 is mixed with an oxygen-containing gas to prepare a raw material gas containing at least methanol, water, and oxygen.
  • the oxygen-containing gas does not necessarily have to be heated because it has a smaller heat capacity than methanol and water.
  • the amount of oxygen gas contained in the oxygen-containing gas per mole of methanol is preferably 0.05 moles or more, more preferably 0.08 moles or more, from the viewpoint of reducing the remaining amount of unreacted methanol. It is.
  • the amount of oxygen gas contained in the oxygen-containing gas per mole of methanol avoids an increase in reaction temperature due to the reaction between the hydrogen gas generated from methanol and the introduced oxygen gas, and the generated hydrogen gas From the viewpoint of avoiding consumption by reaction with oxygen gas, the amount is preferably 0.20 mol or less, more preferably 0.15 mol or less.
  • the oxygen-containing gas is sent toward the reaction gas generation unit 2 through the third pipe 11 provided with the third valve 13.
  • the oxygen-containing gas flows through the third pipe 11 in a state where the third valve 13 is opened, and is sent toward the reaction gas generation unit 2.
  • a second pipe 10 through which a mixed gas containing methanol vapor and water vapor flows and a third pipe 11 through which an oxygen-containing gas flows are connected to a fourth pipe 12.
  • the fourth pipe 12 is connected to a reactor 2 ⁇ / b> A provided in the reaction gas generator 2.
  • the mixed gas flowing in the second pipe 10 and the oxygen-containing gas flowing in the third pipe 11 are mixed in the fourth pipe 12, thereby preparing a raw material gas containing at least methanol, water, and oxygen.
  • the raw material gas thus prepared flows through the fourth pipe 12 and is supplied to the reactor 2A.
  • the raw material gas that flows in the fourth pipe 12 and is supplied to the reactor 2A of the reaction gas generation unit 2 is subjected to partial oxidation reaction of methanol and steam reforming reaction (decomposition reaction) in the presence of a catalyst.
  • a reaction product gas (reaction product) containing hydrogen which is performed by the reaction gas generation unit 2.
  • the reactive gas generation unit 2 is disposed in the heat retaining unit 4.
  • the raw material gas supplied to the reaction gas generation unit 2 via the fourth pipe 12 is adjusted to a reaction possible temperature before flowing into the reactor 2A.
  • the temperature of the raw material gas is adjusted such that the temperature immediately before flowing into the reactor 2A (the inlet temperature of the reactor 2A) is the reaction possible temperature.
  • the temperature of the raw material gas immediately before flowing into the reactor 2A is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, from the viewpoint of promoting the partial oxidation reaction of methanol and reducing the remaining amount of unreacted methanol. is there. From the viewpoint of the heat resistant temperature of the catalyst, it is preferably 300 ° C. or lower, more preferably 260 ° C. or lower.
  • a granular or columnar catalyst is filled to form a catalyst layer.
  • a catalyst in which a copper compound is supported on aluminum oxide can be used.
  • a catalyst in which copper is supported on aluminum oxide and a catalyst in which copper and zinc oxide are supported on aluminum oxide are used.
  • the mass ratio of copper (Cu) to aluminum oxide (Al 2 O 3 ) [copper (Cu) / aluminum oxide (Al 2 O 3 )] exhibits sufficient catalytic activity of copper (Cu) as an additive. From the viewpoint of making it possible, it is preferably 0.1 or more, and from the viewpoint of imparting sufficient mechanical strength to the added copper (Cu) and increasing the catalytic activity, it is preferably 1 or less.
  • a commercially available catalyst in which copper is supported on aluminum oxide or a catalyst in which copper and zinc oxide are supported on aluminum oxide is present in a state of copper oxide when purchased. In this state, since it does not show catalytic activity, it is preferably used after being reduced to copper.
  • Examples of the method of reducing copper oxide include a method of bringing a catalyst containing copper oxide into contact with a reducing gas.
  • Examples of the reducing gas include hydrogen gas, mixed gas of hydrogen gas and nitrogen gas, and inert gas such as hydrogen gas and argon gas.
  • the particle diameter of the catalyst in which copper is supported on aluminum oxide or the catalyst in which copper and zinc oxide are supported on aluminum oxide is preferably 1 mm or more, more preferably 3 mm or more, from the viewpoint of reducing the pressure loss of the catalyst layer. is there. From the viewpoint of increasing the contact efficiency between the catalyst and the methanol vapor, water vapor and oxygen-containing gas, it is preferably 20 mm or less, more preferably 10 mm or less.
  • the filling amount of the catalyst in which copper is supported on aluminum oxide, or the catalyst in which copper and zinc oxide are supported on aluminum oxide is usually 35 ml or more per 1 g / min of methanol fed to the raw material vaporization section 1. It is preferable.
  • the reactor 2A is a cylindrical body having a circular cross section as shown in FIG.
  • the upper part (the inlet side into which the raw material gas flows) of the reactor 2A is configured such that the cylindrical body is filled with a catalyst to form a columnar catalyst layer, and the lower part (the outlet side from which the reaction product gas flows out).
  • the reactor 2A has the same inner diameter at one end in the axial direction and the other end, and has a shape extending longer in the axial direction than the inner diameter.
  • the surface temperature (maximum temperature) of the catalyst charged in the reactor 2A is preferably 250 ° C. or higher from the viewpoint of efficiently reforming methanol into hydrogen. Further, the surface temperature of the catalyst is preferably 300 ° C. or less from the viewpoints of preventing deterioration of the catalyst, suppressing the generation of reaction byproducts, and suppressing the reaction between hydrogen and oxygen.
  • the pressure in the reactor 2A is not particularly limited, but usually it is preferably 0.2 to 1.5 MPaG in terms of gauge pressure.
  • the source gas containing at least methanol, water and oxygen adjusted to the reaction possible temperature is supplied to the reaction gas generation unit 2 through the fourth pipe 12, the source gas is supplied from the upper part in the reactor 2A. It flows toward the bottom.
  • the partial oxidation reaction represented by the following formula (1) proceeds, in which methanol is partially oxidized to generate hydrogen and carbon dioxide.
  • a decomposition reaction represented by the following formula (2) in which methanol is decomposed into carbon monoxide and hydrogen as a side reaction, also proceeds.
  • a steam reforming reaction represented by the following formula (3) in which methanol is decomposed into carbon dioxide and hydrogen also proceeds.
  • reaction product gas generated by the partial oxidation reaction steam reforming reaction and decomposition reaction of methanol in the reactor 2A, in addition to hydrogen gas as a main component, unreacted methanol vapor, carbon dioxide gas, Impurity gases (subcomponents) such as carbon monoxide gas, water vapor, and dimethyl ether are contained.
  • the reaction product gas generated in the reactor 2 ⁇ / b> A is supplied to the hydrogen gas separation unit 3 through the fifth pipe 14 and the sixth pipe 15.
  • a heat exchanger 8 is disposed between the fifth pipe 14 and the sixth pipe 15.
  • the reaction product gas can be efficiently cooled by exchanging heat with methanol and water.
  • the hydrogen gas separation step s3 is a step of separating hydrogen gas from an impurity gas from a reaction product gas supplied to the hydrogen gas separation unit 3 through the fifth pipe 14 and the sixth pipe 15, and the hydrogen gas separation unit 3 Is implemented.
  • the hydrogen gas separation unit 3 for example, a pressure fluctuation adsorption device (PSA device) including an adsorption tower is used. From the viewpoint of efficiently producing high-purity hydrogen gas, it is preferable to use a plurality of adsorption towers of about 2 to 5 adsorption towers.
  • the hydrogen gas separation unit 3 includes three adsorption towers, a first adsorption tower 3A, a second adsorption tower 3B, and a third adsorption tower 3C, as shown in FIG.
  • a carbon-based adsorbent or the like is used when removing carbon dioxide, methanol, dimethyl ether, or the like.
  • carbon monoxide, zeolite or the like is used in the case of removing carbon monoxide, zeolite or the like.
  • alumina or the like is used when removing water vapor or the like.
  • these adsorbents are used in a mixed manner in order to adsorb and remove many kinds of impurity gases such as unreacted methanol vapor, carbon dioxide gas, carbon monoxide gas, water vapor, dimethyl ether and the like.
  • the hydrogen gas separation unit 3 is a pressure fluctuation adsorption device (PSA device) shown in FIG.
  • the hydrogen gas separation unit 3 uses the reaction product gas obtained in the reactor 2A of the reaction gas generation unit 2 as one of the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C.
  • the impurity gas in the reaction product gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the adsorption tower.
  • the purified hydrogen gas flowing out from the adsorption tower is stored in the hydrogen gas storage tank 17 through the seventh pipe 16.
  • the pressure in the adsorption tower is changed to a desorption start pressure lower than the adsorption start pressure. Then, the adsorbing component containing the impurity gas adsorbed on the adsorbent is desorbed from the adsorbent, and the desorbed gas containing the desorbed adsorbing component is discharged out of the adsorption tower while changing the flow rate.
  • the desorption gas flowing out from the adsorption tower is sent as a combustion gas to the gas combustion unit 9 disposed in the heat retaining unit 4 through the eighth pipe 18.
  • impurity gas and hydrogen are contained in the desorption gas sent to the gas combustion part 9 as combustion gas.
  • the hydrogen gas separation unit 3 includes a first adsorption tower 3A, a second adsorption tower 3B, and a third adsorption tower 3C, a reaction product gas supply pipe d, an offgas outflow pipe e, a hydrogen gas outflow pipe f, It includes a gas introduction pipe g and a tower gas extraction pipe h.
  • the reaction product gas supply pipe d of the hydrogen gas separation unit 3 is connected to the sixth pipe 15 shown in FIG. 2, and the hydrogen gas outlet pipe f is connected to the seventh pipe 16 shown in FIG. e is connected to the eighth pipe 18 shown in FIG.
  • the pipe is provided with an automatic opening / closing valve a1 for opening and closing the flow path. Further, between the first adsorption tower 3A and the off-gas outflow pipe e, a pipe for allowing desorption gas (off-gas) flowing out from the first adsorption tower 3A to flow into the off-gas outflow pipe e is connected. The pipe is provided with an automatic opening / closing valve a2 for opening and closing the flow path.
  • the gas in the tower (cleaning gas including desorption gas) flowing out from the first adsorption tower 3A is converted into the gas extraction pipe h in the tower.
  • a pipe for flowing into the pipe is connected.
  • the pipe is provided with an automatic opening / closing valve a3 for opening and closing the flow path.
  • the gas is introduced from the second adsorption tower 3B or the third adsorption tower 3C other than the first adsorption tower 3A and introduced into the tower.
  • a pipe for allowing the in-tower gas (cleaning gas including desorption gas) flowing through the pipe for piping g to flow into the first adsorption tower 3A is connected.
  • the pipe is provided with an automatic opening / closing valve a4 for opening and closing the flow path.
  • a pipe for allowing the hydrogen gas flowing out from the first adsorption tower 3A to flow into the hydrogen gas outflow pipe f is connected between the first adsorption tower 3A and the hydrogen gas outflow pipe f.
  • the pipe is provided with an automatic opening / closing valve a5 for opening and closing the flow path.
  • the pipe is provided with an automatic opening / closing valve b1 for opening and closing the flow path.
  • a pipe for allowing desorption gas (off gas) flowing out from the second adsorption tower 3B to flow into the off gas outflow pipe e is connected between the second adsorption tower 3B and the off gas outflow pipe e.
  • the pipe is provided with an automatic opening / closing valve b2 for opening and closing the flow path.
  • the gas in the tower (cleaning gas including desorption gas) flowing out from the second adsorption tower 3B is converted into the gas extraction pipe h in the tower.
  • a pipe for flowing into the pipe is connected.
  • the pipe is provided with an automatic opening / closing valve b3 for opening and closing the flow path.
  • the gas is introduced from the first adsorption tower 3A or the third adsorption tower 3C other than the second adsorption tower 3B and introduced into the tower.
  • a pipe for allowing the gas in the tower (the cleaning gas including the desorption gas) flowing through the pipe g to flow into the second adsorption tower 3B is connected.
  • the pipe is provided with an automatic opening / closing valve b4 for opening and closing the flow path.
  • a pipe for allowing the hydrogen gas flowing out from the second adsorption tower 3B to flow into the hydrogen gas outflow pipe f is connected between the second adsorption tower 3B and the hydrogen gas outflow pipe f.
  • the pipe is provided with an automatic open / close valve b5 for opening and closing the flow path.
  • the pipe is provided with an automatic opening / closing valve c1 for opening and closing the flow path.
  • a pipe for connecting the desorption gas (off-gas) flowing out from the third adsorption tower 3C into the off-gas outflow pipe e is connected.
  • the pipe is provided with an automatic opening / closing valve c2 for opening and closing the flow path.
  • the tower gas cleaning gas including desorption gas
  • the tower gas that has flowed out of the third adsorption tower 3C is converted into the gas extraction pipe h in the tower.
  • a pipe for flowing into the pipe is connected.
  • the pipe is provided with an automatic opening / closing valve c3 for opening and closing the flow path.
  • the third adsorption tower 3C and the gas introduction pipe g in the tower it flows out from the first adsorption tower 3A or the second adsorption tower 3B other than the third adsorption tower 3C and introduces the gas in the tower.
  • a pipe for allowing the in-tower gas (cleaning gas including desorption gas) flowing through the pipe g to flow into the third adsorption tower 3C is connected.
  • the pipe is provided with an automatic opening / closing valve c4 for opening and closing the flow path.
  • a pipe for allowing the hydrogen gas flowing out from the third adsorption tower 3C to flow into the hydrogen gas outflow pipe f is connected between the third adsorption tower 3C and the hydrogen gas outflow pipe f.
  • the pipe is provided with an automatic opening / closing valve c5 for opening and closing the flow path.
  • the off-gas outflow pipe e is provided with an off-gas flow rate adjusting valve e1 for adjusting the flow rate of desorption gas (off-gas) flowing out from the hydrogen gas separation unit 3 toward the gas combustion unit 9. Furthermore, the gas extraction pipe h in the tower and the gas introduction pipe g in the tower are connected via a cleaning gas flow rate adjustment valve h1, and the opening degree of the cleaning gas flow rate adjustment valve h1 is adjusted. The supply flow rate of the gas in the tower (cleaning gas) flowing through the gas extraction pipe h in the tower to the gas introduction pipe g in the tower is adjusted.
  • the hydrogen gas separation step s3 executed by the respective adsorption towers of the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C includes an adsorption process s31 and a cleaning gas outflow process. s32, a pressure equalizing gas outflow step s33, a first desorption step s34, a second desorption step s35, a cleaning gas inflow step s36, a pressure equalizing gas inflow step s37, and a pressure increasing step s38.
  • FIGS. 4A to 4I are diagrams for explaining the operation of the hydrogen gas separation unit 3.
  • FIG. 4A to 4I are diagrams for explaining the operation of the hydrogen gas separation unit 3.
  • the adsorption step s31 is performed in the first adsorption tower 3A
  • the cleaning gas inflow step s36 is performed in the second adsorption tower 3B
  • the third adsorption tower 3C is performed in FIG.
  • the automatic open / close valve a1 is opened
  • the automatic open / close valve a2 is closed
  • the automatic open / close valve a3 is closed
  • the automatic open / close valve a4 is closed
  • the automatic open / close valve a5 is opened.
  • the adsorption step s31 is performed in the first adsorption tower 3A.
  • the automatic on-off valve b1 is closed, the automatic on-off valve b2 is opened, the automatic on-off valve b3 is closed, the automatic on-off valve b4 is opened, and the automatic on-off valve b5 is closed.
  • the cleaning gas inflow step s36 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed.
  • the cleaning gas outflow step s32 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is opened so that the opening degree becomes 100%.
  • the reaction product gas is introduced into the first adsorption tower 3A through the reaction product gas supply pipe d and the automatic opening / closing valve a1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, and flows through the seventh pipe 16 to pass through the hydrogen gas storage tank (collector). ) 17 (collection step s4).
  • the second adsorption tower 3B includes an automatic on-off valve c3, a gas extraction pipe h in the tower, a cleaning gas flow rate adjustment valve h1, and a gas introduction pipe in the tower.
  • the gas in the tower (cleaning gas) flowing out from the third adsorption tower 3C is introduced through g and the automatic opening / closing valve b4.
  • the third adsorption tower 3C has a higher pressure than the second adsorption tower 3B.
  • the inside of the third adsorption tower 3C is depressurized and remains in the tower from the second adsorption tower 3B.
  • the gas inside the tower (cleaning gas) is discharged.
  • the gas in the second adsorption tower 3B (cleaning gas including desorption gas) flows into the eighth pipe 18 via the automatic on-off valve b2, the off-gas outflow pipe e, and the off-gas flow rate adjustment valve e1.
  • the gas flows through the eight pipes 18 and is supplied to the gas combustion unit 9 as combustion gas (desorption gas supply step s5).
  • the tower gas containing the desorption gas is supplied to the gas combustion unit 9 as the off gas, the supplied off gas is burned (desorption gas combustion step s6).
  • the temperature of the heat retaining unit 4 rises according to the amount of off-gas due to combustion heat corresponding to the amount of off-gas supplied to the gas combustion unit 9.
  • the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is heated, and a liquid raw material containing methanol and water is vaporized.
  • the desorption gas combustion step s6 is a step of burning off-gas (desorption gas), and is performed by the gas combustion unit 9.
  • the off gas is not disposed as exhaust gas, but is effectively used by burning in the gas combustion unit 9 disposed in the heat retaining unit 4 as described above.
  • methanol and water are heated using combustion heat generated when off-gas is burned, methanol vapor and water vapor can be produced efficiently.
  • heat can be supplied to the steam reforming reaction and decomposition reaction of methanol accompanied by endotherm represented by the above formulas (2) and (3) by the combustion heat of the off-gas. Can be generated.
  • a platinum catalyst is preferable because of its high catalytic activity and excellent heat resistance.
  • a catalyst in which platinum is supported on a carrier having a honeycomb structure is preferable.
  • Metal honeycombs and ceramic honeycombs are used.
  • the platinum catalyst may be platinum particles, or may be one in which platinum is supported on a carrier such as alumina particles.
  • noble metals such as palladium, rhodium and silver, compounds of these metals, and the like are used.
  • the amount of air is not particularly limited as long as hydrogen gas contained in the off-gas is sufficiently combusted.
  • the heating temperature of methanol vapor and water vapor, which are reaction gases due to combustion heat generated when off-gas is burned, is preferably 250 ° C. from the viewpoint of increasing the amount of hydrogen gas generated by reducing the amount of unreacted methanol remaining. From the viewpoint of suppressing the deterioration of the catalyst, the temperature is preferably 600 ° C. or lower.
  • the air for burning off gas is blown by the blower 19 and heated by the heater 20.
  • the temperature to be heated is preferably 150 ° C. or higher from the viewpoint of increasing the amount of hydrogen gas generated by reducing the remaining amount of unreacted methanol, and preferably 300 ° C. or lower from the viewpoint of suppressing catalyst deterioration. is there.
  • the heated air is sent to the gas combustion unit 9 through the pipe 21.
  • the air sent to the gas combustion unit 9 is mixed with the off gas (desorption gas) sent via the eighth pipe 18, and the off gas burns on the platinum catalyst.
  • the gas after combustion is used as a heat source for vaporizing methanol and water. Further, the post-combustion gas exchanges heat in order to facilitate the reaction by supplying heat from the outside to the reaction involving the endothermic reaction in the reaction equations (2) and (3) of the reaction gas generation unit 2. The post-combustion gas subjected to heat exchange is purged from the pipe 22.
  • the adsorption step s31 is performed in the first adsorption tower 3A
  • the pressure equalizing gas inflow step s37 is performed in the second adsorption tower 3B
  • the third adsorption is performed in the tower 3C.
  • the automatic open / close valve a1 is opened
  • the automatic open / close valve a2 is closed
  • the automatic open / close valve a3 is closed
  • the automatic open / close valve a4 is closed
  • the automatic open / close valve a5 is opened.
  • the adsorption step s31 is performed in the first adsorption tower 3A.
  • the automatic open / close valve b1, the automatic open / close valve b2, the automatic open / close valve b3, the automatic open / close valve b4, and the automatic open / close valve b5 are closed.
  • the equalized gas inflow step s37 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed.
  • the equalized gas outflow step s33 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is closed.
  • the reaction product gas is introduced into the first adsorption tower 3A via the reaction product gas supply pipe d and the automatic opening / closing valve a1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • the tower gas (cleaning gas) that has flowed out of the third adsorption tower 3C through the tower gas extraction pipe h is supplied with the automatic open / close valve c3 and the cleaning gas.
  • the gas is introduced into the second adsorption tower 3B through the flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve b4.
  • the gas in the tower (cleaning gas) is turned off gas from the second adsorption tower 3B via the automatic opening / closing valve b2, the off gas outflow pipe e, and the off gas flow rate adjusting valve e1. Spill.
  • the pressure in the tower is equalized between the second adsorption tower 3B and the third adsorption tower 3C by closing the automatic opening / closing valve b2.
  • the pressure in the third adsorption tower 3C is further reduced, and the pressure in the second adsorption tower 3B is increased.
  • the adsorption step s31 is performed in the first adsorption tower 3A
  • the pressurization step s38 is performed in the second adsorption tower 3B
  • the third adsorption tower 3C is performed.
  • a desorption process (a first desorption process s34 in the first stage and a second desorption process s35 in the second stage when depressurizing each adsorption tower in multiple stages) is performed.
  • the automatic opening / closing valve a1 is opened, the automatic opening / closing valve a2 is closed, and the automatic opening / closing valve a3 is opened in the first adsorption tower 3A. Then, the automatic open / close valve a4 is closed, the automatic open / close valve a5 is opened, and the adsorption step s31 is performed in the first adsorption tower 3A.
  • the automatic open / close valve b1 In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2 are closed, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is opened, and the automatic open / close valve b5 is closed.
  • the pressure increasing step s38 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1 In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2 are opened, the automatic open / close valve c3 is closed, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed.
  • the first desorption step s34 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the following formula (I) in the third adsorption tower 3C in which the desorption operation is performed in multiple stages (two stages). as first stage of the pressure reduction rate P a to be of 35% or less, it is adjusted.
  • P A (%) [(P S ⁇ P E ) / P S ] ⁇ 100 (I) (Wherein, P S represents a desorption start pressure (kPaG), P E represents the first stage of the desorption completion pressure (kPaG).)
  • the reaction product gas is introduced into the first adsorption tower 3A through the reaction product gas supply pipe d and the automatic opening / closing valve a1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • Part of the hydrogen gas flowing out from the first adsorption tower 3A passes through the automatic open / close valve a3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic open / close valve b4. Is introduced into the second adsorption tower 3B, and the pressure in the second adsorption tower 3B is increased.
  • the pressure in the tower is reduced to a desorption start pressure that is lower than the adsorption start pressure, which is the pressure in the first adsorption tower 3A in which the adsorption step s31 is performed.
  • the automatic open / close valves c1, c3, c4, and c5 are closed, and the automatic open / close valve c2 is opened.
  • the adsorbing component including the impurity gas adsorbed by the adsorbent in the third adsorption tower 3C is desorbed from the adsorbent, and the desorbed desorption gas (off-gas) flows out from the third adsorption tower 3C.
  • the desorption gas flowing out from the third adsorption tower 3C flows into the eighth pipe 18 through the automatic opening / closing valve c2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5).
  • the opening degree of the off-gas flow rate adjusting valve e1 is, since pressure reduction rate P A represented by the formula (I) is adjusted to be 35% or less, is supplied as the off gas to the gas combustion unit 9 desorption The amount of gas will be reduced, and the temperature of the heat retaining unit 4 will continue to fall further than in the case of FIG. 4B.
  • the second desorption step s35 (second desorption step when each adsorption tower is depressurized in multiple stages) is performed in the third adsorption tower 3C.
  • the second desorption process s35 is performed in the third adsorption tower 3C, as shown in FIG. 4C, the adsorption process s31 is performed in the first adsorption tower 3A, and the pressure increasing process s38 is performed in the second adsorption tower 3B.
  • the automatic open / close valve a1 is opened, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is opened, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is opened.
  • the adsorption step s31 is performed in the first adsorption tower 3A.
  • the automatic open / close valve b1, the automatic open / close valve b2 are closed, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is opened, and the automatic open / close valve b5 is closed.
  • the pressure increasing step s38 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1 In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2 are opened, the automatic open / close valve c3 is closed, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed.
  • the first desorption step s34 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the following formula (II) in the third adsorption tower 3C in which the desorption operation is performed in multiple stages (two stages).
  • the second stage pressure reduction rate PA2 is adjusted to be 65% or more.
  • P A2 (%) [(P S ⁇ P E2 ) / P S ] ⁇ 100 (II) (Wherein, P S represents a desorption start pressure (kPaG), P E2 indicates the second stage of desorption completion pressure (kPaG).)
  • the first adsorption tower 3A is provided with a reaction product gas supply pipe d and an automatic on-off valve a1. Through which reaction product gas is introduced.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • Part of the hydrogen gas flowing out from the first adsorption tower 3A passes through the automatic open / close valve a3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic open / close valve b4. Is introduced into the second adsorption tower 3B, and the pressure in the second adsorption tower 3B is increased.
  • the pressure in the tower is further reduced than in the first desorption step s34, the automatic open / close valves c1, c3, c4, and c5 are closed, and the automatic open / close valve c2 is opened. Yes.
  • the adsorbing component including the impurity gas adsorbed by the adsorbent in the third adsorption tower 3C is desorbed from the adsorbent, and the desorbed desorption gas (off-gas) flows out from the third adsorption tower 3C.
  • the desorption gas flowing out from the third adsorption tower 3C flows into the eighth pipe 18 through the automatic opening / closing valve c2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5).
  • the opening degree of the off-gas flow rate adjusting valve e1 is adjusted so that the pressure reduction rate PA2 expressed by the above formula (II) is 65% or more, it is supplied to the gas combustion unit 9 as off-gas.
  • the amount of desorption gas will increase more than the 1st desorption process s34, and the temperature of the heat retention part 4 will rise.
  • the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
  • the cleaning gas outflow step s32 is performed in the first adsorption tower 3A
  • the adsorption step s31 is performed in the second adsorption tower 3B
  • the third adsorption tower is performed.
  • the cleaning gas inflow step s36 is performed. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is opened, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is closed.
  • the cleaning gas outflow step s32 is performed in the first adsorption tower 3A.
  • the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is closed, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened,
  • An adsorption step s31 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1 In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2 are opened, the automatic open / close valve c3 is closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed.
  • a cleaning gas inflow step s36 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is opened so that the opening degree becomes 100%.
  • the reaction product gas is introduced into the second adsorption tower 3B through the reaction product gas supply pipe d and the automatic opening / closing valve b1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • the third adsorption tower 3C includes an automatic opening / closing valve a3, a gas extraction pipe h in the tower, a cleaning gas flow rate adjustment valve h1, and a gas introduction pipe in the tower.
  • the gas in the tower (cleaning gas) flowing out from the first adsorption tower 3A is introduced through g and the automatic opening / closing valve c4.
  • the first adsorption tower 3A has a higher pressure than the third adsorption tower 3C.
  • the inside of the first adsorption tower 3A is depressurized and remains in the tower from the third adsorption tower 3C.
  • the gas inside the tower (cleaning gas) is discharged.
  • the gas in the tower (cleaning gas including desorption gas) in the third adsorption tower 3C flows into the eighth pipe 18 via the automatic open / close valve c2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1.
  • the gas flows through the eight pipes 18 and is supplied to the gas combustion unit 9 as a combustion gas (desorption gas supply step s5).
  • the tower gas containing the desorption gas is supplied to the gas combustion unit 9 as the off gas, the supplied off gas is burned (desorption gas combustion step s6).
  • the temperature of the heat retaining unit 4 rises according to the amount of off-gas due to combustion heat corresponding to the amount of off-gas supplied to the gas combustion unit 9.
  • the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
  • the pressure equalizing gas outflow step s33 is performed in the first adsorption tower 3A
  • the adsorption step s31 is performed in the second adsorption tower 3B
  • the third adsorption is performed.
  • a pressure equalizing gas inflow step s37 is performed in the tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is opened, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is closed.
  • the pressure equalizing gas outflow step s33 is performed in the first adsorption tower 3A.
  • the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is closed, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened,
  • An adsorption step s31 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed.
  • a pressure equalizing gas inflow step s37 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is closed.
  • the reaction product gas is introduced into the second adsorption tower 3B through the reaction product gas supply pipe d and the automatic opening / closing valve b1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • the tower gas (cleaning gas) that has flowed out from the first adsorption tower 3A through the tower gas extraction pipe h is converted into the automatic opening / closing valve a3, the cleaning gas.
  • the gas is introduced into the third adsorption tower 3C through the flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4.
  • the gas in the column (cleaning gas) is turned off gas from the third adsorption tower 3C via the automatic opening / closing valve c2, the off gas outflow pipe e, and the off gas flow rate adjusting valve e1. Spill.
  • the pressure in the tower is equalized between the first adsorption tower 3A and the third adsorption tower 3C by closing the automatic opening / closing valve c2.
  • the pressure in the first adsorption tower 3A is further reduced, and the pressure in the third adsorption tower 3C is increased.
  • a desorption process (the first desorption process s34 in the first stage when each adsorption tower is decompressed in multiple stages and The second desorption step s35) of the second stage is performed, the adsorption step s31 is performed in the second adsorption tower 3B, and the pressure increasing step s38 is performed in the third adsorption tower 3C.
  • the automatic opening / closing valve a1 is closed, the automatic opening / closing valve a2 is opened, and the automatic opening / closing valve a3 is closed in the first adsorption tower 3A.
  • the automatic open / close valve a4 is closed, the automatic open / close valve a5 is closed, and the first desorption step s34 is performed in the first adsorption tower 3A.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (I) in the first adsorption tower 3A in which the desorption operation is performed in multiple stages (two stages).
  • the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is opened, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened.
  • An adsorption step s31 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1 In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed.
  • the pressure increasing step s38 is performed in the third adsorption tower 3C.
  • the reaction product gas is introduced into the second adsorption tower 3B through the reaction product gas supply pipe d and the automatic on-off valve b1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • a part of the hydrogen gas flowing out from the second adsorption tower 3B passes through the automatic opening / closing valve b3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4.
  • the automatic opening / closing valve b3 the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4.
  • the pressure in the tower is reduced to a desorption start pressure that is lower than the adsorption start pressure that is the pressure in the second adsorption tower 3B in which the adsorption step s31 is performed.
  • the automatic open / close valves a1, a3, a4, a5 are closed, and the automatic open / close valve a2 is opened.
  • the adsorbing component containing the impurity gas adsorbed by the adsorbent in the first adsorption tower 3A is desorbed from the adsorbent, and the desorbed desorbed gas (off-gas) flows out from the first adsorption tower 3A.
  • the desorption gas flowing out from the first adsorption tower 3A flows into the eighth pipe 18 through the automatic opening / closing valve a2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5).
  • the opening degree of the off-gas flow rate adjusting valve e1 is, since pressure reduction rate P A represented by the formula (I) is adjusted to be 35% or less, is supplied as the off gas to the gas combustion unit 9 desorption The amount of gas will be reduced, and the temperature of the heat retaining section 4 will continue to fall further than in the case of FIG. 4E.
  • the second desorption step s35 is performed in the first adsorption tower 3A.
  • the adsorption process s31 is performed in the second adsorption tower 3B
  • the pressure increasing process s38 is performed in the third adsorption tower 3C.
  • the automatic open / close valve a1 is closed
  • the automatic open / close valve a2 is opened
  • the automatic open / close valve a3 is closed
  • the automatic open / close valve a4 is closed
  • the automatic open / close valve a5 is closed.
  • the second desorption step s35 is performed in the first adsorption tower 3A.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (II) in the first adsorption tower 3A in which the desorption operation is performed in multiple stages (two stages).
  • the second stage pressure reduction rate PA2 is adjusted to be 65% or more.
  • the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is opened, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened.
  • An adsorption step s31 is performed in the second adsorption tower 3B.
  • the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed.
  • the pressure increasing step s38 is performed in the third adsorption tower 3C.
  • a part of the hydrogen gas flowing out from the second adsorption tower 3B passes through the automatic opening / closing valve b3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4.
  • the automatic opening / closing valve b3 the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4.
  • the pressure in the tower is further reduced than in the first desorption step s34, the automatic open / close valves a1, a3, a4, and a5 are closed, and the automatic open / close valve a2 is opened. Yes.
  • the adsorbing component containing the impurity gas adsorbed by the adsorbent in the first adsorption tower 3A is desorbed from the adsorbent, and the desorbed desorbed gas (off-gas) flows out from the first adsorption tower 3A.
  • the desorption gas flowing out from the first adsorption tower 3A flows into the eighth pipe 18 through the automatic opening / closing valve a2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5).
  • the opening degree of the off-gas flow rate adjusting valve e1 is adjusted so that the pressure reduction rate PA2 expressed by the above formula (II) is 65% or more, it is supplied to the gas combustion unit 9 as off-gas.
  • the amount of desorption gas will increase more than the 1st desorption process s34, and the temperature of the heat retention part 4 will rise.
  • the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
  • the cleaning gas inflow step s36 is performed in the first adsorption tower 3A, and the cleaning gas outflow step s32 is performed in the second adsorption tower 3B.
  • An adsorption step s31 is performed in the adsorption tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is opened, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is opened, and the automatic open / close valve a5 is closed. Then, the cleaning gas inflow step s36 is performed in the first adsorption tower 3A.
  • the automatic open / close valve b1, the automatic open / close valve b2, the automatic open / close valve b3, the automatic open / close valve b4, and the automatic open / close valve b5 are closed,
  • a cleaning gas outflow step s32 is performed in the second adsorption tower 3B.
  • the automatic opening / closing valve c1 is opened, the automatic opening / closing valve c2 is closed, the automatic opening / closing valve c3 is closed, the automatic opening / closing valve c4 is closed, and the automatic opening / closing valve c5 is opened
  • An adsorption step s31 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is opened so that the opening degree becomes 100%.
  • the reaction product gas is introduced into the third adsorption tower 3C through the reaction product gas supply pipe d and the automatic opening / closing valve c1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • the first adsorption tower 3A includes an automatic on-off valve b3, a tower gas extraction pipe h, a cleaning gas flow rate adjustment valve h1, and a tower gas introduction pipe.
  • the gas in the tower (cleaning gas) flowing out from the second adsorption tower 3B is introduced through g and the automatic opening / closing valve a4.
  • the second adsorption tower 3B has a higher pressure than the first adsorption tower 3A.
  • the inside of the second adsorption tower 3B is depressurized and remains in the tower from the first adsorption tower 3A.
  • the gas inside the tower (cleaning gas) is discharged.
  • the gas in the first adsorption tower 3A (cleaning gas including desorption gas) flows into the eighth pipe 18 via the automatic open / close valve a2, the off-gas outflow pipe e, and the off-gas flow rate adjustment valve e1, The gas flows through the eight pipes 18 and is supplied to the gas combustion unit 9 as combustion gas (desorption gas supply step s5).
  • the tower gas containing the desorption gas is supplied to the gas combustion unit 9 as the off gas, the supplied off gas is burned (desorption gas combustion step s6).
  • the temperature of the heat retaining unit 4 rises according to the amount of off-gas due to combustion heat corresponding to the amount of off-gas supplied to the gas combustion unit 9.
  • the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
  • a pressure equalizing gas inflow step s37 is performed in the first adsorption tower 3A
  • a pressure equalizing gas outflow step s33 is performed in the second adsorption tower 3B
  • An adsorption step s31 is performed in the third adsorption tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is opened, and the automatic open / close valve a5 is closed.
  • the pressure equalizing step s37 is performed in the first adsorption tower 3A. Further, in the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2, the automatic open / close valve b3, the automatic open / close valve b4, and the automatic open / close valve b5 are closed, A pressure equalizing step s33 is performed in the second adsorption tower 3B.
  • the automatic opening / closing valve c1 is opened, the automatic opening / closing valve c2 is closed, the automatic opening / closing valve c3 is closed, the automatic opening / closing valve c4 is closed, and the automatic opening / closing valve c5 is opened,
  • An adsorption step s31 is performed in the third adsorption tower 3C.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is closed.
  • the reaction product gas is introduced into the third adsorption tower 3C via the reaction product gas supply pipe d and the automatic opening / closing valve c1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • the tower gas (cleaning gas) that has flowed out of the second adsorption tower 3B through the tower gas extraction pipe h is converted into the automatic on-off valve b3, the cleaning gas.
  • the gas is introduced into the first adsorption tower 3A through the flow rate adjustment valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve a4.
  • the gas in the tower (cleaning gas) is turned off gas from the first adsorption tower 3A via the automatic open / close valve a2, the off gas outflow pipe e, and the off gas flow rate adjusting valve e1. Spill.
  • the pressure in the tower is equalized between the first adsorption tower 3A and the second adsorption tower 3B by closing the automatic opening / closing valve a2.
  • the pressure in the second adsorption tower 3B is further reduced, and the pressure in the first adsorption tower 3A is increased.
  • the pressure increasing step s38 is performed in the first adsorption tower 3A, and the desorption step (when depressurizing each adsorption tower in multiple stages) is performed in the second adsorption tower 3B.
  • the first desorption step s34 of the first stage and the second desorption step s35) of the second stage are performed, and the adsorption step s31 is performed in the third adsorption tower 3C.
  • the automatic opening / closing valve a1 is closed, the automatic opening / closing valve a2 is closed, and the automatic opening / closing valve a3 is closed in the first adsorption tower 3A. Then, the automatic open / close valve a4 is opened, the automatic open / close valve a5 is closed, and the pressure increasing step s38 is performed in the first adsorption tower 3A.
  • the automatic open / close valve b1 In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2 are opened, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is closed, and the automatic open / close valve b5 is closed,
  • the first desorption step s34 is performed in the second adsorption tower 3B.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (I) in the second adsorption tower 3B in which the desorption operation is performed in multiple stages (two stages). as first stage of the pressure reduction rate P a to be of 35% or less, they are adjusted.
  • the automatic open / close valve c1 is opened, the automatic open / close valve c2 is closed, the automatic open / close valve c3 is opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is opened.
  • An adsorption step s31 is performed in the third adsorption tower 3C.
  • the reaction product gas is introduced into the third adsorption tower 3C through the reaction product gas supply pipe d and the automatic opening / closing valve c1.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • the pressure in the tower is reduced to a desorption start pressure that is lower than the adsorption start pressure, which is the pressure in the third adsorption tower 3C in which the adsorption step s31 is performed.
  • the automatic open / close valves b1, b3, b4, and b5 are closed, and the automatic open / close valve b2 is opened.
  • the adsorbed component containing the impurity gas adsorbed by the adsorbent in the second adsorption tower 3B is desorbed from the desorbent, and the desorbed desorbed gas (off-gas) flows out from the second adsorption tower 3B.
  • the desorption gas that has flowed out of the second adsorption tower 3B flows into the eighth pipe 18 through the automatic on-off valve b2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5).
  • the opening degree of the off-gas flow rate adjusting valve e1 is, since pressure reduction rate P A represented by the formula (I) is adjusted to be 35% or less, of the desorption gas supplied to the gas combustion section 9 The amount will be reduced, and the temperature of the heat retaining section 4 will continue to fall further than in the case of FIG. 4H.
  • the second desorption step s35 is performed in the second adsorption tower 3B.
  • the adsorption process s31 is performed in the third adsorption tower 3C
  • the pressure increasing process s38 is performed in the first adsorption tower 3A.
  • the automatic open / close valve a1 is closed
  • the automatic open / close valve a2 is closed
  • the automatic open / close valve a3 is closed
  • the automatic open / close valve a4 is opened
  • the automatic open / close valve a5 is closed.
  • the pressure increasing step s38 is performed in the first adsorption tower 3A.
  • the automatic open / close valve b1 the automatic open / close valve b2 are opened, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is closed, and the automatic open / close valve b5 is closed
  • the second desorption step s35 is performed in the second adsorption tower 3B.
  • the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (II) in the second adsorption tower 3B in which the desorption operation is performed in multiple stages (two stages).
  • the second stage pressure reduction rate PA2 is adjusted to be 65% or more. Further, in the third adsorption tower 3C, the automatic open / close valve c1 is opened, the automatic open / close valve c2 is closed, the automatic open / close valve c3 is opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is opened. An adsorption step s31 is performed in the third adsorption tower 3C.
  • the third adsorption tower 3C is provided with a reaction product gas supply pipe d and an automatic opening / closing valve c1. Through which reaction product gas is introduced.
  • the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower.
  • the hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
  • a part of the hydrogen gas flowing out from the third adsorption tower 3C passes through the automatic opening / closing valve c3, the gas extraction pipe h in the tower h, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve a4.
  • the automatic opening / closing valve c3 the gas extraction pipe h in the tower h
  • the cleaning gas flow rate adjusting valve h1 the gas introduction pipe g in the tower
  • the automatic opening / closing valve a4 Are introduced into the first adsorption tower 3A, and the pressure in the first adsorption tower 3A is increased.
  • the pressure in the tower is further reduced than in the first desorption step s34, the automatic open / close valves b1, b3, b4, and b5 are closed, and the automatic open / close valve b2 is opened. Yes.
  • the adsorbing component including the impurity gas adsorbed by the adsorbent in the second adsorption tower 3B is desorbed from the adsorbent, and the desorbed desorption gas (off-gas) flows out from the second adsorption tower 3B.
  • the desorption gas that has flowed out of the second adsorption tower 3B flows into the eighth pipe 18 through the automatic on-off valve b2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5).
  • the opening degree of the off-gas flow rate adjusting valve e1 is adjusted so that the pressure reduction rate PA2 expressed by the above formula (II) is 65% or more, it is supplied to the gas combustion unit 9 as off-gas.
  • the amount of desorption gas will increase more than the 1st desorption process s34, and the temperature of the heat retention part 4 will rise.
  • the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
  • the adsorption step s31, the cleaning gas outflow step s32, the pressure equalizing gas outflow step s33, the first desorption step s34, The second desorption process s35, the cleaning gas inflow process s36, the pressure equalizing gas inflow process s37, and the pressure increasing process s38 are repeatedly performed.
  • the desorption gas flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C and the flow rate of the gas in the tower (cleaning gas) including the desorption gas are changed.
  • the desorption gas and the tower interior gas (cleaning gas) flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C are supplied to the gas combustion section 9 as a combustion gas.
  • the combustion generated in the gas combustion section 9 with the change in the flow rate of the desorption gas and the gas in the tower (cleaning gas) flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C The amount of heat changes.
  • the heating amount for vaporizing the liquid raw material in the raw material vaporization unit 1 changes.
  • the gas fluid whose temperature has changed flows into the reactor 2A.
  • the partial oxidation reaction of methanol and the steam reforming reaction (decomposition reaction) with different reaction rates proceed, and the catalyst charged in the reactor 2A is affected by the partial oxidation reaction with exotherm.
  • a part (hot spot) where the temperature rises the most is generated.
  • the gas fluid whose temperature has changed flows into the reactor 2A, so that the position of the hot spot in the reactor 2A can be changed. For this reason, it can prevent that the same area
  • the position of the hot spot in the reactor 2A moves to the downstream side when the temperature of the catalyst decreases, and moves to the upstream side when the temperature of the catalyst rises, with respect to the flow direction in which the gas fluid flows in the reactor 2A.
  • the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C are multistaged.
  • decompression rate P a in the first stage of the formula (I) is 35% or less.
  • the amount of heat of combustion heat generated in the gas combustion unit 9 changes, and the amount of heating for vaporizing the liquid raw material in the raw material vaporization unit 1 can be changed.
  • the gas fluid whose temperature has changed can be caused to flow into the reactor 2A, and the position of the hot spot in the reactor 2A can be changed. As a result, it is possible to prevent the same region from always reaching the maximum temperature in the catalyst packed portion in the reactor 2A.
  • the reactive gas generator 2 is composed of the following two parts.
  • a catalyst a copper oxide / alumina-supported catalyst manufactured by Sigma-Aldrich Japan Co., Ltd.
  • a reaction tube having an inner diameter of 8.5 cm and a length of 20 cm was used.
  • the steam reforming reaction part decomposition reaction part, which is located downstream of the reaction gas generation part 2 and in which the reactions mainly represented by the reaction formulas (2) and (3) occur, has an inner diameter of 14 cm and a length.
  • a cylindrical tube having 95 cm and a cylindrical tube having an inner diameter of 21 cm and a length of 95 cm are overlapped, and a catalyst (copper oxide-zinc oxide / alumina, manufactured by Mitsubishi Gas Chemical Co., Ltd.) is formed in the gap (equivalent diameter: 6.9 cm) between them.
  • a reaction tube filled with (supported catalyst) was used.
  • the reaction gas generation unit 2 was aerated so as to have a flow rate of methanol vapor 214 g / min, water vapor 194 g / min, and air 69 N liter / min (average value) obtained in the raw material vaporization unit 1. After aeration of air for 92 seconds at a flow rate of 79 Nl / min, the operation of stopping the ventilation of air for 8 seconds was repeated periodically. When the raw material gas and air were vented, the water / methanol molar ratio was 2.2 / 1 and the oxygen gas / methanol molar ratio was 0.28 / 1.
  • the hydrogen gas separation unit 3 shown in FIG. 3 is connected to the reaction gas generation unit 2 and separates hydrogen gas contained in the reaction product gas from the reaction product gas obtained by the reaction gas generation unit 2.
  • the hydrogen gas contained in the reaction product gas was separated from the reaction product gas using (pressure fluctuation adsorption device: PSA device).
  • the moisture generated from the reaction product gas obtained in the reaction gas generation unit 2 was removed by condensation.
  • This reaction product gas is packed with zeolite molecular sieve (Ca5A type, 5AHP made by UOP) and carbon molecular sieve (G2-X made by Nippon Enviro) as adsorbents in a volume ratio of 1: 1.3 in a total volume of 50 liters.
  • purification was performed using a hydrogen gas separation unit 3 of a three-column type (a configuration including three adsorption towers) to obtain high-purity hydrogen gas.
  • the separation comprising the adsorption process, the cleaning gas outflow process, the pressure equalizing gas outflow process, the first desorption process, the second desorption process, the cleaning gas inflow process, the pressure equalizing gas inflow process, and the pressure increasing process.
  • hydrogen gas was separated from the reaction product gas. As a result, hydrogen gas having a purity of 99.0% by volume or more was obtained at a rate of 19.7 Nm 3 / hour.
  • the desorption start pressure in the desorption process in which the hydrogen gas is separated from the reaction product gas in the hydrogen gas separation unit 3 is 250 kPaG.
  • the desorption end pressure in the first desorption step was 170 kPaG (decompression rate 32%).
  • the desorption gas and air that flowed out from the hydrogen gas separation unit 3 were mixed at a flow rate of air 108 Nm 3 / hour, and the resulting mixed gas was passed through a metal honeycomb platinum catalyst and burned in the gas combustion unit 9.
  • the temperature of the heat retaining unit 4 at that time is shown in FIG.
  • generation part 2 at that time was shown in FIG.
  • FIG. 5 is a graph showing a temperature change in the heat retaining section 4 of each example and comparative example.
  • FIG. 6 is a graph showing a temperature change in the reaction gas generation unit 2 of each example and comparative example.
  • Example 2 In Example 2, the desorption start pressure in the desorption step was set to 160 kPaG, and the desorption end pressure in the first desorption step was set to 130 kPaG (decompression rate 19%). Separation.
  • the temperature of the heat retaining unit 4 at that time is shown in FIG. Moreover, the temperature of the reaction gas production
  • Comparative Example 1 hydrogen gas was separated from the reaction product gas in the same manner as in Example 1 except that the desorption end pressure in the first desorption step was set to 100 kPaG (pressure reduction rate 60%). The temperature of the heat retaining unit 4 at that time is shown in FIG. Moreover, the temperature of the reaction gas production
  • Comparative Example 2 hydrogen gas was separated from the reaction product gas in the same manner as in Example 1 except that the desorption end pressure in the first desorption step was 40 kPaG (pressure reduction rate: 85%).
  • the temperature of the heat retaining unit 4 at that time is shown in FIG.
  • generation part 2 at that time was shown in FIG.
  • the temperature of the heat retaining section 4 in Examples 1 and 2 varies greatly as compared with Comparative Examples 1 and 2. That is, in Examples 1 and 2, the flow rate of the impurity gas flowing out from the hydrogen gas separation unit 3 is greatly changed, and the desorption gas is supplied to the gas combustion unit 9 in a state where the flow rate is greatly changed. The amount of heat of combustion generated in the gas combustion unit 9 changes with the change in the flow rate. As a result, the temperature of the heat retaining unit 4 varies greatly. Therefore, in Examples 1 and 2, since the heating amount for vaporizing methanol and water in the raw material vaporization unit 1 changes, methanol vapor and water vapor whose temperature has changed flow into the reaction gas generation unit 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

The present invention is a hydrogen production method in which a partial oxidation reaction and a steam reforming reaction of a hydrocarbon-type compound such as methanol are allowed to proceed to produce hydrogen, wherein the life of a catalyst can be prolonged and hydrogen can be produced steadily for a long period. A liquid raw material comprising methanol and water is vaporized in a raw material vaporizing section (1), a vaporized fluid gas and an oxygen-containing gaseous raw material are supplied to a reactor (2A), and a partial oxidation reaction and a steam reforming reaction (a decomposition reaction) of methanol proceed in the reactor (2A) to produce hydrogen. As a heat source for vaporizing the liquid raw material in the vaporizer (2A), combustion heat generated in a gas combustion section (9) can be used. The combustion heat generated in the gas combustion section (9) is generated by the combustion using, as a combustion gas, a detached gas that is detached from a hydrogen gas separation section (3) in multiple steps. In the hydrogen gas separation section (3), the detached gas is allowed to flow while altering the amount of outflow of the detached gas.

Description

水素の製造方法Method for producing hydrogen
 本発明は、水素の製造方法に関する。さらに詳しくは、炭化水素系化合物と、水および酸素とを、触媒の存在下で反応させることによって水素を生成する水素の製造方法に関する。 The present invention relates to a method for producing hydrogen. More specifically, the present invention relates to a method for producing hydrogen in which hydrogen is produced by reacting a hydrocarbon compound with water and oxygen in the presence of a catalyst.
 メタノール等の炭化水素系化合物は、輸送や貯蔵が容易なエネルギー源であり、オンサイトで水素ガスを発生させるための原料として使用されている。メタノール等の炭化水素系化合物から水素ガスを製造する方法として、一般に、水蒸気改質法、部分酸化法および部分酸化-水蒸気改質反応法が知られている。 Hydrocarbon compounds such as methanol are energy sources that can be easily transported and stored, and are used as raw materials for generating hydrogen gas on-site. As a method for producing hydrogen gas from a hydrocarbon-based compound such as methanol, a steam reforming method, a partial oxidation method, and a partial oxidation-steam reforming reaction method are generally known.
 水蒸気改質法は、メタノール蒸気を触媒の存在下で水蒸気と接触させることによって水素ガスを製造する方法である。この水蒸気改質法は、比較的大きな吸熱を伴う反応であるため、熱交換器などの熱の供給システムの負荷が大きく、起動に時間が掛かるなどの欠点がある。 The steam reforming method is a method for producing hydrogen gas by bringing methanol vapor into contact with steam in the presence of a catalyst. Since this steam reforming reaction involves a relatively large endotherm, there is a drawback that the heat supply system such as a heat exchanger has a heavy load and takes a long time to start.
 部分酸化法は、メタノール蒸気を触媒の存在下で酸素ガスと接触させることによって、水素ガスを製造する方法である。この部分酸化法は、比較的大きな発熱を伴う反応であるため、触媒の活性低下を引き起こす可能性が高いなどの欠点がある。 The partial oxidation method is a method for producing hydrogen gas by bringing methanol vapor into contact with oxygen gas in the presence of a catalyst. Since this partial oxidation method is a reaction with a relatively large exotherm, there is a drawback that it is likely to cause a decrease in the activity of the catalyst.
 一方、部分酸化-水蒸気改質反応法は、メタノール蒸気を触媒の存在下で水蒸気および酸素と接触させて水素ガスを製造する方法である。この部分酸化-水蒸気改質反応法は、メタノールを部分的に酸化(部分酸化反応)させて二酸化炭素と水素とする際に発生する熱を、メタノール蒸気と水蒸気を接触させる水蒸気改質によって二酸化炭素と水素に改質する吸熱反応(メタノールの分解反応)に利用するため、熱交換器などの熱の供給システムの負荷を小さくすることができるという利点がある。 On the other hand, the partial oxidation-steam reforming reaction method is a method for producing hydrogen gas by bringing methanol vapor into contact with steam and oxygen in the presence of a catalyst. In this partial oxidation-steam reforming reaction method, the heat generated when methanol is partially oxidized (partial oxidation reaction) to form carbon dioxide and hydrogen is converted into carbon dioxide by steam reforming in which methanol vapor and steam are brought into contact. Therefore, there is an advantage that the load of a heat supply system such as a heat exchanger can be reduced.
 しかしながら、部分酸化-水蒸気改質反応法では、発熱反応である部分酸化反応と、吸熱反応である水蒸気改質反応(分解反応)とが同時に進行するのではなく、部分酸化反応に対してやや遅れて水蒸気改質反応(分解反応)が進行するので、反応器内の温度制御が難しいという課題がある。 However, in the partial oxidation-steam reforming reaction method, the partial oxidation reaction, which is an exothermic reaction, and the steam reforming reaction (decomposition reaction), which is an endothermic reaction, do not proceed at the same time, but are slightly delayed from the partial oxidation reaction. Since the steam reforming reaction (decomposition reaction) proceeds, there is a problem that it is difficult to control the temperature in the reactor.
 この点について、詳細に説明する。メタノール、水および酸素を含む原料ガスは、触媒が充填された反応器に供給される。原料ガスが反応器に供給されると、原料ガスの流れ方向上流側の部分で、反応速度の速い部分酸化反応が進行し、原料ガスの流れ方向下流側の部分で、反応速度の遅い水蒸気改質反応(分解反応)が進行する。この結果、反応器における、原料ガスの流れ方向上流側の部分に存在する触媒が、発熱を伴う部分酸化反応の影響を受けて高温になる。このようにして高温になった触媒は、シンタリングが発生して劣化し、活性が低下してしまう。 This point will be described in detail. A raw material gas containing methanol, water and oxygen is supplied to a reactor filled with a catalyst. When the raw material gas is supplied to the reactor, a partial oxidation reaction with a high reaction rate proceeds in a portion upstream of the raw material gas in the flow direction, and a steam reforming with a low reaction rate occurs in a portion downstream of the raw material gas in the flow direction. The quality reaction (decomposition reaction) proceeds. As a result, the catalyst existing in the upstream portion of the reactor in the flow direction of the raw material gas becomes high temperature under the influence of the partial oxidation reaction accompanied by heat generation. Thus, the catalyst which became high temperature will generate | occur | produce a sintering, will deteriorate, and activity will fall.
 部分酸化-水蒸気改質反応法による水素の製造方法において、上記のような問題点を解決するための方法が、種々提案されている。 Various methods for solving the above problems have been proposed in the method for producing hydrogen by the partial oxidation-steam reforming reaction method.
 たとえば、特許文献1には、触媒への酸素含有ガスの供給を一時的に停止する方法が開示されている。触媒である銅は、部分酸化反応によって酸化されて酸化銅になる。また、酸化銅は、水蒸気改質反応によって発生する還元性ガスで還元されて銅になる。特許文献1に開示される水素の製造方法では、酸素含有ガスの供給を一時的に停止することによって、水蒸気改質反応だけを行い、部分酸化反応によって生成した酸化銅を銅に還元して水蒸気改質反応の活性を再び高め、触媒の温度上昇を抑制している。 For example, Patent Document 1 discloses a method of temporarily stopping the supply of oxygen-containing gas to the catalyst. Copper which is a catalyst is oxidized by a partial oxidation reaction to become copper oxide. Further, copper oxide is reduced to copper by reducing gas generated by the steam reforming reaction. In the method for producing hydrogen disclosed in Patent Document 1, only the steam reforming reaction is performed by temporarily stopping the supply of the oxygen-containing gas, and the copper oxide produced by the partial oxidation reaction is reduced to copper to produce steam. The activity of the reforming reaction is increased again, and the temperature rise of the catalyst is suppressed.
 また、特許文献2には、水素を製造する際に使用する触媒として、CuPdO/ZnO系触媒が開示されている。特許文献2に開示される技術は、発熱を伴う部分酸化反応の抑制と触媒の劣化抑制を目的とするものである。 Further, Patent Document 2 discloses a CuPdO 2 / ZnO-based catalyst as a catalyst used when producing hydrogen. The technique disclosed in Patent Document 2 aims to suppress partial oxidation reaction accompanied by heat generation and catalyst deterioration.
国際公開WO2012/105355号International Publication WO2012 / 105355 特開2003-117396号公報JP 2003-117396 A
 しかしながら、特許文献1に開示される方法では、発熱を伴う部分酸化反応と、吸熱を伴う水蒸気改質反応(分解反応)との反応速度差が十分に小さくならずに、反応速度の速い部分酸化反応が、反応器における原料ガスの流れ方向上流側の部分で進行し、反応速度の遅い分解反応が、反応器における原料ガスの流れ方向下流側の部分で進行することになる。 However, in the method disclosed in Patent Document 1, the difference in reaction rate between the partial oxidation reaction with exotherm and the steam reforming reaction (decomposition reaction) with endotherm is not sufficiently small, and the partial oxidation with high reaction rate is performed. The reaction proceeds in the upstream portion of the reactor in the flow direction of the raw material gas, and the decomposition reaction having a slow reaction rate proceeds in the downstream portion of the reactor in the flow direction of the raw material gas.
 特許文献2においては、使用する触媒量の増大や、未反応のメタノールが増加し、水素発生量が減少するといった課題がある。 Patent Document 2 has problems such as an increase in the amount of catalyst used, an increase in unreacted methanol, and a decrease in the amount of hydrogen generated.
 本発明の目的は、メタノール等の炭化水素系化合物の部分酸化反応および水蒸気改質反応(分解反応)を進行させて水素を生成する水素の製造方法において、触媒寿命を延ばすことができるとともに、水素を長期間にわたって安定して製造することができる製造方法を提供することである。 An object of the present invention is to increase the catalyst life in a hydrogen production method in which hydrogen is produced by a partial oxidation reaction and a steam reforming reaction (decomposition reaction) of a hydrocarbon compound such as methanol. It is providing the manufacturing method which can be manufactured stably over a long period of time.
 本発明は、燃焼用ガスを燃焼器内に流入させて燃焼させる燃焼工程と、
 前記燃焼器内における燃焼用ガスの燃焼により発生する燃焼熱によって気化器を加熱し、加熱された気化器内に、炭化水素系化合物および水を含む液体原料を流入させて該液体原料を気化させ、ガス流体を得る気化工程と、
 前記気化工程で得られたガス流体に、酸素を含む気体原料を混合させ、混合された混合ガス流体を触媒が充填された反応器内に流入させて、炭化水素系化合物の部分酸化反応および水蒸気改質反応を進行させ、水素が主成分である反応生成物を得る水素生成工程と、
 前記水素生成工程で得られた反応生成物を、吸着剤が充填された吸着塔内に、吸着開始圧力の加圧下で流入させて、反応生成物中の副成分を吸着剤に吸着させて除去し、反応生成物中の主成分である水素を吸着塔から回収器に流出させる吸着工程と、
 前記吸着工程における前記吸着塔からの水素の流出後、該吸着塔内の圧力を前記吸着開始圧力よりも低い脱着開始圧力に変動させて、吸着剤に吸着した副成分を含む吸着成分を吸着剤から脱着させ、脱着した吸着成分を含む脱着ガスを吸着塔外に流量を変化させながら流出させる脱着工程と、
 前記脱着工程において前記吸着塔から流出させた脱着ガスを、前記燃焼用ガスとして前記燃焼器内に供給する脱着ガス供給工程と、を含むことを特徴とする水素の製造方法である。
The present invention includes a combustion process in which a combustion gas flows into a combustor and burns,
A vaporizer is heated by combustion heat generated by combustion of combustion gas in the combustor, and a liquid raw material containing a hydrocarbon compound and water is caused to flow into the heated vaporizer to vaporize the liquid raw material. A vaporization step of obtaining a gas fluid;
The gas fluid obtained in the vaporization step is mixed with a gas raw material containing oxygen, and the mixed gas fluid is caused to flow into a reactor filled with a catalyst, thereby partially oxidizing the hydrocarbon-based compound and steam. A hydrogen generation step in which a reforming reaction proceeds to obtain a reaction product mainly composed of hydrogen;
The reaction product obtained in the hydrogen generation step is allowed to flow into the adsorption tower filled with the adsorbent under the pressure of the adsorption start pressure, and adsorbent removes the secondary component in the reaction product. An adsorption step for flowing out hydrogen, which is a main component in the reaction product, from the adsorption tower to the recovery device;
After outflow of hydrogen from the adsorption tower in the adsorption step, the pressure in the adsorption tower is changed to a desorption start pressure lower than the adsorption start pressure, and the adsorbent component including the subcomponent adsorbed on the adsorbent is adsorbed. A desorption step of desorbing the desorbed gas containing the desorbed adsorbing component from the adsorbing tower and changing the flow rate to the outside of the adsorption tower;
A desorption gas supply step of supplying the desorption gas that has flowed out of the adsorption tower in the desorption step into the combustor as the combustion gas.
 また本発明の水素の製造方法において、前記脱着工程では、前記吸着塔内の圧力を、前記吸着開始圧力から前記脱着開始圧力に変動させた後、該脱着開始圧力から脱着終了圧力まで多段階で減圧させることによって、吸着塔外に流出させる脱着ガスの流量を変化させることが好ましい。 In the hydrogen production method of the present invention, in the desorption step, the pressure in the adsorption tower is changed from the adsorption start pressure to the desorption start pressure, and then in multiple stages from the desorption start pressure to the desorption end pressure. It is preferable to change the flow rate of the desorption gas flowing out of the adsorption tower by reducing the pressure.
 また本発明の水素の製造方法において、前記脱着工程では、前記吸着塔内を多段階で減圧させるときに、下記式(I)で表される1段階目の減圧率Pが35%以下であることが好ましい。
   減圧率P(%)=[(P-P)/P]×100    …(I)
 (式中、Pは脱着開始圧力(kPaG)を示し、Pは1段階目の脱着終了圧力(kPaG)を示す。)
The method of manufacturing a hydrogen present invention, the desorption step, the adsorption tower when depressurizing in multiple steps, represented the first stage of the pressure reduction rate P A is not more than 35% by the following formula (I) Preferably there is.
Decompression rate P A (%) = [(P S −P E ) / P S ] × 100 (I)
(Wherein, P S represents a desorption start pressure (kPaG), P E represents the first stage of the desorption completion pressure (kPaG).)
 本発明によれば、水素の製造方法は、燃焼工程と、気化工程と、水素生成工程と、吸着工程と、脱着工程と、脱着ガス供給工程とを含む。燃焼工程では、燃焼用ガスを燃焼器内に流入させて燃焼させる。気化工程では、燃焼器内の燃焼により発生する燃焼熱によって加熱される気化器内に、炭化水素系化合物および水を含む液体原料を流入させることによって、該液体原料を気化させてガス流体(気化流体)を得る。水素生成工程では、気化工程で得られたガス流体と酸素を含む気体原料とを、触媒が充填された反応器内に流入させることによって、炭化水素系化合物の部分酸化反応および水蒸気改質反応を進行させて水素を生成させて、主成分として水素を含む反応生成物を得る。吸着工程では、水素生成工程で得られた反応生成物を、吸着剤が充填された吸着塔内に、吸着開始圧力の加圧下で流入させる。次に吸着工程では、反応生成物中の副成分を吸着剤に吸着させて、精製された水素を吸着塔外に流出させる。脱着工程では、吸着工程において吸着塔から精製された水素を流出させた後、該吸着塔内の圧力を吸着開始圧力よりも低い脱着開始圧力に変動させる。脱着工程では次に、吸着塔内の圧力を脱着開始圧力から多段階に変化させ、吸着剤に吸着した副成分を含む吸着成分を吸着剤から脱着させ、脱着した吸着成分を含む脱着ガスを吸着塔外に流量を変化させながら流出させる。そして、脱着ガス供給工程では、脱着工程において吸着塔から流出させた脱着ガスを、前記燃焼用ガスとして燃焼器内に供給する。なお、脱着ガス供給工程において、燃焼用ガスとして燃焼器内に供給される脱着ガスには、反応生成物中の副成分と水素とが含まれている。 According to the present invention, the method for producing hydrogen includes a combustion process, a vaporization process, a hydrogen generation process, an adsorption process, a desorption process, and a desorption gas supply process. In the combustion process, combustion gas flows into the combustor and burns. In the vaporization step, a liquid raw material containing a hydrocarbon-based compound and water is caused to flow into a vaporizer heated by combustion heat generated by combustion in the combustor, whereby the liquid raw material is vaporized to generate a gas fluid (vaporization). Fluid). In the hydrogen generation process, the gas fluid obtained in the vaporization process and the gas raw material containing oxygen are allowed to flow into a reactor filled with a catalyst, thereby performing a partial oxidation reaction and a steam reforming reaction of a hydrocarbon compound. Proceed to generate hydrogen to obtain a reaction product containing hydrogen as a main component. In the adsorption step, the reaction product obtained in the hydrogen production step is caused to flow into the adsorption tower filled with the adsorbent under the pressure of the adsorption start pressure. Next, in the adsorption step, subcomponents in the reaction product are adsorbed on the adsorbent, and the purified hydrogen flows out of the adsorption tower. In the desorption process, after purifying the hydrogen purified from the adsorption tower in the adsorption process, the pressure in the adsorption tower is changed to a desorption start pressure lower than the adsorption start pressure. Next, in the desorption process, the pressure in the adsorption tower is changed from the desorption start pressure to multiple stages, the adsorbed components including the adsorbent adsorbed on the adsorbent are desorbed from the adsorbent, and the desorbed gas including the desorbed adsorbed component is adsorbed. It flows out while changing the flow rate outside the tower. In the desorption gas supply step, the desorption gas that has flowed out of the adsorption tower in the desorption step is supplied into the combustor as the combustion gas. In the desorption gas supply step, the desorption gas supplied into the combustor as the combustion gas contains subcomponents and hydrogen in the reaction product.
 本発明の水素の製造方法では、まず炭化水素系化合物と水とを含む液体原料が気化器で気化される。次にその気化したガス流体と酸素を含む気体原料とが反応器に供給され、反応器内において炭化水素系化合物の部分酸化反応および水蒸気改質反応(分解反応)が進行して水素が生成される。気化器において液体原料を気化させるための熱源としては、燃焼器で発生する燃焼熱が利用される。燃焼器で発生する燃焼熱は、吸着塔から流出された、吸着塔において吸着剤から脱着した脱着ガス(副成分と水素とを含む混合ガス)を燃焼用ガスとして燃焼させることで発生したものである。本発明の水素の製造方法では、吸着剤から脱着した脱着ガスを吸着塔外に流量を変化させながら流出させ、その吸着塔から流出した脱着ガスを燃焼用ガスとして燃焼器に供給する。このため、吸着塔から流出される脱着ガスの流量の変化に伴って燃焼器で発生する燃焼熱の熱量が変化する。この結果、気化器における液体原料を気化させるための加熱量が変化することになる。このように、気化器における液体原料を気化させるための加熱量が変化すると、温度が変化したガス流体が反応器内に流入することになる。 In the method for producing hydrogen according to the present invention, first, a liquid raw material containing a hydrocarbon compound and water is vaporized by a vaporizer. Next, the vaporized gas fluid and a gas raw material containing oxygen are supplied to the reactor, and hydrogen is generated by the partial oxidation reaction and steam reforming reaction (decomposition reaction) of the hydrocarbon compound in the reactor. The As a heat source for vaporizing the liquid raw material in the vaporizer, combustion heat generated in the combustor is used. The combustion heat generated in the combustor is generated by burning the desorption gas (mixed gas containing subcomponents and hydrogen) discharged from the adsorption tower and desorbed from the adsorbent in the adsorption tower as a combustion gas. is there. In the method for producing hydrogen of the present invention, the desorption gas desorbed from the adsorbent is caused to flow out of the adsorption tower while changing the flow rate, and the desorption gas flowing out of the adsorption tower is supplied to the combustor as a combustion gas. For this reason, the calorie | heat amount of the combustion heat which generate | occur | produces in a combustor changes with the change of the flow volume of the desorption gas which flows out out of an adsorption tower. As a result, the heating amount for vaporizing the liquid raw material in the vaporizer changes. Thus, when the heating amount for vaporizing the liquid raw material in the vaporizer changes, the gas fluid whose temperature has changed flows into the reactor.
 反応器内では、反応速度の異なる、炭化水素系化合物の部分酸化反応と水蒸気改質反応(分解反応)とが進行し、反応器内に充填される触媒において、発熱を伴う部分酸化反応の影響を強く受けて、最も温度上昇する部分(ホットスポット)が発生する。本発明の水素の製造方法では、上記のように、温度が変化したガス流体が反応器内に流入するので、反応器内におけるホットスポットの位置を変化させることができる。このため、反応器内の触媒充填部において常に同じ領域が最も高温になるのを防止できる。反応器内におけるホットスポットの位置は、ガス流体が反応器内を流れる流れ方向に関して、触媒の温度が低下すると下流側に移動し、触媒の温度が上昇すると上流側に移動する。 In the reactor, the partial oxidation reaction and steam reforming reaction (decomposition reaction) of hydrocarbon compounds with different reaction rates proceed, and the effect of partial oxidation reaction with exotherm on the catalyst filled in the reactor. The part where the temperature rises most (hot spot) is generated. In the method for producing hydrogen of the present invention, as described above, the gas fluid whose temperature has changed flows into the reactor, so that the position of the hot spot in the reactor can be changed. For this reason, it can prevent that the same area | region always becomes the highest temperature in the catalyst filling part in a reactor. The position of the hot spot in the reactor moves to the downstream side when the temperature of the catalyst decreases with respect to the flow direction in which the gas fluid flows in the reactor, and moves to the upstream side when the temperature of the catalyst increases.
 この点について、詳細に説明する。触媒が高温に曝されて劣化すると、反応選択率が低下し不純物が多く副生するようになる。触媒が劣化した状況下において、所定の純度および所定の時間当たりの取得量で水素を得るには、吸着塔の圧力条件などの設定を変更する必要がある。触媒の劣化が更に進行すると、所定の純度の水素が得られても、徐々に所定の時間当たりの取得量で水素が得られなくなる。このため安定した水素の製造が不可能となる。そこで、本発明では、炭化水素系化合物および水を含む液体原料を気化させるための熱量を、吸着剤から脱着して吸着塔から流出する脱着ガスの流出量を変化させることで増減させる。このため、燃焼用ガスの燃焼によって発生する燃焼熱の熱量が増減され、外部加熱されるガス流体の温度が上下する。ガス流体の温度が上下すると、反応器内においてガス流体が接触する触媒表面の温度が上下する。これに伴って、部分酸化反応によって生じるホットスポットの位置が、ガス流体の流れ方向に上下に変動する。このように、反応器内におけるホットスポットの位置が変動することによって、反応器内の触媒充填部において常に同じ領域が最も高温になるのを防止できる。これによって、シンタリングによる劣化を抑制して触媒寿命を延ばすことができるとともに、水素を長期間にわたって安定して製造することができる。 This point will be described in detail. When the catalyst is deteriorated by exposure to a high temperature, the reaction selectivity decreases and a large amount of impurities are produced as a by-product. In order to obtain hydrogen with a predetermined purity and a predetermined acquisition amount per time in a situation where the catalyst has deteriorated, it is necessary to change settings such as pressure conditions of the adsorption tower. When the deterioration of the catalyst further progresses, even if hydrogen having a predetermined purity is obtained, hydrogen cannot be obtained gradually in a predetermined amount per time. This makes it impossible to produce stable hydrogen. Therefore, in the present invention, the amount of heat for vaporizing the liquid raw material containing the hydrocarbon compound and water is increased or decreased by changing the outflow amount of the desorption gas desorbed from the adsorbent and flowing out from the adsorption tower. For this reason, the calorie | heat amount of the combustion heat generate | occur | produced by combustion of the combustion gas is increased / decreased, and the temperature of the gas fluid heated externally raises / lowers. When the temperature of the gas fluid increases and decreases, the temperature of the catalyst surface with which the gas fluid contacts in the reactor increases and decreases. Along with this, the position of the hot spot generated by the partial oxidation reaction varies up and down in the flow direction of the gas fluid. As described above, by changing the position of the hot spot in the reactor, it is possible to prevent the same region from always becoming the highest temperature in the catalyst filling portion in the reactor. Accordingly, deterioration due to sintering can be suppressed and the catalyst life can be extended, and hydrogen can be stably produced over a long period of time.
 また本発明によれば、脱着工程では、吸着塔内の圧力を、脱着開始圧力から脱着終了圧力まで多段階で減圧させる。これによって、吸着塔外に流出させる脱着ガスの流量を変動させることができる。この結果、燃焼器で発生する燃焼熱の熱量が変化し、気化器における液体原料を気化させるための加熱量を変化させることができる。このため、温度が変化したガス流体を、反応器内に流入させることができ、反応器内におけるホットスポットの位置を変化させることができる。この結果、反応器内の触媒充填部において常に同じ領域が最も高温になるのを防止でき、触媒の劣化を防止できる。 According to the present invention, in the desorption step, the pressure in the adsorption tower is reduced in multiple stages from the desorption start pressure to the desorption end pressure. As a result, the flow rate of the desorption gas flowing out of the adsorption tower can be varied. As a result, the amount of combustion heat generated in the combustor changes, and the amount of heating for vaporizing the liquid raw material in the vaporizer can be changed. For this reason, the gas fluid whose temperature has changed can be caused to flow into the reactor, and the position of the hot spot in the reactor can be changed. As a result, it is possible to prevent the same region from always reaching the highest temperature in the catalyst packed portion in the reactor, and to prevent catalyst deterioration.
 また本発明によれば、脱着工程では、吸着塔内を多段階で減圧させるときに、上記式(I)で表される1段階目の減圧率Pが35%以下である。これによって、吸着塔外に流出させる脱着ガスの流量を変動させることができる。この結果、燃焼器で発生する燃焼熱の熱量が変化し、気化器における液体原料を気化させるための加熱量を変化させることができる。このため、温度が変化したガス流体を、反応器内に流入させることができ、反応器内におけるホットスポットの位置を変化させることができる。この結果、反応器内の触媒充填部において常に同じ領域が最も高温になるのを防止でき、触媒の劣化を防止できる。 According to the invention, the desorption step, when to reduce the pressure in the adsorption tower in multiple stages, pressure reduction rate P A in the first stage of the formula (I) is 35% or less. As a result, the flow rate of the desorption gas flowing out of the adsorption tower can be varied. As a result, the amount of combustion heat generated in the combustor changes, and the amount of heating for vaporizing the liquid raw material in the vaporizer can be changed. For this reason, the gas fluid whose temperature has changed can be caused to flow into the reactor, and the position of the hot spot in the reactor can be changed. As a result, it is possible to prevent the same region from always reaching the highest temperature in the catalyst packed portion in the reactor, and to prevent catalyst deterioration.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。
本発明の一実施形態に係る水素の製造方法を示す工程図である。 本発明に係る水素の製造方法を実現するための水素製造装置100の構成を示す概略図である。 水素ガス分離部3の構成を示す図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 水素ガス分離部3の動作を説明するための図である。 各実施例および比較例の保熱部4における温度変化を示すグラフである。 各実施例および比較例の反応ガス生成部2における温度変化を示すグラフである。
Objects, features, and advantages of the present invention will become more apparent from the following detailed description and drawings.
It is process drawing which shows the manufacturing method of hydrogen which concerns on one Embodiment of this invention. It is the schematic which shows the structure of the hydrogen production apparatus 100 for implement | achieving the manufacturing method of hydrogen which concerns on this invention. FIG. 3 is a diagram showing a configuration of a hydrogen gas separation unit 3. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. 4 is a diagram for explaining the operation of the hydrogen gas separation unit 3. FIG. It is a graph which shows the temperature change in the heat retention part 4 of each Example and a comparative example. It is a graph which shows the temperature change in the reactive gas production | generation part 2 of each Example and a comparative example.
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
 図1は、本発明の一実施形態に係わる水素の製造方法を示す工程図である。図2は、本発明に係る水素の製造方法を実現するための水素製造装置100の構成を示す概略図である。図3は、水素ガス分離部3の構成を示す図である。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a process diagram showing a method for producing hydrogen according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing the configuration of a hydrogen production apparatus 100 for realizing the method for producing hydrogen according to the present invention. FIG. 3 is a diagram illustrating a configuration of the hydrogen gas separation unit 3.
 本実施形態に係る水素の製造方法は、メタノール等の炭化水素系化合物と、水および酸素とを、触媒の存在下で反応させることによって水素を生成する方法であり、図2に示す水素製造装置100を用いて実施される。水素製造装置100は、気化器として機能する原料気化部1と、反応器2Aを有する反応ガス生成部2と、吸着塔を有する水素ガス分離部3と、保熱部4とを備える。以下では、炭化水素系化合物としてメタノールを用いた場合について説明する。 The method for producing hydrogen according to the present embodiment is a method for producing hydrogen by reacting a hydrocarbon compound such as methanol with water and oxygen in the presence of a catalyst. The hydrogen production apparatus shown in FIG. 100. The hydrogen production apparatus 100 includes a raw material vaporization unit 1 that functions as a vaporizer, a reaction gas generation unit 2 having a reactor 2A, a hydrogen gas separation unit 3 having an adsorption tower, and a heat retaining unit 4. Below, the case where methanol is used as a hydrocarbon compound is demonstrated.
 本実施形態に係る水素の製造方法は、気化工程s1と、水素生成工程s2と、水素ガス分離工程s3と、回収工程s4と、脱着ガス供給工程s5と、燃焼工程に対応する脱着ガス燃焼工程s6とを含む。 The hydrogen production method according to this embodiment includes a vaporization step s1, a hydrogen generation step s2, a hydrogen gas separation step s3, a recovery step s4, a desorption gas supply step s5, and a desorption gas combustion step corresponding to the combustion step. and s6.
 気化工程s1は、後述する脱着ガス燃焼工程s6における、ガス燃焼部9により発生する燃焼熱によって、少なくともメタノールおよび水を含む液体原料を気化するための工程であり、原料気化部1により実施される。 The vaporization step s1 is a step for vaporizing a liquid raw material containing at least methanol and water by combustion heat generated by the gas combustion unit 9 in a desorption gas combustion step s6 described later, and is performed by the raw material vaporization unit 1. .
 気化工程s1では、メタノールおよび水を気化させることによって、メタノール蒸気と水蒸気とを含む混合ガスを生成する。メタノールおよび水は、図2に示されるように、たとえば、ポンプ5から第1配管6を介して原料気化部1に送液される。第1配管6には、第1配管6における流路を開放または閉鎖する第1バルブ7aおよび第2バルブ7bが設けられている。メタノールおよび水は、第1バルブ7aおよび第2バルブ7bが開放された状態で、ポンプ5から原料気化部1に向けて第1配管6内を流れて、原料気化部1に供給される。 In the vaporization step s1, a mixed gas containing methanol vapor and water vapor is generated by vaporizing methanol and water. As shown in FIG. 2, methanol and water are sent from the pump 5 to the raw material vaporization unit 1 via the first pipe 6, for example. The first pipe 6 is provided with a first valve 7 a and a second valve 7 b that open or close a flow path in the first pipe 6. Methanol and water flow through the first pipe 6 from the pump 5 toward the raw material vaporization unit 1 with the first valve 7a and the second valve 7b being opened, and are supplied to the raw material vaporization unit 1.
 ポンプ5と原料気化部1との間には、必要に応じて、熱交換器8が配設されていてもよい。熱交換器8を配設した場合、メタノールおよび水は、熱交換器8により、後述の反応ガス生成部2で得られた反応生成ガスと熱交換することによって加熱され、反応ガス生成部2で得られた反応生成ガスは、メタノールおよび水と熱交換することによって冷却される。これにより、メタノールおよび水は、原料気化部1に送液される前に予め加熱されるので、効率よくメタノールおよび水を気化することができる。 A heat exchanger 8 may be disposed between the pump 5 and the raw material vaporization unit 1 as necessary. When the heat exchanger 8 is provided, methanol and water are heated by the heat exchanger 8 by exchanging heat with a reaction product gas obtained in the reaction gas generation unit 2 described later. The resulting reaction product gas is cooled by exchanging heat with methanol and water. Thereby, since methanol and water are previously heated before being sent to the raw material vaporization part 1, methanol and water can be efficiently vaporized.
 メタノール1モルあたりの水の量は、水素ガスを効率よく生成させるとともに一酸化炭素ガスの残存量を低下させることによって水素ガスの収率を高める観点から、好ましくは1.2モル以上、より好ましくは1.5モル以上である。また、水の量が多くなり過ぎても水素ガスの収率があまり向上せず、蒸発潜熱が大きい水の量を低減させることによってエネルギー効率を高める観点から、好ましくは2.5モル以下、より好ましくは2.0モル以下である。 The amount of water per mole of methanol is preferably 1.2 mol or more, more preferably from the viewpoint of efficiently generating hydrogen gas and increasing the yield of hydrogen gas by reducing the residual amount of carbon monoxide gas. Is 1.5 mol or more. In addition, even if the amount of water becomes too large, the yield of hydrogen gas does not improve so much, and from the viewpoint of increasing energy efficiency by reducing the amount of water with a large latent heat of evaporation, preferably 2.5 mol or less, more Preferably it is 2.0 mol or less.
 なお、原料気化部1に送液されるメタノールおよび水の液温は、特に限定されず、常温であってもよく、常温よりも高温であってもよい。メタノールおよび水の液温は、水素ガスの収率を向上させる観点から、できるだけ高いことが好ましい。前記液温の上限温度は、エネルギー効率を高める観点から、好ましくはメタノールの沸点以下である。 In addition, the liquid temperature of methanol and water sent to the raw material vaporization unit 1 is not particularly limited, and may be room temperature or higher than room temperature. The liquid temperatures of methanol and water are preferably as high as possible from the viewpoint of improving the yield of hydrogen gas. The upper limit temperature of the liquid temperature is preferably not more than the boiling point of methanol from the viewpoint of increasing energy efficiency.
 また、メタノールと水とを、必ずしも同時に加熱して気化させる必要がなく、メタノールの気化と水の気化とを別々に分けて行ってもよく、あるいはメタノールと水とを混合し、そのメタノール混合液を気化させてもよい。 Further, it is not always necessary to heat and vaporize methanol and water at the same time, and the vaporization of methanol and the vaporization of water may be performed separately, or methanol and water are mixed, and the methanol mixed solution May be vaporized.
 原料気化部1としては、たとえば、図2に示されるように、螺旋形状を有する金属管などが挙げられるが、かかる例示のみに限定されるものではない。金属管に用いられる金属としては、たとえば、ステンレス鋼をはじめ、熱伝導性に優れていることから、銅、黄銅などが挙げられる。原料気化部1は、後述する脱着ガスをガス燃焼部9で燃焼することによって生じた熱が効率よく伝達されるようにするために、容器状の保熱部4内に配設されている。 As the raw material vaporization unit 1, for example, as shown in FIG. 2, a metal tube having a spiral shape may be mentioned, but it is not limited to such an example. Examples of the metal used for the metal tube include stainless steel and copper, brass and the like because of excellent thermal conductivity. The raw material vaporization unit 1 is disposed in a container-like heat retaining unit 4 so that heat generated by burning a desorption gas described later in the gas combustion unit 9 can be efficiently transmitted.
 原料気化部1において、メタノールおよび水が気化することによって得られたメタノール蒸気と水蒸気とを含有する混合ガス(ガス流体)は、第2配管10内を流れて、反応ガス生成部2に向けて送気される。 In the raw material vaporization unit 1, a mixed gas (gas fluid) containing methanol vapor and water vapor obtained by vaporizing methanol and water flows through the second pipe 10 toward the reaction gas generation unit 2. It is aired.
 水素ガスを生成するための原料としての酸素は、本実施形態では、酸素含有ガス(気体原料)として用いられる。酸素含有ガスとしては、たとえば、空気、酸素ガスが用いられる。 In the present embodiment, oxygen as a raw material for generating hydrogen gas is used as an oxygen-containing gas (gas raw material). For example, air or oxygen gas is used as the oxygen-containing gas.
 本実施形態では、第2配管10内を流れる、メタノール蒸気と水蒸気とを含有する混合ガスと、酸素含有ガスとを混合して、少なくともメタノール、水および酸素を含有する原料ガスを調製する。なお、酸素含有ガスは、メタノールおよび水と対比して熱容量が小さいので、必ずしも加熱しなくてもよい。 In this embodiment, a mixed gas containing methanol vapor and water vapor and flowing in the second pipe 10 is mixed with an oxygen-containing gas to prepare a raw material gas containing at least methanol, water, and oxygen. Note that the oxygen-containing gas does not necessarily have to be heated because it has a smaller heat capacity than methanol and water.
 また、メタノール1モルあたりの酸素含有ガスに含まれている酸素ガスの量は、未反応のメタノールの残存量を低減させる観点から、好ましくは0.05モル以上、より好ましくは0.08モル以上である。メタノール1モルあたりの酸素含有ガスに含まれている酸素ガスの量は、メタノールから生成した水素ガスと投入した酸素ガスとの反応によって反応温度が高くなることを回避するとともに、生成した水素ガスが酸素ガスとの反応によって消費されることを回避する観点から、好ましくは0.20モル以下、より好ましくは0.15モル以下である。 The amount of oxygen gas contained in the oxygen-containing gas per mole of methanol is preferably 0.05 moles or more, more preferably 0.08 moles or more, from the viewpoint of reducing the remaining amount of unreacted methanol. It is. The amount of oxygen gas contained in the oxygen-containing gas per mole of methanol avoids an increase in reaction temperature due to the reaction between the hydrogen gas generated from methanol and the introduced oxygen gas, and the generated hydrogen gas From the viewpoint of avoiding consumption by reaction with oxygen gas, the amount is preferably 0.20 mol or less, more preferably 0.15 mol or less.
 酸素含有ガスは、第3バルブ13が設けられた第3配管11を介して反応ガス生成部2に向けて送気される。酸素含有ガスは、第3バルブ13が開放された状態で、第3配管11内を流れて、反応ガス生成部2に向けて送気される。 The oxygen-containing gas is sent toward the reaction gas generation unit 2 through the third pipe 11 provided with the third valve 13. The oxygen-containing gas flows through the third pipe 11 in a state where the third valve 13 is opened, and is sent toward the reaction gas generation unit 2.
 メタノール蒸気と水蒸気とを含有する混合ガスが流れる第2配管10と、酸素含有ガスが流れる第3配管11とは、第4配管12に接続されている。前記第4配管12は、反応ガス生成部2に備えられる反応器2Aに接続されている。第2配管10内を流れる混合ガスと、第3配管11内を流れる酸素含有ガスとは、第4配管12内において混合され、これによって、少なくともメタノール、水および酸素を含有する原料ガスが調製される。このようにして調製された原料ガスは、第4配管12内を流れて反応器2Aに供給される。 A second pipe 10 through which a mixed gas containing methanol vapor and water vapor flows and a third pipe 11 through which an oxygen-containing gas flows are connected to a fourth pipe 12. The fourth pipe 12 is connected to a reactor 2 </ b> A provided in the reaction gas generator 2. The mixed gas flowing in the second pipe 10 and the oxygen-containing gas flowing in the third pipe 11 are mixed in the fourth pipe 12, thereby preparing a raw material gas containing at least methanol, water, and oxygen. The The raw material gas thus prepared flows through the fourth pipe 12 and is supplied to the reactor 2A.
 水素生成工程s2は、第4配管12内を流れて反応ガス生成部2の反応器2Aに供給される原料ガスを、触媒の存在下で、メタノールの部分酸化反応および水蒸気改質反応(分解反応)を進行させて、水素を含む反応生成ガス(反応生成物)を生成する工程であり、反応ガス生成部2により実施される。本実施形態では、反応ガス生成部2は、保熱部4内に配設されている。このように配設されることによって、保熱部4内に設置されているガス燃焼部9で脱着ガスを燃焼することによって生じた熱により、吸熱を伴うメタノールの水蒸気改質反応(分解反応)反応に起因する温度低下が抑制され、効率よく水素ガスを生成することができる。 In the hydrogen generation step s2, the raw material gas that flows in the fourth pipe 12 and is supplied to the reactor 2A of the reaction gas generation unit 2 is subjected to partial oxidation reaction of methanol and steam reforming reaction (decomposition reaction) in the presence of a catalyst. ) To generate a reaction product gas (reaction product) containing hydrogen, which is performed by the reaction gas generation unit 2. In the present embodiment, the reactive gas generation unit 2 is disposed in the heat retaining unit 4. By being arranged in this way, the steam reforming reaction (decomposition reaction) of methanol accompanied by endotherm by the heat generated by burning the desorption gas in the gas combustion unit 9 installed in the heat retaining unit 4 The temperature decrease due to the reaction is suppressed, and hydrogen gas can be generated efficiently.
 第4配管12を介して反応ガス生成部2に供給される原料ガスは、反応器2Aに流入する前に、反応可能温度に調整される。原料ガスの温度は、反応器2Aに流入する直前の温度(反応器2Aの入口温度)が反応可能温度として調整される。反応器2Aに流入する直前の、原料ガスの温度は、メタノールの部分酸化反応を促進させるとともに未反応のメタノールの残存量を低減させる観点から、好ましくは200℃以上、より好ましくは220℃以上である。また触媒の耐熱温度の観点から、好ましくは300℃以下、より好ましくは260℃以下である。 The raw material gas supplied to the reaction gas generation unit 2 via the fourth pipe 12 is adjusted to a reaction possible temperature before flowing into the reactor 2A. The temperature of the raw material gas is adjusted such that the temperature immediately before flowing into the reactor 2A (the inlet temperature of the reactor 2A) is the reaction possible temperature. The temperature of the raw material gas immediately before flowing into the reactor 2A is preferably 200 ° C. or higher, more preferably 220 ° C. or higher, from the viewpoint of promoting the partial oxidation reaction of methanol and reducing the remaining amount of unreacted methanol. is there. From the viewpoint of the heat resistant temperature of the catalyst, it is preferably 300 ° C. or lower, more preferably 260 ° C. or lower.
 反応器2A内には、たとえば粒状または円柱状の触媒が充填されて触媒層が形成されている。触媒としては、酸化アルミニウムに銅系化合物が担持された触媒を用いることができる。具体的には、酸化アルミニウムに銅が担持された触媒、酸化アルミニウムに銅および酸化亜鉛が担持された触媒が用いられる。 In the reactor 2A, for example, a granular or columnar catalyst is filled to form a catalyst layer. As the catalyst, a catalyst in which a copper compound is supported on aluminum oxide can be used. Specifically, a catalyst in which copper is supported on aluminum oxide and a catalyst in which copper and zinc oxide are supported on aluminum oxide are used.
 銅(Cu)と酸化アルミニウム(Al)との質量比〔銅(Cu)/酸化アルミニウム(Al)〕は、添加剤としての銅(Cu)の触媒活性が充分に発揮されるようにする観点から、0.1以上であることが好ましく、添加された銅(Cu)に充分な機械的強度を付与し、触媒活性を高くする観点から、1以下であることが好ましい。 The mass ratio of copper (Cu) to aluminum oxide (Al 2 O 3 ) [copper (Cu) / aluminum oxide (Al 2 O 3 )] exhibits sufficient catalytic activity of copper (Cu) as an additive. From the viewpoint of making it possible, it is preferably 0.1 or more, and from the viewpoint of imparting sufficient mechanical strength to the added copper (Cu) and increasing the catalytic activity, it is preferably 1 or less.
 市販されている酸化アルミニウムに銅が担持された触媒、または酸化アルミニウムに銅および酸化亜鉛が担持された触媒は、購入したときには、銅が酸化銅の状態で存在している。この状態では、触媒活性を示さないため、銅に還元して使用することが好ましい。酸化銅を還元させる方法としては、たとえば、酸化銅を含む触媒を還元性ガスと接触させる方法などが挙げられる。還元性ガスとしては、たとえば、水素ガスをはじめ、水素ガスと窒素ガス、水素ガスとアルゴンガスなどの不活性ガスとの混合ガスなどが用いられる。 A commercially available catalyst in which copper is supported on aluminum oxide or a catalyst in which copper and zinc oxide are supported on aluminum oxide is present in a state of copper oxide when purchased. In this state, since it does not show catalytic activity, it is preferably used after being reduced to copper. Examples of the method of reducing copper oxide include a method of bringing a catalyst containing copper oxide into contact with a reducing gas. Examples of the reducing gas include hydrogen gas, mixed gas of hydrogen gas and nitrogen gas, and inert gas such as hydrogen gas and argon gas.
 酸化アルミニウムに銅が担持された触媒、または酸化アルミニウムに銅および酸化亜鉛が担持された触媒の粒子径は、触媒層の圧力損失を低減させる観点から、好ましくは1mm以上、より好ましくは3mm以上である。触媒と、メタノール蒸気、水蒸気および酸素含有ガスとの接触効率を高める観点から、好ましくは20mm以下、より好ましくは10mm以下である。また、酸化アルミニウムに銅が担持された触媒、または酸化アルミニウムに銅および酸化亜鉛が担持された触媒の充填量は、通常、原料気化部1に送液されるメタノール1g/分あたり35ml以上であることが好ましい。 The particle diameter of the catalyst in which copper is supported on aluminum oxide or the catalyst in which copper and zinc oxide are supported on aluminum oxide is preferably 1 mm or more, more preferably 3 mm or more, from the viewpoint of reducing the pressure loss of the catalyst layer. is there. From the viewpoint of increasing the contact efficiency between the catalyst and the methanol vapor, water vapor and oxygen-containing gas, it is preferably 20 mm or less, more preferably 10 mm or less. The filling amount of the catalyst in which copper is supported on aluminum oxide, or the catalyst in which copper and zinc oxide are supported on aluminum oxide is usually 35 ml or more per 1 g / min of methanol fed to the raw material vaporization section 1. It is preferable.
 反応器2Aは、図2に示すように断面形状が円形の筒状体である。反応器2Aの上部(原料ガスが流入する入口側)は、その筒状体の内部に触媒が充填されて柱状触媒層が形成されて構成されており、下部(反応生成ガスが流出する出口側)は、断面形状が円形の2つの筒状体が同心円状に重ね合わされ、それらの筒状体の間隙に触媒が充填されて筒状触媒層が形成されて構成されている。すなわち、反応器2Aは、円筒状に形成され、その内部空間に触媒が充填されている。また、反応器2Aは、軸線方向一端部と他端部の内径が同じであり、この内径よりも軸線方向に延びる長さが長い形状である。 The reactor 2A is a cylindrical body having a circular cross section as shown in FIG. The upper part (the inlet side into which the raw material gas flows) of the reactor 2A is configured such that the cylindrical body is filled with a catalyst to form a columnar catalyst layer, and the lower part (the outlet side from which the reaction product gas flows out). ) Is formed by concentrically overlapping two cylindrical bodies having a circular cross-sectional shape, and filling a gap between the cylindrical bodies to form a cylindrical catalyst layer. That is, the reactor 2A is formed in a cylindrical shape, and its internal space is filled with a catalyst. The reactor 2A has the same inner diameter at one end in the axial direction and the other end, and has a shape extending longer in the axial direction than the inner diameter.
 反応器2A内に充填される触媒の表面温度(最高温度)は、メタノールを効率よく水素に改質させる観点から好ましくは250℃以上である。また、触媒の表面温度は、触媒の劣化防止、反応副生成物の生成抑制、および、水素と酸素とが反応することを抑制する観点から、好ましくは300℃以下である。反応器2A内の圧力は、特に限定されないが、通常、ゲージ圧で0.2~1.5MPaGであることが好ましい。 The surface temperature (maximum temperature) of the catalyst charged in the reactor 2A is preferably 250 ° C. or higher from the viewpoint of efficiently reforming methanol into hydrogen. Further, the surface temperature of the catalyst is preferably 300 ° C. or less from the viewpoints of preventing deterioration of the catalyst, suppressing the generation of reaction byproducts, and suppressing the reaction between hydrogen and oxygen. The pressure in the reactor 2A is not particularly limited, but usually it is preferably 0.2 to 1.5 MPaG in terms of gauge pressure.
 反応可能温度に調整された、少なくともメタノール、水および酸素を含有する原料ガスが第4配管12を介して反応ガス生成部2に供給されると、その原料ガスは、反応器2A内の上部から下部に向かって流れる。このようにして原料ガスが反応器2A内を流れて触媒と接触すると、メタノールが部分酸化されて水素と二酸化炭素が生成する、下記式(1)で表される部分酸化反応が進行する。また、副反応としてメタノールが一酸化炭素と水素に分解する、下記式(2)で表される分解反応も進行する。さらにまた、メタノールが二酸化炭素と水素に分解する、下記式(3)で表される水蒸気改質反応も進行する。
   CHOH+1/2O→CO+2H          …(1)
   CHOH→CO+2H                 …(2)
   CHOH+HO→CO+3H            …(3)
When the source gas containing at least methanol, water and oxygen adjusted to the reaction possible temperature is supplied to the reaction gas generation unit 2 through the fourth pipe 12, the source gas is supplied from the upper part in the reactor 2A. It flows toward the bottom. Thus, when the source gas flows through the reactor 2A and comes into contact with the catalyst, the partial oxidation reaction represented by the following formula (1) proceeds, in which methanol is partially oxidized to generate hydrogen and carbon dioxide. In addition, a decomposition reaction represented by the following formula (2), in which methanol is decomposed into carbon monoxide and hydrogen as a side reaction, also proceeds. Furthermore, a steam reforming reaction represented by the following formula (3) in which methanol is decomposed into carbon dioxide and hydrogen also proceeds.
CH 3 OH + 1 / 2O 2 → CO 2 + 2H 2 (1)
CH 3 OH → CO + 2H 2    ... (2)
CH 3 OH + H 2 O → CO 2 + 3H 2 (3)
 上記反応において、式(1)で表される部分酸化反応は発熱反応であり、式(2),(3)で表される分解反応、水蒸気改質反応は吸熱反応である。 In the above reaction, the partial oxidation reaction represented by the formula (1) is an exothermic reaction, and the decomposition reaction and the steam reforming reaction represented by the formulas (2) and (3) are endothermic reactions.
 反応器2Aにおいてメタノールの部分酸化反応、水蒸気改質反応および分解反応が進行して生成された反応生成ガスには、主成分としての水素ガスの他に、未反応のメタノール蒸気、二酸化炭素ガス、一酸化炭素ガス、水蒸気、ジメチルエーテルなどの不純物ガス(副成分)が含まれている。反応器2Aで生成された反応生成ガスは、第5配管14および第6配管15を介して水素ガス分離部3に供給される。 In the reaction product gas generated by the partial oxidation reaction, steam reforming reaction and decomposition reaction of methanol in the reactor 2A, in addition to hydrogen gas as a main component, unreacted methanol vapor, carbon dioxide gas, Impurity gases (subcomponents) such as carbon monoxide gas, water vapor, and dimethyl ether are contained. The reaction product gas generated in the reactor 2 </ b> A is supplied to the hydrogen gas separation unit 3 through the fifth pipe 14 and the sixth pipe 15.
 第5配管14と第6配管15との間には、熱交換器8が配設されている。この熱交換器8において、反応器2Aで生成された反応生成ガスと、原料のメタノールおよび水とが熱交換することによって、当該メタノールおよび水を効率よく加熱することができる。反応生成ガスは、メタノールおよび水と熱交換することによって効率よく冷却することができる。 A heat exchanger 8 is disposed between the fifth pipe 14 and the sixth pipe 15. In this heat exchanger 8, the reaction product gas generated in the reactor 2 </ b> A and the raw material methanol and water exchange heat, whereby the methanol and water can be efficiently heated. The reaction product gas can be efficiently cooled by exchanging heat with methanol and water.
 水素ガス分離工程s3は、第5配管14および第6配管15を介して水素ガス分離部3に供給される反応生成ガスから水素ガスを、不純物ガスと分離する工程であり、水素ガス分離部3により実施される。 The hydrogen gas separation step s3 is a step of separating hydrogen gas from an impurity gas from a reaction product gas supplied to the hydrogen gas separation unit 3 through the fifth pipe 14 and the sixth pipe 15, and the hydrogen gas separation unit 3 Is implemented.
 水素ガス分離部3としては、たとえば、吸着塔を備える圧力変動吸着装置(PSA装置)が用いられる。吸着塔は、高純度の水素ガスを効率よく製造する観点から、2~5本程度の複数本を用いることが好ましい。本実施形態では、水素ガス分離部3は、図3に示すように第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cの、3本の吸着塔を備えている。 As the hydrogen gas separation unit 3, for example, a pressure fluctuation adsorption device (PSA device) including an adsorption tower is used. From the viewpoint of efficiently producing high-purity hydrogen gas, it is preferable to use a plurality of adsorption towers of about 2 to 5 adsorption towers. In the present embodiment, the hydrogen gas separation unit 3 includes three adsorption towers, a first adsorption tower 3A, a second adsorption tower 3B, and a third adsorption tower 3C, as shown in FIG.
 第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cに充填される吸着剤としては、二酸化炭素、メタノール、ジメチルエーテルなどを除去する場合には、炭素系吸着剤などが用いられる。一酸化炭素を除去する場合には、ゼオライトなどが用いられる。また水蒸気などを除去する場合には、アルミナなどが用いられる。通常、これらの吸着剤は、未反応メタノールの蒸気、二酸化炭素ガス、一酸化炭素ガス、水蒸気、ジメチルエーテルなどの多種類の不純物ガスを吸着して除去するために、積層混合して用いられる。 As the adsorbent filled in the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C, a carbon-based adsorbent or the like is used when removing carbon dioxide, methanol, dimethyl ether, or the like. In the case of removing carbon monoxide, zeolite or the like is used. Further, when removing water vapor or the like, alumina or the like is used. Usually, these adsorbents are used in a mixed manner in order to adsorb and remove many kinds of impurity gases such as unreacted methanol vapor, carbon dioxide gas, carbon monoxide gas, water vapor, dimethyl ether and the like.
 本実施形態では、水素ガス分離部3は、図3に示される圧力変動吸着装置(PSA装置)である。水素ガス分離部3は、反応ガス生成部2の反応器2Aで得られた反応生成ガスを、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cのいずれか1つの吸着塔に、吸着開始圧力の加圧下で導入させて、反応生成ガス中の不純物ガスを吸着剤に吸着させて除去し、精製された水素ガスを吸着塔外に流出させる。吸着塔から流出された、精製された水素ガスは、第7配管16を介して水素ガス貯蔵用タンク17に貯蔵される。 In this embodiment, the hydrogen gas separation unit 3 is a pressure fluctuation adsorption device (PSA device) shown in FIG. The hydrogen gas separation unit 3 uses the reaction product gas obtained in the reactor 2A of the reaction gas generation unit 2 as one of the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C. The impurity gas in the reaction product gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the adsorption tower. The purified hydrogen gas flowing out from the adsorption tower is stored in the hydrogen gas storage tank 17 through the seventh pipe 16.
 また、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから水素ガスを流出させた後、該吸着塔内の圧力を吸着開始圧力よりも低い脱着開始圧力に変動させることによって、吸着剤に吸着した不純物ガスを含む吸着成分を吸着剤から脱着させて、脱着した吸着成分を含む脱着ガスを吸着塔外に流量を変化させながら流出させる。そして、吸着塔から流出された脱着ガスは、燃焼用ガスとして、第8配管18を介して保熱部4内に配設されているガス燃焼部9に送られる。なお、燃焼用ガスとしてガス燃焼部9に送られる脱着ガスには、不純物ガスと水素とが含まれている。 Further, after hydrogen gas is flowed out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C, the pressure in the adsorption tower is changed to a desorption start pressure lower than the adsorption start pressure. Then, the adsorbing component containing the impurity gas adsorbed on the adsorbent is desorbed from the adsorbent, and the desorbed gas containing the desorbed adsorbing component is discharged out of the adsorption tower while changing the flow rate. The desorption gas flowing out from the adsorption tower is sent as a combustion gas to the gas combustion unit 9 disposed in the heat retaining unit 4 through the eighth pipe 18. In addition, impurity gas and hydrogen are contained in the desorption gas sent to the gas combustion part 9 as combustion gas.
 水素ガス分離部3について詳細に説明する。水素ガス分離部3は、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cと、反応生成ガス供給配管dと、オフガス流出配管eと、水素ガス流出配管fと、塔内ガス導入用配管gと、塔内ガス取出用配管hとを含んで構成される。なお、水素ガス分離部3の反応生成ガス供給配管dは、図2に示す第6配管15に接続され、水素ガス流出配管fは、図2に示す第7配管16に接続され、オフガス流出配管eは、図2に示す第8配管18に接続される。 The hydrogen gas separation unit 3 will be described in detail. The hydrogen gas separation unit 3 includes a first adsorption tower 3A, a second adsorption tower 3B, and a third adsorption tower 3C, a reaction product gas supply pipe d, an offgas outflow pipe e, a hydrogen gas outflow pipe f, It includes a gas introduction pipe g and a tower gas extraction pipe h. Note that the reaction product gas supply pipe d of the hydrogen gas separation unit 3 is connected to the sixth pipe 15 shown in FIG. 2, and the hydrogen gas outlet pipe f is connected to the seventh pipe 16 shown in FIG. e is connected to the eighth pipe 18 shown in FIG.
 第1吸着塔3Aと反応生成ガス供給配管dとの間には、第6配管15を介して反応生成ガス供給配管dを流れる反応生成ガスが、第1吸着塔3Aに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁a1が設けられている。また、第1吸着塔3Aとオフガス流出配管eとの間には、第1吸着塔3Aから流出された脱着ガス(オフガス)が、オフガス流出配管eに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁a2が設けられている。また、第1吸着塔3Aと塔内ガス取出用配管hとの間には、第1吸着塔3Aから流出された塔内ガス(脱着ガスを含む洗浄ガス)が、塔内ガス取出用配管hに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁a3が設けられている。また、第1吸着塔3Aと塔内ガス導入用配管gとの間には、第1吸着塔3A以外の他の第2吸着塔3Bまたは第3吸着塔3Cから流出されて、塔内ガス導入用配管gを流れる塔内ガス(脱着ガスを含む洗浄ガス)が、第1吸着塔3Aに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁a4が設けられている。また、第1吸着塔3Aと水素ガス流出配管fとの間には、第1吸着塔3Aから流出された水素ガスが、水素ガス流出配管fに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁a5が設けられている。 Between the first adsorption tower 3A and the reaction product gas supply pipe d, there is a pipe through which the reaction product gas flowing through the reaction product gas supply pipe d via the sixth pipe 15 flows into the first adsorption tower 3A. It is connected. The pipe is provided with an automatic opening / closing valve a1 for opening and closing the flow path. Further, between the first adsorption tower 3A and the off-gas outflow pipe e, a pipe for allowing desorption gas (off-gas) flowing out from the first adsorption tower 3A to flow into the off-gas outflow pipe e is connected. The pipe is provided with an automatic opening / closing valve a2 for opening and closing the flow path. Further, between the first adsorption tower 3A and the gas extraction pipe h in the tower, the gas in the tower (cleaning gas including desorption gas) flowing out from the first adsorption tower 3A is converted into the gas extraction pipe h in the tower. A pipe for flowing into the pipe is connected. The pipe is provided with an automatic opening / closing valve a3 for opening and closing the flow path. Further, between the first adsorption tower 3A and the gas introduction pipe g in the tower, the gas is introduced from the second adsorption tower 3B or the third adsorption tower 3C other than the first adsorption tower 3A and introduced into the tower. A pipe for allowing the in-tower gas (cleaning gas including desorption gas) flowing through the pipe for piping g to flow into the first adsorption tower 3A is connected. The pipe is provided with an automatic opening / closing valve a4 for opening and closing the flow path. A pipe for allowing the hydrogen gas flowing out from the first adsorption tower 3A to flow into the hydrogen gas outflow pipe f is connected between the first adsorption tower 3A and the hydrogen gas outflow pipe f. The pipe is provided with an automatic opening / closing valve a5 for opening and closing the flow path.
 第2吸着塔3Bと反応生成ガス供給配管dとの間には、第6配管15を介して反応生成ガス供給配管dを流れる反応生成ガスが、第2吸着塔3Bに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁b1が設けられている。また、第2吸着塔3Bとオフガス流出配管eとの間には、第2吸着塔3Bから流出された脱着ガス(オフガス)が、オフガス流出配管eに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁b2が設けられている。また、第2吸着塔3Bと塔内ガス取出用配管hとの間には、第2吸着塔3Bから流出された塔内ガス(脱着ガスを含む洗浄ガス)が、塔内ガス取出用配管hに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁b3が設けられている。また、第2吸着塔3Bと塔内ガス導入用配管gとの間には、第2吸着塔3B以外の他の第1吸着塔3Aまたは第3吸着塔3Cから流出されて、塔内ガス導入用配管gを流れる塔内ガス(脱着ガスを含む洗浄ガス)が、第2吸着塔3Bに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁b4が設けられている。また、第2吸着塔3Bと水素ガス流出配管fとの間には、第2吸着塔3Bから流出された水素ガスが、水素ガス流出配管fに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁b5が設けられている。 Between the second adsorption tower 3B and the reaction product gas supply pipe d, there is a pipe through which the reaction product gas flowing through the reaction product gas supply pipe d via the sixth pipe 15 flows into the second adsorption tower 3B. It is connected. The pipe is provided with an automatic opening / closing valve b1 for opening and closing the flow path. In addition, a pipe for allowing desorption gas (off gas) flowing out from the second adsorption tower 3B to flow into the off gas outflow pipe e is connected between the second adsorption tower 3B and the off gas outflow pipe e. The pipe is provided with an automatic opening / closing valve b2 for opening and closing the flow path. In addition, between the second adsorption tower 3B and the gas extraction pipe h in the tower, the gas in the tower (cleaning gas including desorption gas) flowing out from the second adsorption tower 3B is converted into the gas extraction pipe h in the tower. A pipe for flowing into the pipe is connected. The pipe is provided with an automatic opening / closing valve b3 for opening and closing the flow path. Further, between the second adsorption tower 3B and the gas introduction pipe g in the tower, the gas is introduced from the first adsorption tower 3A or the third adsorption tower 3C other than the second adsorption tower 3B and introduced into the tower. A pipe for allowing the gas in the tower (the cleaning gas including the desorption gas) flowing through the pipe g to flow into the second adsorption tower 3B is connected. The pipe is provided with an automatic opening / closing valve b4 for opening and closing the flow path. A pipe for allowing the hydrogen gas flowing out from the second adsorption tower 3B to flow into the hydrogen gas outflow pipe f is connected between the second adsorption tower 3B and the hydrogen gas outflow pipe f. The pipe is provided with an automatic open / close valve b5 for opening and closing the flow path.
 第3吸着塔3Cと反応生成ガス供給配管dとの間には、第6配管15を介して反応生成ガス供給配管dを流れる反応生成ガスが、第3吸着塔3Cに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁c1が設けられている。また、第3吸着塔3Cとオフガス流出配管eとの間には、第3吸着塔3Cから流出された脱着ガス(オフガス)が、オフガス流出配管eに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁c2が設けられている。また、第3吸着塔3Cと塔内ガス取出用配管hとの間には、第3吸着塔3Cから流出された塔内ガス(脱着ガスを含む洗浄ガス)が、塔内ガス取出用配管hに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁c3が設けられている。また、第3吸着塔3Cと塔内ガス導入用配管gとの間には、第3吸着塔3C以外の他の第1吸着塔3Aまたは第2吸着塔3Bから流出されて、塔内ガス導入用配管gを流れる塔内ガス(脱着ガスを含む洗浄ガス)が、第3吸着塔3Cに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁c4が設けられている。また、第3吸着塔3Cと水素ガス流出配管fとの間には、第3吸着塔3Cから流出された水素ガスが、水素ガス流出配管fに流入するための配管が接続されている。前記配管には流路を開閉する自動開閉弁c5が設けられている。 Between the third adsorption tower 3C and the reaction product gas supply pipe d, there is a pipe through which the reaction product gas flowing through the reaction product gas supply pipe d through the sixth pipe 15 flows into the third adsorption tower 3C. It is connected. The pipe is provided with an automatic opening / closing valve c1 for opening and closing the flow path. In addition, between the third adsorption tower 3C and the off-gas outflow pipe e, a pipe for connecting the desorption gas (off-gas) flowing out from the third adsorption tower 3C into the off-gas outflow pipe e is connected. The pipe is provided with an automatic opening / closing valve c2 for opening and closing the flow path. Further, between the third adsorption tower 3C and the gas extraction pipe h in the tower, the tower gas (cleaning gas including desorption gas) that has flowed out of the third adsorption tower 3C is converted into the gas extraction pipe h in the tower. A pipe for flowing into the pipe is connected. The pipe is provided with an automatic opening / closing valve c3 for opening and closing the flow path. Further, between the third adsorption tower 3C and the gas introduction pipe g in the tower, it flows out from the first adsorption tower 3A or the second adsorption tower 3B other than the third adsorption tower 3C and introduces the gas in the tower. A pipe for allowing the in-tower gas (cleaning gas including desorption gas) flowing through the pipe g to flow into the third adsorption tower 3C is connected. The pipe is provided with an automatic opening / closing valve c4 for opening and closing the flow path. Further, a pipe for allowing the hydrogen gas flowing out from the third adsorption tower 3C to flow into the hydrogen gas outflow pipe f is connected between the third adsorption tower 3C and the hydrogen gas outflow pipe f. The pipe is provided with an automatic opening / closing valve c5 for opening and closing the flow path.
 また、オフガス流出配管eには、水素ガス分離部3からガス燃焼部9に向けて流出される脱着ガス(オフガス)の流量を調整するためのオフガス流量調整弁e1が設けられている。さらに、塔内ガス取出用配管hと塔内ガス導入用配管gとは、洗浄ガス流量調整弁h1を介して接続されており、洗浄ガス流量調整弁h1の開度が調整されることで、塔内ガス取出用配管hを流れる塔内ガス(洗浄ガス)の、塔内ガス導入用配管gへの供給流量が調整される。 The off-gas outflow pipe e is provided with an off-gas flow rate adjusting valve e1 for adjusting the flow rate of desorption gas (off-gas) flowing out from the hydrogen gas separation unit 3 toward the gas combustion unit 9. Furthermore, the gas extraction pipe h in the tower and the gas introduction pipe g in the tower are connected via a cleaning gas flow rate adjustment valve h1, and the opening degree of the cleaning gas flow rate adjustment valve h1 is adjusted. The supply flow rate of the gas in the tower (cleaning gas) flowing through the gas extraction pipe h in the tower to the gas introduction pipe g in the tower is adjusted.
 第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cのそれぞれの吸着塔によって実行される水素ガス分離工程s3は、図1に示すように、吸着工程s31と、洗浄ガス流出工程s32と、均圧ガス流出工程s33と、第1脱着工程s34と、第2脱着工程s35と、洗浄ガス流入工程s36と、均圧ガス流入工程s37と、昇圧工程s38とを含む。第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cのそれぞれの吸着塔によって実行される水素ガス分離工程s3について、図4A~図4Iを用いて説明する。図4A~図4Iは、水素ガス分離部3の動作を説明するための図である。 As shown in FIG. 1, the hydrogen gas separation step s3 executed by the respective adsorption towers of the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C includes an adsorption process s31 and a cleaning gas outflow process. s32, a pressure equalizing gas outflow step s33, a first desorption step s34, a second desorption step s35, a cleaning gas inflow step s36, a pressure equalizing gas inflow step s37, and a pressure increasing step s38. The hydrogen gas separation step s3 executed by each of the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C will be described with reference to FIGS. 4A to 4I. 4A to 4I are diagrams for explaining the operation of the hydrogen gas separation unit 3. FIG.
 水素ガス分離工程s3では、まず、図4Aに示されるように、第1吸着塔3Aにおいて吸着工程s31が実施され、第2吸着塔3Bにおいて洗浄ガス流入工程s36が実施され、第3吸着塔3Cにおいて洗浄ガス流出工程s32が実施される。具体的には、第1吸着塔3Aにおいては、自動開閉弁a1が開放され、自動開閉弁a2が閉鎖され、自動開閉弁a3が閉鎖され、自動開閉弁a4が閉鎖され、自動開閉弁a5が開放されて、第1吸着塔3Aにおいて吸着工程s31が実施される。また、第2吸着塔3Bにおいては、自動開閉弁b1が閉鎖され、自動開閉弁b2が開放され、自動開閉弁b3が閉鎖され、自動開閉弁b4が開放され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて洗浄ガス流入工程s36が実施される。また、第3吸着塔3Cにおいては、自動開閉弁c1が閉鎖され、自動開閉弁c2が閉鎖され、自動開閉弁c3が開放され、自動開閉弁c4が閉鎖され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて洗浄ガス流出工程s32が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1は開度が100%となるように開放されている。 In the hydrogen gas separation step s3, first, as shown in FIG. 4A, the adsorption step s31 is performed in the first adsorption tower 3A, the cleaning gas inflow step s36 is performed in the second adsorption tower 3B, and the third adsorption tower 3C. The cleaning gas outflow step s32 is performed in FIG. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is opened, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is opened. Opened, the adsorption step s31 is performed in the first adsorption tower 3A. In the second adsorption tower 3B, the automatic on-off valve b1 is closed, the automatic on-off valve b2 is opened, the automatic on-off valve b3 is closed, the automatic on-off valve b4 is opened, and the automatic on-off valve b5 is closed. The cleaning gas inflow step s36 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed. The cleaning gas outflow step s32 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is opened so that the opening degree becomes 100%.
 上記の図4Aに示される水素ガス分離工程s3では、第1吸着塔3Aには、反応生成ガス供給配管dおよび自動開閉弁a1を介して反応生成ガスが導入される。そして、第1吸着塔3Aでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第1吸着塔3Aから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁a5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク(回収器)17に回収される(回収工程s4)。 In the hydrogen gas separation step s3 shown in FIG. 4A, the reaction product gas is introduced into the first adsorption tower 3A through the reaction product gas supply pipe d and the automatic opening / closing valve a1. In the first adsorption tower 3A, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, and flows through the seventh pipe 16 to pass through the hydrogen gas storage tank (collector). ) 17 (collection step s4).
 また、上記の図4Aに示される水素ガス分離工程s3では、第2吸着塔3Bには、自動開閉弁c3、塔内ガス取出用配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁b4を介して、第3吸着塔3Cから流出された塔内ガス(洗浄ガス)が導入される。ここで、第2吸着塔3Bと第3吸着塔3Cとの塔内の圧力を比較すると、第3吸着塔3Cが第2吸着塔3Bよりも高圧となっている。そのため、第3吸着塔3Cの塔内ガス(洗浄ガス)を第2吸着塔3Bに導入することにより、第3吸着塔3Cの塔内が減圧され、第2吸着塔3Bからは塔内に残留する塔内ガス(洗浄ガス)が流出される。この第2吸着塔3B内の塔内ガス(脱着ガスを含む洗浄ガス)は、自動開閉弁b2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。このようにして、ガス燃焼部9に脱着ガスを含む塔内ガスがオフガスとして供給されると、供給されたオフガスが燃焼される(脱着ガス燃焼工程s6)。ガス燃焼部9でオフガスが燃焼されると、ガス燃焼部9に供給されたオフガス量に応じた燃焼熱によって保熱部4の温度が、該オフガス量に応じて上昇する。保熱部4の温度が上昇すると、保熱部4内に配置される原料気化部1が加熱されて、メタノールおよび水を含む液体原料が気化される。 In the hydrogen gas separation step s3 shown in FIG. 4A, the second adsorption tower 3B includes an automatic on-off valve c3, a gas extraction pipe h in the tower, a cleaning gas flow rate adjustment valve h1, and a gas introduction pipe in the tower. The gas in the tower (cleaning gas) flowing out from the third adsorption tower 3C is introduced through g and the automatic opening / closing valve b4. Here, when the pressures in the second adsorption tower 3B and the third adsorption tower 3C are compared, the third adsorption tower 3C has a higher pressure than the second adsorption tower 3B. Therefore, by introducing the gas (cleaning gas) in the third adsorption tower 3C into the second adsorption tower 3B, the inside of the third adsorption tower 3C is depressurized and remains in the tower from the second adsorption tower 3B. The gas inside the tower (cleaning gas) is discharged. The gas in the second adsorption tower 3B (cleaning gas including desorption gas) flows into the eighth pipe 18 via the automatic on-off valve b2, the off-gas outflow pipe e, and the off-gas flow rate adjustment valve e1. The gas flows through the eight pipes 18 and is supplied to the gas combustion unit 9 as combustion gas (desorption gas supply step s5). In this way, when the tower gas containing the desorption gas is supplied to the gas combustion unit 9 as the off gas, the supplied off gas is burned (desorption gas combustion step s6). When off-gas is combusted in the gas combustion unit 9, the temperature of the heat retaining unit 4 rises according to the amount of off-gas due to combustion heat corresponding to the amount of off-gas supplied to the gas combustion unit 9. When the temperature of the heat retaining unit 4 rises, the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is heated, and a liquid raw material containing methanol and water is vaporized.
 脱着ガス燃焼工程s6は、オフガス(脱着ガス)を燃焼する工程であり、ガス燃焼部9により実施される。本実施形態では、オフガスを排気ガスとして処分したりするのではなく、前記したように、保熱部4内に配設されたガス燃焼部9で燃焼することによってオフガスの有効利用を図る。 The desorption gas combustion step s6 is a step of burning off-gas (desorption gas), and is performed by the gas combustion unit 9. In the present embodiment, the off gas is not disposed as exhaust gas, but is effectively used by burning in the gas combustion unit 9 disposed in the heat retaining unit 4 as described above.
 オフガスを燃焼する際に発生する燃焼熱を利用してメタノールおよび水を加熱すれば、メタノール蒸気および水蒸気を効率よく製造することができる。また、同時にオフガスの燃焼熱により、上記式(2)、(3)で表される、吸熱を伴うメタノールの水蒸気改質反応および分解反応に熱を供給することができることから、効率よく水素ガスを生成させることができる。 If methanol and water are heated using combustion heat generated when off-gas is burned, methanol vapor and water vapor can be produced efficiently. At the same time, heat can be supplied to the steam reforming reaction and decomposition reaction of methanol accompanied by endotherm represented by the above formulas (2) and (3) by the combustion heat of the off-gas. Can be generated.
 オフガスを燃焼する際には、触媒を用いることが好ましい。触媒の中では、触媒活性が高く、耐熱性に優れていることから、白金触媒が好ましい。触媒の形状としては、ハニカム構造を有する担体に白金が担持されたものが好ましい。メタルハニカム、セラミックハニカムが用いられる。白金触媒は白金粒子であってもよく、アルミナ粒子などの担体に白金が担持されたものであってもよい。オフガスを燃焼する際の触媒としては、前記白金の他に、パラジウム、ロジウム、銀などの貴金属やこれらの金属の化合物などが用いられる。 It is preferable to use a catalyst when burning off-gas. Among the catalysts, a platinum catalyst is preferable because of its high catalytic activity and excellent heat resistance. As the shape of the catalyst, a catalyst in which platinum is supported on a carrier having a honeycomb structure is preferable. Metal honeycombs and ceramic honeycombs are used. The platinum catalyst may be platinum particles, or may be one in which platinum is supported on a carrier such as alumina particles. As a catalyst for burning off-gas, in addition to platinum, noble metals such as palladium, rhodium and silver, compounds of these metals, and the like are used.
 オフガスを燃焼する際には、オフガスを燃焼させるために空気を添加することが好ましい。空気の量は、オフガスに含まれている水素ガスが十分に燃焼する量であればよく、特に限定されない。オフガスを燃焼する際に発生する燃焼熱による反応ガスであるメタノール蒸気および水蒸気の加熱温度は、未反応のメタノールの残存量を少なくして水素ガスの発生量を増大させる観点から、好ましくは250℃以上であり、触媒の劣化を抑制する観点から好ましくは600℃以下である。 When burning off-gas, it is preferable to add air in order to burn off-gas. The amount of air is not particularly limited as long as hydrogen gas contained in the off-gas is sufficiently combusted. The heating temperature of methanol vapor and water vapor, which are reaction gases due to combustion heat generated when off-gas is burned, is preferably 250 ° C. from the viewpoint of increasing the amount of hydrogen gas generated by reducing the amount of unreacted methanol remaining. From the viewpoint of suppressing the deterioration of the catalyst, the temperature is preferably 600 ° C. or lower.
 オフガスを燃焼させるための空気はブロワ19によって送風され、加熱器20によって加熱される。加熱される温度は、未反応のメタノールの残存量を少なくして水素ガスの発生量を増大させる観点から、好ましくは150℃以上であり、触媒の劣化を抑制する観点から好ましくは300℃以下である。 The air for burning off gas is blown by the blower 19 and heated by the heater 20. The temperature to be heated is preferably 150 ° C. or higher from the viewpoint of increasing the amount of hydrogen gas generated by reducing the remaining amount of unreacted methanol, and preferably 300 ° C. or lower from the viewpoint of suppressing catalyst deterioration. is there.
 加熱された空気は配管21を介してガス燃焼部9に送られる。ガス燃焼部9に送られた空気は、第8配管18を介して送られてきたオフガス(脱着ガス)と混合され、オフガスは白金触媒上で燃焼する。 The heated air is sent to the gas combustion unit 9 through the pipe 21. The air sent to the gas combustion unit 9 is mixed with the off gas (desorption gas) sent via the eighth pipe 18, and the off gas burns on the platinum catalyst.
 燃焼した後の燃焼後ガスは、メタノールおよび水の気化に熱源として用いられる。また、燃焼後ガスは、反応ガス生成部2の反応式(2)および(3)の吸熱を伴う反応に対して熱を外部から供給し反応を進行しやすくするため熱交換する。熱交換した燃焼後ガスは、配管22からパージされる。 After combustion, the gas after combustion is used as a heat source for vaporizing methanol and water. Further, the post-combustion gas exchanges heat in order to facilitate the reaction by supplying heat from the outside to the reaction involving the endothermic reaction in the reaction equations (2) and (3) of the reaction gas generation unit 2. The post-combustion gas subjected to heat exchange is purged from the pipe 22.
 次に、水素ガス分離工程s3では、図4Bに示されるように、第1吸着塔3Aにおいて吸着工程s31が実施され、第2吸着塔3Bにおいて均圧ガス流入工程s37が実施され、第3吸着塔3Cにおいて均圧ガス流出工程s33が実施される。具体的には、第1吸着塔3Aにおいては、自動開閉弁a1が開放され、自動開閉弁a2が閉鎖され、自動開閉弁a3が閉鎖され、自動開閉弁a4が閉鎖され、自動開閉弁a5が開放されて、第1吸着塔3Aにおいて吸着工程s31が実施される。また、第2吸着塔3Bにおいては、自動開閉弁b1が閉鎖され、自動開閉弁b2が閉鎖され、自動開閉弁b3が閉鎖され、自動開閉弁b4が開放され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて均圧ガス流入工程s37が実施される。また、第3吸着塔3Cにおいては、自動開閉弁c1が閉鎖され、自動開閉弁c2が閉鎖され、自動開閉弁c3が開放され、自動開閉弁c4が閉鎖され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて均圧ガス流出工程s33が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1は閉鎖されている。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4B, the adsorption step s31 is performed in the first adsorption tower 3A, the pressure equalizing gas inflow step s37 is performed in the second adsorption tower 3B, and the third adsorption. A pressure equalizing gas outflow step s33 is performed in the tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is opened, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is opened. Opened, the adsorption step s31 is performed in the first adsorption tower 3A. In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2, the automatic open / close valve b3, the automatic open / close valve b4, and the automatic open / close valve b5 are closed. The equalized gas inflow step s37 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed. The equalized gas outflow step s33 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is closed.
 上記の図4Bに示される水素ガス分離工程s3では、第1吸着塔3Aには、反応生成ガス供給配管dおよび自動開閉弁a1を介して反応生成ガスが導入される。そして、第1吸着塔3Aでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第1吸着塔3Aから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁a5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。 In the hydrogen gas separation step s3 shown in FIG. 4B above, the reaction product gas is introduced into the first adsorption tower 3A via the reaction product gas supply pipe d and the automatic opening / closing valve a1. In the first adsorption tower 3A, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
 また、上記の図4Bに示される水素ガス分離工程s3では、第3吸着塔3Cから塔内ガス取出配管hを介して流出された塔内ガス(洗浄ガス)が、自動開閉弁c3、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁b4を介して第2吸着塔3Bに導入される。前述の図4Aに示される水素ガス分離工程s3では、自動開閉弁b2、オフガス流出配管e、およびオフガス流量調整弁e1を介して、第2吸着塔3Bから塔内ガス(洗浄ガス)をオフガスとして流出させる。図4Bに示される水素ガス分離工程s3では、自動開閉弁b2を閉鎖させることによって、第2吸着塔3Bと第3吸着塔3Cとの間で、塔内圧力の均圧化が図られる。これによって、第3吸着塔3Cの圧力がさらに減圧されるとともに、第2吸着塔3Bの圧力が昇圧される。 In the hydrogen gas separation step s3 shown in FIG. 4B, the tower gas (cleaning gas) that has flowed out of the third adsorption tower 3C through the tower gas extraction pipe h is supplied with the automatic open / close valve c3 and the cleaning gas. The gas is introduced into the second adsorption tower 3B through the flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve b4. In the hydrogen gas separation step s3 shown in FIG. 4A described above, the gas in the tower (cleaning gas) is turned off gas from the second adsorption tower 3B via the automatic opening / closing valve b2, the off gas outflow pipe e, and the off gas flow rate adjusting valve e1. Spill. In the hydrogen gas separation step s3 shown in FIG. 4B, the pressure in the tower is equalized between the second adsorption tower 3B and the third adsorption tower 3C by closing the automatic opening / closing valve b2. As a result, the pressure in the third adsorption tower 3C is further reduced, and the pressure in the second adsorption tower 3B is increased.
 なお、図4Bに示される水素ガス分離工程s3では、オフガス流出配管eの流路を開閉するための自動開閉弁e1が閉鎖されているので、オフガス流出配管eに接続された第8配管18へのオフガスの流入が停止される。このため、第8配管18に接続されたガス燃焼部9に対するオフガスの供給が停止される。このようにして、ガス燃焼部9に対するオフガスの供給が停止されると、ガス燃焼部9におけるオフガスの燃焼動作が停止される。これによって、保熱部4の温度が下降する。保熱部4の温度が下降すると、保熱部4内に配置される原料気化部1の温度が下降して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が低下する。 In the hydrogen gas separation step s3 shown in FIG. 4B, since the automatic on-off valve e1 for opening and closing the flow path of the off-gas outflow pipe e is closed, to the eighth pipe 18 connected to the off-gas outflow pipe e. Inflow of off gas is stopped. For this reason, the supply of off-gas to the gas combustion unit 9 connected to the eighth pipe 18 is stopped. Thus, when the supply of the off gas to the gas combustion unit 9 is stopped, the off gas combustion operation in the gas combustion unit 9 is stopped. As a result, the temperature of the heat retaining unit 4 decreases. When the temperature of the heat retaining unit 4 is lowered, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is lowered, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water is lowered. .
 次に、水素ガス分離工程s3では、図4Cに示されるように、第1吸着塔3Aにおいて吸着工程s31が実施され、第2吸着塔3Bにおいて昇圧工程s38が実施され、第3吸着塔3Cにおいて脱着工程(多段階で各吸着塔を減圧させるときの、第1段階目の第1脱着工程s34および2段階目の第2脱着工程s35)が実施される。第3吸着塔3Cにおいて1段階目の第1脱着工程s34が実施されるときには、第1吸着塔3Aにおいて、自動開閉弁a1が開放され、自動開閉弁a2が閉鎖され、自動開閉弁a3が開放され、自動開閉弁a4が閉鎖され、自動開閉弁a5が開放されて、第1吸着塔3Aにおいて吸着工程s31が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が閉鎖され、自動開閉弁b2が閉鎖され、自動開閉弁b3が閉鎖され、自動開閉弁b4が開放され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて昇圧工程s38が実施される。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4C, the adsorption step s31 is performed in the first adsorption tower 3A, the pressurization step s38 is performed in the second adsorption tower 3B, and the third adsorption tower 3C is performed. A desorption process (a first desorption process s34 in the first stage and a second desorption process s35 in the second stage when depressurizing each adsorption tower in multiple stages) is performed. When the first desorption step s34 in the first stage is performed in the third adsorption tower 3C, the automatic opening / closing valve a1 is opened, the automatic opening / closing valve a2 is closed, and the automatic opening / closing valve a3 is opened in the first adsorption tower 3A. Then, the automatic open / close valve a4 is closed, the automatic open / close valve a5 is opened, and the adsorption step s31 is performed in the first adsorption tower 3A. In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2 are closed, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is opened, and the automatic open / close valve b5 is closed. The pressure increasing step s38 is performed in the second adsorption tower 3B.
 また、第3吸着塔3Cにおいて、自動開閉弁c1が閉鎖され、自動開閉弁c2が開放され、自動開閉弁c3が閉鎖され、自動開閉弁c4が閉鎖され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて第1脱着工程s34が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1の開度は、多段階(2段階)で脱着動作が実施される第3吸着塔3Cにおける、下記式(I)で表される1段階目の減圧率Pが35%以下となるように、調整されている。
   減圧率P(%)=[(P-P)/P]×100    …(I)
 (式中、Pは脱着開始圧力(kPaG)を示し、Pは1段階目の脱着終了圧力(kPaG)を示す。)
In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2 are opened, the automatic open / close valve c3 is closed, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed. The first desorption step s34 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the following formula (I) in the third adsorption tower 3C in which the desorption operation is performed in multiple stages (two stages). as first stage of the pressure reduction rate P a to be of 35% or less, it is adjusted.
Decompression rate P A (%) = [(P S −P E ) / P S ] × 100 (I)
(Wherein, P S represents a desorption start pressure (kPaG), P E represents the first stage of the desorption completion pressure (kPaG).)
 上記の図4Cに示される水素ガス分離工程s3では、第1吸着塔3Aには、反応生成ガス供給配管dおよび自動開閉弁a1を介して反応生成ガスが導入される。そして、第1吸着塔3Aでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第1吸着塔3Aから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁a5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。第1吸着塔3Aから流出された水素ガスの一部が、自動開閉弁a3、塔内ガス取出配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁b4を介して第2吸着塔3Bに導入され、第2吸着塔3Bの塔内の圧力が昇圧される。 In the hydrogen gas separation step s3 shown in FIG. 4C above, the reaction product gas is introduced into the first adsorption tower 3A through the reaction product gas supply pipe d and the automatic opening / closing valve a1. In the first adsorption tower 3A, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4). Part of the hydrogen gas flowing out from the first adsorption tower 3A passes through the automatic open / close valve a3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic open / close valve b4. Is introduced into the second adsorption tower 3B, and the pressure in the second adsorption tower 3B is increased.
 一方、第3吸着塔3Cは、塔内の圧力が、吸着工程s31が実施されている第1吸着塔3Aの塔内の圧力である吸着開始圧力よりも低い圧力の脱着開始圧力に減圧されるとともに、自動開閉弁c1,c3,c4,c5が閉鎖され、自動開閉弁c2が開放されている。これによって、第3吸着塔3C内では吸着剤に吸着されていた不純物ガスを含む吸着成分が吸着剤から脱着し、脱着した脱着ガス(オフガス)が第3吸着塔3Cから流出される。第3吸着塔3Cから流出された脱着ガスは、自動開閉弁c2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。ただし、オフガス流量調整弁e1の開度が、上記式(I)で表される減圧率Pが35%以下となるように調整されているので、ガス燃焼部9にオフガスとして供給される脱着ガスの量は絞られることになり、保熱部4の温度が図4Bの場合よりもさらに下降し続ける。保熱部4の温度が下降すると、保熱部4内に配置される原料気化部1の温度が下降して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が低下する。 On the other hand, in the third adsorption tower 3C, the pressure in the tower is reduced to a desorption start pressure that is lower than the adsorption start pressure, which is the pressure in the first adsorption tower 3A in which the adsorption step s31 is performed. At the same time, the automatic open / close valves c1, c3, c4, and c5 are closed, and the automatic open / close valve c2 is opened. As a result, the adsorbing component including the impurity gas adsorbed by the adsorbent in the third adsorption tower 3C is desorbed from the adsorbent, and the desorbed desorption gas (off-gas) flows out from the third adsorption tower 3C. The desorption gas flowing out from the third adsorption tower 3C flows into the eighth pipe 18 through the automatic opening / closing valve c2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5). However, the opening degree of the off-gas flow rate adjusting valve e1 is, since pressure reduction rate P A represented by the formula (I) is adjusted to be 35% or less, is supplied as the off gas to the gas combustion unit 9 desorption The amount of gas will be reduced, and the temperature of the heat retaining unit 4 will continue to fall further than in the case of FIG. 4B. When the temperature of the heat retaining unit 4 is lowered, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is lowered, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water is lowered. .
 次に、水素ガス分離工程s3では、第3吸着塔3Cにおいて第2脱着工程s35(多段階で各吸着塔を減圧させるときの、第2段階目の脱着工程)が実施される。第3吸着塔3Cにおいて第2脱着工程s35が実施されるときには、図4Cに示されるように、第1吸着塔3Aにおいて吸着工程s31が実施され、第2吸着塔3Bにおいて昇圧工程s38が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が開放され、自動開閉弁a2が閉鎖され、自動開閉弁a3が開放され、自動開閉弁a4が閉鎖され、自動開閉弁a5が開放されて、第1吸着塔3Aにおいて吸着工程s31が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が閉鎖され、自動開閉弁b2が閉鎖され、自動開閉弁b3が閉鎖され、自動開閉弁b4が開放され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて昇圧工程s38が実施される。 Next, in the hydrogen gas separation step s3, the second desorption step s35 (second desorption step when each adsorption tower is depressurized in multiple stages) is performed in the third adsorption tower 3C. When the second desorption process s35 is performed in the third adsorption tower 3C, as shown in FIG. 4C, the adsorption process s31 is performed in the first adsorption tower 3A, and the pressure increasing process s38 is performed in the second adsorption tower 3B. The Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is opened, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is opened, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is opened. Thus, the adsorption step s31 is performed in the first adsorption tower 3A. In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2 are closed, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is opened, and the automatic open / close valve b5 is closed. The pressure increasing step s38 is performed in the second adsorption tower 3B.
 また、第3吸着塔3Cにおいて、自動開閉弁c1が閉鎖され、自動開閉弁c2が開放され、自動開閉弁c3が閉鎖され、自動開閉弁c4が閉鎖され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて第1脱着工程s34が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1の開度は、多段階(2段階)で脱着動作が実施される第3吸着塔3Cにおける、下記式(II)で表される2段階目の減圧率PA2が65%以上となるように、調整されている。
   減圧率PA2(%)=[(P-PE2)/P]×100  …(II)
 (式中、Pは脱着開始圧力(kPaG)を示し、PE2は2段階目の脱着終了圧力(kPaG)を示す。)
In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2 are opened, the automatic open / close valve c3 is closed, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is closed. The first desorption step s34 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the following formula (II) in the third adsorption tower 3C in which the desorption operation is performed in multiple stages (two stages). The second stage pressure reduction rate PA2 is adjusted to be 65% or more.
Decompression rate P A2 (%) = [(P S −P E2 ) / P S ] × 100 (II)
(Wherein, P S represents a desorption start pressure (kPaG), P E2 indicates the second stage of desorption completion pressure (kPaG).)
 第3吸着塔3Cにおいて第2脱着工程s35が実施される水素ガス分離工程s3では、図4Cに示されるように、第1吸着塔3Aには、反応生成ガス供給配管dおよび自動開閉弁a1を介して反応生成ガスが導入される。そして、第1吸着塔3Aでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第1吸着塔3Aから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁a5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。第1吸着塔3Aから流出された水素ガスの一部が、自動開閉弁a3、塔内ガス取出配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁b4を介して第2吸着塔3Bに導入され、第2吸着塔3Bの塔内の圧力が昇圧される。 In the hydrogen gas separation step s3 in which the second desorption step s35 is performed in the third adsorption tower 3C, as shown in FIG. 4C, the first adsorption tower 3A is provided with a reaction product gas supply pipe d and an automatic on-off valve a1. Through which reaction product gas is introduced. In the first adsorption tower 3A, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the first adsorption tower 3A flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve a5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4). Part of the hydrogen gas flowing out from the first adsorption tower 3A passes through the automatic open / close valve a3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic open / close valve b4. Is introduced into the second adsorption tower 3B, and the pressure in the second adsorption tower 3B is increased.
 一方、第3吸着塔3Cは、塔内の圧力が、第1脱着工程s34よりもさらに減圧されるとともに、自動開閉弁c1,c3,c4,c5が閉鎖され、自動開閉弁c2が開放されている。これによって、第3吸着塔3C内では吸着剤に吸着されていた不純物ガスを含む吸着成分が吸着剤から脱着し、脱着した脱着ガス(オフガス)が第3吸着塔3Cから流出される。第3吸着塔3Cから流出された脱着ガスは、自動開閉弁c2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。ここで、オフガス流量調整弁e1の開度が、上記式(II)で表される減圧率PA2が65%以上となるように調整されているので、ガス燃焼部9にオフガスとして供給される脱着ガスの量が、第1脱着工程s34よりも増加することになり、保熱部4の温度が上昇する。保熱部4の温度が上昇すると、保熱部4内に配置される原料気化部1の温度が上昇して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が上昇する。 On the other hand, in the third adsorption tower 3C, the pressure in the tower is further reduced than in the first desorption step s34, the automatic open / close valves c1, c3, c4, and c5 are closed, and the automatic open / close valve c2 is opened. Yes. As a result, the adsorbing component including the impurity gas adsorbed by the adsorbent in the third adsorption tower 3C is desorbed from the adsorbent, and the desorbed desorption gas (off-gas) flows out from the third adsorption tower 3C. The desorption gas flowing out from the third adsorption tower 3C flows into the eighth pipe 18 through the automatic opening / closing valve c2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5). Here, since the opening degree of the off-gas flow rate adjusting valve e1 is adjusted so that the pressure reduction rate PA2 expressed by the above formula (II) is 65% or more, it is supplied to the gas combustion unit 9 as off-gas. The amount of desorption gas will increase more than the 1st desorption process s34, and the temperature of the heat retention part 4 will rise. When the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
 次に、水素ガス分離工程s3では、図4Dに示されるように、第1吸着塔3Aにおいて洗浄ガス流出工程s32が実施され、第2吸着塔3Bにおいて吸着工程s31が実施され、第3吸着塔3Cにおいて洗浄ガス流入工程s36が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が閉鎖され、自動開閉弁a3が開放され、自動開閉弁a4が閉鎖され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて洗浄ガス流出工程s32が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が開放され、自動開閉弁b2が閉鎖され、自動開閉弁b3が閉鎖され、自動開閉弁b4が閉鎖され、自動開閉弁b5が開放されて、第2吸着塔3Bにおいて吸着工程s31が実施される。また、第3吸着塔3Cにおいて、自動開閉弁c1が閉鎖され、自動開閉弁c2が開放され、自動開閉弁c3が閉鎖され、自動開閉弁c4が開放され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて洗浄ガス流入工程s36が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1は開度が100%となるように開放されている。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4D, the cleaning gas outflow step s32 is performed in the first adsorption tower 3A, the adsorption step s31 is performed in the second adsorption tower 3B, and the third adsorption tower is performed. In 3C, the cleaning gas inflow step s36 is performed. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is opened, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is closed. Then, the cleaning gas outflow step s32 is performed in the first adsorption tower 3A. Further, in the second adsorption tower 3B, the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is closed, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened, An adsorption step s31 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2 are opened, the automatic open / close valve c3 is closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed. A cleaning gas inflow step s36 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is opened so that the opening degree becomes 100%.
 上記の図4Dに示される水素ガス分離工程s3では、第2吸着塔3Bには、反応生成ガス供給配管dおよび自動開閉弁b1を介して反応生成ガスが導入される。そして、第2吸着塔3Bでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第2吸着塔3Bから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁b5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。 In the hydrogen gas separation step s3 shown in FIG. 4D above, the reaction product gas is introduced into the second adsorption tower 3B through the reaction product gas supply pipe d and the automatic opening / closing valve b1. In the second adsorption tower 3B, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
 また、上記の図4Dに示される水素ガス分離工程s3では、第3吸着塔3Cには、自動開閉弁a3、塔内ガス取出用配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁c4を介して、第1吸着塔3Aから流出された塔内ガス(洗浄ガス)が導入される。ここで、第1吸着塔3Aと第3吸着塔3Cとの塔内の圧力を比較すると、第1吸着塔3Aが第3吸着塔3Cよりも高圧となっている。そのため、第1吸着塔3Aの塔内ガス(洗浄ガス)を第3吸着塔3Cに導入することにより、第1吸着塔3Aの塔内が減圧され、第3吸着塔3Cからは塔内に残留する塔内ガス(洗浄ガス)が流出される。この第3吸着塔3C内の塔内ガス(脱着ガスを含む洗浄ガス)は、自動開閉弁c2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。このようにして、ガス燃焼部9に脱着ガスを含む塔内ガスがオフガスとして供給されると、供給されたオフガスが燃焼される(脱着ガス燃焼工程s6)。ガス燃焼部9でオフガスが燃焼されると、ガス燃焼部9に供給されたオフガス量に応じた燃焼熱によって保熱部4の温度が、該オフガス量に応じて上昇する。保熱部4の温度が上昇すると、保熱部4内に配置される原料気化部1の温度が上昇して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が上昇する。 In the hydrogen gas separation step s3 shown in FIG. 4D, the third adsorption tower 3C includes an automatic opening / closing valve a3, a gas extraction pipe h in the tower, a cleaning gas flow rate adjustment valve h1, and a gas introduction pipe in the tower. The gas in the tower (cleaning gas) flowing out from the first adsorption tower 3A is introduced through g and the automatic opening / closing valve c4. Here, when the pressures in the first adsorption tower 3A and the third adsorption tower 3C are compared, the first adsorption tower 3A has a higher pressure than the third adsorption tower 3C. Therefore, by introducing the gas (cleaning gas) in the first adsorption tower 3A into the third adsorption tower 3C, the inside of the first adsorption tower 3A is depressurized and remains in the tower from the third adsorption tower 3C. The gas inside the tower (cleaning gas) is discharged. The gas in the tower (cleaning gas including desorption gas) in the third adsorption tower 3C flows into the eighth pipe 18 via the automatic open / close valve c2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1. The gas flows through the eight pipes 18 and is supplied to the gas combustion unit 9 as a combustion gas (desorption gas supply step s5). In this way, when the tower gas containing the desorption gas is supplied to the gas combustion unit 9 as the off gas, the supplied off gas is burned (desorption gas combustion step s6). When off-gas is combusted in the gas combustion unit 9, the temperature of the heat retaining unit 4 rises according to the amount of off-gas due to combustion heat corresponding to the amount of off-gas supplied to the gas combustion unit 9. When the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
 次に、水素ガス分離工程s3では、図4Eに示されるように、第1吸着塔3Aにおいて均圧ガス流出工程s33が実施され、第2吸着塔3Bにおいて吸着工程s31が実施され、第3吸着塔3Cにおいて均圧ガス流入工程s37が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が閉鎖され、自動開閉弁a3が開放され、自動開閉弁a4が閉鎖され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて均圧ガス流出工程s33が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が開放され、自動開閉弁b2が閉鎖され、自動開閉弁b3が閉鎖され、自動開閉弁b4が閉鎖され、自動開閉弁b5が開放されて、第2吸着塔3Bにおいて吸着工程s31が実施される。また、第3吸着塔3Cにおいて、自動開閉弁c1が閉鎖され、自動開閉弁c2が閉鎖され、自動開閉弁c3が閉鎖され、自動開閉弁c4が開放され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて均圧ガス流入工程s37が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1は閉鎖されている。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4E, the pressure equalizing gas outflow step s33 is performed in the first adsorption tower 3A, the adsorption step s31 is performed in the second adsorption tower 3B, and the third adsorption is performed. A pressure equalizing gas inflow step s37 is performed in the tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is opened, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is closed. Then, the pressure equalizing gas outflow step s33 is performed in the first adsorption tower 3A. Further, in the second adsorption tower 3B, the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is closed, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened, An adsorption step s31 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed. A pressure equalizing gas inflow step s37 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is closed.
 上記の図4Eに示される水素ガス分離工程s3では、第2吸着塔3Bには、反応生成ガス供給配管dおよび自動開閉弁b1を介して反応生成ガスが導入される。そして、第2吸着塔3Bでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第2吸着塔3Bから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁b5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。 In the hydrogen gas separation step s3 shown in FIG. 4E above, the reaction product gas is introduced into the second adsorption tower 3B through the reaction product gas supply pipe d and the automatic opening / closing valve b1. In the second adsorption tower 3B, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
 また、上記の図4Eに示される水素ガス分離工程s3では、第1吸着塔3Aから塔内ガス取出配管hを介して流出された塔内ガス(洗浄ガス)が、自動開閉弁a3、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁c4を介して第3吸着塔3Cに導入される。前述の図4Dに示される水素ガス分離工程s3では、自動開閉弁c2、オフガス流出配管e、およびオフガス流量調整弁e1を介して、第3吸着塔3Cから塔内ガス(洗浄ガス)をオフガスとして流出させる。図4Eに示される水素ガス分離工程s3では、自動開閉弁c2を閉鎖させることによって、第1吸着塔3Aと第3吸着塔3Cとの間で、塔内圧力の均圧化が図られる。これによって、第1吸着塔3Aの圧力がさらに減圧されるとともに、第3吸着塔3Cの圧力が昇圧される。 Also, in the hydrogen gas separation step s3 shown in FIG. 4E, the tower gas (cleaning gas) that has flowed out from the first adsorption tower 3A through the tower gas extraction pipe h is converted into the automatic opening / closing valve a3, the cleaning gas. The gas is introduced into the third adsorption tower 3C through the flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4. In the hydrogen gas separation step s3 shown in FIG. 4D described above, the gas in the column (cleaning gas) is turned off gas from the third adsorption tower 3C via the automatic opening / closing valve c2, the off gas outflow pipe e, and the off gas flow rate adjusting valve e1. Spill. In the hydrogen gas separation step s3 shown in FIG. 4E, the pressure in the tower is equalized between the first adsorption tower 3A and the third adsorption tower 3C by closing the automatic opening / closing valve c2. As a result, the pressure in the first adsorption tower 3A is further reduced, and the pressure in the third adsorption tower 3C is increased.
 なお、図4Eに示される水素ガス分離工程s3では、オフガス流出配管eの流路を開閉するための自動開閉弁e1が閉鎖されているので、オフガス流出配管eに接続された第8配管18へのオフガスの流入が停止される。このため、第8配管18に接続されたガス燃焼部9に対するオフガスの供給が停止される。このようにして、ガス燃焼部9に対するオフガスの供給が停止されると、ガス燃焼部9におけるオフガスの燃焼動作が停止される。これによって、保熱部4の温度が下降する。保熱部4の温度が下降すると、保熱部4内に配置される原料気化部1の温度が下降して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が低下する。 In the hydrogen gas separation step s3 shown in FIG. 4E, since the automatic on-off valve e1 for opening and closing the flow path of the off-gas outflow pipe e is closed, to the eighth pipe 18 connected to the off-gas outflow pipe e. Inflow of off gas is stopped. For this reason, the supply of off-gas to the gas combustion unit 9 connected to the eighth pipe 18 is stopped. Thus, when the supply of the off gas to the gas combustion unit 9 is stopped, the off gas combustion operation in the gas combustion unit 9 is stopped. As a result, the temperature of the heat retaining unit 4 decreases. When the temperature of the heat retaining unit 4 is lowered, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is lowered, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water is lowered. .
 次に、水素ガス分離工程s3では、図4Fに示されるように、第1吸着塔3Aにおいて脱着工程(多段階で各吸着塔を減圧させるときの、第1段階目の第1脱着工程s34および2段階目の第2脱着工程s35)が実施され、第2吸着塔3Bにおいて吸着工程s31が実施され、第3吸着塔3Cにおいて昇圧工程s38が実施される。第1吸着塔3Aにおいて1段階目の第1脱着工程s34が実施されるときには、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が開放され、自動開閉弁a3が閉鎖され、自動開閉弁a4が閉鎖され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて第1脱着工程s34が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1の開度は、多段階(2段階)で脱着動作が実施される第1吸着塔3Aにおける、上記式(I)で表される1段階目の減圧率Pが35%以下となるように、調整されている。また、第2吸着塔3Bにおいて、自動開閉弁b1が開放され、自動開閉弁b2が閉鎖され、自動開閉弁b3が開放され、自動開閉弁b4が閉鎖され、自動開閉弁b5が開放されて、第2吸着塔3Bにおいて吸着工程s31が実施される。また、第3吸着塔3Cにおいて、自動開閉弁c1が閉鎖され、自動開閉弁c2が閉鎖され、自動開閉弁c3が閉鎖され、自動開閉弁c4が開放され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて昇圧工程s38が実施される。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4F, in the first adsorption tower 3A, a desorption process (the first desorption process s34 in the first stage when each adsorption tower is decompressed in multiple stages and The second desorption step s35) of the second stage is performed, the adsorption step s31 is performed in the second adsorption tower 3B, and the pressure increasing step s38 is performed in the third adsorption tower 3C. When the first desorption step s34 in the first stage is performed in the first adsorption tower 3A, the automatic opening / closing valve a1 is closed, the automatic opening / closing valve a2 is opened, and the automatic opening / closing valve a3 is closed in the first adsorption tower 3A. Then, the automatic open / close valve a4 is closed, the automatic open / close valve a5 is closed, and the first desorption step s34 is performed in the first adsorption tower 3A. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (I) in the first adsorption tower 3A in which the desorption operation is performed in multiple stages (two stages). as first stage of the pressure reduction rate P a to be of 35% or less, it is adjusted. In the second adsorption tower 3B, the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is opened, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened. An adsorption step s31 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed. The pressure increasing step s38 is performed in the third adsorption tower 3C.
 上記の図4Fに示される水素ガス分離工程s3では、第2吸着塔3Bには、反応生成ガス供給配管dおよび自動開閉弁b1を介して反応生成ガスが導入される。そして、第2吸着塔3Bでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第2吸着塔3Bから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁b5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。第2吸着塔3Bから流出された水素ガスの一部が、自動開閉弁b3、塔内ガス取出配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁c4を介して第3吸着塔3Cに導入され、第3吸着塔3Cの塔内の圧力が昇圧される。 In the hydrogen gas separation step s3 shown in FIG. 4F above, the reaction product gas is introduced into the second adsorption tower 3B through the reaction product gas supply pipe d and the automatic on-off valve b1. In the second adsorption tower 3B, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4). A part of the hydrogen gas flowing out from the second adsorption tower 3B passes through the automatic opening / closing valve b3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4. Are introduced into the third adsorption tower 3C, and the pressure in the third adsorption tower 3C is increased.
 一方、第1吸着塔3Aは、塔内の圧力が、吸着工程s31が実施されている第2吸着塔3Bの塔内の圧力である吸着開始圧力よりも低い圧力の脱着開始圧力に減圧されるとともに、自動開閉弁a1,a3,a4,a5が閉鎖され、自動開閉弁a2が開放されている。これによって、第1吸着塔3A内では吸着剤に吸着されていた不純物ガスを含む吸着成分が吸着剤から脱着し、脱着した脱着ガス(オフガス)が第1吸着塔3Aから流出される。第1吸着塔3Aから流出された脱着ガスは、自動開閉弁a2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。ただし、オフガス流量調整弁e1の開度が、上記式(I)で表される減圧率Pが35%以下となるように調整されているので、ガス燃焼部9にオフガスとして供給される脱着ガスの量は絞られることになり、保熱部4の温度が図4Eの場合よりもさらに下降し続ける。保熱部4の温度が下降すると、保熱部4内に配置される原料気化部1の温度が下降して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が低下する。 On the other hand, in the first adsorption tower 3A, the pressure in the tower is reduced to a desorption start pressure that is lower than the adsorption start pressure that is the pressure in the second adsorption tower 3B in which the adsorption step s31 is performed. At the same time, the automatic open / close valves a1, a3, a4, a5 are closed, and the automatic open / close valve a2 is opened. As a result, the adsorbing component containing the impurity gas adsorbed by the adsorbent in the first adsorption tower 3A is desorbed from the adsorbent, and the desorbed desorbed gas (off-gas) flows out from the first adsorption tower 3A. The desorption gas flowing out from the first adsorption tower 3A flows into the eighth pipe 18 through the automatic opening / closing valve a2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5). However, the opening degree of the off-gas flow rate adjusting valve e1 is, since pressure reduction rate P A represented by the formula (I) is adjusted to be 35% or less, is supplied as the off gas to the gas combustion unit 9 desorption The amount of gas will be reduced, and the temperature of the heat retaining section 4 will continue to fall further than in the case of FIG. 4E. When the temperature of the heat retaining unit 4 is lowered, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is lowered, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water is lowered. .
 次に、水素ガス分離工程s3では、第1吸着塔3Aにおいて第2脱着工程s35が実施される。第1吸着塔3Aにおいて第2脱着工程s35が実施されるときには、図4Fに示されるように、第2吸着塔3Bにおいて吸着工程s31が実施され、第3吸着塔3Cにおいて昇圧工程s38が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が開放され、自動開閉弁a3が閉鎖され、自動開閉弁a4が閉鎖され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて第2脱着工程s35が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1の開度は、多段階(2段階)で脱着動作が実施される第1吸着塔3Aにおける、上記式(II)で表される2段階目の減圧率PA2が65%以上となるように、調整されている。また、第2吸着塔3Bにおいて、自動開閉弁b1が開放され、自動開閉弁b2が閉鎖され、自動開閉弁b3が開放され、自動開閉弁b4が閉鎖され、自動開閉弁b5が開放されて、第2吸着塔3Bにおいて吸着工程s31が実施される。また、第3吸着塔3Cにおいて、自動開閉弁c1が閉鎖され、自動開閉弁c2が閉鎖され、自動開閉弁c3が閉鎖され、自動開閉弁c4が開放され、自動開閉弁c5が閉鎖されて、第3吸着塔3Cにおいて昇圧工程s38が実施される。 Next, in the hydrogen gas separation step s3, the second desorption step s35 is performed in the first adsorption tower 3A. When the second desorption process s35 is performed in the first adsorption tower 3A, as shown in FIG. 4F, the adsorption process s31 is performed in the second adsorption tower 3B, and the pressure increasing process s38 is performed in the third adsorption tower 3C. The Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is opened, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is closed, and the automatic open / close valve a5 is closed. Thus, the second desorption step s35 is performed in the first adsorption tower 3A. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (II) in the first adsorption tower 3A in which the desorption operation is performed in multiple stages (two stages). The second stage pressure reduction rate PA2 is adjusted to be 65% or more. In the second adsorption tower 3B, the automatic opening / closing valve b1 is opened, the automatic opening / closing valve b2 is closed, the automatic opening / closing valve b3 is opened, the automatic opening / closing valve b4 is closed, and the automatic opening / closing valve b5 is opened. An adsorption step s31 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic open / close valve c1, the automatic open / close valve c2, the automatic open / close valve c3 are closed, the automatic open / close valve c4 is opened, and the automatic open / close valve c5 is closed. The pressure increasing step s38 is performed in the third adsorption tower 3C.
 第1吸着塔3Aにおいて第2脱着工程s35が実施される水素ガス分離工程s3では、図4Fに示されるように、第2吸着塔3Bには、反応生成ガス供給配管dおよび自動開閉弁b1を介して反応生成ガスが導入される。そして、第2吸着塔3Bでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第2吸着塔3Bから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁b5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。第2吸着塔3Bから流出された水素ガスの一部が、自動開閉弁b3、塔内ガス取出配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁c4を介して第3吸着塔3Cに導入され、第3吸着塔3Cの塔内の圧力が昇圧される。 In the hydrogen gas separation step s3 in which the second desorption step s35 is performed in the first adsorption tower 3A, as shown in FIG. 4F, the second adsorption tower 3B is provided with a reaction product gas supply pipe d and an automatic on-off valve b1. Through which reaction product gas is introduced. In the second adsorption tower 3B, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the second adsorption tower 3B flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve b5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4). A part of the hydrogen gas flowing out from the second adsorption tower 3B passes through the automatic opening / closing valve b3, the gas extraction pipe h in the tower, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve c4. Are introduced into the third adsorption tower 3C, and the pressure in the third adsorption tower 3C is increased.
 一方、第1吸着塔3Aは、塔内の圧力が、第1脱着工程s34よりもさらに減圧されるとともに、自動開閉弁a1,a3,a4,a5が閉鎖され、自動開閉弁a2が開放されている。これによって、第1吸着塔3A内では吸着剤に吸着されていた不純物ガスを含む吸着成分が吸着剤から脱着し、脱着した脱着ガス(オフガス)が第1吸着塔3Aから流出される。第1吸着塔3Aから流出された脱着ガスは、自動開閉弁a2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。ここで、オフガス流量調整弁e1の開度が、上記式(II)で表される減圧率PA2が65%以上となるように調整されているので、ガス燃焼部9にオフガスとして供給される脱着ガスの量が、第1脱着工程s34よりも増加することになり、保熱部4の温度が上昇する。保熱部4の温度が上昇すると、保熱部4内に配置される原料気化部1の温度が上昇して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が上昇する。 On the other hand, in the first adsorption tower 3A, the pressure in the tower is further reduced than in the first desorption step s34, the automatic open / close valves a1, a3, a4, and a5 are closed, and the automatic open / close valve a2 is opened. Yes. As a result, the adsorbing component containing the impurity gas adsorbed by the adsorbent in the first adsorption tower 3A is desorbed from the adsorbent, and the desorbed desorbed gas (off-gas) flows out from the first adsorption tower 3A. The desorption gas flowing out from the first adsorption tower 3A flows into the eighth pipe 18 through the automatic opening / closing valve a2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5). Here, since the opening degree of the off-gas flow rate adjusting valve e1 is adjusted so that the pressure reduction rate PA2 expressed by the above formula (II) is 65% or more, it is supplied to the gas combustion unit 9 as off-gas. The amount of desorption gas will increase more than the 1st desorption process s34, and the temperature of the heat retention part 4 will rise. When the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
 次に、水素ガス分離工程s3では、図4Gに示されるように、第1吸着塔3Aにおいて洗浄ガス流入工程s36が実施され、第2吸着塔3Bにおいて洗浄ガス流出工程s32が実施され、第3吸着塔3Cにおいて吸着工程s31が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が開放され、自動開閉弁a3が閉鎖され、自動開閉弁a4が開放され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて洗浄ガス流入工程s36が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が閉鎖され、自動開閉弁b2が閉鎖され、自動開閉弁b3が開放され、自動開閉弁b4が閉鎖され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて洗浄ガス流出工程s32が実施される。また、第3吸着塔3Cにおいて、自動開閉弁c1が開放され、自動開閉弁c2が閉鎖され、自動開閉弁c3が閉鎖され、自動開閉弁c4が閉鎖され、自動開閉弁c5が開放されて、第3吸着塔3Cにおいて吸着工程s31が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1は開度が100%となるように開放されている。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4G, the cleaning gas inflow step s36 is performed in the first adsorption tower 3A, and the cleaning gas outflow step s32 is performed in the second adsorption tower 3B. An adsorption step s31 is performed in the adsorption tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is opened, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is opened, and the automatic open / close valve a5 is closed. Then, the cleaning gas inflow step s36 is performed in the first adsorption tower 3A. Further, in the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2, the automatic open / close valve b3, the automatic open / close valve b4, and the automatic open / close valve b5 are closed, A cleaning gas outflow step s32 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic opening / closing valve c1 is opened, the automatic opening / closing valve c2 is closed, the automatic opening / closing valve c3 is closed, the automatic opening / closing valve c4 is closed, and the automatic opening / closing valve c5 is opened, An adsorption step s31 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is opened so that the opening degree becomes 100%.
 上記の図4Gに示される水素ガス分離工程s3では、第3吸着塔3Cには、反応生成ガス供給配管dおよび自動開閉弁c1を介して反応生成ガスが導入される。そして、第3吸着塔3Cでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第3吸着塔3Cから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁c5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。 In the hydrogen gas separation step s3 shown in FIG. 4G above, the reaction product gas is introduced into the third adsorption tower 3C through the reaction product gas supply pipe d and the automatic opening / closing valve c1. In the third adsorption tower 3C, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
 また、上記の図4Gに示される水素ガス分離工程s3では、第1吸着塔3Aには、自動開閉弁b3、塔内ガス取出用配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁a4を介して、第2吸着塔3Bから流出された塔内ガス(洗浄ガス)が導入される。ここで、第1吸着塔3Aと第2吸着塔3Bとの塔内の圧力を比較すると、第2吸着塔3Bが第1吸着塔3Aよりも高圧となっている。そのため、第2吸着塔3Bの塔内ガス(洗浄ガス)を第1吸着塔3Aに導入することにより、第2吸着塔3Bの塔内が減圧され、第1吸着塔3Aからは塔内に残留する塔内ガス(洗浄ガス)が流出される。この第1吸着塔3A内の塔内ガス(脱着ガスを含む洗浄ガス)は、自動開閉弁a2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。このようにして、ガス燃焼部9に脱着ガスを含む塔内ガスがオフガスとして供給されると、供給されたオフガスが燃焼される(脱着ガス燃焼工程s6)。ガス燃焼部9でオフガスが燃焼されると、ガス燃焼部9に供給されたオフガス量に応じた燃焼熱によって保熱部4の温度が、該オフガス量に応じて上昇する。保熱部4の温度が上昇すると、保熱部4内に配置される原料気化部1の温度が上昇して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が上昇する。 In the hydrogen gas separation step s3 shown in FIG. 4G, the first adsorption tower 3A includes an automatic on-off valve b3, a tower gas extraction pipe h, a cleaning gas flow rate adjustment valve h1, and a tower gas introduction pipe. The gas in the tower (cleaning gas) flowing out from the second adsorption tower 3B is introduced through g and the automatic opening / closing valve a4. Here, when the pressures in the first adsorption tower 3A and the second adsorption tower 3B are compared, the second adsorption tower 3B has a higher pressure than the first adsorption tower 3A. Therefore, by introducing the gas (cleaning gas) in the second adsorption tower 3B into the first adsorption tower 3A, the inside of the second adsorption tower 3B is depressurized and remains in the tower from the first adsorption tower 3A. The gas inside the tower (cleaning gas) is discharged. The gas in the first adsorption tower 3A (cleaning gas including desorption gas) flows into the eighth pipe 18 via the automatic open / close valve a2, the off-gas outflow pipe e, and the off-gas flow rate adjustment valve e1, The gas flows through the eight pipes 18 and is supplied to the gas combustion unit 9 as combustion gas (desorption gas supply step s5). In this way, when the tower gas containing the desorption gas is supplied to the gas combustion unit 9 as the off gas, the supplied off gas is burned (desorption gas combustion step s6). When off-gas is combusted in the gas combustion unit 9, the temperature of the heat retaining unit 4 rises according to the amount of off-gas due to combustion heat corresponding to the amount of off-gas supplied to the gas combustion unit 9. When the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
 次に、水素ガス分離工程s3では、図4Hに示されるように、第1吸着塔3Aにおいて均圧ガス流入工程s37が実施され、第2吸着塔3Bにおいて均圧ガス流出工程s33が実施され、第3吸着塔3Cにおいて吸着工程s31が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が閉鎖され、自動開閉弁a3が閉鎖され、自動開閉弁a4が開放され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて均圧入工程s37が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が閉鎖され、自動開閉弁b2が閉鎖され、自動開閉弁b3が開放され、自動開閉弁b4が閉鎖され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて均圧出工程s33が実施される。また、第3吸着塔3Cにおいて、自動開閉弁c1が開放され、自動開閉弁c2が閉鎖され、自動開閉弁c3が閉鎖され、自動開閉弁c4が閉鎖され、自動開閉弁c5が開放されて、第3吸着塔3Cにおいて吸着工程s31が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1は閉鎖されている。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4H, a pressure equalizing gas inflow step s37 is performed in the first adsorption tower 3A, and a pressure equalizing gas outflow step s33 is performed in the second adsorption tower 3B. An adsorption step s31 is performed in the third adsorption tower 3C. Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is opened, and the automatic open / close valve a5 is closed. Thus, the pressure equalizing step s37 is performed in the first adsorption tower 3A. Further, in the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2, the automatic open / close valve b3, the automatic open / close valve b4, and the automatic open / close valve b5 are closed, A pressure equalizing step s33 is performed in the second adsorption tower 3B. In the third adsorption tower 3C, the automatic opening / closing valve c1 is opened, the automatic opening / closing valve c2 is closed, the automatic opening / closing valve c3 is closed, the automatic opening / closing valve c4 is closed, and the automatic opening / closing valve c5 is opened, An adsorption step s31 is performed in the third adsorption tower 3C. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the off gas flow rate adjustment valve e1 is closed.
 上記の図4Hに示される水素ガス分離工程s3では、第3吸着塔3Cには、反応生成ガス供給配管dおよび自動開閉弁c1を介して反応生成ガスが導入される。そして、第3吸着塔3Cでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第3吸着塔3Cから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁c5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。 In the hydrogen gas separation step s3 shown in FIG. 4H above, the reaction product gas is introduced into the third adsorption tower 3C via the reaction product gas supply pipe d and the automatic opening / closing valve c1. In the third adsorption tower 3C, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4).
 また、上記の図4Hに示される水素ガス分離工程s3では、第2吸着塔3Bから塔内ガス取出配管hを介して流出された塔内ガス(洗浄ガス)が、自動開閉弁b3、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁a4を介して第1吸着塔3Aに導入される。前述の図4Gに示される水素ガス分離工程s3では、自動開閉弁a2、オフガス流出配管e、およびオフガス流量調整弁e1を介して、第1吸着塔3Aから塔内ガス(洗浄ガス)をオフガスとして流出させる。図4Hに示される水素ガス分離工程s3では、自動開閉弁a2を閉鎖させることによって、第1吸着塔3Aと第2吸着塔3Bとの間で、塔内圧力の均圧化が図られる。これによって、第2吸着塔3Bの圧力がさらに減圧されるとともに、第1吸着塔3Aの圧力が昇圧される。 In the hydrogen gas separation step s3 shown in FIG. 4H, the tower gas (cleaning gas) that has flowed out of the second adsorption tower 3B through the tower gas extraction pipe h is converted into the automatic on-off valve b3, the cleaning gas. The gas is introduced into the first adsorption tower 3A through the flow rate adjustment valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve a4. In the hydrogen gas separation step s3 shown in FIG. 4G described above, the gas in the tower (cleaning gas) is turned off gas from the first adsorption tower 3A via the automatic open / close valve a2, the off gas outflow pipe e, and the off gas flow rate adjusting valve e1. Spill. In the hydrogen gas separation step s3 shown in FIG. 4H, the pressure in the tower is equalized between the first adsorption tower 3A and the second adsorption tower 3B by closing the automatic opening / closing valve a2. As a result, the pressure in the second adsorption tower 3B is further reduced, and the pressure in the first adsorption tower 3A is increased.
 なお、図4Hに示される水素ガス分離工程s3では、オフガス流出配管eの流路を開閉するための自動開閉弁e1が閉鎖されているので、オフガス流出配管eに接続された第8配管18へのオフガスの流入が停止される。このため、第8配管18に接続されたガス燃焼部9に対するオフガスの供給が停止される。このようにして、ガス燃焼部9に対するオフガスの供給が停止されると、ガス燃焼部9におけるオフガスの燃焼動作が停止される。これによって、保熱部4の温度が下降する。保熱部4の温度が下降すると、保熱部4内に配置される原料気化部1の温度が下降して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が低下する。 In the hydrogen gas separation step s3 shown in FIG. 4H, since the automatic on-off valve e1 for opening and closing the flow path of the off-gas outflow pipe e is closed, to the eighth pipe 18 connected to the off-gas outflow pipe e. Inflow of off gas is stopped. For this reason, the supply of off-gas to the gas combustion unit 9 connected to the eighth pipe 18 is stopped. Thus, when the supply of the off gas to the gas combustion unit 9 is stopped, the off gas combustion operation in the gas combustion unit 9 is stopped. As a result, the temperature of the heat retaining unit 4 decreases. When the temperature of the heat retaining unit 4 is lowered, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is lowered, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water is lowered. .
 次に、水素ガス分離工程s3では、図4Iに示されるように、第1吸着塔3Aにおいて昇圧工程s38が実施され、第2吸着塔3Bにおいて脱着工程(多段階で各吸着塔を減圧させるときの、第1段階目の第1脱着工程s34および2段階目の第2脱着工程s35)が実施され、第3吸着塔3Cにおいて吸着工程s31が実施される。第2吸着塔3Bにおいて1段階目の第1脱着工程s34が実施されるときには、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が閉鎖され、自動開閉弁a3が閉鎖され、自動開閉弁a4が開放され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて昇圧工程s38が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が閉鎖され、自動開閉弁b2が開放され、自動開閉弁b3が閉鎖され、自動開閉弁b4が閉鎖され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて第1脱着工程s34が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1の開度は、多段階(2段階)で脱着動作が実施される第2吸着塔3Bにおける、上記式(I)で表される1段階目の減圧率Pが35%以下となるように、調整されている。また、第3吸着塔3Cにおいて、自動開閉弁c1が開放され、自動開閉弁c2が閉鎖され、自動開閉弁c3が開放され、自動開閉弁c4が閉鎖され、自動開閉弁c5が開放されて、第3吸着塔3Cにおいて吸着工程s31が実施される。 Next, in the hydrogen gas separation step s3, as shown in FIG. 4I, the pressure increasing step s38 is performed in the first adsorption tower 3A, and the desorption step (when depressurizing each adsorption tower in multiple stages) is performed in the second adsorption tower 3B. The first desorption step s34 of the first stage and the second desorption step s35) of the second stage are performed, and the adsorption step s31 is performed in the third adsorption tower 3C. When the first desorption step s34 of the first stage is performed in the second adsorption tower 3B, the automatic opening / closing valve a1 is closed, the automatic opening / closing valve a2 is closed, and the automatic opening / closing valve a3 is closed in the first adsorption tower 3A. Then, the automatic open / close valve a4 is opened, the automatic open / close valve a5 is closed, and the pressure increasing step s38 is performed in the first adsorption tower 3A. In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2 are opened, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is closed, and the automatic open / close valve b5 is closed, The first desorption step s34 is performed in the second adsorption tower 3B. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (I) in the second adsorption tower 3B in which the desorption operation is performed in multiple stages (two stages). as first stage of the pressure reduction rate P a to be of 35% or less, they are adjusted. Further, in the third adsorption tower 3C, the automatic open / close valve c1 is opened, the automatic open / close valve c2 is closed, the automatic open / close valve c3 is opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is opened. An adsorption step s31 is performed in the third adsorption tower 3C.
 上記の図4Iに示される水素ガス分離工程s3では、第3吸着塔3Cには、反応生成ガス供給配管dおよび自動開閉弁c1を介して反応生成ガスが導入される。そして、第3吸着塔3Cでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第3吸着塔3Cから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁c5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。第3吸着塔3Cから流出された水素ガスの一部が、自動開閉弁c3、塔内ガス取出配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁a4を介して第1吸着塔3Aに導入され、第1吸着塔3Aの塔内の圧力が昇圧される。 In the hydrogen gas separation step s3 shown in FIG. 4I above, the reaction product gas is introduced into the third adsorption tower 3C through the reaction product gas supply pipe d and the automatic opening / closing valve c1. In the third adsorption tower 3C, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4). A part of the hydrogen gas flowing out from the third adsorption tower 3C passes through the automatic opening / closing valve c3, the gas extraction pipe h in the tower h, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve a4. Are introduced into the first adsorption tower 3A, and the pressure in the first adsorption tower 3A is increased.
 一方、第2吸着塔3Bは、塔内の圧力が、吸着工程s31が実施されている第3吸着塔3Cの塔内の圧力である吸着開始圧力よりも低い圧力の脱着開始圧力に減圧されるとともに、自動開閉弁b1,b3,b4,b5が閉鎖され、自動開閉弁b2が開放されている。これによって、第2吸着塔3B内では吸着剤に吸着されていた不純物ガスを含む吸着成分が脱着剤から脱着し、脱着した脱着ガス(オフガス)が第2吸着塔3Bから流出される。第2吸着塔3Bから流出された脱着ガスは、自動開閉弁b2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。ただし、オフガス流量調整弁e1の開度が、上記式(I)で表される減圧率Pが35%以下となるように調整されているので、ガス燃焼部9に供給される脱着ガスの量は絞られることになり、保熱部4の温度が図4Hの場合よりもさらに下降し続ける。保熱部4の温度が下降すると、保熱部4内に配置される原料気化部1の温度が下降して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が低下する。 On the other hand, in the second adsorption tower 3B, the pressure in the tower is reduced to a desorption start pressure that is lower than the adsorption start pressure, which is the pressure in the third adsorption tower 3C in which the adsorption step s31 is performed. At the same time, the automatic open / close valves b1, b3, b4, and b5 are closed, and the automatic open / close valve b2 is opened. As a result, the adsorbed component containing the impurity gas adsorbed by the adsorbent in the second adsorption tower 3B is desorbed from the desorbent, and the desorbed desorbed gas (off-gas) flows out from the second adsorption tower 3B. The desorption gas that has flowed out of the second adsorption tower 3B flows into the eighth pipe 18 through the automatic on-off valve b2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5). However, the opening degree of the off-gas flow rate adjusting valve e1 is, since pressure reduction rate P A represented by the formula (I) is adjusted to be 35% or less, of the desorption gas supplied to the gas combustion section 9 The amount will be reduced, and the temperature of the heat retaining section 4 will continue to fall further than in the case of FIG. 4H. When the temperature of the heat retaining unit 4 is lowered, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 is lowered, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water is lowered. .
 次に、水素ガス分離工程s3では、第2吸着塔3Bにおいて第2脱着工程s35が実施される。第2吸着塔3Bにおいて第2脱着工程s35が実施されるときには、図4Iに示されるように、第3吸着塔3Cにおいて吸着工程s31が実施され、第1吸着塔3Aにおいて昇圧工程s38が実施される。具体的には、第1吸着塔3Aにおいて、自動開閉弁a1が閉鎖され、自動開閉弁a2が閉鎖され、自動開閉弁a3が閉鎖され、自動開閉弁a4が開放され、自動開閉弁a5が閉鎖されて、第1吸着塔3Aにおいて昇圧工程s38が実施される。また、第2吸着塔3Bにおいて、自動開閉弁b1が閉鎖され、自動開閉弁b2が開放され、自動開閉弁b3が閉鎖され、自動開閉弁b4が閉鎖され、自動開閉弁b5が閉鎖されて、第2吸着塔3Bにおいて第2脱着工程s35が実施される。ここで、洗浄ガス流量調整弁h1は開放され、オフガス流量調整弁e1の開度は、多段階(2段階)で脱着動作が実施される第2吸着塔3Bにおける、上記式(II)で表される2段階目の減圧率PA2が65%以上となるように、調整されている。また、第3吸着塔3Cにおいて、自動開閉弁c1が開放され、自動開閉弁c2が閉鎖され、自動開閉弁c3が開放され、自動開閉弁c4が閉鎖され、自動開閉弁c5が開放されて、第3吸着塔3Cにおいて吸着工程s31が実施される。 Next, in the hydrogen gas separation step s3, the second desorption step s35 is performed in the second adsorption tower 3B. When the second desorption process s35 is performed in the second adsorption tower 3B, as shown in FIG. 4I, the adsorption process s31 is performed in the third adsorption tower 3C, and the pressure increasing process s38 is performed in the first adsorption tower 3A. The Specifically, in the first adsorption tower 3A, the automatic open / close valve a1 is closed, the automatic open / close valve a2 is closed, the automatic open / close valve a3 is closed, the automatic open / close valve a4 is opened, and the automatic open / close valve a5 is closed. Thus, the pressure increasing step s38 is performed in the first adsorption tower 3A. In the second adsorption tower 3B, the automatic open / close valve b1, the automatic open / close valve b2 are opened, the automatic open / close valve b3 is closed, the automatic open / close valve b4 is closed, and the automatic open / close valve b5 is closed, The second desorption step s35 is performed in the second adsorption tower 3B. Here, the cleaning gas flow rate adjustment valve h1 is opened, and the opening degree of the off gas flow rate adjustment valve e1 is expressed by the above formula (II) in the second adsorption tower 3B in which the desorption operation is performed in multiple stages (two stages). The second stage pressure reduction rate PA2 is adjusted to be 65% or more. Further, in the third adsorption tower 3C, the automatic open / close valve c1 is opened, the automatic open / close valve c2 is closed, the automatic open / close valve c3 is opened, the automatic open / close valve c4 is closed, and the automatic open / close valve c5 is opened. An adsorption step s31 is performed in the third adsorption tower 3C.
 第2吸着塔3Bにおいて第2脱着工程s35が実施される水素ガス分離工程s3では、図4Iに示されるように、第3吸着塔3Cには、反応生成ガス供給配管dおよび自動開閉弁c1を介して反応生成ガスが導入される。そして、第3吸着塔3Cでは、吸着剤により不純物ガスが吸着除去されて、精製された水素ガスが塔外に流出される。第3吸着塔3Cから流出された水素ガスは、水素ガス流出配管fおよび自動開閉弁c5を介して第7配管16に流入し、この第7配管16を流れて水素ガス貯蔵用タンク17に回収される(回収工程s4)。第3吸着塔3Cから流出された水素ガスの一部が、自動開閉弁c3、塔内ガス取出配管h、洗浄ガス流量調整弁h1、塔内ガス導入用配管g、および自動開閉弁a4を介して第1吸着塔3Aに導入され、第1吸着塔3Aの塔内の圧力が昇圧される。 In the hydrogen gas separation step s3 in which the second desorption step s35 is performed in the second adsorption tower 3B, as shown in FIG. 4I, the third adsorption tower 3C is provided with a reaction product gas supply pipe d and an automatic opening / closing valve c1. Through which reaction product gas is introduced. In the third adsorption tower 3C, the impurity gas is adsorbed and removed by the adsorbent, and the purified hydrogen gas flows out of the tower. The hydrogen gas flowing out from the third adsorption tower 3C flows into the seventh pipe 16 through the hydrogen gas outflow pipe f and the automatic opening / closing valve c5, flows through the seventh pipe 16 and is collected in the hydrogen gas storage tank 17. (Collection step s4). A part of the hydrogen gas flowing out from the third adsorption tower 3C passes through the automatic opening / closing valve c3, the gas extraction pipe h in the tower h, the cleaning gas flow rate adjusting valve h1, the gas introduction pipe g in the tower, and the automatic opening / closing valve a4. Are introduced into the first adsorption tower 3A, and the pressure in the first adsorption tower 3A is increased.
 一方、第2吸着塔3Bは、塔内の圧力が、第1脱着工程s34よりもさらに減圧されるとともに、自動開閉弁b1,b3,b4,b5が閉鎖され、自動開閉弁b2が開放されている。これによって、第2吸着塔3B内では吸着剤に吸着されていた不純物ガスを含む吸着成分が吸着剤から脱着し、脱着した脱着ガス(オフガス)が第2吸着塔3Bから流出される。第2吸着塔3Bから流出された脱着ガスは、自動開閉弁b2、オフガス流出配管e、およびオフガス流量調整弁e1を介して第8配管18に流入し、この第8配管18を流れてガス燃焼部9に燃焼用ガスとして供給される(脱着ガス供給工程s5)。ここで、オフガス流量調整弁e1の開度が、上記式(II)で表される減圧率PA2が65%以上となるように調整されているので、ガス燃焼部9にオフガスとして供給される脱着ガスの量が、第1脱着工程s34よりも増加することになり、保熱部4の温度が上昇する。保熱部4の温度が上昇すると、保熱部4内に配置される原料気化部1の温度が上昇して、メタノールおよび水を含む液体原料が気化されて得られるガス流体の温度が上昇する。 On the other hand, in the second adsorption tower 3B, the pressure in the tower is further reduced than in the first desorption step s34, the automatic open / close valves b1, b3, b4, and b5 are closed, and the automatic open / close valve b2 is opened. Yes. As a result, the adsorbing component including the impurity gas adsorbed by the adsorbent in the second adsorption tower 3B is desorbed from the adsorbent, and the desorbed desorption gas (off-gas) flows out from the second adsorption tower 3B. The desorption gas that has flowed out of the second adsorption tower 3B flows into the eighth pipe 18 through the automatic on-off valve b2, the off-gas outflow pipe e, and the off-gas flow rate adjusting valve e1, and flows through the eighth pipe 18 for gas combustion. It is supplied to the part 9 as a combustion gas (desorption gas supply step s5). Here, since the opening degree of the off-gas flow rate adjusting valve e1 is adjusted so that the pressure reduction rate PA2 expressed by the above formula (II) is 65% or more, it is supplied to the gas combustion unit 9 as off-gas. The amount of desorption gas will increase more than the 1st desorption process s34, and the temperature of the heat retention part 4 will rise. When the temperature of the heat retaining unit 4 increases, the temperature of the raw material vaporizing unit 1 disposed in the heat retaining unit 4 increases, and the temperature of the gas fluid obtained by vaporizing the liquid raw material containing methanol and water increases. .
 水素ガス分離工程s3では、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cにおいて、吸着工程s31、洗浄ガス流出工程s32、均圧ガス流出工程s33、第1脱着工程s34、第2脱着工程s35、洗浄ガス流入工程s36、均圧ガス流入工程s37、および昇圧工程s38が繰り返し実施される。 In the hydrogen gas separation step s3, in the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C, the adsorption step s31, the cleaning gas outflow step s32, the pressure equalizing gas outflow step s33, the first desorption step s34, The second desorption process s35, the cleaning gas inflow process s36, the pressure equalizing gas inflow process s37, and the pressure increasing process s38 are repeatedly performed.
 本実施形態の水素の製造方法では、メタノールと水とを含む液体原料が原料気化部1で気化される。次にその気化したガス流体と酸素を含む気体原料とが反応ガス生成部2の反応器2Aに供給され、反応器2A内においてメタノールの部分酸化反応および水蒸気改質反応(分解反応)が進行して水素が生成される。原料気化部1において液体原料を気化させるための熱源としては、ガス燃焼部9で発生する燃焼熱が利用される。ガス燃焼部9で発生する燃焼熱は、水素ガス分離部3の第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから流出された、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cにおいて吸着剤から脱着した脱着ガス(不純物ガスと水素とを含む混合ガス)を燃焼用ガスとして燃焼することで発生したものである。 In the method for producing hydrogen according to the present embodiment, a liquid raw material containing methanol and water is vaporized in the raw material vaporization unit 1. Next, the vaporized gas fluid and the gas raw material containing oxygen are supplied to the reactor 2A of the reaction gas generation unit 2, and the partial oxidation reaction of methanol and the steam reforming reaction (decomposition reaction) proceed in the reactor 2A. As a result, hydrogen is generated. As a heat source for vaporizing the liquid raw material in the raw material vaporization unit 1, combustion heat generated in the gas combustion unit 9 is used. The combustion heat generated in the gas combustion unit 9 is discharged from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C of the hydrogen gas separation unit 3, and the first adsorption tower 3A and the second adsorption tower. It is generated by burning the desorption gas (mixed gas containing impurity gas and hydrogen) desorbed from the adsorbent in 3B and the third adsorption tower 3C as a combustion gas.
 本実施形態の水素の製造方法では、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから流出される脱着ガスおよび脱着ガスを含む塔内ガス(洗浄ガス)の流量を変化させながら流出させ、その第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから流出した脱着ガスおよび塔内ガス(洗浄ガス)を燃焼用ガスとしてガス燃焼部9に供給する。このため、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから流出される脱着ガスおよび塔内ガス(洗浄ガス)の流量の変化に伴ってガス燃焼部9で発生する燃焼熱の熱量が変化する。この結果、原料気化部1における液体原料を気化させるための加熱量が変化することになる。このように、原料気化部1における液体原料を気化させるための加熱量が変化すると、温度が変化したガス流体が反応器2A内に流入することになる。 In the method for producing hydrogen according to the present embodiment, the desorption gas flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C and the flow rate of the gas in the tower (cleaning gas) including the desorption gas are changed. The desorption gas and the tower interior gas (cleaning gas) flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C are supplied to the gas combustion section 9 as a combustion gas. For this reason, the combustion generated in the gas combustion section 9 with the change in the flow rate of the desorption gas and the gas in the tower (cleaning gas) flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C The amount of heat changes. As a result, the heating amount for vaporizing the liquid raw material in the raw material vaporization unit 1 changes. Thus, when the heating amount for vaporizing the liquid raw material in the raw material vaporization section 1 changes, the gas fluid whose temperature has changed flows into the reactor 2A.
 反応器2A内では、反応速度の異なる、メタノールの部分酸化反応と水蒸気改質反応(分解反応)とが進行し、反応器2A内に充填される触媒において、発熱を伴う部分酸化反応の影響を強く受けて、最も温度上昇する部分(ホットスポット)が発生する。本実施形態の水素の製造方法では、上記のように、温度が変化したガス流体が反応器2A内に流入するので、反応器2A内におけるホットスポットの位置を変化させることができる。このため、反応器2A内の触媒充填部において常に同じ領域が最高温度になるのを防ぐことができる。反応器2A内におけるホットスポットの位置は、ガス流体が反応器2A内を流れる流れ方向に関して、触媒の温度が低下すると下流側に移動し、触媒の温度が上昇すると上流側に移動する。 In the reactor 2A, the partial oxidation reaction of methanol and the steam reforming reaction (decomposition reaction) with different reaction rates proceed, and the catalyst charged in the reactor 2A is affected by the partial oxidation reaction with exotherm. A part (hot spot) where the temperature rises the most is generated. In the hydrogen production method of the present embodiment, as described above, the gas fluid whose temperature has changed flows into the reactor 2A, so that the position of the hot spot in the reactor 2A can be changed. For this reason, it can prevent that the same area | region always becomes the highest temperature in the catalyst filling part in the reactor 2A. The position of the hot spot in the reactor 2A moves to the downstream side when the temperature of the catalyst decreases, and moves to the upstream side when the temperature of the catalyst rises, with respect to the flow direction in which the gas fluid flows in the reactor 2A.
 このように、反応器2A内におけるホットスポットの位置が変動することによって、常に同じ領域が最高温度になるのを防ぐことができる。これによって、シンタリングによる劣化を抑制して触媒寿命を延ばすことができるとともに、水素を長期間にわたって安定して製造することができる。 Thus, it is possible to prevent the same region from always reaching the maximum temperature by changing the position of the hot spot in the reactor 2A. Accordingly, deterioration due to sintering can be suppressed and the catalyst life can be extended, and hydrogen can be stably produced over a long period of time.
 また、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cにおいて実施される脱着工程では、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3C内の圧力を、脱着開始圧力から多段階で減圧させる。これによって、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから流出させる脱着ガスの流量を変動させることができる。この結果、ガス燃焼部9で発生する燃焼熱の熱量が変化し、原料気化部1における液体原料を気化させるための加熱量を変化させることができる。このため、温度が変化したガス流体を、反応器2A内に流入させることができ、反応器2A内におけるホットスポットの位置を変化させることができる。 Further, in the desorption process performed in the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C, the pressure in the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C is changed. The pressure is reduced in multiple stages from the desorption start pressure. Thereby, the flow rate of the desorption gas flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C can be varied. As a result, the amount of heat of combustion heat generated in the gas combustion unit 9 changes, and the amount of heating for vaporizing the liquid raw material in the raw material vaporization unit 1 can be changed. For this reason, the gas fluid whose temperature has changed can be caused to flow into the reactor 2A, and the position of the hot spot in the reactor 2A can be changed.
 また、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cにおいて実施される脱着工程では、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3C内を多段階で減圧させるとき、上記式(I)で表される1段階目の減圧率Pが35%以下である。これによって、第1吸着塔3A、第2吸着塔3B、および第3吸着塔3Cから流出させる脱着ガスの流量を変動させることができる。この結果、ガス燃焼部9で発生する燃焼熱の熱量が変化し、原料気化部1における液体原料を気化させるための加熱量を変化させることができる。このため、温度が変化したガス流体を、反応器2A内に流入させることができ、反応器2A内におけるホットスポットの位置を変化させることができる。この結果、反応器2A内の触媒充填部において常に同じ領域が最高温度になるのを防ぐことができる。 Further, in the desorption process performed in the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C, the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C are multistaged. in time for decompressing, decompression rate P a in the first stage of the formula (I) is 35% or less. Thereby, the flow rate of the desorption gas flowing out from the first adsorption tower 3A, the second adsorption tower 3B, and the third adsorption tower 3C can be varied. As a result, the amount of heat of combustion heat generated in the gas combustion unit 9 changes, and the amount of heating for vaporizing the liquid raw material in the raw material vaporization unit 1 can be changed. For this reason, the gas fluid whose temperature has changed can be caused to flow into the reactor 2A, and the position of the hot spot in the reactor 2A can be changed. As a result, it is possible to prevent the same region from always reaching the maximum temperature in the catalyst packed portion in the reactor 2A.
 次に、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。 Next, the present invention will be described in more detail based on examples. However, the present invention is not limited to such examples.
 (実施例1)
 メタノールおよび水を気化させる原料気化部1を用いて、メタノールおよび水を約240℃に加熱することによりメタノールおよび水を気化させた。前記原料気化部1と接続され、前記原料気化部1で得られたメタノール蒸気と水蒸気とを空気と混ぜ、原料ガスを調製した。
Example 1
Methanol and water were vaporized by heating the methanol and water to about 240 ° C. using the raw material vaporization section 1 for vaporizing methanol and water. Methanol vapor and water vapor connected to the raw material vaporization unit 1 and obtained in the raw material vaporization unit 1 were mixed with air to prepare a raw material gas.
 反応ガス生成部2は、次の2つの部分で構成されている。反応ガス生成部2の上流側に位置し、主として上記反応式(1)で表される酸化反応が起こる部分酸化反応部には、触媒(シグマアルドリッチジャパン株式会社製、酸化銅/アルミナ担持触媒)を充填し、内径8.5cmおよび長さ20cmを有する反応管を用いた。また、反応ガス生成部2の下流側に位置し、主として上記反応式(2),(3)で表される反応が起こる水蒸気改質反応部(分解反応部)には、内径14cmおよび長さ95cmを有する円筒管と内径21cmおよび長さ95cmを有する円筒管とを重ね合わせ、両者間の空隙(相当直径:6.9cm)に触媒(三菱ガス化学株式会社製、酸化銅―酸化亜鉛/アルミナ担持触媒)を充填した反応管を用いた。 The reactive gas generator 2 is composed of the following two parts. A catalyst (a copper oxide / alumina-supported catalyst manufactured by Sigma-Aldrich Japan Co., Ltd.) is located on the upstream side of the reaction gas generation unit 2 and the partial oxidation reaction unit in which the oxidation reaction represented mainly by the reaction formula (1) occurs. A reaction tube having an inner diameter of 8.5 cm and a length of 20 cm was used. The steam reforming reaction part (decomposition reaction part), which is located downstream of the reaction gas generation part 2 and in which the reactions mainly represented by the reaction formulas (2) and (3) occur, has an inner diameter of 14 cm and a length. A cylindrical tube having 95 cm and a cylindrical tube having an inner diameter of 21 cm and a length of 95 cm are overlapped, and a catalyst (copper oxide-zinc oxide / alumina, manufactured by Mitsubishi Gas Chemical Co., Ltd.) is formed in the gap (equivalent diameter: 6.9 cm) between them. A reaction tube filled with (supported catalyst) was used.
 前記反応ガス生成部2内に、前記原料気化部1で得られた、メタノール蒸気214g/分、水蒸気194g/分および空気69Nリットル/分(平均値)の流量となるように通気した。空気量を79Nリットル/分の流量で92秒間通気した後、空気の通気を8秒間停止する操作を周期的に繰り返した。前記原料ガスおよび空気を通気するとき、水/メタノールのモル比は2.2/1であり、酸素ガス/メタノールのモル比は0.28/1であった。 The reaction gas generation unit 2 was aerated so as to have a flow rate of methanol vapor 214 g / min, water vapor 194 g / min, and air 69 N liter / min (average value) obtained in the raw material vaporization unit 1. After aeration of air for 92 seconds at a flow rate of 79 Nl / min, the operation of stopping the ventilation of air for 8 seconds was repeated periodically. When the raw material gas and air were vented, the water / methanol molar ratio was 2.2 / 1 and the oxygen gas / methanol molar ratio was 0.28 / 1.
 前記反応ガス生成部2と接続され、前記反応ガス生成部2で得られた反応生成ガスから当該反応生成ガスに含まれている水素ガスを分離するための図3に示した水素ガス分離部3(圧力変動吸着装置:PSA装置)を用いて、反応生成ガスから当該反応生成ガスに含まれている水素ガスを分離した。 The hydrogen gas separation unit 3 shown in FIG. 3 is connected to the reaction gas generation unit 2 and separates hydrogen gas contained in the reaction product gas from the reaction product gas obtained by the reaction gas generation unit 2. The hydrogen gas contained in the reaction product gas was separated from the reaction product gas using (pressure fluctuation adsorption device: PSA device).
 前記反応ガス生成部2で得られた反応生成ガスから生成した水分を凝縮することによって除去した。この反応生成ガスを、吸着剤としてゼオライトモレキュラーシーブ(Ca5A型、UOP製5AHP)とカーボンモレキュラーシーブ(日本エンバイロ製G2-X)とを1:1.3の体積比で合計50リットルの量で詰めた3塔式(3本の吸着塔を備える構成)の水素ガス分離部3を用いて精製し、高純度の水素ガスを得た。 The moisture generated from the reaction product gas obtained in the reaction gas generation unit 2 was removed by condensation. This reaction product gas is packed with zeolite molecular sieve (Ca5A type, 5AHP made by UOP) and carbon molecular sieve (G2-X made by Nippon Enviro) as adsorbents in a volume ratio of 1: 1.3 in a total volume of 50 liters. In addition, purification was performed using a hydrogen gas separation unit 3 of a three-column type (a configuration including three adsorption towers) to obtain high-purity hydrogen gas.
 図4A~図4Iに示した、吸着工程、洗浄ガス流出工程、均圧ガス流出工程、第1脱着工程、第2脱着工程、洗浄ガス流入工程、均圧ガス流入工程、および昇圧工程からなる分離方法に従って、反応生成ガスから水素ガスを分離した。これによって、純度99.0容量%以上の水素ガスを19.7Nm/時間の速度で得た。 4A to 4I, the separation comprising the adsorption process, the cleaning gas outflow process, the pressure equalizing gas outflow process, the first desorption process, the second desorption process, the cleaning gas inflow process, the pressure equalizing gas inflow process, and the pressure increasing process. According to the method, hydrogen gas was separated from the reaction product gas. As a result, hydrogen gas having a purity of 99.0% by volume or more was obtained at a rate of 19.7 Nm 3 / hour.
 前記水素ガス分離部3と接続され、水素ガス分離部3で反応生成ガスから水素ガスが分離された脱着ガス(オフガス)を燃焼するためのガス燃焼部9を有する保熱部4を用いて、水素ガスが分離されて排出された脱着ガスを燃焼した。 Using the heat retaining section 4 connected to the hydrogen gas separation section 3 and having a gas combustion section 9 for burning a desorption gas (off gas) in which hydrogen gas is separated from a reaction product gas in the hydrogen gas separation section 3, The desorption gas discharged after the hydrogen gas was separated was burned.
 水素ガス分離部3で反応生成ガスから水素ガスを分離する脱着工程の脱着開始圧力は、250kPaGである。第1脱着工程における脱着終了圧力は、170kPaG(減圧率32%)とした。水素ガス分離部3から流出された脱着ガスと空気とを空気108Nm/時間の流量で混合し、得られた混合ガスをメタルハニカム状の白金触媒に通じ、ガス燃焼部9において燃焼させた。その時の保熱部4の温度を図5に示した。また、その時の反応ガス生成部2の温度を図6に示した。図5は、各実施例および比較例の保熱部4における温度変化を示すグラフである。図6は、各実施例および比較例の反応ガス生成部2における温度変化を示すグラフである。 The desorption start pressure in the desorption process in which the hydrogen gas is separated from the reaction product gas in the hydrogen gas separation unit 3 is 250 kPaG. The desorption end pressure in the first desorption step was 170 kPaG (decompression rate 32%). The desorption gas and air that flowed out from the hydrogen gas separation unit 3 were mixed at a flow rate of air 108 Nm 3 / hour, and the resulting mixed gas was passed through a metal honeycomb platinum catalyst and burned in the gas combustion unit 9. The temperature of the heat retaining unit 4 at that time is shown in FIG. Moreover, the temperature of the reaction gas production | generation part 2 at that time was shown in FIG. FIG. 5 is a graph showing a temperature change in the heat retaining section 4 of each example and comparative example. FIG. 6 is a graph showing a temperature change in the reaction gas generation unit 2 of each example and comparative example.
 (実施例2)
 実施例2では、脱着工程の脱着開始圧力を160kPaGとし、第1脱着工程における脱着終了圧力を130kPaG(減圧率19%)としたこと以外は、実施例1と同様にして反応生成ガスから水素ガスの分離を行った。その時の保熱部4の温度を図5に示した。また、その時の反応ガス生成部2の温度を図6に示した。
(Example 2)
In Example 2, the desorption start pressure in the desorption step was set to 160 kPaG, and the desorption end pressure in the first desorption step was set to 130 kPaG (decompression rate 19%). Separation. The temperature of the heat retaining unit 4 at that time is shown in FIG. Moreover, the temperature of the reaction gas production | generation part 2 at that time was shown in FIG.
 (比較例1)
 比較例1では、第1脱着工程における脱着終了圧力を、100kPaG(減圧率60%)としたこと以外は、実施例1と同様にして反応生成ガスから水素ガスの分離を行った。その時の保熱部4の温度を図5に示した。また、その時の反応ガス生成部2の温度を図6に示した。
(Comparative Example 1)
In Comparative Example 1, hydrogen gas was separated from the reaction product gas in the same manner as in Example 1 except that the desorption end pressure in the first desorption step was set to 100 kPaG (pressure reduction rate 60%). The temperature of the heat retaining unit 4 at that time is shown in FIG. Moreover, the temperature of the reaction gas production | generation part 2 at that time was shown in FIG.
 (比較例2)
 比較例2では、第1脱着工程における脱着終了圧力を、40kPaG(減圧率85%)としたこと以外は、実施例1と同様にして反応生成ガスから水素ガスの分離を行った。その時の保熱部4の温度を図5に示した。また、その時の反応ガス生成部2の温度を図6に示した。
(Comparative Example 2)
In Comparative Example 2, hydrogen gas was separated from the reaction product gas in the same manner as in Example 1 except that the desorption end pressure in the first desorption step was 40 kPaG (pressure reduction rate: 85%). The temperature of the heat retaining unit 4 at that time is shown in FIG. Moreover, the temperature of the reaction gas production | generation part 2 at that time was shown in FIG.
 図5に示す結果から明らかなように、実施例1,2における保熱部4の温度は、比較例1,2に比べて、大きく変動していることがわかる。すなわち、実施例1,2では、水素ガス分離部3から流出される不純物ガスの流量が大きく変化し、その流量が大きく変化した状態で脱着ガスがガス燃焼部9に供給されるので、脱着ガスの流量の変化に伴ってガス燃焼部9で発生する燃焼熱の熱量が変化する。この結果、保熱部4の温度が大きく変動することになる。したがって、実施例1,2では、原料気化部1におけるメタノールおよび水を気化させるための加熱量が変化するので、温度が変化したメタノール蒸気および水蒸気が反応ガス生成部2に流入することになる。 As is clear from the results shown in FIG. 5, it can be seen that the temperature of the heat retaining section 4 in Examples 1 and 2 varies greatly as compared with Comparative Examples 1 and 2. That is, in Examples 1 and 2, the flow rate of the impurity gas flowing out from the hydrogen gas separation unit 3 is greatly changed, and the desorption gas is supplied to the gas combustion unit 9 in a state where the flow rate is greatly changed. The amount of heat of combustion generated in the gas combustion unit 9 changes with the change in the flow rate. As a result, the temperature of the heat retaining unit 4 varies greatly. Therefore, in Examples 1 and 2, since the heating amount for vaporizing methanol and water in the raw material vaporization unit 1 changes, methanol vapor and water vapor whose temperature has changed flow into the reaction gas generation unit 2.
 実施例1,2では、温度が変化したメタノール蒸気および水蒸気が反応ガス生成部2内に流入するので、反応ガス生成部2内におけるホットスポットの位置を変化させることができて、常に同じ領域が最高温度になるのを防ぐことができ(熱の偏りを分散させることができ)、その結果、図6に示すように、反応ガス生成部2の温度を380℃以下に抑えることができる。 In Examples 1 and 2, since the methanol vapor and the water vapor whose temperature has changed flow into the reaction gas generation unit 2, the position of the hot spot in the reaction gas generation unit 2 can be changed, and the same region is always present. As a result, it is possible to prevent the temperature from reaching the maximum temperature (dispersion of heat bias), and as a result, the temperature of the reaction gas generation unit 2 can be suppressed to 380 ° C. or lower as shown in FIG.
 本発明は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本発明の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all points, and the scope of the present invention is shown in the scope of claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the claims are within the scope of the present invention.
 1 原料気化部
 2 反応ガス生成部
 3 水素ガス分離部
 4 保熱部
 9 ガス燃焼部
DESCRIPTION OF SYMBOLS 1 Raw material vaporization part 2 Reaction gas production | generation part 3 Hydrogen gas separation part 4 Heat insulation part 9 Gas combustion part

Claims (3)

  1.  燃焼用ガスを燃焼器内に流入させて燃焼させる燃焼工程と、
     前記燃焼器内における燃焼用ガスの燃焼により発生する燃焼熱によって気化器を加熱し、加熱された気化器内に、炭化水素系化合物および水を含む液体原料を流入させて該液体原料を気化させ、ガス流体を得る気化工程と、
     前記気化工程で得られたガス流体に、酸素を含む気体原料を混合させ、混合された混合ガス流体を触媒が充填された反応器内に流入させて、炭化水素系化合物の部分酸化反応および水蒸気改質反応を進行させ、水素が主成分である反応生成物を得る水素生成工程と、
     前記水素生成工程で得られた反応生成物を、吸着剤が充填された吸着塔内に、吸着開始圧力の加圧下で流入させて、反応生成物中の副成分を吸着剤に吸着させて除去し、反応生成物中の主成分である水素を吸着塔から回収器に流出させる吸着工程と、
     前記吸着工程における前記吸着塔からの水素の流出後、該吸着塔内の圧力を前記吸着開始圧力よりも低い脱着開始圧力に変動させて、吸着剤に吸着した副成分を含む吸着成分を吸着剤から脱着させ、脱着した吸着成分を含む脱着ガスを吸着塔外に流量を変化させながら流出させる脱着工程と、
     前記脱着工程において前記吸着塔から流出させた脱着ガスを、前記燃焼用ガスとして前記燃焼器内に供給する脱着ガス供給工程と、を含むことを特徴とする水素の製造方法。
    A combustion process in which combustion gas flows into the combustor and burns;
    A vaporizer is heated by combustion heat generated by combustion of combustion gas in the combustor, and a liquid raw material containing a hydrocarbon compound and water is caused to flow into the heated vaporizer to vaporize the liquid raw material. A vaporization step of obtaining a gas fluid;
    The gas fluid obtained in the vaporization step is mixed with a gas raw material containing oxygen, and the mixed gas fluid is caused to flow into a reactor filled with a catalyst, thereby partially oxidizing the hydrocarbon-based compound and steam. A hydrogen generation step in which a reforming reaction proceeds to obtain a reaction product mainly composed of hydrogen;
    The reaction product obtained in the hydrogen generation step is allowed to flow into the adsorption tower filled with the adsorbent under the pressure of the adsorption start pressure, and adsorbent removes the secondary component in the reaction product. An adsorption step for flowing out hydrogen, which is a main component in the reaction product, from the adsorption tower to the recovery device;
    After outflow of hydrogen from the adsorption tower in the adsorption step, the pressure in the adsorption tower is changed to a desorption start pressure lower than the adsorption start pressure, and the adsorbent component including the subcomponent adsorbed on the adsorbent is adsorbed. A desorption step of desorbing the desorbed gas containing the desorbed adsorbing component from the adsorbing tower and changing the flow rate to the outside of the adsorption tower;
    A desorption gas supply step of supplying the desorption gas that has flowed out of the adsorption tower in the desorption step into the combustor as the combustion gas.
  2.  前記脱着工程では、前記吸着塔内の圧力を、前記吸着開始圧力から前記脱着開始圧力に変動させた後、該脱着開始圧力から脱着終了圧力まで多段階で減圧させることによって、吸着塔外に流出させる脱着ガスの流量を変化させることを特徴とする請求項1に記載の水素の製造方法。 In the desorption step, the pressure in the adsorption tower is changed from the adsorption start pressure to the desorption start pressure, and then depressurized in multiple stages from the desorption start pressure to the desorption end pressure. The method for producing hydrogen according to claim 1, wherein the flow rate of the desorption gas to be changed is changed.
  3.  前記脱着工程では、前記吸着塔内を多段階で減圧させるときに、下記式(I)で表される1段階目の減圧率Pが35%以下であることを特徴とする請求項2に記載の水素の製造方法。
     減圧率P(%)=[(P-P)/P]×100 …(I)
     (式中、Pは脱着開始圧力(kPaG)を示し、Pは1段階目の脱着終了圧力(kPaG)を示す。)
    The desorption step is operated to vacuum the suction tower in multiple stages, in claim 2 in which pressure reduction rate P A in the first stage is represented by the following formula (I) is characterized in that 35% or less The manufacturing method of hydrogen of description.
    Decompression rate P A (%) = [(P S −P E ) / P S ] × 100 (I)
    (Wherein, P S represents a desorption start pressure (kPaG), P E represents the first stage of the desorption completion pressure (kPaG).)
PCT/JP2014/065802 2013-08-26 2014-06-13 Hydrogen production method WO2015029543A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015534039A JPWO2015029543A1 (en) 2013-08-26 2014-06-13 Method for producing hydrogen
PH12016500321A PH12016500321A1 (en) 2013-08-26 2016-02-17 Method of producing hydrogen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174650 2013-08-26
JP2013174650 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029543A1 true WO2015029543A1 (en) 2015-03-05

Family

ID=52586122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065802 WO2015029543A1 (en) 2013-08-26 2014-06-13 Hydrogen production method

Country Status (4)

Country Link
JP (1) JPWO2015029543A1 (en)
PH (1) PH12016500321A1 (en)
TW (1) TW201507971A (en)
WO (1) WO2015029543A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401601B1 (en) * 2021-11-10 2022-05-24 국방과학연구소 Heat management system and method of methanol steam reforming plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2003001061A (en) * 2001-06-19 2003-01-07 Air Water Inc Method of concentrating carbon dioxide in combustion gas
JP2005272598A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Fuel gas production system and method for starting-up the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002020102A (en) * 2000-06-30 2002-01-23 Mitsubishi Kakoki Kaisha Ltd Method for starting and method for stopping hydrogen producing device
JP2002355521A (en) * 2001-05-31 2002-12-10 Tokyo Gas Co Ltd Method of controlling flow rate of offgas in four tower- type pressure-swing adsorption equipment for purifying hydrogen
JP2003001061A (en) * 2001-06-19 2003-01-07 Air Water Inc Method of concentrating carbon dioxide in combustion gas
JP2005272598A (en) * 2004-03-24 2005-10-06 Honda Motor Co Ltd Fuel gas production system and method for starting-up the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102401601B1 (en) * 2021-11-10 2022-05-24 국방과학연구소 Heat management system and method of methanol steam reforming plant

Also Published As

Publication number Publication date
JPWO2015029543A1 (en) 2017-03-02
TW201507971A (en) 2015-03-01
PH12016500321A1 (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP7365341B2 (en) Plants and methods for producing synthesis gas
US7927574B2 (en) Method for regenerating a solid reactant
JP5015690B2 (en) Apparatus and method for heating a catalyst for start-up of a compact fuel processor
EP2407421B1 (en) A method and apparatus for producing power and hydrogen
DK2419375T3 (en) A process for producing a hydrogen-containing product gas
KR20090114408A (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane decomposition on catalyst
JP2005530675A (en) Methanol steam reforming catalyst, steam reformer, and fuel cell system incorporating the same
KR20090118940A (en) Method and system for producing a hydrogen enriched fuel using microwave assisted methane plasma decomposition on catalyst
US10899612B2 (en) Hydrogen production reactor including carbon monoxide removing unit
EP2212244A1 (en) Process to prepare a mixture of hydrogen and carbon monoxide
JP4557849B2 (en) Method for producing hydrogen from ethanol
CN114746170A (en) Electrically heated carbon monoxide reactor
JP3856987B2 (en) Method for controlling off-gas pressure from off-gas tank in three-column PSA system for hydrogen purification
JPWO2009014109A1 (en) Combustible gas treatment system and combustible gas treatment method
JP2008221082A (en) Method for regenerating absorbing material
JP5738658B2 (en) High-efficiency methanol production method
JP5616754B2 (en) Hydrogen gas production equipment
WO2015029543A1 (en) Hydrogen production method
WO2009107592A1 (en) Process and apparatus for production of hydrogen
KR101830954B1 (en) Hydrogen production system including unit for removal of carbon monoxide
JP2013103909A (en) Method for producing raw material of acetic acid or raw material of mma utilizing methanol plant
JP6553272B1 (en) Multi-tubular reformer and hydrogen production apparatus
WO2012140995A1 (en) High efficiency production method of methanol and production method of acetic acid material or mma material using same
WO2014181718A1 (en) Method for producing hydrogen
WO2023218160A1 (en) Process for synthesising methanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839677

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534039

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12016500321

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839677

Country of ref document: EP

Kind code of ref document: A1