JP3084248B2 - Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas - Google Patents

Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas

Info

Publication number
JP3084248B2
JP3084248B2 JP09037616A JP3761697A JP3084248B2 JP 3084248 B2 JP3084248 B2 JP 3084248B2 JP 09037616 A JP09037616 A JP 09037616A JP 3761697 A JP3761697 A JP 3761697A JP 3084248 B2 JP3084248 B2 JP 3084248B2
Authority
JP
Japan
Prior art keywords
adsorption
stage
carbon dioxide
tower
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09037616A
Other languages
Japanese (ja)
Other versions
JPH10128059A (en
Inventor
クックタック チュウ
スンハン チョウ
ジョンナム キム
スンチョル チョン
Original Assignee
韓國エネルギ−技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韓國エネルギ−技術研究所 filed Critical 韓國エネルギ−技術研究所
Publication of JPH10128059A publication Critical patent/JPH10128059A/en
Application granted granted Critical
Publication of JP3084248B2 publication Critical patent/JP3084248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は化石燃料の燃焼時に
排出される燃焼排ガスから二酸化炭素を高純度に分離回
収するために、洗浄ガスと再生ガス加熱用熱交換器、撒
水除塵塔、活性アルミナで充填された2塔式除湿装置、
合成ゼオライトで充填された3塔式1段吸着分離装置、
合成ゼオライトで充填された2塔式または3塔式2段吸
着分離装置、そして送風機と真空ポンプとで作られた二
酸化炭素吸着分離設備とその設備を用いた2段式二酸化
炭素吸着分離方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger for heating a cleaning gas and a regeneration gas, a sprinkling dust tower, an activated alumina, for separating and recovering carbon dioxide with high purity from flue gas discharged during fossil fuel combustion. Two-column dehumidifier filled with
A three-column single-stage adsorption separation device filled with synthetic zeolite,
Two-stage or three-stage two-stage adsorption / separation apparatus filled with synthetic zeolite, carbon dioxide adsorption / separation equipment made of a blower and a vacuum pump, and two-stage carbon dioxide adsorption / separation method using the equipment It is.

【0002】[0002]

【従来の技術】大気に放出されている燃焼排ガス中に含
有された二酸化炭素は地球温暖化を起すのに最も大きく
寄与する成分として知られており、国際的に二酸化炭素
を低減させるための努力と規制が作られている。従っ
て、二酸化炭素を回収するために他の化学物質に転換す
るか、固定化するために燃焼排ガスから二酸化炭素を分
離濃縮する必要がある。一方、高純度二酸化炭素は溶接
ガスや各種化学物質の原料、ドライアイス、炭酸飲料用
等に活用することもできる。
2. Description of the Related Art Carbon dioxide contained in flue gas discharged into the atmosphere is known as a component that contributes most to causing global warming, and efforts to reduce carbon dioxide internationally are being made. And regulations have been made. Therefore, it is necessary to convert the carbon dioxide into another chemical substance to recover the carbon dioxide or to separate and concentrate the carbon dioxide from the flue gas in order to fix the carbon dioxide. On the other hand, high-purity carbon dioxide can be used for welding gas, raw materials for various chemical substances, dry ice, carbonated drinks, and the like.

【0003】今まで混合ガスから二酸化炭素の分離濃縮
には吸収工程技術が多く使用されている。然し、燃焼排
ガスのように酸化物や多種の不純物を含有している排ガ
スから二酸化炭素を回収するためには吸収液の劣化、腐
蝕等の難点があったので別に使用されないし分離費用も
大きいと知られている。
Hitherto, an absorption process technique has been widely used for separating and concentrating carbon dioxide from a mixed gas. However, in order to recover carbon dioxide from exhaust gas containing oxides and various impurities such as combustion exhaust gas, there were difficulties such as deterioration of the absorbing solution, corrosion, etc. Are known.

【0004】吸着工程で二酸化炭素を分離する工程は一
般的に2−4個の吸着塔で構成された1段式吸着分離装
置(日本国特開平3−226911号公報参照)、6−
8個の吸着塔で構成された2段式分離装置(日本国特開
平5−228326号公報参照)がある。吸着剤として
は活性炭または合成ゼオライト等が使用される。合成ゼ
オライトが充填された吸着式分離装置に水分が約5−1
2vol.%程度含有された燃焼排ガスを供給する場合に
は、事前に水分が充分に除去された乾燥排ガスを供給す
ることで主吸着分離装置に充填された合成ゼオライトの
吸着性能の減少を防止できる。
In the adsorption step, the step of separating carbon dioxide is generally a one-stage adsorption / separation apparatus composed of 2 to 4 adsorption towers (see Japanese Patent Application Laid-Open No. 3-226911).
There is a two-stage separation device composed of eight adsorption towers (see Japanese Patent Application Laid-Open No. 5-228326). Activated carbon or synthetic zeolite is used as the adsorbent. The adsorption type separation device filled with synthetic zeolite contains about 5-1 water.
When supplying the combustion exhaust gas containing about 2 vol.%, It is possible to prevent a decrease in the adsorption performance of the synthetic zeolite filled in the main adsorption / separation apparatus by supplying the dry exhaust gas from which the moisture has been sufficiently removed in advance. .

【0005】[0005]

【発明が解決しようとする課題】原料排ガス中に二酸化
炭素の濃度が8−12vol.%程度含有された燃焼排ガス
から2−4個の吸着塔で構成された1段式吸着分離装置
で二酸化炭素を高純度に回収すると、回収率が低いし相
対的に多大の動力が消費される。このような場合に、2
段式吸着分離工程を使用して二酸化炭素を回収すると回
収率も80%以上に高く維持できるし、純度99vol.%
以上の二酸化炭素の回収が可能であるが、吸着塔数が6
−8個に多くなり、装置投資費と吸着剤維持費が高くつ
く。このような点を改善するために、吸着塔数が可及的
に少なく使用され工程効率の高い2段式吸着分離装置工
程で解決しようとする。
SUMMARY OF THE INVENTION From a flue gas containing a carbon dioxide concentration of about 8-12 vol.% In a raw material exhaust gas, a single-stage adsorption / separation apparatus comprising 2-4 adsorption towers is used to remove carbon dioxide. When high purity is recovered, the recovery rate is low and a relatively large amount of power is consumed. In such a case, 2
When the carbon dioxide is recovered using a step-type adsorption separation process, the recovery rate can be maintained as high as 80% or more, and the purity is 99 vol.%.
Although the above carbon dioxide can be recovered, the number of adsorption towers is 6
-8 pieces, which increases the equipment investment cost and the adsorbent maintenance cost. In order to improve such a point, an attempt is made to solve the problem by a two-stage adsorption / separation apparatus having a small number of adsorption towers and a high process efficiency.

【0006】合成ゼオライトを吸着剤として使用して水
分が多量に含有された原料排ガスから高純度二酸化炭素
を製造する場合には、前処理除湿装置を二酸化炭素の吸
着分離装置と連繋させて前処理除湿塔の除湿効率を高め
ることによって水分汚染による主吸着分離装置の生産性
の減少を防止できる。即ち、燃焼排ガスの廃熱と吸着工
程から排出されるガスを熱交換させて前処理除湿塔の再
生に使用することによって除湿塔の効率的な再生を計る
ことができる。
When high-purity carbon dioxide is produced from a raw material exhaust gas containing a large amount of water using a synthetic zeolite as an adsorbent, a pretreatment dehumidifier is connected to a carbon dioxide adsorption / separation device to perform pretreatment. By increasing the dehumidifying efficiency of the dehumidifying tower, it is possible to prevent a decrease in productivity of the main adsorption / separation apparatus due to water contamination. That is, efficient regeneration of the dehumidification tower can be achieved by exchanging heat between the waste heat of the combustion exhaust gas and the gas discharged from the adsorption step and regenerating the pretreatment dehumidification tower.

【0007】2段吸着分装置で洗浄ガスを高温の原料排
ガスと熱交換させて洗浄工程が進行される吸着塔に供給
することによって、2段吸着塔の再生を効率的にする
し、原料排ガスの冷却をする二重効果を得て全体的な工
程効率を向上することができる。
[0007] The cleaning gas is exchanged with the high-temperature raw material exhaust gas in the two-stage adsorption separation apparatus and supplied to the adsorption tower where the cleaning process proceeds, thereby making the regeneration of the two-stage adsorption tower efficient and reducing the amount of the raw material exhaust gas. And the overall effect of the process can be improved.

【0008】一方、2段式吸着装置の吸着工程及び洗浄
工程が進行される吸着塔の排ガスは多量の二酸化炭素が
含有されている。これを大気に廃棄する代りに前処理除
湿塔に供給される多量の水分を含有した燃焼排ガスと混
合して再び除湿塔に供給する場合には、除湿塔で二酸化
炭素の損失が発生され分離工程の効率が低下する。この
ような損質を減少するために2段式吸着装置の吸着工程
と洗浄工程から排出される排ガス全量を1段吸着塔に供
給して二酸化炭素を回収することによって分離装置の全
体的な効率向上を計ることができる。
On the other hand, the exhaust gas from the adsorption tower in which the adsorption step and the washing step of the two-stage adsorption apparatus are advanced contains a large amount of carbon dioxide. If this is mixed with the flue gas containing a large amount of water to be supplied to the pretreatment dehumidification tower and supplied to the dehumidification tower again instead of being discarded to the atmosphere, loss of carbon dioxide occurs in the dehumidification tower and the separation process The efficiency of the system decreases. In order to reduce such detrimental effects, the overall efficiency of the separation apparatus is obtained by supplying the entire amount of exhaust gas discharged from the adsorption step and the washing step of the two-stage adsorption apparatus to the one-stage adsorption tower and recovering carbon dioxide. You can measure improvement.

【0009】[0009]

【課題を解決するための手段】本発明の目的は合成ゼオ
ライトを吸着剤として使用して水分が多量に含有された
燃焼排ガスから高純度の二酸化炭素を製造する場合に、
前処理除湿装置を二酸化炭素の吸着分離装置と連繋させ
て前処理除湿塔の除湿効果を高めることによって水分汚
染による吸着分離装置の生産性の減少を防止することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to produce high-purity carbon dioxide from a flue gas containing a large amount of water using a synthetic zeolite as an adsorbent.
An object of the present invention is to prevent a decrease in the productivity of the adsorption / separation apparatus due to water contamination by increasing the dehumidification effect of the pretreatment dehumidification tower by connecting the pretreatment dehumidifier with the carbon dioxide adsorption / separation apparatus.

【0010】本発明のまた他の目的は、2段吸着分離装
置で洗浄ガスを高温の原料排ガスと熱交換させて洗浄工
程が進行される吸着塔に供給することによって、2段吸
着塔の再生を効率的にし原料排ガスの冷却をする二重効
果を得て全体的な工程効率を向上させることである。
Another object of the present invention is to regenerate a two-stage adsorption tower by exchanging a cleaning gas with a high-temperature raw material exhaust gas in a two-stage adsorption / separation apparatus and supplying the same to an adsorption tower in which a washing process is performed. And to obtain a double effect of cooling the raw material exhaust gas to improve the overall process efficiency.

【0011】本発明のまた他の目的は、2段式吸着分装
置の吸着工程と洗浄工程から排出される排ガス全量を1
段吸着塔に供給して二酸化炭素を回収することによって
分離装置の全体的な効率を向上させることである。
Still another object of the present invention is to reduce the total amount of exhaust gas discharged from the adsorption step and the washing step of the two-stage adsorption separation apparatus by one.
The objective is to improve the overall efficiency of the separation device by feeding it to the stage adsorption tower and recovering carbon dioxide.

【0012】本発明は、二酸化炭素の組成が8−15vo
l.%である熱併合発電所または火力発電所の燃焼排ガス
から純度95vol.%以上の二酸化炭素を回収するため
に、洗浄ガスと再生ガス加熱用熱交換器、撒水除塵塔、
2段式除湿装置、3段式1段吸着分離装置、2塔式2段
吸着分離装置とで構成されたことを特徴とする。
According to the present invention, the composition of carbon dioxide is preferably 8-15 vo.
In order to recover carbon dioxide with a purity of 95 vol.% or more from the flue gas of a combined heat or thermal power plant that is l.%, a heat exchanger for heating cleaning gas and regeneration gas,
It is characterized by comprising a two-stage dehumidifier, a three-stage one-stage adsorption / separation device, and a two-column two-stage adsorption / separation device.

【0013】[0013]

【発明の実施の形態】図1及び図2に明示された熱併合
発電所または火力発電所でバンカーC油または COM(石
炭オイル混合物)を燃焼した時に排出される燃焼排ガス
から高純度の二酸化炭素を回収するための2段式吸着分
離工程(I)の詳細な特徴と運転方法は下記のようであ
る。
DETAILED DESCRIPTION OF THE INVENTION High-purity carbon dioxide from flue gas discharged when bunker C oil or COM (coal oil mixture) is burned in a combined heat or thermal power plant shown in FIGS. The detailed characteristics and operating method of the two-stage adsorption separation step (I) for recovering the phenol are as follows.

【0014】前処理工程の運転方法 燃焼排ガスは一般的に脱気、脱窒、前記集塵装置EPを経
由した後大気に放出されるが、このような燃焼排ガスの
組成は二酸化炭素8−15vol.%、水分5−12vol.%、
酸素3−8vol.%、SOx とNOX が各々20−30ppm 、
粉塵約125/M3であり残りは窒素である。温度 55 −300
℃の燃焼排ガス41を送風機30で交換器20に供給し
て2段式吸着分離装置の洗浄ガス54を工程運転条件に
従って適合な温度まで加熱した後、洗浄工程が進行され
る吸着塔にバルブ13a−cを通して供給する。
Operation method of the pretreatment step The flue gas is generally released to the atmosphere after passing through the deaeration, denitrification and the above-mentioned dust collector EP. The composition of such flue gas is 8 to 15 vol. .%, Moisture 5-12vol.%,
Oxygen 3-8vol.%, SO x and NO X are each 20-30Ppm,
The rest is dust about 125 / M 3 is nitrogen. Temperature 55 −300
After the combustion exhaust gas 41 is supplied to the exchanger 20 by the blower 30 and the cleaning gas 54 of the two-stage adsorption / separation apparatus is heated to an appropriate temperature according to the process operation conditions, the valve 13a is connected to the adsorption tower where the cleaning process proceeds. -C.

【0015】熱交換器20を経由した燃焼排ガス42は
熱交換器21で前処理除湿塔の再生ガス61を加熱した
後、粉塵除去及び冷却のために撒水除塵塔29の下端に
流入される。
The combustion exhaust gas 42 that has passed through the heat exchanger 20 heats the regeneration gas 61 of the pretreatment dehumidification tower in the heat exchanger 21 and then flows into the lower end of the sprinkling dust tower 29 for dust removal and cooling.

【0016】撒水除塵塔29では水ポンプ33で塔上端
に冷却水65を供給して燃焼排ガスを常温近くまで冷却
し、塔下端では除塵及び昇温された廃水を排出する。
In the sprinkling dust removing tower 29, a cooling water 65 is supplied to the upper end of the tower by a water pump 33 to cool the combustion exhaust gas to near normal temperature, and the dust removed and the heated waste water are discharged at the lower end of the tower.

【0017】撒水除塵塔上端の水分で飽和された湿排ガ
ス44はフィルター22を通過させて微塵を除去し自動
バルブ1a,1bを経由して活性アルミナで充填された
除湿塔23a,23bに供給され除湿塔上端の自動バル
ブ3a,3bを経由させて乾燥排ガス46を得る。
The wet exhaust gas 44 saturated with moisture at the upper end of the sprinkler / dust tower is passed through the filter 22 to remove fine dust, and supplied to the dehumidifiers 23a and 23b filled with activated alumina via the automatic valves 1a and 1b. The drying exhaust gas 46 is obtained through the automatic valves 3a and 3b at the upper end of the dehumidifying tower.

【0018】乾燥排ガスは1段吸着分離装置の原料排ガ
ス貯蔵槽26を経由した1段吸着分離装置に供給され
る。
The dried exhaust gas is supplied to the one-stage adsorption / separation device via the raw material exhaust gas storage tank 26 of the one-stage adsorption / separation device.

【0019】1段吸着分離装置の運転方法 合成ゼオライトで充填された3塔式1段吸着分離装置は
逆蓄圧工程、蓄圧工程、吸着工程、回収工程、脱着工程
及び低圧洗浄脱着工程で構成される一周期運転を踏査す
る。
Operating method of the single-stage adsorption / separation apparatus A three-column single-stage adsorption / separation apparatus filled with synthetic zeolite is composed of a reverse pressure accumulation step, a pressure accumulation step, an adsorption step, a recovery step, a desorption step, and a low pressure washing / desorption step. Investigate one cycle operation.

【0020】逆蓄圧工程は1段吸着分離装置の回収工程
が進行される吸着塔24cの出口から排出されるガスを
一周期工程中で最低圧力 100−250 mmHgに置かれた吸着
塔24aの後尾に供給して二酸化炭素の濃度前線(abso
rbion front)を原料ガスが供給される方向に押し出す。
逆蓄圧で使用されたガスの組成は二酸化炭素が約0.5vo
l.%であり、残りは窒素と酸素が主成分である。
In the reverse pressure accumulation step, the gas discharged from the outlet of the adsorption tower 24c in which the recovery step of the single-stage adsorption / separation apparatus proceeds proceeds to the end of the adsorption tower 24a placed at a minimum pressure of 100-250 mmHg in one cycle step. To the carbon dioxide concentration front (abso
rbion front) in the direction in which the source gas is supplied.
The composition of the gas used at the reverse pressure is about 0.5 vo of carbon dioxide
l.%, the balance being mainly nitrogen and oxygen.

【0021】逆蓄圧が完了された時点で吸着塔の圧力は
約 500 mmHg であるから、吸着工程の運転圧力まで吸着
塔を昇圧させるために貯蔵槽26にある乾燥排ガスを吸
着塔24aに自動バルブ5aを通して供給する際、自動
バルブ16は閉ざし手動バルブ16aを調節して蓄圧工
程の間に吸着塔に流入されるガス流速を均一に調節しな
がら吸着塔を約800 −900 mmHgまで昇圧する。
Since the pressure of the adsorption tower is about 500 mmHg when the back pressure is completed, the dried exhaust gas in the storage tank 26 is automatically valved to the adsorption tower 24a in order to raise the pressure of the adsorption tower to the operating pressure of the adsorption step. When feeding through 5a, the automatic valve 16 closes and adjusts the manual valve 16a to increase the pressure of the adsorption tower to about 800-900 mmHg while uniformly adjusting the gas flow rate flowing into the adsorption tower during the pressure accumulation step.

【0022】昇圧が完了された吸着塔24aには圧力 8
00−900 mmHg近くで貯蔵槽26にある乾燥排ガスが自動
バルブ16,5aを経由して供給され、この際、二酸化
炭素と窒素、酸素が分離される。強吸着性である二酸化
炭素は合成ゼオライトに吸着され弱吸着性分である酸素
と窒素は微量の二酸化炭素(約0.5 −2vol.%)と共に
自動バルブ8aを経由して排出される。
The pressure 8 is applied to the adsorption tower 24a whose pressure has been completed.
The dry exhaust gas in the storage tank 26 at around 00-900 mmHg is supplied via the automatic valves 16, 5a, at which time carbon dioxide, nitrogen and oxygen are separated. The strongly adsorbed carbon dioxide is adsorbed by the synthetic zeolite, and the weakly adsorbed components of oxygen and nitrogen are discharged through the automatic valve 8a together with a small amount of carbon dioxide (about 0.5-2 vol.%).

【0023】吸着塔24aが逆蓄圧工程、原料蓄圧工
程、吸着工程を経過する間に吸着塔24bでは回収工程
が進行される。
While the adsorption tower 24a goes through the reverse pressure accumulation step, the raw material pressure accumulation step, and the adsorption step, the recovery step proceeds in the adsorption tower 24b.

【0024】回収工程は2段式吸着分離装置の吸着工程
と洗浄工程が進行される吸着塔出口から排出されるガス
48を吸着工程の終った吸着塔24cに供給して二酸化
炭素の吸着量を増加させる。
In the recovery step, the gas 48 discharged from the outlet of the adsorption tower in which the adsorption step and the washing step of the two-stage adsorption / separation apparatus proceed is supplied to the adsorption tower 24c after the adsorption step to reduce the amount of carbon dioxide adsorbed. increase.

【0025】自動バルブ9cを経由する回収工程の排ガ
ス52は吸着工程の排ガス51と混合され61、これは
熱交換器21を経由しながら加熱された後、除湿塔の再
生ガス62に使用される。
The exhaust gas 52 in the recovery step via the automatic valve 9c is mixed with the exhaust gas 51 in the adsorption step 61, which is heated while passing through the heat exchanger 21 before being used as the regeneration gas 62 for the dehumidification tower. .

【0026】回収工程の終った吸着塔24bは脱着工程
を経過する。1段吸着分離装置の脱着用真空ポンプ31
を稼動して塔圧力を約 100−250 mmHgまで落として吸着
塔を脱着し、この際得られた脱着ガスは自動バルブ7b
を経由して貯蔵槽27に送られ2段吸着分離装置の原料
ガスとして使用される。
After the recovery step, the adsorption tower 24b goes through a desorption step. Vacuum pump 31 for desorption of one-stage adsorption separation device
Is operated to lower the tower pressure to about 100-250 mmHg to desorb the adsorption tower, and the desorbed gas obtained at this time is supplied to the automatic valve 7b.
And is sent to the storage tank 27 via the storage tank 27 and is used as a raw material gas for the two-stage adsorption / separation apparatus.

【0027】脱着工程の次には低圧洗浄脱着が行われる
が、吸着工程が進行される吸着塔24aの出口から排出
される排ガスの一部を手動バルブ18と自動バルブ10
bを経由して供給される。これによって塔後尾に吸着さ
れた二酸化炭素の脱着を増加させ、脱着されたガスは自
動バルブ7bを経由して貯蔵槽27に送られて2段吸着
分装置の原料ガスとして供給される。
After the desorption step, low pressure cleaning desorption is performed. Part of the exhaust gas discharged from the outlet of the adsorption tower 24a in which the adsorption step is performed is partially discharged by the manual valve 18 and the automatic valve 10.
b. As a result, the desorption of carbon dioxide adsorbed at the tail of the tower is increased, and the desorbed gas is sent to the storage tank 27 via the automatic valve 7b and supplied as a raw material gas for the two-stage adsorption separator.

【0028】2段吸着分離装置の運転方法 2段吸着分離装置の一周期運転は原料ガス蓄圧工程、吸
着工程、洗浄工程及び脱着工程で構成される。
Operation method of the two-stage adsorption / separation apparatus One cycle operation of the two-stage adsorption / separation apparatus includes a raw material gas accumulating step, an adsorption step, a washing step, and a desorption step.

【0029】2段吸着分離装置の連続運転を通して得ら
れた約30−50vol.%の二酸化炭素を含有した原料ガ
スは貯蔵タンク27に貯蔵されるが、蓄圧工程の間には
手動バルブ17a、自動バルブ11aを経由した原料ガ
ス53を吸着塔25aに供給する。蓄圧工程の初期圧力
は約50mmHgであり最終圧力は 800−880 mmHgである。
蓄圧工程の間にガス供給流速を均一に調整するために手
動バルブ17aを適切に調節する。
The raw material gas containing about 30-50 vol.% Of carbon dioxide obtained through continuous operation of the two-stage adsorption separation apparatus is stored in the storage tank 27. During the pressure accumulation step, the manual valve 17a and the automatic valve 17a are used. The source gas 53 via the valve 11a is supplied to the adsorption tower 25a. The initial pressure of the pressure accumulation step is about 50 mmHg and the final pressure is 800-880 mmHg.
The manual valve 17a is appropriately adjusted to uniformly adjust the gas supply flow rate during the pressure accumulation process.

【0030】蓄圧工程の次には原料ガス53を自動バル
ブ17,11aを経由して 800−880 mmHg近くの一定圧
力で吸着塔25aに供給して二酸化炭素と酸素/窒素を
選択分離する。吸着工程が進行される間、吸着塔出口か
ら放出される排ガスは自動バルブ14aを経由させて1
段吸着分離工程の回収工程が進行される吸着塔に供給し
て二酸化炭素を回収する。
After the pressure accumulating step, the raw material gas 53 is supplied to the adsorption tower 25a through the automatic valves 17 and 11a at a constant pressure near 800 to 880 mmHg to selectively separate carbon dioxide and oxygen / nitrogen. During the progress of the adsorption step, the exhaust gas discharged from the outlet of the adsorption tower is passed through the automatic valve 14a to the exhaust valve 1a.
The carbon dioxide is supplied to the adsorption tower in which the recovery step of the step adsorption separation step proceeds, and is recovered.

【0031】吸着工程が完了された後に吸着剤間の滞空
容積とゼオライトには平衡量だけの窒素と酸素が吸着さ
れている。高純度二酸化炭素生産と残余窒素と酸素を置
換して得られるが、これは製品二酸化炭素の一部54を
自動バルブ12cを経由して吸着工程が完了された吸着
塔25cに供給することによって作られる。
After the adsorption step is completed, an equilibrium amount of nitrogen and oxygen are adsorbed on the zeolite and the space volume between the adsorbents. It is obtained by producing high-purity carbon dioxide and replacing residual nitrogen and oxygen. This is produced by supplying a part 54 of the product carbon dioxide via the automatic valve 12c to the adsorption tower 25c where the adsorption step has been completed. Can be

【0032】洗浄工程の排ガス中の二酸化炭素の組成は
運転条件に従って約25vol.%から99vol.%まで変化
するが、これを回収するために吸着工程排ガス56と混
合して1段吸着分離装置の回収工程が進行される吸着塔
に供給する。
The composition of carbon dioxide in the exhaust gas of the washing step varies from about 25 vol.% To 99 vol.% In accordance with the operating conditions. It is supplied to the adsorption tower where the recovery process proceeds.

【0033】脱着工程は真空ポンプ32で吸着塔を約5
0−70mmHgまで減圧して自動バルブ12bを通して高
純度二酸化炭素を製品ガス貯蔵槽28に貯蔵する。脱着
ガスの一部は洗浄工程が進行される吸着塔に供給される
が、手動バルブ19aで洗浄ガス量を調節し、残りは製
品二酸化炭素60に生産する。
In the desorption step, the adsorption tower is moved for about 5
The pressure is reduced to 0-70 mmHg, and high-purity carbon dioxide is stored in the product gas storage tank 28 through the automatic valve 12b. A part of the desorbed gas is supplied to the adsorption tower in which the cleaning process is performed.

【0034】2段式吸着式分離工程 (II) の説明 図3及び図4は熱併合または火力発電所のバンカ−C油
またはCOM の燃焼時に排出される燃焼排ガスから高純度
二酸化炭素回収用吸着式分離装置 (II) の工程流れ図と
連続運転図を図示した。
Description of Two-Stage Adsorption Type Separation Process (II) FIGS. 3 and 4 show adsorption for recovering high-purity carbon dioxide from flue gas discharged during combustion of bunker-C oil or COM in a heat-combination or thermal power plant. The process flow diagram and continuous operation diagram of the separation apparatus (II) are shown.

【0035】前処理工程運転方法と1段吸着分離装置の
運転方法は前記2段式吸着式分離工程 (I)で叙述された
ものと同一である。2段式吸着式分離工程 (II) で2段
吸着分離装置の運転方法の差異点は下記のようである。
The operation method of the pretreatment step and the operation method of the single-stage adsorption separation apparatus are the same as those described in the two-stage adsorption separation step (I). Differences in the operation method of the two-stage adsorption separation device in the two-stage adsorption separation process (II) are as follows.

【0036】2段吸着分離装置の運転方法 2段吸着分離装置の一周期運転は原料ガス蓄圧工程、吸
着工程、洗浄工程及び脱着工程で構成されるが、2個の
吸着塔25a,25b中で吸着塔25aが原料蓄圧、吸
着工程、洗浄工程を経過する間に吸着塔25bでは脱着
工程が進行される。
Operation method of the two-stage adsorption / separation apparatus One cycle operation of the two-stage adsorption / separation apparatus is composed of a raw material gas accumulating step, an adsorbing step, a washing step and a desorbing step, and is performed in two adsorption towers 25a and 25b. While the adsorption tower 25a has gone through the raw material pressure accumulation, adsorption step, and washing step, the desorption step proceeds in the adsorption tower 25b.

【0037】1段吸着分離装置の連続運転を通して得ら
れる約30−50vol.%の二酸化炭素を含有したガスは
貯蔵タンク27に貯蔵される。蓄圧工程の間には手動バ
ルブ17a、自動バルブ11aを経由した原料ガス53
を吸着塔25aに供給する。
The gas containing about 30-50 vol.% Of carbon dioxide obtained through continuous operation of the single-stage adsorption separation apparatus is stored in the storage tank 27. During the pressure accumulating process, the raw material gas 53 via the manual valve 17a and the automatic valve 11a is used.
Is supplied to the adsorption tower 25a.

【0038】蓄圧工程の初期圧力は約50−70mmHgで
あり最終圧力は 800−880 mmHgである。蓄圧ガス流速を
殆んど一定に維持させるために手動バルブ17aを適切
に調節する。
The initial pressure in the pressure accumulation step is about 50-70 mmHg and the final pressure is 800-880 mmHg. The manual valve 17a is adjusted appropriately to keep the accumulated gas flow rate almost constant.

【0039】吸着工程では原料ガス53を自動バルブ1
7,11aを経由して 800−880 mmHg近くの一定な圧力
で吸着塔25aに供給して二酸化炭素と酸素/窒素を選
択分離する。吸着工程の排ガスは自動バルブ14aを経
由して1段吸着分離工程の回収工程が進行される吸着塔
に供給して排ガスが含有された二酸化炭素を回収する。
In the adsorption step, the raw material gas 53 is supplied to the automatic valve 1
The gas is supplied to the adsorption tower 25a at a constant pressure near 800 to 880 mmHg via 7, 11a to selectively separate carbon dioxide and oxygen / nitrogen. Exhaust gas from the adsorption step is supplied to the adsorption tower through which the recovery step of the single-stage adsorption / separation step proceeds through the automatic valve 14a to recover carbon dioxide containing the exhaust gas.

【0040】吸着工程が完了された後に吸着剤間の滞空
容積と合成ゼオライトには平衡量だけの窒素と酸素が吸
着されている。2段式吸着式分離工程 (I)の運転時より
吸着ガスの供給流速を高めて供給し、与えられた運転時
間に同一量の吸着ガスを処理する。
After the adsorption step is completed, the equilibrium amounts of nitrogen and oxygen are adsorbed on the volume of air between the adsorbents and the synthetic zeolite. The adsorption gas is supplied at a higher supply flow rate than during the operation of the two-stage adsorption separation process (I), and the same amount of the adsorption gas is treated in a given operation time.

【0041】吸着工程が完了された吸着塔25aは洗浄
工程を経過する。貯蔵槽28にある高純度の二酸化炭素
を手動バルブ19aを調節して吸着塔25aに供給す
る。吸着塔25aが原料蓄圧、吸着工程、洗浄を経過す
る間に吸着塔25aの約50−70mmHgまで減圧して得
られる高純度二酸化炭素は自動バルブ13bを経由して
貯蔵槽28に送られる。
After the adsorption step is completed, the adsorption tower 25a goes through a washing step. High-purity carbon dioxide in the storage tank 28 is supplied to the adsorption tower 25a by adjusting the manual valve 19a. High-purity carbon dioxide obtained by reducing the pressure of the adsorption tower 25a to about 50-70 mmHg in the adsorption tower 25a during the course of accumulating the raw material, the adsorption step, and the washing is sent to the storage tank 28 via the automatic valve 13b.

【0042】脱着ガスの一部は洗浄工程が進行される吸
着塔に供給されるが手動バルブ19aで洗浄ガス量を調
節し、残りは製品二酸化炭素60として生産される。
A part of the desorbed gas is supplied to the adsorption tower where the cleaning process proceeds, but the amount of the cleaning gas is adjusted by the manual valve 19a, and the remainder is produced as product carbon dioxide 60.

【0043】以下、本発明の実施例によって詳細に説明
すると次のようである。
Hereinafter, the present invention will be described in detail with reference to embodiments.

【0044】[0044]

【実施例】【Example】

実施例1 図1の段吸着式分離装置 (I) を図2の一周期連続運転
図に従ってボイラーから排出される燃焼排ガスに適用し
た時、図5は吸着塔の圧力変化を、図6は1段吸着分離
装置の吸着塔24aの中心部の時間に従う温度変化を、
図7は2段吸着分離装置の吸着塔25aの中心部の時間
に従う温度変化を、図8は連続運転結果を表わした。
Example 1 When the stage adsorption type separation apparatus (I) of FIG. 1 was applied to flue gas discharged from a boiler in accordance with the one-cycle continuous operation diagram of FIG. 2, FIG. 5 shows the pressure change of the adsorption tower, and FIG. The temperature change according to time at the center of the adsorption tower 24a of the stage adsorption separation device is
FIG. 7 shows the temperature change with time of the center of the adsorption tower 25a of the two-stage adsorption separation apparatus, and FIG. 8 shows the result of continuous operation.

【0045】連続運転時、1段吸着塔で吸着工程、回収
工程の間、吸着塔の圧力は 820-830mmHg、低圧洗浄脱着
工程の最終圧力は110mmHgであった。
During continuous operation, the pressure in the adsorption tower was 820-830 mmHg during the adsorption step and the recovery step in the single-stage adsorption tower, and the final pressure in the low-pressure washing / desorption step was 110 mmHg.

【0046】2段吸着分離装置では、吸着工程は800
mmHg、洗浄工程は790mmHgの圧力で運転されたし、脱
着工程の最終圧力は65mmHgであった。
In the two-stage adsorption separation apparatus, the adsorption step is 800
mmHg, the washing step was operated at a pressure of 790 mmHg, and the final pressure of the desorption step was 65 mmHg.

【0047】図6では1段吸着分離装置の回収工程の間
に吸着塔の約85%が二酸化炭素の吸着に因る温度上昇
があったことを見ることができる。
In FIG. 6, it can be seen that about 85% of the adsorption tower had a temperature rise due to carbon dioxide adsorption during the recovery step of the single-stage adsorption separation apparatus.

【0048】2段吸着分離装置の吸着工程と洗浄工程塔
の出口から排出される二酸化炭素を多量含有した排ガス
を回収するための回収工程の効果が高いことを見ること
ができる。
It can be seen that the effect of the recovery step for recovering the exhaust gas containing a large amount of carbon dioxide discharged from the outlet of the adsorption step and the washing step tower of the two-stage adsorption separation apparatus is high.

【0049】除湿塔を通過した乾燥排ガス中二酸化炭素
の組成が平均9.29vol.%である時、本開発工程の連続運
転を通して得られた結果を見ると、純度99.70 、99.42
、99.22 、98.79 vol.%である製品二酸化炭素を生産
するが、回収率は各々80.29 、89.21 、88.76 、92.4%
であり、合成ゼオライト充填重量当り製品ガス生産流速
は各々0.457 、0.481 、0.485 、0.482 N1 /kg/分で
あり、2段吸着分離装置の洗浄工程に供給された洗浄ガ
ス流速は各々0.318 、0.278 、0.277 N1/kg/分であっ
た。
When the composition of carbon dioxide in the dried exhaust gas passed through the dehumidification tower was 9.29 vol.% On average, the results obtained through continuous operation of this development process showed that the purity was 99.70 and 99.42.
, 99.22, and 98.79 vol.% Of product carbon dioxide, but the recovery rate is 80.29, 89.21, 88.76, and 92.4%, respectively.
The product gas production flow rates per packed weight of the synthetic zeolite are 0.457, 0.481, 0.485, and 0.482 N1 / kg / min, respectively, and the cleaning gas flow rates supplied to the washing step of the two-stage adsorption separation apparatus are 0.318, respectively. 0.278 and 0.277 N1 / kg / min.

【0050】実施例2 図3の2段式吸着式分離工程装置 (II) を図4の一周期
連続運転図に従ってボイラーから排出される燃焼排ガス
に適用した時、図9は吸着塔の圧力変化を、図10は1
段吸着分離装置の吸着塔24aの中心部の時間に従う温
度変化を、図11は2段吸着分離装置の吸着塔25aの
中心部の時間に従う温度変化を、図12は連続運転結果
を表わした。
Example 2 When the two-stage adsorption separation apparatus (II) shown in FIG. 3 was applied to the combustion exhaust gas discharged from the boiler according to the one-cycle continuous operation diagram in FIG. 4, FIG. 9 shows the pressure change in the adsorption tower. And FIG.
FIG. 11 shows a temperature change according to time at the center of the adsorption tower 24a of the two-stage adsorption / separation device, FIG. 11 shows a temperature change according to time at the center of the adsorption tower 25a of the two-stage adsorption / separation device, and FIG.

【0051】連続運転時、1段吸着塔で吸着工程、回収
工程の間、吸着塔の圧力は 790−810 mmHg、低圧洗浄脱
着工程の最終圧力は150mmHg、脱着工程の最終圧力は
30mmHgであった。2段吸着分離装置では、吸着工程は 7
90−800 mmHg、洗浄工程は780mmHgの圧力で運転され
たし、脱着工程の最終圧力は55mmHgで運転された。
During continuous operation, during the adsorption step and the recovery step in the single-stage adsorption tower, the pressure in the adsorption tower is 790-810 mmHg, the final pressure in the low pressure washing / desorption step is 150 mmHg, and the final pressure in the desorption step is
It was 30 mmHg. In a two-stage adsorption separation device, the adsorption process
The washing step was operated at a pressure of 780 mmHg, the washing step at 90-800 mmHg, and the final pressure of the desorption step was 55 mmHg.

【0052】2段吸着分離装置の吸着塔数が2個である
時、工程の効率は殆んど同一の効果を得ることができ
る。
When the number of adsorption towers in the two-stage adsorption separation apparatus is two, almost the same effect can be obtained in the efficiency of the process.

【0053】図12で製品二酸化炭素の純度が99.2、 9
8.45、 96.57、 95.56 vol. %である時、回収率は各々
70.0、76.42 、75.46 、76.8%であり、合成ゼオライト
充填重量当り製品ガス生産流速は各々0.506 、0.540 、
0.511 、0.517 N1/kg/分であり、2段吸着分離装置の洗
浄工程に供給された洗浄ガス流速は各々0.279 、0.223
、0.148 、0.119 N1/kg/分であった。
In FIG. 12, the purity of the product carbon dioxide is 99.2, 9
The recovery rates are 8.45, 96.57 and 95.56 vol.% Respectively.
70.0, 76.42, 75.46, 76.8%, and the product gas production flow rates per synthetic zeolite charge weight were 0.506, 0.540, and 0.540, respectively.
0.511, 0.517 N1 / kg / min, and the washing gas flow rates supplied to the washing step of the two-stage adsorption separation apparatus were 0.279, 0.223, respectively.
, 0.148, 0.119 N1 / kg / min.

【0054】[0054]

【発明の効果】本発明の実施例1と実施例2において、
2段吸着工程から排出された排ガス全量を1段吸着塔の
回収工程が進行される塔に供給する吸着式分離装置を構
成して運転をした時、純度が98.79 vol.%である製品二
酸化炭素を生産するが、回収率は92.4%である。
According to the first and second embodiments of the present invention,
The product carbon dioxide with a purity of 98.79 vol.% When operated with an adsorption-type separation device that supplies the entire amount of exhaust gas discharged from the two-stage adsorption process to the column where the recovery process of the one-stage adsorption column proceeds. With a 92.4% recovery rate.

【0055】2段吸着分離装置(実施例2)をボイラー
から排出される燃焼排ガスに適用して純度95.56 −99.2
2 vol.%である製品二酸化炭素を得ることができる、単
位吸着剤重量当り生産性が 0.506−0.517 N1/kg/分に増
加された。3塔式2段吸着分離装置より簡単な工程で燃
焼排ガスから高純度二酸化炭素を生産することができ
た。
The two-stage adsorptive separation apparatus (Example 2) is applied to the combustion exhaust gas discharged from the boiler to obtain a purity of 95.56-99.2.
The productivity per unit adsorbent weight, which allows to obtain 2 vol.% Of product carbon dioxide, has been increased to 0.506-0.517 N1 / kg / min. High-purity carbon dioxide could be produced from the combustion exhaust gas by a simpler process than a three-column two-stage adsorption separation apparatus.

【0056】本発明を活用して回収された高純度二酸化
炭素は微量含有された不純物( SOX,NOX 水分等)を除
去した後、ドライアイス及び液体炭酸等食品用、溶接
用、尿素肥料製造等工業用原料として使用できる。
The high-purity carbon dioxide recovered by utilizing the present invention removes impurities (SO X , NO X moisture, etc.) contained in trace amounts, and then is used for food, welding, urea fertilizer such as dry ice and liquid carbon dioxide. It can be used as a raw material for manufacturing and other industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】燃焼排ガスから二酸化炭素回収用の1段3塔、
2段3塔に構成された2段式吸着分離工程図 (I)であ
る。
FIG. 1 shows a three-stage one-stage column for recovering carbon dioxide from flue gas.
FIG. 3 is a diagram (I) of a two-stage adsorption / separation process constituted by two stages and three columns.

【図2】燃焼排ガスから二酸化炭素回収用の1段3塔、
2段3塔に構成された2段式吸着分離工程図 (I)の一周
期運転図である。
FIG. 2 shows a three-stage one-stage column for recovering carbon dioxide from flue gas.
FIG. 2 is a one-cycle operation diagram of a two-stage adsorption separation process diagram (I) configured in a two-stage three-column system.

【図3】燃焼排ガスから二酸化炭素回収用の1段3塔、
2段3塔に構成された2段式吸着分離工程図 (II) であ
る。
FIG. 3 shows a three-stage one-stage column for recovering carbon dioxide from flue gas;
FIG. 2 is a diagram (II) of a two-stage adsorption / separation process composed of two stages and three columns.

【図4】燃焼排ガスから二酸化炭素回収用の1段3塔、
2段2塔に構成された2段式吸着分離工程図 (II) の一
周期運転図である。
FIG. 4 shows a one-stage, three-stage column for recovering carbon dioxide from flue gas;
FIG. 3 is a one-cycle operation diagram of a two-stage adsorption / separation process diagram (II) configured in a two-stage two-column system.

【図5】2段式吸着分離工程 (I)の一周期運転の間の吸
着塔の圧力変化のグラフである。
FIG. 5 is a graph of the pressure change of the adsorption tower during one cycle operation of the two-stage adsorption separation process (I).

【図6】2段式吸着分離工程 (I)の一周期運転の間の1
段吸着分離工程の吸着塔中心部の温度変化のグラフであ
る。
FIG. 6 shows a two-stage adsorption separation process (I) during one cycle operation.
It is a graph of the temperature change of the central part of an adsorption tower in a stage adsorption separation process.

【図7】2段式吸着分離工程 (I)の一周期運転の間の2
段吸着分離工程の吸着塔中心部の温度変化のグラフであ
る。
FIG. 7 shows a two-stage adsorption separation process (I) during one cycle operation.
It is a graph of the temperature change of the central part of an adsorption tower in a stage adsorption separation process.

【図8】2段式吸着分離工程(I) の一周期運転結果のグ
ラフである。
FIG. 8 is a graph showing a one-cycle operation result of the two-stage adsorption / separation step (I).

【図9】2段式吸着分離工程 (II) の一周期運転の間の
吸着塔の圧力変化のグラフである。
FIG. 9 is a graph showing the pressure change of the adsorption tower during one cycle operation of the two-stage adsorption separation step (II).

【図10】2段式吸着分離工程 (II) の一周期運転の間
の1段吸着分離工程の吸着塔中心部の温度変化のグラフ
である。
FIG. 10 is a graph showing a change in temperature at the center of the adsorption tower in the single-stage adsorption / separation step during one cycle operation of the two-stage adsorption / separation step (II).

【図11】2段式吸着分離工程 (II) の一周期運転の間
の2段吸着分離工程の吸着塔中心部の温度変化のグラフ
である。
FIG. 11 is a graph showing a change in temperature at the center of the adsorption tower in the two-stage adsorption / separation step (II) during one cycle operation.

【図12】2段式吸着分離工程図 (II) の一周期運転結
果のグラフである。
FIG. 12 is a graph showing the results of one cycle operation of the two-stage adsorption / separation process chart (II).

【符号の説明】[Explanation of symbols]

1a,1b,3a,3b,5a,8a,9c,10b,
11,12b,12c,13b,14a,16,17…
自動バルブ、13c…バルブ、11a,16a,17
a,18,19a…手動バルブ、21…熱交換器、23
a,23b…除湿塔、24a,24b,24c,25
a,25c…吸着塔、26,27,28…貯蔵槽、30
…送風機、31,32…真空ポンプ、33…水ポンプ、
41,42…燃焼排ガス、46…乾燥排ガス、48…ガ
ス、51,52…排ガス,53…原料ガス、54…製品
二酸化炭素の一部、56…吸着工程排ガス、60…製品
二酸化炭素、62…再生ガス
1a, 1b, 3a, 3b, 5a, 8a, 9c, 10b,
11, 12b, 12c, 13b, 14a, 16, 17 ...
Automatic valve, 13c ... Valve, 11a, 16a, 17
a, 18, 19a: manual valve, 21: heat exchanger, 23
a, 23b: dehumidifying tower, 24a, 24b, 24c, 25
a, 25c: adsorption tower, 26, 27, 28: storage tank, 30
... Blower, 31, 32 ... Vacuum pump, 33 ... Water pump,
41, 42: Combustion exhaust gas, 46: Dry exhaust gas, 48: Gas, 51, 52 ... Exhaust gas, 53: Raw material gas, 54: Part of product carbon dioxide, 56: Adsorption process exhaust gas, 60: Product carbon dioxide, 62 ... Regeneration gas

───────────────────────────────────────────────────── フロントページの続き (72)発明者 チョン スンチョル 大韓民国慶尚南道蔚山市東區西部洞100 −4明徳館4−428 (56)参考文献 特開 昭62−227419(JP,A) 特開 平7−80246(JP,A) 特開 昭62−46911(JP,A) 特開 平1−176416(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/62 B01D 53/04 B01D 53/34 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Jung Seungchul 100-4 Seodong-dong, Dong-gu, Ulsan-si, Gyeongsangnam-do, Republic of Korea JP-A-7-80246 (JP, A) JP-A-62-46911 (JP, A) JP-A-1-176416 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B01D 53 / 62 B01D 53/04 B01D 53/34

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 二酸化炭素の組成が8−15vol.%であ
る熱併合発電所または火力発電所の燃焼排ガスから純度
95vol.%以上の二酸化炭素を回収するために、洗浄ガ
スと再生ガス加熱用熱交換器、撒水除塵塔、2塔式除湿
装置、3塔式1段吸着分離装置、2塔式2段吸着分離装
置及び送風機と真空ポンプで構成されたことを特徴とす
る燃焼排ガスから二酸化炭素を回収するための2段吸着
分離設備。
1. A cleaning gas and a regeneration gas heating system for recovering carbon dioxide having a purity of 95 vol.% Or more from the flue gas of a combined heat or thermal power plant having a carbon dioxide composition of 8 to 15 vol. Combustion flue gas characterized by comprising a heat exchanger, a sprinkler / dust tower, a two-tower dehumidifier, a three-tower one-stage adsorption / separation device, a two-tower two-stage adsorption / separation device, a blower and a vacuum pump, -Stage adsorption separation equipment for recovering wastewater.
【請求項2】 二酸化炭素の組成が8−15vol.%であ
る熱併合発電所または火力発電所の燃焼排ガスから純度
95vol.%以上の二酸化炭素を回収するために、洗浄ガ
スと再生ガス加熱用熱交換器、撒水除塵塔、2塔式除湿
装置、3塔式1段吸着分離装置、3塔式2段吸着分離装
置で構成される2段式吸着分離工程の2段吸着分離装置
の吸着工程と、洗浄工程排ガスを1段吸着分離装置の吸
着工程が完了された吸着塔に供給して二酸化炭素の回収
率と生産性を改善し、温度55−300 ℃の燃焼排ガスを撒
水除塵塔に供給する前に、2段吸着分離工程の吸着排ガ
スと洗浄排ガス全量を高温燃焼排ガスと熱交換させて加
熱された再生ガスを前処理除湿塔に供給し、燃焼排ガス
を撒水除塵塔に供給する前に、2段吸着分離装置の洗浄
ガスと熱交換洗浄ガスを加熱することを特徴とする2
段式二酸化炭素吸着分離方法。
2. A cleaning gas and a regeneration gas heating system for recovering carbon dioxide having a purity of 95 vol.% Or more from the flue gas of a combined heat or thermal power plant having a carbon dioxide composition of 8 to 15 vol. Adsorption process of a two-stage adsorption / separation device consisting of a heat exchanger, a sprinkler / dust tower, a two-column dehumidifier, a three-column one-stage adsorption / separation device, and a three-column two-stage adsorption / separation device In addition, the exhaust gas from the washing process is supplied to the adsorption tower where the adsorption process of the single-stage adsorption separation device has been completed to improve the recovery rate and productivity of carbon dioxide, and the combustion exhaust gas at a temperature of 55-300 ° C is supplied to the sprinkler dust tower. Before the heat treatment, the entire amount of the adsorption exhaust gas and the cleaning exhaust gas in the two-stage adsorption separation process is exchanged with the high-temperature combustion exhaust gas, and the heated regeneration gas is supplied to the pretreatment dehumidification tower. , 2-stage cleaning gas heat exchanger washed gas adsorption separation apparatus 2, characterized in that heating
Stepwise carbon dioxide adsorption separation method.
【請求項3】 請求項2において、前記2段吸着分離装
置の吸着工程と洗浄工程から排出される排ガス全量を1
段吸着分離装置の吸着工程が完了された吸着塔に供給し
て二酸化炭素の回収率と生産性を改善することを特徴と
する2段式二酸化炭素吸着分離方法。
3. The exhaust gas discharged from the adsorption step and the washing step of the two-stage adsorption / separation apparatus according to claim 2,
A two-stage carbon dioxide adsorption / separation method characterized in that it is supplied to an adsorption tower in which an adsorption step of a two-stage adsorption / separation apparatus has been completed to improve the recovery rate and productivity of carbon dioxide.
【請求項4】 請求項2において、前記撒水除塵塔に温
度 55 −300 ℃の燃焼排ガスを供給する前に、2段吸着
分離工程の吸着排ガスと洗浄排ガス全量を高温燃焼排ガ
スと熱交換させて加熱された再生ガスを前処理除湿塔に
供給する2段式二酸化炭素吸着分離方法。
4. The method according to claim 2, wherein before the flue gas having a temperature of 55 to 300 ° C. is supplied to the sprinkler / dust tower, the total amount of the adsorbed exhaust gas and the cleaning exhaust gas in the two-stage adsorption / separation step is exchanged with the high-temperature flue gas. A two-stage carbon dioxide adsorption / separation method for supplying a heated regeneration gas to a pretreatment dehumidification tower.
【請求項5】 請求項2において、前記撒水除塵塔に温
度 55 −300 ℃の燃焼排ガスを供給する前に、2段吸着
分離装置の洗浄ガスと熱交換させて洗浄ガスを加熱する
2段式二酸化炭素吸着分離方法。
5. The two-stage system according to claim 2, wherein the cleaning gas is heated by exchanging heat with the cleaning gas of the two-stage adsorption separation apparatus before supplying the flue gas having a temperature of 55 to 300 ° C. to the sprinkler / dust tower. Carbon dioxide adsorption separation method.
JP09037616A 1996-10-24 1997-02-21 Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas Expired - Lifetime JP3084248B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019960047869A KR0185288B1 (en) 1996-10-24 1996-10-24 Absorption-separation process for recovering carbon dioxide from engine exhaust gas
KR96-47869 1996-10-24

Publications (2)

Publication Number Publication Date
JPH10128059A JPH10128059A (en) 1998-05-19
JP3084248B2 true JP3084248B2 (en) 2000-09-04

Family

ID=19478648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09037616A Expired - Lifetime JP3084248B2 (en) 1996-10-24 1997-02-21 Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas

Country Status (2)

Country Link
JP (1) JP3084248B2 (en)
KR (1) KR0185288B1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927103A (en) * 1998-06-17 1999-07-27 Praxair Technology, Inc. Carbon dioxide production system with integral vent gas condenser
KR100535153B1 (en) * 2000-06-19 2005-12-07 현대중공업 주식회사 Adsorptive separation method for strong adsorbates with heating rinse
JP4542315B2 (en) * 2003-03-05 2010-09-15 株式会社堀場製作所 Gas measuring filter and manufacturing method thereof
KR100527420B1 (en) * 2003-07-04 2005-11-09 한국에너지기술연구원 CO2 capturing process
KR100811664B1 (en) 2007-12-27 2008-03-11 문창열 Carbon dioxide reduction system for heat engine
JP2009262086A (en) * 2008-04-28 2009-11-12 Hitachi Ltd Method of recovering carbon dioxide of coal boiler exhaust gas and system for recovering this carbon dioxide
KR101146710B1 (en) * 2009-06-16 2012-05-17 한국에너지기술연구원 Apparatus and method for recovering carbon dioxide from flue gas using temperature swing adsorption
KR101134520B1 (en) * 2010-02-08 2012-04-13 주식회사 애니텍 A Recovery and Preservation Apparatus of CO2 Discharged by the Incineration Facilities
JP6179915B2 (en) * 2011-09-13 2017-08-16 国立研究開発法人産業技術総合研究所 Carbon dioxide supply equipment for horticultural facilities using carbon dioxide in combustion exhaust gas
WO2014065477A1 (en) * 2012-10-26 2014-05-01 재단법인 포항산업과학연구원 Carbon dioxide capturing apparatus capable of inhibiting volatilization of absorbent in carbon dioxide capturing process
CN103301710A (en) * 2013-04-24 2013-09-18 中国科学院生态环境研究中心 Carbon dioxide desorbing process for absorbing organic waste gas
CN103933935B (en) * 2014-04-03 2015-11-11 中国林业科学研究院林产化学工业研究所 A kind of method improving active carbon carbon dioxide adsorption performance
JP6834515B2 (en) * 2017-01-20 2021-02-24 株式会社Ihi Carbon dioxide recovery method and recovery device
KR102467329B1 (en) * 2020-12-15 2022-11-16 주식회사 콘웰 Apparatus for dry sorbent co2 capturing using plate heat exchanger and dry sorbent co2 capturing process using the same

Also Published As

Publication number Publication date
JPH10128059A (en) 1998-05-19
KR0185288B1 (en) 1999-04-15
KR19980028707A (en) 1998-07-15

Similar Documents

Publication Publication Date Title
US4421532A (en) Process for removing and recovering volatile organic substances from industrial waste gases
JP2988625B2 (en) Temperature swing adsorption method
US3594983A (en) Gas-treating process and system
KR100192697B1 (en) Purification of gases using solid absorbents
KR100266344B1 (en) How to recover volatile organics
JP3084248B2 (en) Two-stage adsorption / separation equipment and method for recovering carbon dioxide from flue gas
WO2017163549A1 (en) Carbon dioxide collection method and collection device
JPH0587286B2 (en)
JPH08299740A (en) Volatile organic matter recovery system
JPH04298216A (en) Adsorption method for removing oil vapor from steam-contained feed gas
AU2017395075B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2000317244A (en) Method and device for purifying gas
US4522793A (en) Removing H2 S from natural gas using two-stage molecular sieves
JPH04171019A (en) Process for removing water content in mixed gas
CN101301999A (en) Method for collecting oxygen from air
US4259301A (en) Removal of acidic compounds from gaseous mixtures
JP2003001061A (en) Method of concentrating carbon dioxide in combustion gas
KR20010067037A (en) Process and apparatus for the purification of air
CA1322972C (en) Heaterless adsorption system for combined purification and fractionation of air
JP2551903B2 (en) Method and device for separating and recovering CO2 from combustion exhaust gas
JPS63107720A (en) Method for separating and removing water content and carbon dioxide gas in air
JP3363986B2 (en) Solvent recovery method
JPH01176416A (en) Purifying method for combustion exhaust gas
JPH09187622A (en) Method for separating and recovering concentrated carbon dioxide
JP3544860B2 (en) Pretreatment device in air separation unit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000620

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term