JP4542315B2 - Gas measuring filter and manufacturing method thereof - Google Patents

Gas measuring filter and manufacturing method thereof Download PDF

Info

Publication number
JP4542315B2
JP4542315B2 JP2003058155A JP2003058155A JP4542315B2 JP 4542315 B2 JP4542315 B2 JP 4542315B2 JP 2003058155 A JP2003058155 A JP 2003058155A JP 2003058155 A JP2003058155 A JP 2003058155A JP 4542315 B2 JP4542315 B2 JP 4542315B2
Authority
JP
Japan
Prior art keywords
filter
filter medium
gas
exhaust gas
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003058155A
Other languages
Japanese (ja)
Other versions
JP2004271199A (en
Inventor
重之 秋山
哲志 井ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2003058155A priority Critical patent/JP4542315B2/en
Publication of JP2004271199A publication Critical patent/JP2004271199A/en
Application granted granted Critical
Publication of JP4542315B2 publication Critical patent/JP4542315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス等に含まれる窒素酸化物(NOx)濃度などを測定する際に、ガスの導入経路でダスト等を除去するための窒素酸化物(NOx)測定用フィルタ(以下「ガス測定用フィルタ」ということがある)、及びその製造方法に関する。
【0002】
【従来の技術】
一般に、軽油や石炭等の燃料を内燃機関や燃焼バーナなどに使用した場合、窒素酸化物(NOx)や硫黄酸化物(SOx)を含有する排ガスが発生するが、かかる有害物質を一定濃度以下にしてから大気中に放出することが法律等で規制されている。このため、従来より煙道などには、これら有害物質の濃度を測定するためのプローブが設置され、そこから取り込んだ排ガスがガス分析測定装置でモニタされていた。
【0003】
また、上記の排ガス中には、ガス成分だけでなく、燃焼灰などのダスト成分やミスト成分も含有されており、プローブにはかかるダスト等を除去するためのフィルタが設けられていた。このフィルタの濾材としては、高温での使用に耐えられるように、例えばグラスウールやセラミック繊維からなるフェルト状無機繊維を金属メッシュなどで挟み込んだものが使用されていた(例えば、特許文献1参照)。その他、ステンレス鋼などの焼結金属やカーボランダム(炭化ケイ素)等も、上記のごときフィルタの濾材として使用される場合がある。
【0004】
【特許文献1】
実開昭56−129815号公報(第1頁、図1)
【発明が解決しようとする課題】
しかしながら、無機繊維には、製造時に使用したバインダー(低融点ソーダガラス系)や繊維自身に含まれるアルカリ性酸化物が存在するため、排ガス中の窒素酸化物や硫黄酸化物が吸着や反応(化学吸着)し易く、濃度測定の応答の遅れや測定誤差の原因となっていた。また、上記フィルタは、ダストによる目詰まりのため定期的に交換する必要があるが、交換の直後から長時間にわたって、正確なガス測定が行えず、その場合に保守中又は測定中断といった状態にせざるを得ないという問題があった。
【0005】
一方、ステンレス鋼などの焼結金属、焼結セラミックやカーボランダム等の濾材についても、高温での焼結等で製造されるため、微量のアルカリ性酸化物が付着している場合がある。その場合、フェルト状無機繊維の場合と同様に、応答の遅れや測定誤差の問題が生じることが判明した。そして、このような応答の遅れや測定誤差の問題は、特に排ガス中の二酸化窒素について顕著であった。
【0006】
そこで、本発明の目的は、窒素酸化物吸着や反応による測定の応答の遅れや測定誤差が生じにくいガス測定用フィルタ及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、濾材の改良に関して鋭意研究したところ、濾材の表面を酸性物質で処理することでアルカリ度を低減でき(酸性度が増加する場合も含む)、これによって窒素酸化物吸着や反応を抑制できることを見出し、本発明を完成するに至った。
【0008】
即ち、本発明のガス測定用フィルタは、燃焼排ガス中の窒素酸化物(NOx)測定するガス分析測定装置のプローブ部分に用いられ、アルカリ金属やアルカリ土類金属を含むセラミックの無機繊維のシート状物からなる耐熱性濾材と、アルカリ金属やアルカリ土類金属を含むセラミック成分のバインダーからなるフィルタであって、該アルカリ金属やアルカリ土類金属に対し酸性物質にて、そのアルカリ度を低減してあることを特徴とする。本発明のガス測定用フィルタによると、濾材の材質として、アルカリ金属やアルカリ土類金属を含むセラミック、あるいは該濾材のバインダーがアルカリ金属やアルカリ土類金属を含むセラミック成分を含む無機系の材料などが耐熱性の点から有利であり、酸性物質にてアルカリ度が低減しているため、実施例の結果が示すように、窒素酸化物濾材との吸着や反応によって捕捉されにくくなり、測定の応答の遅れや測定誤差が生じにくくなる。また、濾材の形態を、セラミック等の無機繊維のシート状物とすることによって、濾過有効面積を大きくすることができる。その結果、小型フィルタでもダスト等の捕塵量が大きくなり、交換までの使用時間を長くすることができる。
【0009】
本発明のガス測定用フィルタは、濾材の表面に酸性物質を化学結合してなることが好ましい。酸性物質を化学結合させることで、中和反応が生じてアルカリ度の低減効果がより高くなり、より確実に窒素酸化物濾材とが吸着や反応し難くすることができる。
【0010】
また、本発明のガス測定用フィルタを、脱硝装置の排ガス測定の際に用い、該排ガス中に含まれるアンモニアを除去するアンモニアスクラバーとして使用することが好ましい。濾材の表面に酸性物質を付着又は化学結合していると、アンモニア等のアルカリ性物質を吸着することができる。このため、脱硝装置の排ガス中に含まれるアンモニアを確実に除去することができる。
【0011】
一方、本発明は、請求項1記載の燃焼排ガス中の窒素酸化物(NOx)測定用フィルタの製造方法であって、耐熱性濾材を液相中で酸性物質に接触させた後、脱水処理によって前記濾材に付着する溶液の量を調整してから乾燥を行い、前記アルカリ金属やアルカリ土類金属に対し、そのアルカリ度を低減することを特徴とする。上記ガス測定用フィルタの製造に当り、既述のように、濾材の材質として、アルカリ金属やアルカリ土類金属を含むセラミック、あるいは該濾材のバインダーがアルカリ金属やアルカリ土類金属を含むセラミック成分を含む無機系の材料などが耐熱性の点から有利であり、このように濾材を酸性物質に接触させることで、アルカリ度が低減するため、窒素酸化物が濾材との吸着や反応によって捕捉されにくくなり、測定の応答の遅れや測定誤差が生じにくくなる。また、濾材の形態を、セラミック等の無機繊維のシート状物とすることによって、濾過有効面積を大きくすることができる。その結果、小型フィルタでもダスト等の捕塵量が大きくなり、交換までの使用時間を長くすることができる。
【0012】
このとき、濾材を酸性物質の溶液に接触させてから乾燥するため、酸性物質を付着又は化学結合させることが可能となり、アルカリ度の低減効果がより高くなる。その結果、より確実に窒素酸化物濾材とが吸着や反応し難くすることができる。特に、リン酸の5重量%水溶液などの低濃度の酸性物質に接触させることによって、処理を確実に行うことができる。また、脱水処理によって濾材に付着する溶液の量を調整してから乾燥を行うため、多孔質化した濾材を用いる場合でも、目詰まり等を抑制しつつ、適度な量の酸性物質を付着又は化学結合させることができる。特に、濾材との吸着や反応による影響が大きい窒素酸化物について水分を含む燃焼排ガス中の窒素酸化物を測定するガス分析測定装置に用いるフィルタであっても、測定誤差はほとんどなく、測定の応答の遅れも殆ど存在しない。付着する溶液の量を調整する方法としては、遠心脱水などが挙げられる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0014】
本発明のガス測定用フィルタの製造方法は、濾材を液相中で又は気相中で酸性物質に接触させる工程を含むものである。処理に使用する濾材は、フィルタの形状に成型されたものでも、成型前のものでもよい。
【0015】
従って、処理する濾材の形態としては、未成型の濾材として、フィラメント、糸、フェルト、繊維織物、不織布、ペーパ、微粒子など何れでもよい。成型された濾材としては、プリーツ状、円筒状、チューブ状、バルク状、焼結体など何れでもよい。但し、本発明において好ましい濾材の形態は、セラミック等の無機繊維のシート状物であり、これをプリーツ加工等することによって、他の形態に比べて、濾過有効面積を大きくすることができる。その結果、小型フィルタでもダスト等の捕塵量が大きくなり、交換までの使用時間を長くすることができる。
【0016】
濾材の材質としては、無機系の材料などが耐熱性の点から有利であり、石英、ソーダガラス、石英ガラス、珪酸塩、炭化ケイ素などのセラミック(ガラスを含む)や、ステンレス鋼、アルミニウム、貴金属などの金属などが何れも使用できる。本発明は、特に濾材がアルカリ金属やアルカリ土類金属を含むセラミックである場合に有効である。また、濾材のバインダーとして同様のセラミック成分を含む場合にも有効である。
【0017】
酸性物質に接触させる方法は、酸性物質をガス成分として含むガスを透過させたり、シャワー方式によるバッチ処理など、気相での接触でもよいが、処理を確実に行う上で、液相での接触が好ましい。また、接触を行う前に、濾材の洗浄や前処理を行ってもよい。酸性物質との接触は、酸性物質による反応を適度に行う観点から、100℃以下で行うのが好ましい。
【0018】
液相で接触させる方法としては、酸性物質を含む溶液に濾材を浸漬したり、溶液を濾材に各種方法で塗布又は含浸させたり、溶液を濾材に透過させたりする方法が挙げられる。なかでも、浸漬による方法が、連続ラインで均一な接触が行えるため好ましい。
【0019】
酸性物質としては、リン酸、硫酸、塩酸、硝酸、シュウ酸などが挙げられるが、リン酸又は硫酸が好ましい。また、酸性酸化物、酸性塩などを使用することも可能である。溶液中の酸性物質の濃度は、1〜10重量%が好ましい。また、酸性物質を含む溶液には、その他の配合成分として、2種以上の酸性物質の混合を行ってもよい。
【0020】
本発明では、上記のようにして濾材を酸性物質の溶液に接触させた後、濾材に付着する溶液の量を調整してから乾燥を行うことが好ましい。付着する溶液の量を調整する方法としては、遠心脱水、加圧脱水、吸収材による脱水などが挙げられる。
【0021】
乾燥前の濾材に付着する溶液の量は、溶液の濃度や濾材の表面積によっても異なるが、濾材100重量部に対して、0.2〜2重量部が好ましい。乾燥の温度は、水分が十分無くなるまで行えばよいが、例えば温度100〜150℃で乾燥すればよい。乾燥には、恒温槽や熱風加熱装置などが使用できる。
【0022】
本発明のガス測定用フィルタは、濾材そのものや濾材を成型したもの、濾材を組み込んだエレメント、モジュール、ケースに濾材を装着したフィルタなどを含むものである。従って、濾材が成型されていない場合には、必要に応じて前述のような成型が行われ、エレメントの作製やフィルタケースへの組み込みが行われる。
【0023】
例えば、エレメントをフィルタケースへ装着したフィルタ構造とする場合、セラミック繊維等をフェルト状に加工した濾材シートを、金属メッシュに挟み込んで、プリーツ状に折り曲げ加工した後、無端の筒状体に形成し、これを多数の通気孔を有する内筒の周囲に配置しつつ、筒状体の両側に端部材を接着してエレメントを作製する。フィルタケースは、測定ガスの入口と出口を有しており、その入口又は出口が、エレメントの内筒又はプリーツ状筒状体の外周の空間に連通するように、エレメントが装着可能な構造となっている。このような構造は、例えば実開昭56−129815号公報(全文)に詳細に説明されている。
【0024】
本発明のガス測定用フィルタは、以上のような処理によって、濾材の表面に存在するアルカリ性物質に対し酸性物質にてアルカリ度を低減したものである。好ましくは、濾材の表面に酸性物質を付着又は化学結合してなるものである。
【0025】
例えば、濾材又はそのバインダーがアルカリ金属等を含むセラミックである場合、当該アルカリ金属等に対する窒素酸化物吸着や反応が起こり易い。しかし、アルカリ金属に対し予め酸性物質が付着又は化学結合することで、中和反応等が生じてアルカリ度を低減させることによって、窒素酸化物吸着や反応をより起こりにくくすることができる。特に、実際の排ガス中には水分が含まれるため、排ガス中の窒素酸化物反応が起こり易い。このような条件では、本発明が特に有効である。なお、金属の焼結体やメッシュについても、微量のアルカリ性酸化物が付着している場合があるため、本発明が有効である。
【0026】
一方、濾材の表面に酸性物質を付着又は化学結合していると、アンモニア等のアルカリ性物質を吸着することができる。このため、脱硝装置の排ガス中に含まれるアンモニアを除去することができ、アンモニアスクラバーとして使用することができる。例えば実施例2に記載の条件であれば、6カ月以上連続してアンモニアの除去効果を得ることができる。
【0027】
本発明のガス測定用フィルタは、ダストや微粒子等の除去に有効であるため、濾材の平均孔径は1〜5μm程度が好ましい。本発明のガス測定用フィルタは、酸性物質を含有する排ガスや大気の成分濃度を測定する際に使用され、例えば排ガスの測定に使用される場合、例えば150〜200℃程度で使用可能である。
【0028】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0029】
実施例1
濾材となるセラミックペーパ(イソライト工業製、イソウールペーパー、厚み1.0mm)を、リン酸の5重量%水溶液500gに温度55℃で30分間浸漬した。その後、水溶液からセラミックペーパを取り出し、遠心脱水機で脱水をおこなった。これを恒温槽にて105℃で120分間乾燥し、表面に酸性物質を付着又は化学結合した濾材を得た。
【0030】
この濾材をプリーツ状に折り曲げてエレメントを作製し(有効濾過面積388cm)、これをフィルタケース内に装着した。試験ガスとして、二酸化窒素15ppm、水分13%(53℃飽和)を含む精製空気を用い、フィルタケース温度を150℃にして、ガス流量3L/分で濾過しながら、透過ガス中の二酸化窒素の濃度をガス分析装置((株)堀場製作所製,CLA−510SS)で測定した。その結果を図1に示す。また、その際の二酸化窒素の回収率(飽和状態での値)を求めた結果、99.20%であった。
【0031】
上記の結果を、エレメントをフィルタケース内に装着しないで測定したブランクデータと比較すると、二酸化窒素の回収率は同じ値であり、測定誤差はゼロであった。また、回収率が90%までの応答時間を比較しても、ブランクデータと略同じ値になり、測定の応答の遅れも殆ど存在しない。
【0032】
比較例1
実施例1において、濾材として、リン酸処理を行っていないセラミックペーパを用いること以外は、実施例1と同様にして透過ガス中の二酸化窒素の濃度を測定した。その結果を図1に示すが、ブランクデータと比較して若干の応答の遅れが見られた。また、その際の二酸化窒素の回収率は90.00%であった。このように、酸性物質で処理していないセラミックペーパからなる濾材では、二酸化窒素の吸着や反応が生じており、測定の応答の遅れや測定誤差が生じ易いことが分かる。
【0033】
比較例2
実施例1において、濾材として、リン酸により処理を行っていないステンレス鋼製の焼結金属フィルタ(M&C社製,ポアサイズ5μm)を用いること以外は、実施例1と同様にして透過ガス中の二酸化窒素の濃度を測定した。その際の二酸化窒素の回収率を求めた結果、94.80%であった。このように、酸性物質で処理していない焼結金属フィルタからなる濾材では、二酸化窒素の吸着や反応が生じていることが分かる。
【0034】
比較例3
実施例1において、濾材として、リン酸により処理を行っていないセラミック円筒成型フィルタを用いること以外は、実施例1と同様にして透過ガス中の二酸化窒素の濃度を測定した。その結果を図1に示すが、ブランクデータと比較して若干の応答の遅れが見られた。また、その際の二酸化窒素の回収率は95.00%であった。このように、酸性物質で処理していないセラミック円筒成型フィルタからなる濾材では、二酸化窒素の吸着や反応が生じており、測定の応答の遅れや測定誤差が生じ易いことが分かる。
【0035】
実施例2
実施例1で得られたフィルタを用いて、試験ガスとして、アンモニア2ppm、NO5ppmを含む空気を用い、フィルタケース温度を150℃にして、ガス流量2〜3L/分で濾過しながら、透過ガス中のアンモニアの濃度をガス分析装置((株)堀場製作所製,CLA−510)で脱硝触媒(350℃)による下記の反応を利用して測定した。
【0036】
3NO+2NH→3/2N+3H
その結果、99.9%以上のアンモニアを除去できた。
【図面の簡単な説明】
【図1】実施例等における濾材を透過したガス中の二酸化窒素の回収率の応答速度を示すグラフ
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a nitrogen oxide (NOx) measurement filter (hereinafter referred to as “ gas measurement ”) for removing dust and the like in a gas introduction path when measuring the concentration of nitrogen oxide (NOx) contained in exhaust gas and the like. is that use filters "), and a method of manufacturing the same.
[0002]
[Prior art]
In general, when fuel such as light oil or coal is used in an internal combustion engine or a combustion burner, exhaust gas containing nitrogen oxide (NOx) or sulfur oxide (SOx) is generated. It is regulated by law, etc. after that. For this reason, conventionally, a probe for measuring the concentration of these harmful substances has been installed in the flue and the like, and the exhaust gas taken in from the probe has been monitored by a gas analyzer.
[0003]
The exhaust gas contains not only gas components but also dust components such as combustion ash and mist components, and the probe is provided with a filter for removing such dusts. As a filter medium of this filter, a material in which felt-like inorganic fibers made of glass wool or ceramic fibers are sandwiched with a metal mesh or the like so as to withstand use at high temperatures has been used (for example, see Patent Document 1). In addition, sintered metals such as stainless steel, carborundum (silicon carbide), and the like may be used as filter media for the above-described filters.
[0004]
[Patent Document 1]
Japanese Utility Model Publication No. 56-129815 (first page, FIG. 1)
[Problems to be solved by the invention]
However, inorganic fibers contain binders (low melting point soda glass) used during production and alkaline oxides contained in the fibers themselves, so that nitrogen oxides and sulfur oxides in the exhaust gas are adsorbed and reacted (chemical adsorption). This is a cause of delay in response of concentration measurement and measurement error. The filter needs to be replaced periodically because of clogging with dust, but accurate gas measurement cannot be performed over a long period of time immediately after replacement, and in that case, maintenance or interruption of measurement is required. There was a problem of not getting.
[0005]
On the other hand, sintered metals such as stainless steel, and filter media such as sintered ceramics and carborundum are also produced by sintering at a high temperature, and therefore, a trace amount of alkaline oxide may be attached. In that case, it has been found that, as in the case of the felt-like inorganic fiber, a problem of response delay and measurement error occurs. And the problem of such a response delay and a measurement error was remarkable especially about the nitrogen dioxide in exhaust gas.
[0006]
An object of the present invention is to provide a delay or hard gas measurement filter measurement error occurs and its manufacturing method of the response of the measurement by adsorption and reaction of nitrogen oxides.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors diligently researched on the improvement of the filter medium. By treating the surface of the filter medium with an acidic substance, the alkalinity can be reduced (including the case where the acidity increases). It has been found that the adsorption and reaction of nitrogen oxides can be suppressed by this, and the present invention has been completed.
[0008]
That is, the gas measuring filter of the present invention, the gas analysis apparatus for measuring nitrogen oxides in the combustion exhaust gas of (NOx) using et al is a probe portion, of the ceramic inorganic fibers containing an alkali metal or an alkaline earth metal A filter composed of a heat-resistant filter medium made of a sheet and a ceramic component binder containing an alkali metal or alkaline earth metal, and the alkalinity of the alkali metal or alkaline earth metal is reduced by an acidic substance. It is characterized by being. According to the gas measurement filter of the present invention, the filter medium is made of a ceramic containing an alkali metal or an alkaline earth metal, or an inorganic material containing a ceramic component whose binder of the filter medium contains an alkali metal or an alkaline earth metal. There is advantageous from the viewpoint of heat resistance, since the alkalinity is reduced by the acidic substance, as shown in the results of examples, it nitrogen oxides is hardly captured by the adsorption or reaction with the filter medium, the measurement Response delays and measurement errors are less likely to occur. Moreover, the filtration effective area can be enlarged by making the form of a filter medium into the sheet-like thing of inorganic fibers, such as a ceramic. As a result, even with a small filter, the amount of collected dust and the like is increased, and the use time until replacement can be extended.
[0009]
The gas measurement filter of the present invention is preferably formed by chemically bonding an acidic substance to the surface of the filter medium. By chemically bonding an acidic substance, a neutralization reaction occurs and the effect of reducing the alkalinity becomes higher, and the nitrogen oxide and the filter medium can be more reliably prevented from adsorbing and reacting.
[0010]
Moreover, it is preferable to use the filter for gas measurement of the present invention as an ammonia scrubber that is used for exhaust gas measurement of a denitration apparatus and removes ammonia contained in the exhaust gas . When an acidic substance is attached or chemically bonded to the surface of the filter medium, an alkaline substance such as ammonia can be adsorbed. For this reason, ammonia contained in the exhaust gas of the denitration apparatus can be reliably removed.
[0011]
On the other hand, the present invention is a method for producing a filter for measuring nitrogen oxides (NOx) in combustion exhaust gas according to claim 1, wherein the heat-resistant filter medium is brought into contact with an acidic substance in a liquid phase , and then dehydrated. After adjusting the amount of the solution adhering to the filter medium, drying is performed to reduce the alkalinity of the alkali metal or alkaline earth metal. In the production of the gas measurement filter, as described above, as a material of the filter medium, a ceramic containing an alkali metal or an alkaline earth metal, or a ceramic component in which the binder of the filter medium contains an alkali metal or an alkaline earth metal is used. Inorganic materials that are included are advantageous from the viewpoint of heat resistance. By contacting the filter medium with an acidic substance in this way, the alkalinity is reduced, so that nitrogen oxides are not easily captured by adsorption or reaction with the filter medium. Thus, delay in measurement response and measurement error are less likely to occur. Moreover, the filtration effective area can be enlarged by making the form of a filter medium into the sheet-like thing of inorganic fibers, such as a ceramic. As a result, even with a small filter, the amount of collected dust and the like is increased, and the use time until replacement can be extended.
[0012]
At this time, since the filter medium is brought into contact with the solution of the acidic substance and then dried, the acidic substance can be attached or chemically bonded, and the alkalinity reduction effect becomes higher. As a result, the nitrogen oxide and the filter medium can be more reliably prevented from adsorbing and reacting. In particular, the treatment can be reliably performed by contacting with a low concentration acidic substance such as a 5 wt% aqueous solution of phosphoric acid. In addition, since the amount of the solution attached to the filter medium is adjusted after dehydration, drying is performed, so even when a porous filter medium is used, an appropriate amount of acidic substance is attached or chemically prevented while clogging is suppressed. Can be combined. In particular, for the adsorption and the nitrogen oxides effect is large due to reaction with the filter material, even filter used for gas analysis measuring apparatus for measuring nitrogen oxides in the combustion exhaust gas containing moisture, the measurement error is little, the measurement There is almost no delay in response . Examples of the method for adjusting the amount of the adhering solution include centrifugal dehydration.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
[0014]
The method for producing a gas measurement filter of the present invention includes a step of bringing a filter medium into contact with an acidic substance in a liquid phase or a gas phase. The filter medium used for the treatment may be either molded into the shape of the filter or may be before molding.
[0015]
Therefore, the form of the filter medium to be treated may be any of filament, thread, felt, fiber woven fabric, nonwoven fabric, paper, fine particles, etc. The formed filter medium may be any of a pleated shape, a cylindrical shape, a tube shape, a bulk shape, a sintered body, and the like. However, the preferred form of the filter medium in the present invention is a sheet-like material of inorganic fibers such as ceramics, and by pleating it, the effective filtration area can be increased compared to other forms. As a result, even with a small filter, the amount of collected dust and the like is increased, and the use time until replacement can be extended.
[0016]
As the material of the filter medium, inorganic materials are advantageous in terms of heat resistance, and ceramics (including glass) such as quartz, soda glass, quartz glass, silicate, and silicon carbide, stainless steel, aluminum, and precious metals Any of these metals can be used. The present invention is particularly effective when the filter medium is a ceramic containing an alkali metal or an alkaline earth metal. It is also effective when a similar ceramic component is included as a binder for the filter medium.
[0017]
The method of contacting with the acidic substance may be contact in the gas phase such as permeation of a gas containing the acidic substance as a gas component or batch processing by a shower method, but in order to ensure the treatment, contact in the liquid phase Is preferred. Moreover, you may wash | clean and pre-process a filter medium before making a contact. The contact with the acidic substance is preferably performed at 100 ° C. or less from the viewpoint of appropriately performing the reaction with the acidic substance.
[0018]
Examples of the method of contacting in the liquid phase include a method of immersing the filter medium in a solution containing an acidic substance, applying or impregnating the solution to the filter medium by various methods, and allowing the solution to permeate the filter medium. Especially, the method by immersion is preferable because uniform contact can be made in a continuous line.
[0019]
Examples of the acidic substance include phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, and oxalic acid, and phosphoric acid or sulfuric acid is preferable. It is also possible to use acidic oxides, acidic salts and the like. The concentration of the acidic substance in the solution is preferably 1 to 10% by weight. Moreover, you may mix 2 or more types of acidic substances into the solution containing an acidic substance as another compounding component.
[0020]
In the present invention, it is preferable to dry after adjusting the amount of the solution attached to the filter medium after contacting the filter medium with the acidic substance solution as described above. Examples of the method for adjusting the amount of the adhering solution include centrifugal dehydration, pressure dehydration, and dehydration using an absorbent material.
[0021]
The amount of the solution adhering to the filter medium before drying varies depending on the concentration of the solution and the surface area of the filter medium, but is preferably 0.2 to 2 parts by weight with respect to 100 parts by weight of the filter medium. The drying temperature may be performed until water is sufficiently removed. For example, the drying may be performed at a temperature of 100 to 150 ° C. For drying, a thermostatic bath or a hot air heating device can be used.
[0022]
The filter for gas measurement of the present invention includes a filter medium itself, a filter medium molded element, an element incorporating a filter medium, a module, a filter having a filter medium mounted on a case, and the like. Therefore, when the filter medium is not molded, the above-described molding is performed as necessary, and the element is manufactured and incorporated into the filter case.
[0023]
For example, in the case of a filter structure in which an element is attached to a filter case, a filter medium sheet processed into a felt shape with ceramic fibers or the like is sandwiched between metal meshes, bent into a pleat shape, and then formed into an endless cylindrical body. The element is produced by adhering end members to both sides of the cylindrical body while disposing this around the inner cylinder having a large number of ventilation holes. The filter case has an inlet and an outlet for measurement gas, and the element can be mounted so that the inlet or outlet communicates with the outer space of the inner cylinder of the element or the pleated cylindrical body. ing. Such a structure is described in detail, for example, in Japanese Utility Model Laid-Open No. 56-129815 (full text).
[0024]
The gas measurement filter of the present invention is obtained by reducing the alkalinity with an acidic substance with respect to the alkaline substance existing on the surface of the filter medium by the treatment as described above. Preferably, an acidic substance is attached or chemically bonded to the surface of the filter medium.
[0025]
For example, when the filter medium or its binder is a ceramic containing an alkali metal or the like , adsorption or reaction of nitrogen oxides with respect to the alkali metal or the like is likely to occur. However, by pre acidic substance is attached or chemically bonded to an alkali metal, by reducing the alkalinity caused neutralization reaction or the like, may be less likely to occur the adsorption and reaction of the nitrogen oxides. In particular, since the actual exhaust gas contains moisture, the reaction of nitrogen oxides in the exhaust gas easily occurs. Under such conditions, the present invention is particularly effective. Note that the present invention is also effective for metal sintered bodies and meshes because trace amounts of alkaline oxides may be adhered.
[0026]
On the other hand, when an acidic substance is attached or chemically bonded to the surface of the filter medium, an alkaline substance such as ammonia can be adsorbed. For this reason, ammonia contained in the exhaust gas of the denitration apparatus can be removed, and it can be used as an ammonia scrubber. For example, under the conditions described in Example 2, the ammonia removal effect can be obtained continuously for 6 months or more.
[0027]
Since the filter for gas measurement of the present invention is effective for removing dust and fine particles, the average pore diameter of the filter medium is preferably about 1 to 5 μm. The gas measurement filter of the present invention is used when measuring the concentration of exhaust gas containing an acidic substance or atmospheric components. For example, when used for measurement of exhaust gas, it can be used at about 150 to 200 ° C., for example.
[0028]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0029]
Example 1
Ceramic paper (Isolite Kogyo, Isowool paper, thickness 1.0 mm) serving as a filter medium was immersed in 500 g of a 5 wt% aqueous solution of phosphoric acid at a temperature of 55 ° C. for 30 minutes. Thereafter, the ceramic paper was taken out from the aqueous solution and dehydrated with a centrifugal dehydrator. This was dried at 105 ° C. for 120 minutes in a thermostatic bath to obtain a filter medium having an acidic substance attached or chemically bonded to the surface.
[0030]
The filter medium was bent into a pleat shape to produce an element (effective filtration area 388 cm 2 ), and this was mounted in a filter case. Using purified air containing 15 ppm nitrogen dioxide and 13% moisture (53 ° C saturation) as the test gas, setting the filter case temperature to 150 ° C and filtering at a gas flow rate of 3 L / min, the concentration of nitrogen dioxide in the permeate gas Was measured with a gas analyzer (manufactured by Horiba, Ltd., CLA-510SS). The result is shown in FIG. Moreover, as a result of calculating | requiring the recovery rate (value in a saturated state) of the nitrogen dioxide in that case, it was 99.20%.
[0031]
When the above results were compared with blank data measured without mounting the element in the filter case, the nitrogen dioxide recovery was the same value and the measurement error was zero. Further, even if the response times up to 90% are compared, the values are almost the same as the blank data, and there is almost no delay in the measurement response.
[0032]
Comparative Example 1
In Example 1, the concentration of nitrogen dioxide in the permeated gas was measured in the same manner as in Example 1 except that ceramic paper that had not been subjected to phosphoric acid treatment was used as the filter medium. The result is shown in FIG. 1, and a slight delay in response was seen compared to the blank data. Further, the recovery rate of nitrogen dioxide at that time was 90.00%. Thus, it can be seen that in the filter medium made of ceramic paper that has not been treated with an acidic substance, adsorption and reaction of nitrogen dioxide occurs, and a delay in measurement response and measurement errors are likely to occur.
[0033]
Comparative Example 2
In Example 1, as a filter medium, a stainless steel sintered metal filter (manufactured by M & C, pore size 5 μm) that has not been treated with phosphoric acid is used in the same manner as in Example 1 except that carbon dioxide in the permeated gas is used. The concentration of nitrogen was measured. As a result of obtaining the recovery rate of nitrogen dioxide at that time, it was 94.80%. Thus, it turns out that adsorption and reaction of nitrogen dioxide have occurred in the filter medium consisting of a sintered metal filter not treated with an acidic substance.
[0034]
Comparative Example 3
In Example 1, the concentration of nitrogen dioxide in the permeated gas was measured in the same manner as in Example 1 except that a ceramic cylindrical filter not treated with phosphoric acid was used as the filter medium. The result is shown in FIG. 1, and a slight delay in response was seen compared to the blank data. Further, the recovery rate of nitrogen dioxide at that time was 95.00%. Thus, it can be seen that in the filter medium made of a ceramic cylindrical filter not treated with an acidic substance, adsorption or reaction of nitrogen dioxide occurs, and a delay in measurement response or a measurement error tends to occur.
[0035]
Example 2
Using the filter obtained in Example 1, using air containing 2 ppm ammonia and 5 ppm NO as a test gas, setting the filter case temperature to 150 ° C., and filtering at a gas flow rate of 2 to 3 L / min, The ammonia concentration was measured with a gas analyzer (manufactured by Horiba, Ltd., CLA-510) using the following reaction with a denitration catalyst (350 ° C.).
[0036]
3NO + 2NH 3 → 3 / 2N 2 + 3H 2 O
As a result, 99.9% or more of ammonia could be removed.
[Brief description of the drawings]
FIG. 1 is a graph showing the response speed of the recovery rate of nitrogen dioxide in gas that has passed through a filter medium in Examples and the like.

Claims (2)

燃焼排ガス中の窒素酸化物(NOx)を測定するガス分析測定装置のプローブ部分に用いられ、アルカリ金属やアルカリ土類金属を含むセラミックの無機繊維のシート状物からなる耐熱性濾材と、アルカリ金属やアルカリ土類金属を含むセラミック成分のバインダーからなるフィルタであって、該アルカリ金属やアルカリ土類金属に対し酸性物質にて、そのアルカリ度を低減してある燃焼排ガス中の窒素酸化物(NOx)測定用フィルタ。A heat-resistant filter medium made of a ceramic inorganic fiber sheet containing alkali metal or alkaline earth metal, used in a probe portion of a gas analyzer for measuring nitrogen oxide (NOx) in combustion exhaust gas, and alkali metal Or a ceramic component binder containing alkaline earth metal, which is an oxide for the alkali metal or alkaline earth metal, and has reduced its alkalinity in the nitrogen oxide (NOx) in the combustion exhaust gas. ) Filter for measurement. 請求項1記載の燃焼排ガス中の窒素酸化物(NOx)測定用フィルタの製造方法であって、
耐熱性濾材を液相中で酸性物質に接触させた後、
脱水処理によって前記濾材に付着する溶液の量を調整してから乾燥を行い、
前記アルカリ金属やアルカリ土類金属に対し、そのアルカリ度を低減することを特徴とする燃焼排ガス中の窒素酸化物(NOx)測定用フィルタの製造方法。
A method for producing a filter for measuring nitrogen oxide (NOx) in combustion exhaust gas according to claim 1,
After contacting the heat-resistant filter medium with an acidic substance in the liquid phase ,
And dried after adjusting the amount of the solution adhering to the filter medium by a dehydration process,
A method for producing a filter for measuring nitrogen oxide (NOx) in combustion exhaust gas, wherein the alkalinity of the alkali metal or alkaline earth metal is reduced.
JP2003058155A 2003-03-05 2003-03-05 Gas measuring filter and manufacturing method thereof Expired - Fee Related JP4542315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058155A JP4542315B2 (en) 2003-03-05 2003-03-05 Gas measuring filter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058155A JP4542315B2 (en) 2003-03-05 2003-03-05 Gas measuring filter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004271199A JP2004271199A (en) 2004-09-30
JP4542315B2 true JP4542315B2 (en) 2010-09-15

Family

ID=33121335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058155A Expired - Fee Related JP4542315B2 (en) 2003-03-05 2003-03-05 Gas measuring filter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4542315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201802878YA (en) * 2013-09-06 2018-05-30 Entegris Inc Liquid-free sample traps and analytical method for measuring trace level acidic and basic amc

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524607Y2 (en) * 1971-10-29 1977-01-31
JPS5317781A (en) * 1976-07-31 1978-02-18 Horiba Ltd Device for analyzing so2
JPS5471690A (en) * 1977-11-17 1979-06-08 Horiba Ltd Previous treatment device for gas analyzer
JPS56129815U (en) * 1980-03-01 1981-10-02
JPS5764740U (en) * 1980-10-06 1982-04-17
JPH0618289Y2 (en) * 1988-05-17 1994-05-11 新コスモス電機株式会社 Gas detector
JPH05115722A (en) * 1991-10-24 1993-05-14 Matsushita Electric Ind Co Ltd Exhaust gas filter
JP2674386B2 (en) * 1991-10-28 1997-11-12 松下電器産業株式会社 Exhaust gas filter and manufacturing method thereof
JP3233802B2 (en) * 1994-12-15 2001-12-04 関西電力株式会社 Method for removing carbon dioxide and nitrogen oxides from flue gas
US5686039A (en) * 1995-06-30 1997-11-11 Minnesota Mining And Manufacturing Company Methods of making a catalytic converter or diesel particulate filter
KR0185288B1 (en) * 1996-10-24 1999-04-15 손영목 Absorption-separation process for recovering carbon dioxide from engine exhaust gas
JPH11281540A (en) * 1998-01-28 1999-10-15 Miura Co Ltd Apparatus for collecting dioxin, etc.
US6444006B1 (en) * 2000-05-18 2002-09-03 Fleetguard, Inc. High temperature composite ceramic filter
JP3584863B2 (en) * 2000-08-25 2004-11-04 株式会社島津製作所 Continuous gas analyzer
JP3974825B2 (en) * 2002-07-03 2007-09-12 株式会社堀場製作所 Primary filter for exhaust gas measurement

Also Published As

Publication number Publication date
JP2004271199A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP6571788B2 (en) Catalytic ceramic candle filter and method for cleaning off-gas or exhaust gas
JPH07505083A (en) Catalytic filtration devices and methods
CN107427770B (en) Catalyzed ceramic candle filter and method for cleaning process exhaust or gas
KR101414992B1 (en) Solid Carbon dioxide absorbent and elimination and concentration method of carbon dioxide using the absorbent
TWI652100B (en) Catalytic ceramic core filter and method for cleaning process discharge or gas consumption
JP2014065031A (en) Exhaust gas treatment catalyst and method of regenerating the same
JP4542315B2 (en) Gas measuring filter and manufacturing method thereof
JP2004524258A (en) Ammonia oxidation method
JP2019520187A (en) Catalyst active filter for use in hot gas filtration, method for making the filter and method for simultaneously removing solid particles and unwanted compounds from a gas stream
JP4649587B2 (en) Exhaust gas purification filter and collection method of particulate matter
EP1982763B1 (en) Catalyst for oxidizing mercury metal, exhaust gas purifying catalyst comprising catalyst for oxidizing mercury metal, and method for producing same
KR101724882B1 (en) Complex removing system of contaminating materials in flue gas
JP2001246209A (en) Gas permeable member, method for manufacturing the same dust removing apparatus
JP2016513582A (en) Method for removing iron material from a substrate
JP2014008460A (en) Catalyst carrying bag filter
JP5338488B2 (en) Method for producing high-purity urea water
JPH03169326A (en) Porous ceramic filter for treatment of exhaust gas and exhaust gas treatment apparatus
TWI637783B (en) Catalyzed ceramic candle filter and method for cleaning of off- or exhaust gases
JP6032974B2 (en) Method for producing exhaust gas purification catalyst
KR100200978B1 (en) Ceramic fiber filter
TWI637781B (en) Catalyzed ceramic candle filter and method of cleaning process off- or exhaust gases
JPS61111129A (en) Apparatus for treating waste gas
JP2003251151A (en) Method for oxidizing/removing fine carbon particle, catalyst and carrier used for the method
KR101110949B1 (en) Flue Gas Treatment using Coke Filter
CN114392609A (en) Preparation method and application of dedusting, desulfurization and denitration integrated double-layer mullite ceramic filter material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081016

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees