JP2003001061A - Method of concentrating carbon dioxide in combustion gas - Google Patents

Method of concentrating carbon dioxide in combustion gas

Info

Publication number
JP2003001061A
JP2003001061A JP2001184326A JP2001184326A JP2003001061A JP 2003001061 A JP2003001061 A JP 2003001061A JP 2001184326 A JP2001184326 A JP 2001184326A JP 2001184326 A JP2001184326 A JP 2001184326A JP 2003001061 A JP2003001061 A JP 2003001061A
Authority
JP
Japan
Prior art keywords
carbon dioxide
gas
adsorption
combustion exhaust
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001184326A
Other languages
Japanese (ja)
Other versions
JP3571672B2 (en
Inventor
Hideaki Takano
英明 高野
Yoshitomi Yamashita
良富 山下
Yasuo Hirai
靖夫 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2001184326A priority Critical patent/JP3571672B2/en
Publication of JP2003001061A publication Critical patent/JP2003001061A/en
Application granted granted Critical
Publication of JP3571672B2 publication Critical patent/JP3571672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of concentrating carbon dioxide in a combustion gas by which the concentration of carbon dioxide is increased to 20-50 vol.% with high efficiency by a simplified process. SOLUTION: Carbon dioxide is adsorbed by feeding the waste combustion gas 2 having 5-15 vol.% carbon dioxide concentration at <=0.02 MPa.G to adsorption towers 6a and 6b of a pressure swing adsorption apparatus, in which activated carbon is packed. The adsorbed carbon dioxide is desorbed at <=200 Torr by evacuating the inside of the adsorption towers 6a and 6b from the inlet side of the adsorption towers 6a and 6b by a vacuum pump 11 and is recovered as concentrated carbon dioxide. Air in the atmosphere is supplied from an outlet of the adsorption towers 6a and 6b as it is kept successively to <=200 Torr to desorb carbon dioxide which is not desorbed by the evacuation. After the desorbed carbon dioxide is recovered as the concentrated gas, the pressure of the adsorption towers 6a and 6b are increased to atmospheric pressure by supplying the waste combustion gas or an off-gas of the adsorption process to the adsorption towers 6a and 6b. As a result, the concentrated gas having 20-50 vol.% carbon dioxide concentration is recovered with high efficiency at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、重油焚きボイラ
ー、加熱炉等の燃焼排ガス中の炭酸ガス濃度を20〜5
0容量%に高効率で濃縮する方法に関する。
TECHNICAL FIELD The present invention relates to a carbon dioxide concentration of 20 to 5 in combustion exhaust gas from a heavy oil-fired boiler, a heating furnace or the like.
It relates to a method for highly efficient concentration to 0% by volume.

【0002】[0002]

【従来の技術】炭酸ガス含有ガスからの炭酸ガスの回収
方法としては、一般的には深冷分離法、吸収法、分離膜
法、圧力変動吸着(PSA)法、温度変動吸着(TS
A)法などの回収技術が知られている。
2. Description of the Related Art As a method for recovering carbon dioxide from carbon dioxide-containing gas, generally, there are a cryogenic separation method, an absorption method, a separation membrane method, a pressure fluctuation adsorption (PSA) method, and a temperature fluctuation adsorption (TS).
A) and other recovery techniques are known.

【0003】上記のうち、炭酸ガス濃度5〜15容量%
の燃焼排ガスから低コストで炭酸ガス濃度を20〜50
容量%まで高めるには、プロセスが単純で、低コスト、
かつ分離性、収率がある程度得られるPSA法が有利で
あると考えられる。PSA法による炭酸ガス回収技術で
は、一般的に炭酸ガス濃度20容量%以上の燃焼排ガス
からの高純度炭酸ガス(純度99.9容量%以上)を回
収する技術が良く知られ、実用化されている。
Of the above, carbon dioxide concentration 5 to 15% by volume
Carbon dioxide concentration of 20 to 50 at low cost from the combustion exhaust gas of
To increase the capacity%, the process is simple, low cost,
In addition, the PSA method is considered to be advantageous because it provides separability and yield to some extent. In the carbon dioxide recovery technology by the PSA method, a technology for recovering high-purity carbon dioxide (purity 99.9% by volume or more) from combustion exhaust gas having a carbon dioxide concentration of 20% by volume or more is generally well known and put into practical use. There is.

【0004】例えば、PSA法により炭酸ガス含有ガス
から炭酸ガスを分離回収する方法としては、活性炭吸着
剤を用いて炭酸ガス含有ガスから炭酸ガスを圧力変動吸
着法により分離濃縮するに際し、脱着操作の終了後に吸
着塔内に大気空気あるいは大気空気と原料ガスを送入し
て塔内をほぼ大気圧にした後、吸着操作を行う方法(特
開昭61−157322号公報)、燃焼排ガスを除湿し
た後、炭素系吸着剤またはハイドロタルサイト系吸着剤
を充填した第1PSA装置に排ガスを加圧状態で通し大
気圧で再生してCO2に富むガスを得、このCO2に富む
ガスをゼオライト系吸着剤を充填した第2PSA装置に
常圧状態で通し減圧状態で再生して高濃度の炭酸ガスを
分離回収する方法(特開平6−91126号公報)、P
SA除湿装置により燃焼排ガスを除湿し乾燥ガスとする
工程と、該乾燥ガス中の炭酸ガスを炭酸ガス濃縮装置に
より減容濃縮して炭酸ガス高濃度ガスとする工程と、該
炭酸ガス高濃度ガスを炭酸ガス液化装置により凝縮液化
して液化炭酸ガスを得る工程との各工程を含み、前記炭
酸ガス液化装置から排出される不凝縮ガスを、前記PS
A除湿装置の再生工程にある塔に還流させ、さらに、該
除湿装置からの脱着ガスを湿分凝縮器により水分を除去
して乾きガスとして前記除湿装置の入口に還流させる方
法(特開平6−99013号公報)等が提案されてい
る。
For example, as a method of separating and recovering carbon dioxide from a carbon dioxide-containing gas by the PSA method, when the carbon dioxide is separated from the carbon dioxide-containing gas by an activated carbon adsorbent and concentrated by a pressure fluctuation adsorption method, a desorption operation is performed. After the completion, atmospheric air or atmospheric air and a raw material gas are fed into the adsorption tower to bring the inside of the tower to almost atmospheric pressure, and then an adsorption operation is performed (Japanese Patent Laid-Open No. 61-157322), and combustion exhaust gas is dehumidified. after, to obtain a gas enriched in CO 2 by playing at atmospheric pressure through the exhaust gas to the 1PSA device filled with carbonaceous adsorbents or hydrotalcite adsorbent under pressure, zeolitic gas enriched in the CO 2 A method in which a second PSA apparatus filled with an adsorbent is passed under normal pressure and regenerated under reduced pressure to separate and collect high-concentration carbon dioxide (JP-A-6-91126), P
A step of dehumidifying the combustion exhaust gas by a SA dehumidifier to obtain a dry gas; a step of reducing the volume of carbon dioxide in the dry gas by a carbon dioxide concentrator to a high concentration carbon dioxide gas; and a high concentration carbon dioxide gas And a process of condensing and liquefying carbon dioxide gas by a carbon dioxide gas liquefying device to obtain liquefied carbon dioxide gas.
A method of refluxing to the tower in the regeneration step of the dehumidifier, and further desorbing the desorbed gas from the dehumidifier by means of a moisture condenser to return the desorbed gas as dry gas to the inlet of the dehumidifier (JP-A-6- Japanese Patent No. 99013) has been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記PSA法では、燃
焼排ガス中に炭酸ガスが20容量%以上含まれていない
と、高純度炭酸ガスを回収するには、精製工程が多段と
なり、設備が大型化してコスト的に見合わない場合が多
いとされている。しかし、重油ボイラー、加熱炉等のほ
とんどの燃焼排ガスは、炭酸ガス濃度が5〜15容量%
であるため、高純度炭酸ガスを回収するのはコスト的に
困難で、利用しないで大気中へ放出しているのが実状で
ある。
In the above-mentioned PSA method, if the combustion exhaust gas does not contain carbon dioxide gas in an amount of 20% by volume or more, the purification process becomes multistage and the equipment is large in order to recover high-purity carbon dioxide gas. It is said that there are many cases in which the cost does not match the cost. However, most combustion exhaust gas from heavy oil boilers, heating furnaces, etc. has a carbon dioxide concentration of 5 to 15% by volume.
Therefore, it is difficult to recover high-purity carbon dioxide in terms of cost, and it is the actual situation that it is released into the atmosphere without using it.

【0006】本発明の目的は、上記従来技術のように高
純度炭酸ガスを回収することなく、簡素化したプロセス
で、しかも高効率で、高アルカリ排水の中和に適した炭
酸ガス濃度20〜50容量%に高めることができる燃焼
排ガス中の炭酸ガスを濃縮する方法を提供することにあ
る。
The object of the present invention is a carbon dioxide concentration of 20 to 20 which is suitable for the neutralization of highly alkaline waste water with a simplified process and high efficiency without recovering high purity carbon dioxide as in the prior art. It is to provide a method for concentrating carbon dioxide gas in combustion exhaust gas that can be increased to 50% by volume.

【0007】[0007]

【課題を解決するための手段】本願の請求項1に係る発
明の燃焼排ガス中の炭酸ガスを濃縮する方法は、燃焼排
ガス中の炭酸ガス濃度を圧力変動吸着法により20〜5
0容量%に高める方法であって、燃焼排ガスを活性炭を
充填した吸着塔に送入して炭酸ガスを吸着せしめる吸着
工程と、吸着したガスを真空引きして脱着したガスを濃
縮ガスとして回収する第1脱着工程と、真空引きしなが
ら吸着塔に大気空気を供給して第1脱着工程で脱着しな
かったガスを脱着させて濃縮ガスとして回収する第2脱
着工程と、第2脱着工程終了後、吸着塔に燃焼排ガスま
たは吸着工程からのオフガスを供給して大気圧まで昇圧
する昇圧工程とからなることを特徴とする。
A method of concentrating carbon dioxide gas in combustion exhaust gas according to the invention of claim 1 of the present application is a method in which the concentration of carbon dioxide gas in combustion exhaust gas is adjusted to 20 to 5 by a pressure fluctuation adsorption method.
This is a method of increasing the content to 0% by volume, which is an adsorption step of feeding combustion exhaust gas into an adsorption tower filled with activated carbon to adsorb carbon dioxide gas, and vacuuming the adsorbed gas to recover the desorbed gas as a concentrated gas. After the first desorption step, a second desorption step of supplying atmospheric air to the adsorption tower while vacuuming, desorbing the gas not desorbed in the first desorption step and collecting it as a concentrated gas, and after the second desorption step And a step of raising the pressure to atmospheric pressure by supplying combustion exhaust gas or off-gas from the step of adsorption to the adsorption tower.

【0008】また、本願の請求項2に係る発明の燃焼排
ガス中の炭酸ガスを濃縮する方法は、炭酸ガス濃度5〜
15容量%の燃焼排ガスを圧力変動吸着装置の活性炭を
充填した吸着塔に0.02MPa・G以下で送入して吸
着させ、真空ポンプにより吸着塔入口側から吸着塔内部
を真空引きして200Torr以下で吸着したガスを抜
き出して濃縮ガスとして回収すると共に、引続き200
Torr以下に保ったままで吸着塔出口から大気空気を
供給して脱着しなかったガスを抜き出して濃縮ガスとし
て回収して炭酸ガス濃度20〜50容量%の濃縮ガスと
したのち、吸着塔に燃焼排ガスまたは吸着工程からのオ
フガスを供給して吸着塔内を大気圧まで昇圧することを
特徴とする。
Further, the method for concentrating carbon dioxide gas in the combustion exhaust gas according to the second aspect of the present invention has a carbon dioxide gas concentration of 5 to 5.
15% by volume of combustion exhaust gas is sent to an adsorption tower filled with activated carbon of a pressure fluctuation adsorption device at 0.02 MPa · G or less to adsorb it, and the inside of the adsorption tower is evacuated from the adsorption tower inlet side by a vacuum pump to 200 Torr. The adsorbed gas is extracted below and recovered as a concentrated gas, and the
Atmospheric air was supplied from the adsorption tower outlet while keeping the pressure below Torr, and the gas that had not been desorbed was extracted and collected as a concentrated gas to obtain a concentrated gas with a carbon dioxide concentration of 20 to 50% by volume, and then the exhaust gas was fed to the adsorption tower. Alternatively, it is characterized in that the off-gas from the adsorption step is supplied to raise the pressure in the adsorption tower to atmospheric pressure.

【0009】[0009]

【発明の実施の形態】本発明の燃焼排ガス中の炭酸ガス
を濃縮する方法は、アルカリ排水の中和の際に燃焼排ガ
ス中の炭酸ガス濃度が30容量%以上であっても、炭酸
ガスの溶解効率が殆ど上がらないため、高純度にする必
要がないこと、アルカリ排水中に吹き込むため濃縮ガス
中に水分が含まれていてもよく、除湿の必要がない等を
考慮し、炭酸ガス濃度5〜15容量%の常温の燃焼排ガ
スから一段で炭酸ガス濃度20〜50容量%に高回収率
で濃縮するものである。なお、本発明方法は、高純度炭
酸ガスの回収方法の前段処理としても使用できるが、そ
の場合には、除湿工程が別に必要となる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for concentrating carbon dioxide gas in combustion exhaust gas according to the present invention is a method for concentrating carbon dioxide gas in combustion exhaust gas even when the carbon dioxide gas concentration in the combustion exhaust gas is 30% by volume or more during neutralization of alkaline wastewater. Considering that it does not need to be highly pure because the dissolution efficiency hardly increases, and that the concentrated gas may contain water because it is blown into alkaline wastewater, and that dehumidification is not necessary, etc. It is a high-concentration carbon dioxide concentration of 20 to 50% by volume from a combustion exhaust gas at room temperature of up to 15% by volume in one step. The method of the present invention can also be used as a pre-treatment of the method for recovering high-purity carbon dioxide, but in that case, a dehumidifying step is additionally required.

【0010】炭酸ガス濃度20〜50容量%の濃縮ガス
の回収は、濃縮ガスの炭酸ガス濃度に応じて脱着工程で
の真空度を調整する。例えば、濃縮ガスの炭酸ガス濃度
20容量%の場合は、第1脱着工程、第2脱着工程共に
真空度200Torr、炭酸ガス濃度30容量%の場合
は、第1脱着工程、第2脱着工程共に100Torr、
炭酸ガス濃度50容量%の場合は、第1脱着工程、第2
脱着工程共に50Torrとする。
For the recovery of the concentrated gas having a carbon dioxide concentration of 20 to 50% by volume, the degree of vacuum in the desorption process is adjusted according to the carbon dioxide concentration of the concentrated gas. For example, when the carbon dioxide concentration of the concentrated gas is 20% by volume, the vacuum degree is 200 Torr in both the first desorption process and the second desorption process, and when the carbon dioxide concentration is 30% by volume, both the first desorption process and the second desorption process are 100 Torr. ,
When the carbon dioxide concentration is 50% by volume, the first desorption step, the second
Both the desorption process is set to 50 Torr.

【0011】本発明の燃焼排ガス中の炭酸ガスを濃縮す
る方法を図1に基づいて説明する。図1はこの発明の燃
焼排ガス中の炭酸ガスを濃縮する方法の系統図である。
図1において、1は燃焼排ガス2を抜き出して0.02
MPa・Gまで昇圧するブロアー、3は燃焼排ガス1を
冷却する熱交換器、4は冷却された燃焼排ガス2中のダ
スト、SOx等の水溶性不純物を除去するための水洗
塔、5は燃焼排ガス2を常温まで冷却する冷却器であ
る。燃焼排ガス2は、通常、CO2:5〜15容量%、
2:10〜14容量%、N2:68〜82容量%と共
に、CO、SO2、NOx、水分等を含んでいる。
A method of concentrating carbon dioxide gas in the combustion exhaust gas of the present invention will be described with reference to FIG. FIG. 1 is a system diagram of a method for concentrating carbon dioxide gas in combustion exhaust gas according to the present invention.
In FIG. 1, 1 is 0.02 by extracting combustion exhaust gas 2.
Blower for increasing the pressure to MPa · G, 3 is a heat exchanger for cooling the combustion exhaust gas 1, 4 is a washing tower for removing dust and water-soluble impurities such as SOx in the cooled combustion exhaust gas 2, 5 is the combustion exhaust gas This is a cooler that cools 2 to room temperature. The combustion exhaust gas 2 is usually CO 2 : 5 to 15% by volume,
O 2: 10 to 14 volume%, N 2: 68-82 with volume%, contains CO, SO 2, NOx, water and the like.

【0012】6a、6bは2塔切替方式の吸着剤として
炭酸ガスを吸着する活性炭が充填された圧力変動吸着分
離装置(以下PSA装置という)の吸着塔で、逐次と第
1脱着、第2脱着を切替え使用している。冷却器5で飽
和蒸気圧以上の水分が凝縮された常温の燃焼排ガス2
は、配管7により吸着塔6a、6bに導入される。8
a、8bは吸着塔6a、6bへ常温の燃焼排ガス2を導
入するための切替弁である。9a、9bは炭酸ガスの吸
着された燃焼排ガス2を導出するための切替弁である。
10a、10bは吸着塔6a、6bを200Torr以
下、好ましくは100Torr以下まで減圧する真空ポ
ンプ11と接続された切替弁で、吸着塔6a、6bから
吸着された炭酸ガスを脱着するためのものある。12
a、12bは吸着塔6a、6bに大気空気または冷却器
5出口の常温の燃焼排ガス2を配管13を介して導入す
るための切替弁である。14は大気空気を配管13に供
給する切替弁、15は冷却器5出口の常温の燃焼排ガス
2を配管13に供給する切替弁である。16は炭酸ガス
濃度が20〜30容量%に濃縮された濃縮ガスを一時貯
蔵する濃縮ガスタンク、17は炭酸ガスの吸着された燃
焼排ガス2を大気中に放出する配管である。
6a and 6b are adsorption towers of a pressure fluctuation adsorption separation apparatus (hereinafter referred to as PSA apparatus) filled with activated carbon that adsorbs carbon dioxide as an adsorbent of a two-column switching system, and the first desorption and the second desorption. Is used by switching. Room temperature combustion exhaust gas 2 in which water having a saturated vapor pressure or higher is condensed in the cooler 5
Is introduced into the adsorption towers 6a and 6b through the pipe 7. 8
Reference characters a and 8b are switching valves for introducing the combustion exhaust gas 2 at room temperature into the adsorption towers 6a and 6b. 9a and 9b are switching valves for leading out the combustion exhaust gas 2 in which carbon dioxide gas is adsorbed.
Reference numerals 10a and 10b are switching valves connected to a vacuum pump 11 for reducing the pressure of the adsorption towers 6a and 6b to 200 Torr or less, preferably 100 Torr or less, for desorbing the carbon dioxide gas adsorbed from the adsorption towers 6a and 6b. 12
Reference characters a and 12b are switching valves for introducing atmospheric air or the room temperature combustion exhaust gas 2 at the outlet of the cooler 5 into the adsorption towers 6a and 6b through a pipe 13. Reference numeral 14 is a switching valve for supplying atmospheric air to the pipe 13, and 15 is a switching valve for supplying the combustion exhaust gas 2 at the normal temperature at the outlet of the cooler 5 to the pipe 13. Reference numeral 16 is a concentrated gas tank for temporarily storing a concentrated gas having a carbon dioxide concentration of 20 to 30% by volume, and 17 is a pipe for releasing the combustion exhaust gas 2 having carbon dioxide adsorbed to the atmosphere.

【0013】ブロアー1により抜き出された燃焼排ガス
2は、熱交換器3で冷却されて水分がドレンとして除去
され、水洗塔4で水洗浄されてダスト、SOx等の水溶
性不純物が除去されたのち、0.02MPa・G程度に
昇圧され、冷却器5でさらに常温まで冷却されて飽和蒸
気圧以上の水分が凝縮する。飽和蒸気圧以上の水分が凝
縮した燃焼排ガス2は、配管7、切替弁8a、8bを介
して吸着塔6a、6bに導入される。
The combustion exhaust gas 2 extracted by the blower 1 is cooled in a heat exchanger 3 to remove water as drain, and washed in a water washing tower 4 to remove water-soluble impurities such as dust and SOx. After that, the pressure is increased to about 0.02 MPa · G and further cooled to room temperature by the cooler 5 to condense water having a saturated vapor pressure or higher. The combustion exhaust gas 2 in which water having a saturated vapor pressure or higher is condensed is introduced into the adsorption towers 6a and 6b through the pipe 7 and the switching valves 8a and 8b.

【0014】吸着塔6aが昇圧、吸着工程、吸着塔6b
が脱着工程である場合、すなわち、昇圧、吸着工程の吸
着塔6aでは、切替弁12aが開放、切替弁8a、9
a、10a、14が閉止の状態で吸着塔6a内に切替弁
15、配管13、切替弁12aを介して冷却器5出口の
常温の燃焼排ガス2を導入し、吸着塔6a内部を大気圧
まで昇圧して吸着準備を完了する。そして、切替弁8
a、9aが開放、切替弁10a、12a、14、15が
閉止の状態で、吸着塔6a内に燃焼排ガス2が導入され
て炭酸ガスの大部分が活性炭に吸着され、炭酸ガスが破
過し始めた時点で切替弁8a、9aを閉止して吸着工程
を終了する。この吸着工程の間炭酸ガスの吸着された燃
焼排ガス2は、切替弁9a、配管17を介して大気中に
放出される。
The adsorption tower 6a raises the pressure, the adsorption step, the adsorption tower 6b
Is the desorption process, that is, in the adsorption tower 6a in the pressure increasing / adsorption process, the switching valve 12a is open and the switching valves 8a, 9 are
a, 10a, and 14 are closed, the combustion exhaust gas 2 at room temperature at the outlet of the cooler 5 is introduced into the adsorption tower 6a through the switching valve 15, the pipe 13, and the switching valve 12a to bring the inside of the adsorption tower 6a to the atmospheric pressure. The pressure is increased to complete the adsorption preparation. And the switching valve 8
a, 9a are opened and the switching valves 10a, 12a, 14, 15 are closed, the combustion exhaust gas 2 is introduced into the adsorption tower 6a, most of the carbon dioxide is adsorbed by the activated carbon, and the carbon dioxide breaks through. At the time of starting, the switching valves 8a and 9a are closed and the adsorption process is completed. The combustion exhaust gas 2 in which carbon dioxide gas is adsorbed during this adsorption step is released into the atmosphere through the switching valve 9a and the pipe 17.

【0015】一方、脱着工程の第1脱着工程の吸着塔6
bでは、切替弁10bが開放、切替弁8b、9b、12
b、14、15が閉止の状態で真空ポンプ11を起動
し、吸着塔6b内部を200Torr以下、例えば10
0Torrまで減圧し、活性炭に吸着された炭酸ガスを
脱着させて濃縮ガスとして濃縮ガスタンク16に回収す
る。第2脱着工程の吸着塔6bでは、切替弁10b、1
2b、14が開放、切替弁8b、9b、15が閉止の状
態で真空ポンプ11により吸着塔6b内部を100To
rrの減圧に保ちながら、配管13を介して大気空気を
吸着塔6b内に導入し、第1脱着工程で脱着しなかった
炭酸ガスを脱着させて濃縮ガスとして濃縮ガスタンク1
6に回収する。そして、切替弁10b、12b、14を
閉止し、真空ポンプ11を停止して第2脱着工程を終了
する。
On the other hand, the adsorption tower 6 in the first desorption process of the desorption process
b, the switching valve 10b is opened, and the switching valves 8b, 9b, 12
The vacuum pump 11 is started with b, 14, and 15 closed, and the inside of the adsorption tower 6b is set to 200 Torr or less, for example, 10 Torr.
The pressure is reduced to 0 Torr, the carbon dioxide gas adsorbed on the activated carbon is desorbed, and the concentrated gas is collected in the concentrated gas tank 16 as a concentrated gas. In the adsorption tower 6b of the second desorption process, the switching valves 10b, 1
2b and 14 are open, and the switching valves 8b, 9b and 15 are closed, and the inside of the adsorption tower 6b is heated to 100To with the vacuum pump 11.
While maintaining a reduced pressure of rr, atmospheric air was introduced into the adsorption tower 6b through the pipe 13 to desorb carbon dioxide gas that was not desorbed in the first desorption step and to concentrate it as a concentrated gas tank 1
Collect in 6. Then, the switching valves 10b, 12b, 14 are closed, the vacuum pump 11 is stopped, and the second desorption process is completed.

【0016】吸着塔6a、6bで上記昇圧、吸着操作と
脱着操作を交互に繰り返すことによって、炭酸ガス濃度
5〜10%の燃焼排ガスから炭酸ガス濃度20〜50容
量%の濃縮ガスを高効率、低コストで回収することがで
きる。濃縮ガスタンク16に回収された濃縮ガスは、図
示しないアルカリ排水の中和槽に吹き込まれる。なお、
吸着塔が2塔の場合の昇圧操作に際して吸着工程からの
オフガスを供給するには、1塔が吸着工程、他方が第1
脱着工程、第2脱着工程、昇圧工程のサイクルで運転す
ることが必要である。吸着塔が4塔の場合は、各塔を吸
着工程、第1脱着工程、第2脱着工程、昇圧工程とでき
るので、昇圧操作に際して吸着工程からのオフガスを昇
圧工程の吸着塔に供給することができる。
By alternately repeating the above-mentioned pressurization, adsorption operation and desorption operation in the adsorption towers 6a, 6b, it is possible to efficiently produce a concentrated gas having a carbon dioxide concentration of 20 to 50% by volume from a combustion exhaust gas having a carbon dioxide concentration of 5 to 10%. It can be recovered at low cost. The concentrated gas collected in the concentrated gas tank 16 is blown into a neutralization tank for alkaline waste water (not shown). In addition,
To supply the off-gas from the adsorption step during the pressurization operation when there are two adsorption towers, one tower is the adsorption step and the other is the first
It is necessary to operate in the cycle of the desorption process, the second desorption process, and the pressurization process. When there are four adsorption towers, each tower can be subjected to an adsorption step, a first desorption step, a second desorption step, and a pressurization step, so that offgas from the adsorption step can be supplied to the adsorption tower in the pressurization step during the pressurization operation. it can.

【0017】[0017]

【実施例】表2に示す組成の燃焼排ガスを煙道から抜き
出してブロアーで0.02MPa・Gまで昇圧した後、
熱交換器で常温付近まで冷却したのち、水洗塔へ供給
し、ダスト、SOx等の水溶性成分を除去し、2塔式の
PSA装置として内径160mm、活性炭充填高さ20
00mmの吸着塔下部から30Nm3/hrで供給し、
図2、図3に示すように、吸着圧力0.015MPa・
Gで吸着させて吸着塔上部から炭酸ガスが吸着されたオ
フガスを放出し、炭酸ガスが破過しはじめた時点で燃焼
排ガスの供給とオフガスの放出を終了し、活性炭に炭酸
ガスを吸着させた。
EXAMPLE A combustion exhaust gas having the composition shown in Table 2 was extracted from the flue and pressurized to 0.02 MPa · G with a blower,
After cooling to near room temperature with a heat exchanger, it is supplied to a water washing tower to remove water-soluble components such as dust and SOx, and as a two-column PSA device, inner diameter 160 mm, activated carbon filling height 20
Supplied at 30 Nm 3 / hr from the lower part of the adsorption tower of 00 mm,
As shown in FIGS. 2 and 3, the adsorption pressure is 0.015 MPa.
The off-gas having the carbon dioxide adsorbed was released from the upper part of the adsorption tower after being adsorbed by G, and when the carbon dioxide started to break through, the supply of the combustion exhaust gas and the off-gas release were terminated, and the carbon dioxide was adsorbed on the activated carbon. .

【0018】そして、図2、図3に示すように、第1脱
着工程では、真空ポンプにより吸着塔下部から吸着塔内
部を真空引きして100Torrまで減圧し、活性炭に
吸着された炭酸ガスを脱着させて濃縮ガスとして抜き出
し、濃縮ガスタンクへ送入した。第2脱着工程では、真
空ポンプにより吸着塔下部から吸着塔内部を真空引きし
たままで吸着塔上部から吸着塔内部圧力が100Tor
rを保つように大気空気を供給し、第1脱着工程で脱着
しなかった活性炭に吸着された炭酸ガスを脱着させて濃
縮ガスとして濃縮ガスタンクへ送入した。第2脱着工程
終了後、真空ポンプを停止して吸着塔上部から燃焼排ガ
スを供給して吸着塔内を大気圧まで昇圧した。
Then, as shown in FIGS. 2 and 3, in the first desorption step, the inside of the adsorption tower is evacuated from the lower part of the adsorption tower by a vacuum pump to reduce the pressure to 100 Torr to desorb the carbon dioxide gas adsorbed on the activated carbon. Then, it was extracted as a concentrated gas and fed into a concentrated gas tank. In the second desorption step, the internal pressure of the adsorption tower is 100 Tor from the upper portion of the adsorption tower while the inside of the adsorption tower is evacuated from the lower portion of the adsorption tower by the vacuum pump.
Atmospheric air was supplied so as to maintain r, the carbon dioxide gas adsorbed by the activated carbon that was not desorbed in the first desorption step was desorbed, and the carbon dioxide gas was fed into the concentrated gas tank as concentrated gas. After the completion of the second desorption step, the vacuum pump was stopped and combustion exhaust gas was supplied from the upper part of the adsorption tower to raise the pressure in the adsorption tower to atmospheric pressure.

【0019】第1、第2脱着工程での濃縮ガス組成は表
2に合わせて示す。また、濃縮ガス流量は、5Nm3
hr、炭酸ガス回収率は80容量%以上であった。
The composition of the concentrated gas in the first and second desorption steps is also shown in Table 2. The flow rate of the concentrated gas is 5 Nm 3 /
The hr and carbon dioxide gas recovery rates were 80% by volume or more.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明の燃焼排ガス中の炭酸ガスを濃縮
する方法は、簡素化されたPSA装置で、従来利用せず
に大気に放出されていた炭酸ガス濃度6〜15容量%の
燃焼排ガスから、高効率、低コストで、アルカリ排水の
中和に適した炭酸ガス濃度20〜50容量%の濃縮ガス
を得ることができ、地球温暖化の防止にも寄与すること
ができる。
The method for concentrating carbon dioxide gas in the combustion exhaust gas of the present invention is a simplified PSA device, and the combustion gas exhaust gas having a carbon dioxide gas concentration of 6 to 15% by volume that has been released into the atmosphere without being used conventionally. Therefore, a concentrated gas having a carbon dioxide concentration of 20 to 50% by volume, which is suitable for neutralizing alkaline wastewater, can be obtained with high efficiency and low cost, and it can also contribute to the prevention of global warming.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の燃焼排ガス中の炭酸ガスを濃縮する方
法を実施するための2塔式PSA装置の一例を示す系統
図である。
FIG. 1 is a system diagram showing an example of a two-column PSA apparatus for carrying out the method for concentrating carbon dioxide gas in combustion exhaust gas according to the present invention.

【図2】実施例におけるPSA装置の操業形態図の一例
である。
FIG. 2 is an example of an operation mode diagram of a PSA device in an example.

【図3】実施例におけるPSA装置の工程図である。FIG. 3 is a process diagram of a PSA device in an example.

【符号の説明】[Explanation of symbols]

1 ブロアー 2 燃焼排ガス 3 熱交換器 4 水洗塔 5 冷却器 6a、6b 吸着塔 7、13、17 配管 8a、8b、9a、9b、10a、10b、12a、1
2b、14、15 切替弁 11 真空ポンプ 16 濃縮ガスタンク
1 Blower 2 Combustion Exhaust Gas 3 Heat Exchanger 4 Water Washing Tower 5 Cooling Device 6a, 6b Adsorption Tower 7, 13, 17 Pipes 8a, 8b, 9a, 9b, 10a, 10b, 12a, 1
2b, 14 and 15 switching valve 11 vacuum pump 16 concentrated gas tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平井 靖夫 和歌山県和歌山市湊1850番地 エア・ウォ ーター株式会社和歌山研究所内 Fターム(参考) 4D002 AA09 AC10 BA04 CA07 DA41 EA01 EA05 EA07 FA01 GA01 GB02 GB04 4G046 JB07 JB08 JB17 JB21    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuo Hirai             1850 Minato, Wakayama, Wakayama Air Wo             Wakayama Research Center Co., Ltd. F-term (reference) 4D002 AA09 AC10 BA04 CA07 DA41                       EA01 EA05 EA07 FA01 GA01                       GB02 GB04                 4G046 JB07 JB08 JB17 JB21

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排ガス中の炭酸ガス濃度を圧力変動
吸着法により20〜50容量%に濃縮する方法であっ
て、燃焼排ガスを活性炭を充填した吸着塔に送入して炭
酸ガスを吸着せしめる吸着工程と、吸着した炭酸ガスを
真空引きして脱着させて濃縮ガスとして回収する第1脱
着工程と、真空引きしながら吸着塔に大気空気を供給し
て第1脱着工程で脱着しなかった炭酸ガスを脱着させて
濃縮ガスとして回収する第2脱着工程と、第2脱着工程
終了後、吸着塔に燃焼排ガスまたは吸着工程からのオフ
ガスを供給して大気圧まで昇圧する昇圧工程とからなる
ことを特徴とする燃焼排ガス中の炭酸ガスを濃縮する方
法。
1. A method for concentrating carbon dioxide concentration in combustion exhaust gas to 20 to 50% by volume by a pressure fluctuation adsorption method, wherein the combustion exhaust gas is sent to an adsorption tower filled with activated carbon to adsorb carbon dioxide gas. An adsorption step, a first desorption step in which the adsorbed carbon dioxide gas is evacuated to be desorbed and recovered as a concentrated gas, and an atmospheric air is supplied to the adsorption tower while evacuating, and carbon dioxide not desorbed in the first desorption step It comprises a second desorption step of desorbing the gas and collecting it as a concentrated gas, and a pressure increasing step of supplying combustion exhaust gas or off-gas from the adsorption step to the adsorption tower to increase the pressure to atmospheric pressure after the completion of the second desorption step. A characteristic method for concentrating carbon dioxide gas in combustion exhaust gas.
【請求項2】 炭酸ガス濃度5〜15容量%の燃焼排ガ
スを圧力変動吸着装置の活性炭を充填した吸着塔に0.
02MPa・G以下で送入して吸着させ、真空ポンプに
より吸着塔入口側から吸着塔内部を真空引きして200
Torr以下で脱着したガスを抜き出して濃縮ガスとし
て回収すると共に、引続き200Torr以下に保った
ままで吸着塔出口から大気空気を供給して脱着しなかっ
たガスを抜き出して回収し、炭酸ガス濃度20〜50容
量%の濃縮ガスとしたのち、吸着塔に燃焼排ガスまたは
吸着工程からのオフガスを供給して吸着塔内を大気圧ま
で昇圧することを特徴とする燃焼排ガス中の炭酸ガスを
濃縮する方法。
2. A combustion exhaust gas having a carbon dioxide gas concentration of 5 to 15% by volume in an adsorption tower filled with activated carbon of a pressure fluctuation adsorption device in an amount of 0.1%.
It is sent at 02 MPa · G or less to be adsorbed, and the inside of the adsorption tower is evacuated from the inlet side of the adsorption tower by a vacuum pump to 200
The gas desorbed at Torr or lower is withdrawn and recovered as a concentrated gas, and at the same time, while keeping the pressure at 200 Torr or lower, atmospheric air is supplied from the outlet of the adsorption tower to withdraw and recover the gas which is not desorbed, and the carbon dioxide concentration is 20 to 50 A method for concentrating carbon dioxide gas in a combustion exhaust gas, which comprises supplying a combustion exhaust gas or off-gas from an adsorption step to an adsorption tower to increase the pressure in the adsorption tower to atmospheric pressure, after a concentrated gas having a volume% is obtained.
JP2001184326A 2001-06-19 2001-06-19 Method for enriching carbon dioxide in flue gas Expired - Fee Related JP3571672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001184326A JP3571672B2 (en) 2001-06-19 2001-06-19 Method for enriching carbon dioxide in flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001184326A JP3571672B2 (en) 2001-06-19 2001-06-19 Method for enriching carbon dioxide in flue gas

Publications (2)

Publication Number Publication Date
JP2003001061A true JP2003001061A (en) 2003-01-07
JP3571672B2 JP3571672B2 (en) 2004-09-29

Family

ID=19024104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001184326A Expired - Fee Related JP3571672B2 (en) 2001-06-19 2001-06-19 Method for enriching carbon dioxide in flue gas

Country Status (1)

Country Link
JP (1) JP3571672B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239272B (en) * 2007-02-09 2010-07-21 中国石油化工股份有限公司 Processing method of sewage storage tank discharging gas
KR101120993B1 (en) * 2009-02-03 2012-03-05 스미토모 세이카 가부시키가이샤 Method and apparatus for purifying argon
CN102716652A (en) * 2012-07-09 2012-10-10 常州大学 Comprehensive complicated waste gas treatment system
WO2012136913A1 (en) 2011-04-08 2012-10-11 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mixture of an adsorbent and a phase change material with an adapted density
WO2013003955A1 (en) * 2011-07-02 2013-01-10 Inventys Thermal Technologies Inc. System and method for integrated adsorptive gas separation of combustion gases
US8574346B2 (en) 2006-09-25 2013-11-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA method using a composite adsorption bed comprising an adsorbent and PCM agglomerates
WO2015029543A1 (en) * 2013-08-26 2015-03-05 住友精化株式会社 Hydrogen production method
JP2016040025A (en) * 2014-08-12 2016-03-24 株式会社Ihi Carbon dioxide recovery method and recovery device
CN106766140A (en) * 2016-11-29 2017-05-31 佛山市顺智环保科技有限公司 A kind of environment-protection boiler with tail gas purifying function
US10174943B2 (en) 2012-12-31 2019-01-08 Inventys Thermal Technologies Inc. System and method for integrated carbon dioxide gas separation from combustion gases
WO2023188541A1 (en) * 2022-03-29 2023-10-05 三菱重工業株式会社 Carbon dioxide recovery facility and carbon dioxide recovery method
WO2024048567A1 (en) * 2022-09-01 2024-03-07 日本碍子株式会社 Acid gas collection method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574346B2 (en) 2006-09-25 2013-11-05 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude PSA method using a composite adsorption bed comprising an adsorbent and PCM agglomerates
CN101239272B (en) * 2007-02-09 2010-07-21 中国石油化工股份有限公司 Processing method of sewage storage tank discharging gas
KR101120993B1 (en) * 2009-02-03 2012-03-05 스미토모 세이카 가부시키가이샤 Method and apparatus for purifying argon
US9314768B2 (en) 2011-04-08 2016-04-19 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Mixture of an adsorbent and a phase change material with an adapted density
WO2012136913A1 (en) 2011-04-08 2012-10-11 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mixture of an adsorbent and a phase change material with an adapted density
WO2013003955A1 (en) * 2011-07-02 2013-01-10 Inventys Thermal Technologies Inc. System and method for integrated adsorptive gas separation of combustion gases
US9146035B2 (en) 2011-07-02 2015-09-29 Inventys Thermal Technologies Inc. System and method for integrated adsorptive gas separation of combustion gases
CN102716652A (en) * 2012-07-09 2012-10-10 常州大学 Comprehensive complicated waste gas treatment system
US10174943B2 (en) 2012-12-31 2019-01-08 Inventys Thermal Technologies Inc. System and method for integrated carbon dioxide gas separation from combustion gases
US11378274B2 (en) 2012-12-31 2022-07-05 Svante Inc. System and method for integrated carbon dioxide gas separation from combustion gases
JPWO2015029543A1 (en) * 2013-08-26 2017-03-02 住友精化株式会社 Method for producing hydrogen
WO2015029543A1 (en) * 2013-08-26 2015-03-05 住友精化株式会社 Hydrogen production method
JP2016040025A (en) * 2014-08-12 2016-03-24 株式会社Ihi Carbon dioxide recovery method and recovery device
CN106766140A (en) * 2016-11-29 2017-05-31 佛山市顺智环保科技有限公司 A kind of environment-protection boiler with tail gas purifying function
WO2023188541A1 (en) * 2022-03-29 2023-10-05 三菱重工業株式会社 Carbon dioxide recovery facility and carbon dioxide recovery method
WO2024048567A1 (en) * 2022-09-01 2024-03-07 日本碍子株式会社 Acid gas collection method

Also Published As

Publication number Publication date
JP3571672B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
KR930010762B1 (en) Preliminary refining method of seperating air
KR101312914B1 (en) Carbon dioxide recovery
JP3902416B2 (en) Gas separation method
JPS59184707A (en) Pressure swing adsorption for medical oxygen generator
KR20100126660A (en) A plant and process for recovering carbon dioxide
CN109414642B (en) Adsorptive gas separation process and system
CN105032113B (en) Process for capturing carbon dioxide in flue gas based on wet reclamation technology
JP3571672B2 (en) Method for enriching carbon dioxide in flue gas
JP2010042381A (en) Xenon sorbent, method for enriching xenon, xenon concentrator, and air liquefaction separation apparatus
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
JP2004309119A (en) Air separator
JP7123749B2 (en) Carbon dioxide capture system and method
JP7123748B2 (en) Carbon dioxide capture system and method
CN108786371B (en) Oxygen recovery system and method for high-temperature oxygen-enriched flue gas
JPH04359785A (en) Device for collecting liquid carbon dioxide
JP4070399B2 (en) Helium gas purification method
JPS61230715A (en) Method for concentrating and recovering gas by using psa apparatus
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JPH01176416A (en) Purifying method for combustion exhaust gas
JP2011092871A (en) Organic solvent recovery system
JP2011092870A (en) Organic solvent recovery system
WO2023145721A1 (en) Co2 recovery method and co2 recovery device
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JPH0351647B2 (en)
JPH06254395A (en) Method for regenerating adsorbent in pressure swing adsorption for recovering co2

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040624

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3571672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees