JP5338488B2 - Method for producing high-purity urea water - Google Patents

Method for producing high-purity urea water Download PDF

Info

Publication number
JP5338488B2
JP5338488B2 JP2009134098A JP2009134098A JP5338488B2 JP 5338488 B2 JP5338488 B2 JP 5338488B2 JP 2009134098 A JP2009134098 A JP 2009134098A JP 2009134098 A JP2009134098 A JP 2009134098A JP 5338488 B2 JP5338488 B2 JP 5338488B2
Authority
JP
Japan
Prior art keywords
urea
water
urea water
turbidity
kaolin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009134098A
Other languages
Japanese (ja)
Other versions
JP2010280596A (en
Inventor
隆 松本
拓矢 桑机
秀史 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP2009134098A priority Critical patent/JP5338488B2/en
Publication of JP2010280596A publication Critical patent/JP2010280596A/en
Application granted granted Critical
Publication of JP5338488B2 publication Critical patent/JP5338488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は高純度尿素水の製造方法に関する。   The present invention relates to a method for producing high-purity urea water.

ディーゼルエンジン等の内燃機関の排気ガスに含まれるNOxを還元浄化する方法として、尿素水とSCR(Selective Catalytic Reduction、選択還元触媒)方式の触媒コンバータによりNOxを大幅に低減する方法が提案されている(特許文献1)。この尿素SCR方式は、尿素水を還元剤とし、これを前記SCR触媒コンバータに入る直前に排気ガスに混合させる方式であり、尿素は排気ガス中でアンモニアに変化し、SCR触媒コンバータ内で排気ガス中のNOxがアンモニアと結びついて水と無害な窒素に分解されるので、排気ガスのクリーン化に有望な技術とされている。そして、内燃機関排気処理用NOx還元触媒におけるアンモニア源として好適な高純度尿素水の製造方法として、例えば尿素水を濾過する工程およびオイル吸着剤で処理する工程からなることを特徴とする高純度尿素水の製造方法が提案されている(特許文献2)。   As a method for reducing and purifying NOx contained in the exhaust gas of an internal combustion engine such as a diesel engine, a method has been proposed in which NOx is greatly reduced by urea water and a catalytic converter of an SCR (Selective Catalytic Reduction) method. (Patent Document 1). This urea SCR system is a system in which urea water is used as a reducing agent and this is mixed with exhaust gas immediately before entering the SCR catalytic converter. Urea changes into ammonia in the exhaust gas, and the exhaust gas in the SCR catalytic converter. Since NOx in it is combined with ammonia and decomposed into water and harmless nitrogen, it is considered a promising technology for exhaust gas cleaning. And, as a method for producing high-purity urea water suitable as an ammonia source in an NOx reduction catalyst for internal combustion engine exhaust treatment, for example, high-purity urea comprising a step of filtering urea water and a step of treating with an oil adsorbent A method for producing water has been proposed (Patent Document 2).

上記の高純度尿素水の製造方法において、濾過器としては、ストレーナー等で十分であり、ストレーナーとしてはバケット型などを使用でき、異物の大きさによりメッシュ型スクリーン、繊維成型型、不織布プリーツ型等のエレメントを使用すると記載され、また、オイル吸着剤としては、ケイソウ土、活性炭、オイル吸着樹脂が例示されている。そして、濾過対象の固形物については、配管などから混入する僅かな異物などが例示され、その大きさは数〜数十μmとされている。なお、上記のオイルは、工業的製造プロセスから尿素に混入する不純物である(特許文献3)   In the above-described method for producing high-purity urea water, a strainer or the like is sufficient as a filter, and a bucket type or the like can be used as the strainer. Depending on the size of the foreign matter, a mesh type screen, a fiber molding type, a non-woven pleated type, etc. The oil adsorbent is exemplified by diatomaceous earth, activated carbon, and oil adsorbing resin. And about the solid object of filtration, the slight foreign material etc. which are mixed from piping etc. are illustrated, The magnitude | size is made into several to several dozen micrometer. In addition, said oil is an impurity mixed in urea from an industrial manufacturing process (patent document 3).

特開2004−290835号公報JP 2004-290835 A 特開2006−298828号公報JP 2006-298828 A 特開2007−145796号公報JP 2007-14596 A

ところで、尿素は、基本的には、尿素合成に適した高温圧力下にアンモニアと二酸化炭素とを反応して得られる。そして、肥料用途や工業用途などに使用される尿素は、造粒塔においてプリル化された後、建屋内の受入ヤードに搬入して貯蔵される。一般に、需要者にはフレコンバッグ等に充填されて出荷される。   By the way, urea is basically obtained by reacting ammonia and carbon dioxide under a high temperature pressure suitable for urea synthesis. And urea used for fertilizer use, industrial use, etc. is prilled in a granulation tower, and then carried into a receiving yard in the building and stored. In general, a flexible container bag or the like is filled and shipped to a consumer.

ところが、本発明者の検討の結果、尿素には尿素−オイル不溶物が不純物として含まれていることが判明した。尿素水中の尿素−オイル不溶物は、前述の先行技術で指摘されたオイルのみから成る不溶物と異なり、尿素水に白濁を与える。尿素水中のオイルのみから成る不溶物は、液体であり流動性を呈し、尿素水を噴霧する設備の配管やバルブの閉塞原因となる恐れは少ないものの、上記のような尿素−オイル不溶物は、上記の配管やバルブの閉塞原因となる可能性が高い。また、尿素−オイル不溶物によって白濁した尿素水は、品質の面で不安感を与えて商品価値が低い。   However, as a result of the study by the present inventors, it has been found that urea contains urea-oil insoluble matter as impurities. The urea-oil insoluble matter in the urea water gives white turbidity unlike the insoluble matter consisting only of the oil pointed out in the above-mentioned prior art. Insoluble matter consisting only of oil in urea water is liquid and fluid, and there is little risk of blockage of piping and valves of equipment spraying urea water, but such urea-oil insoluble matter is There is a high possibility of causing the above-mentioned piping and valves to be blocked. Moreover, the urea water which became cloudy with urea-oil insoluble matter gives an uneasy feeling in terms of quality, and its commercial value is low.

尿素水とした際に白濁成分と成る不純物が生成する理由は、必ずしも明らかではないが、尿素製造プロセスの、コンプレッサー等を含む尿素製造設備の設計精度や保守管理技術が低いことに起因し、混入した潤滑油と尿素とが長期に亘って熱を受けて生成するのではないかと推定される。   The reason why impurities that become cloudy components are generated when urea water is used is not necessarily clear, but it is mixed due to low design accuracy and maintenance management technology of urea production equipment including compressors in the urea production process. It is estimated that the lubricating oil and urea produced by receiving heat over a long period of time are generated.

本発明の目的は、原料尿素として、尿素水とした際に白濁成分と成る不純物を含有する尿素を使用し、透明性に優れ、且つ、内燃機関排気処理用NOx還元触媒におけるアンモニア源として好適な高純度尿素水の製造方法を提供することにある。   An object of the present invention is to use urea containing impurities that become white turbid components when urea water is used as raw material urea, which is excellent in transparency and suitable as an ammonia source in a NOx reduction catalyst for exhaust treatment of internal combustion engines. The object is to provide a method for producing high-purity urea water.

本発明者は、上記の目的を達成するため、鋭意検討を重ねた結果、次のような知見を得た。すなわち、尿素水中のオイルのみから成る不溶物は、オイル吸着剤で容易に除去し得るが濾過手段では除去できないのに対し、尿素水中の尿素−オイル不溶物は、濾過手段によって除去することが出来る。そして、適切な濾過材は、尿素水中の尿素−オイル不溶物の量(すなわち濁度)によって異なる。   As a result of intensive investigations to achieve the above object, the present inventor has obtained the following knowledge. That is, insoluble matter consisting only of oil in urea water can be easily removed by an oil adsorbent, but cannot be removed by filtration means, whereas urea-oil insoluble matter in urea water can be removed by filtration means. . An appropriate filter medium varies depending on the amount of urea-oil insoluble matter (that is, turbidity) in urea water.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、尿素を水に溶解して尿素水とした後に当該尿素水中の白濁成分を除去する高純度尿素水の製造方法であって、原料尿素として、濁度0度(カオリン)の水に溶解させて33重量%の尿素水とした際、尿素−オイル不溶物から成る白濁成分を生成し且つ濁度が5度(カオリン)を超える尿素を使用し、白濁成分の除去手段として、白濁成分の除去後の尿素水の濁度が5度(カオリン)以下となる濾過材を備えた濾過手段を使用することを特徴とする高純度尿素水の製造方法に存する。   The present invention has been completed on the basis of the above knowledge, and the gist thereof is a method for producing high-purity urea water in which urea is dissolved in water to form urea water and then the cloudy components in the urea water are removed. When the raw material urea is dissolved in water with a turbidity of 0 degrees (kaolin) to form 33 wt% urea water, a white turbid component composed of urea-oil insoluble matter is generated and the turbidity is 5 degrees (kaolin). The use of urea exceeding the turbidity, and as the means for removing the cloudy component, a filtering means comprising a filtering material having a turbidity of urea water after removal of the cloudy component of 5 degrees (kaolin) or less is used. It exists in the manufacturing method of pure urea water.

本発明によれば、原料尿素として、尿素水とした際に白濁成分と成る不純物を含有する尿素を使用し、透明性に優れ、且つ、内燃機関排気処理用NOx還元触媒におけるアンモニア源として好適な高純度尿素水の製造方法が提供される。   According to the present invention, urea containing impurities that become cloudy components when urea water is used as the raw material urea is excellent in transparency and suitable as an ammonia source in a NOx reduction catalyst for exhaust gas treatment of an internal combustion engine. A method for producing high-purity urea water is provided.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明においては、原料尿素として、濁度0度(カオリン)の水に溶解させて33重量%の尿素水とした際、尿素−オイル不溶物から成る白濁成分を生成し且つ濁度が5度(カオリン)を超える尿素を使用する。斯かる尿素は、各種用途向けの尿素の中から、後述の実施例に示す簡単な試験により容易に選択することが出来る。尿素水の調製に使用する原料水は、濁度0度(カオリン)であれば特に制限されない。一般に、工業用水を濾過した後にイオン交換樹脂で処理した純水が使用される。斯かる純水は電気伝導度が0.1mS/cm以下である。   In the present invention, when the raw material urea is dissolved in water having a turbidity of 0 degrees (kaolin) to obtain 33 wt% urea water, a white turbid component composed of urea-oil insoluble matter is generated and the turbidity is 5 degrees. Use urea exceeding (kaolin). Such urea can be easily selected from ureas for various uses by a simple test shown in Examples described later. The raw material water used for preparation of urea water will not be restrict | limited especially if turbidity is 0 degree (kaolin). Generally, pure water treated with an ion exchange resin after filtering industrial water is used. Such pure water has an electric conductivity of 0.1 mS / cm or less.

先ず、本発明においては、尿素を水に溶解して尿素水とする。尿素水調製時の水温は通常10〜70℃である。尿素水中の尿素の濃度は、通常20〜60重量%、好ましくは30〜35重量である。また、尿素−オイル不溶物に起因する濁度の上限は、通常200度(カオリン)、好ましくは50度(カオリン)である。   First, in the present invention, urea is dissolved in water to form urea water. The water temperature at the time of preparation of urea water is usually 10 to 70 ° C. The concentration of urea in the urea water is usually 20 to 60% by weight, preferably 30 to 35% by weight. The upper limit of turbidity due to urea-oil insolubles is usually 200 degrees (kaolin), preferably 50 degrees (kaolin).

次いで、本発明においては、必要に応じ、ストレーナー等を使用し、尿素水中の比較的大きな異物を除去する。   Next, in the present invention, if necessary, a strainer or the like is used to remove relatively large foreign matters in the urea water.

次いで、本発明においては、白濁成分(尿素−オイル不溶物)を除去する。手段としては、白濁成分の除去後の尿素水の濁度が5度(カオリン)以下となる濾過材を備えた濾過手段を使用する。   Next, in the present invention, the cloudy component (urea-oil insoluble matter) is removed. As a means, a filtration means provided with a filter medium in which the turbidity of urea water after removal of the cloudy component is 5 degrees (kaolin) or less is used.

濾過材の材質としては、例えば、PP(ポリプロピレン)、ナイロン、ポリスルホン、PVDF(ポリビニリデンフロライド)、ガラス繊維、ステンレス等の金属、焼結金属、セラミック等が挙げられる。   Examples of the material of the filter medium include PP (polypropylene), nylon, polysulfone, PVDF (polyvinylidene fluoride), glass fiber, metal such as stainless steel, sintered metal, ceramic, and the like.

濾過材の形状としては、例えば、シートをプリーツ折り加工したプリーツ型、濾材を積層してテーパー孔構造の厚みのあるデプス型、デプス状の濾材をプリーツ折り加工したプリーテッド・デプス型やハイブリッド型、バケツのような形状に加工したバッグ型などが挙げられる。   As the shape of the filter medium, for example, a pleat type obtained by pleating a sheet, a depth type having a taper hole structure by laminating filter media, a pleated depth type or a hybrid type having a depth-like filter medium processed by pleat folding, Examples include a bag shape processed into a bucket-like shape.

プリーツ型の商品としては、例えば、日本ポール社「ポリファインII」、「ウルチポアN66」、「ウォーターファイン」、「フロロダインVA」、住友スリーエム(住友3M)社「ライフアシュア」、ADVANTEC社「濾紙プリーツカートリッジフィルター」、「PESメンブレンカートリッジフィルター」、「PPプリーツカートリッジフィルター」等が挙げられる。   Pleated products include, for example, Nippon Pole "Polyfine II", "Ulchipore N66", "Waterfine", "Fluorodyne VA", Sumitomo 3M (Sumitomo 3M) "Life Assure", ADVANTEC "Filter paper pleats" Examples thereof include “cartridge filter”, “PES membrane cartridge filter”, and “PP pleated cartridge filter”.

デプス型の商品としては、例えば、日本ポール社「プロファイルII」、「ネクシスNXT」、住友3M社「マイクロ・ワインドII」、「ポリネット」、ADVANTEC社「デプスカートリッジフィルター」等が挙げられる。   Depth type products include, for example, Nippon Pole “Profile II”, “Nexis NXT”, Sumitomo 3M “Micro Wind II”, “Polynet”, ADVANTEC “Depth Cartridge Filter”, and the like.

プリーテッド・デプス型やハイブリッド型の商品としては、例えば、日本ポール社「プロファイル・スター」、「ウルチプリーツ・プロファイル」等が挙げられる。   Examples of the pleated depth type and hybrid type products include “Profile Star”, “Ulch Pleat Profile” and the like of Nippon Pole.

バッグ型の商品としては、例えば、住友3M社「リキッドフィルターバッグ」等が挙げられる。   Examples of the bag-type product include Sumitomo 3M “Liquid Filter Bag”.

金属型の商品としては、例えば、粉末ステンレスを焼結した、日本ポール社「PMMメタルメンブレン」や住友3M社「ポロ・クリーン」、ステンレス製の焼結金属不織布、焼結金属、非焼結金属を使用した、住友3M社「マイクロ・スクリーンE」、ADVANTEC社「ステンレスカートリッジフィルター」等が挙げられる。   Examples of metallic products include powdered stainless steel sintered "PMM Metal Membrane", Sumitomo 3M "Polo Clean", stainless sintered metal nonwoven fabric, sintered metal, and non-sintered metal. Sumitomo 3M “Micro Screen E”, ADVANTEC “Stainless Steel Cartridge Filter” and the like.

更には、セライト濾過材を使用することも出来、純水の製造プロセスにおいて前処理として使用されている砂濾過を使用することも可能である。また、濾過手段による処理は複数回行ってもよい。   Furthermore, it is possible to use a celite filter medium, and it is also possible to use sand filtration which is used as a pretreatment in the pure water production process. Moreover, you may perform the process by a filtration means in multiple times.

濾過材の性能が孔径で規定される場合、孔径は、尿素水中の濁度(5を超え且つ200以下)によって異なるが、一般的には15μm以下、好ましくは10μm以下である。   When the performance of the filter medium is defined by the pore diameter, the pore diameter varies depending on the turbidity in the urea water (more than 5 and not more than 200), but is generally 15 μm or less, preferably 10 μm or less.

本発明製造法で得られた高純度尿素水は、内燃機関排気処理用NOx還元触媒におけるアンモニア源の他、木質ボードにおけるホルムアルデヒドキャッチャー剤(特開2002−331504号公報)、化粧水用原料(特開平6−24954号公報)、蚕の繭からのセリシンの溶出溶剤(特開2008−173312号公報)として好適に使用することが出来る。   The high-purity urea water obtained by the production method of the present invention includes an ammonia source in a NOx reduction catalyst for exhaust gas treatment of an internal combustion engine, a formaldehyde catcher agent on a wooden board (Japanese Patent Laid-Open No. 2002-331504), and a raw material for skin lotion (specialty) (Kaihei 6-24954), and an elution solvent for sericin from strawberries (Japanese Patent Laid-Open No. 2008-1773312).

次に、実施例により、本発明を更に詳細に説明するが、本発明は、その要旨を超えない限り以下の実施例に限定されるものではない。なお、以下の諸例で使用した測定法は次の通りである。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded. The measurement methods used in the following examples are as follows.

<濁度の測定方法>
JIS K0101「工業用水試験方法」の9.2項「透過光濁度」に従い、試薬としてカオリン標準液を使用し、次の要領で濁度を測定した。
<Measurement method of turbidity>
According to Section 9.2 “Transmitted light turbidity” of JIS K0101 “Industrial water test method”, kaolin standard solution was used as a reagent, and turbidity was measured as follows.

すなわち、試薬として濁度100度(カオリン)のカオリン標準液(キシダ化学製)を使用し、装置として分光光度計「UV−1200」(島津製作所製)を使用し、検量線の作成と試料の濁度測定を行った。   That is, using a kaolin standard solution (manufactured by Kishida Chemical Co., Ltd.) having a turbidity of 100 degrees (kaolin) as a reagent and a spectrophotometer “UV-1200” (manufactured by Shimadzu Corporation) as an apparatus, Turbidity measurement was performed.

(1)検量線の作成:
先ず、カオリン標準液50、25、10、5mlを全量フラスコ100mlに段階的に採り、純水を標線まで加えて検量線用カオリン標準液[(50、25、10、5度(カオリン)]を調製した。
次いで、検量線用カオリン標準液をよく振り混ぜた後、吸収セル10mmに採り、波長660nm付近における検量線用カオリン標準液の透過光濁度[度(カオリン)]と吸光度との関係線を作成した。
(1) Creating a calibration curve:
First, 50, 25, 10, 5 ml of kaolin standard solution is taken stepwise into a 100-ml volumetric flask, pure water is added up to the marked line, and a kaolin standard solution for calibration curve [(50, 25, 10, 5 degrees (kaolin)] Was prepared.
Next, after shaking the kaolin standard solution for the calibration curve well, it is taken into an absorption cell 10 mm, and a relationship line between the transmitted turbidity [degree (kaolin)] and the absorbance of the kaolin standard solution for the calibration curve in the vicinity of a wavelength of 660 nm is prepared. did.

(2)試料の濁度測定:
試料をよく振り混ぜた後、吸収セル10mmにとり、波長660nm付近における透過光の強度を見掛けの吸光度で測定する。
(2) Turbidity measurement of sample:
After thoroughly shaking the sample, the sample is taken in an absorption cell of 10 mm, and the intensity of transmitted light in the vicinity of a wavelength of 660 nm is measured with an apparent absorbance.

実施例1(メンブレンフィルターを使用した例):
原料尿素としてフレコンバッグで輸入した工業用尿素を使用した。原料水として濁度が0度(カオリン)の工業用純水を使用した。
Example 1 (example using a membrane filter):
Industrial urea imported with flexible container bags was used as raw material urea. Industrial pure water having a turbidity of 0 degree (kaolin) was used as the raw water.

(原料尿素の濁度)
上記の工業用尿素6.5gを上記の原料水13.0gに溶解させて33重量%の尿素水を調製し、その濁度を測定した結果、8.1度(カオリン)であった。
(Turbidity of raw urea)
6.5 g of the above industrial urea was dissolved in 13.0 g of the above raw water to prepare 33 wt% urea water, and the turbidity was measured. As a result, it was 8.1 degrees (kaolin).

(尿素水中の不溶成分の同定)
0.2μmのポリテトラフルオロエチレン(PTFE)製メンブレンフィルター(ADVANTEC社製)を使用し、上記の尿素水を濾過し(濾液の濁度は0度(カオリン))、尿素水の不溶成分をメンブレンフィルター上に採取し、純水で30mlで3回洗浄した後、真空ポンプ(佐藤真空(株)製「TSW−300型」)と真空乾燥器(東京理化器械(株)製「VOS−601SD型」)とを使用し、減圧(10Pa以下)下に50℃10時間乾燥した。次いで、メンブレンフィルター上の不溶成分についてフィルターと共にIR分析を行った結果、尿素と潤滑油の特有の吸収が認められた。
(Identification of insoluble components in urea water)
Using a 0.2 µm polytetrafluoroethylene (PTFE) membrane filter (manufactured by ADVANTEC), the urea water is filtered (the turbidity of the filtrate is 0 degree (kaolin)), and the urea water insoluble components are removed from the membrane. After collecting on a filter and washing 3 times with 30 ml of pure water, a vacuum pump (“TSW-300 type” manufactured by Sato Vacuum Co., Ltd.) and a vacuum dryer (“VOS-601SD type manufactured by Tokyo Rika Instruments Co., Ltd.) And dried at 50 ° C. for 10 hours under reduced pressure (10 Pa or less). Subsequently, IR analysis was performed on the insoluble component on the membrane filter together with the filter, and as a result, specific absorption of urea and lubricating oil was observed.

(高純度尿素水の製造)
先ず、原料尿素65gを65℃の原料水130gに溶解させて33重量%の尿素水を調製した。得られた尿素水を、40メッシュSUS網と400メッシュSUS網とで順次に処理した。次いで、減圧濾過用フィルターホルダー(ADVANTEC社製)に表1に示す各種の45mmメンブレンフィルターをそれぞれ装着し、上記の尿素水50gを濾過した。濾過後の尿素水の濁度測定しその結果を表1に示した。
(Production of high-purity urea water)
First, 65 g of raw material urea was dissolved in 130 g of raw material water at 65 ° C. to prepare 33 wt% urea water. The obtained urea water was sequentially treated with a 40 mesh SUS net and a 400 mesh SUS net. Next, various 45 mm membrane filters shown in Table 1 were attached to a filter holder for vacuum filtration (manufactured by ADVANTEC), and 50 g of the urea water was filtered. The turbidity of urea water after filtration was measured and the results are shown in Table 1.

Figure 0005338488
Figure 0005338488

実施例2(メンブレンフィルターを使用した例):
原料尿素として、実施例1におけるものと異なるロット番号の工業用尿素を使用した。
Example 2 (example using membrane filter):
As the raw material urea, industrial urea having a lot number different from that in Example 1 was used.

(原料尿素の濁度)
実施例1と同様に、原料尿素の濁度を測定した結果、23.0度(カオリン)であった。
(Turbidity of raw urea)
As in Example 1, the turbidity of the raw material urea was measured and found to be 23.0 degrees (kaolin).

(尿素水中の不溶成分の同定)
実施例1と同様に、尿素水中の不溶成分の同定を行った。尿素と潤滑油の特有の吸収が認められた。
(Identification of insoluble components in urea water)
In the same manner as in Example 1, insoluble components in urea water were identified. Specific absorption of urea and lubricating oil was observed.

(高純度尿素水の製造)
実施例1において、表2に示す各種の45mmメンブレンフィルターをそれぞれ使用した以外は、実施例1と同様にして高純度尿素水を製造した。濾過後の尿素水の濁度測定しその結果を表2に示した。
(Production of high-purity urea water)
In Example 1, high-purity urea water was produced in the same manner as in Example 1 except that various 45 mm membrane filters shown in Table 2 were used. The turbidity of urea water after filtration was measured and the results are shown in Table 2.

Figure 0005338488
Figure 0005338488

実施例3〜5(カートリッジフィルターを使用した例):
原料尿素として、実施例1及び2におけるものと異なるロット番号の工業用尿素を使用した。
Examples 3 to 5 (examples using a cartridge filter):
As the raw material urea, industrial urea having a lot number different from that in Examples 1 and 2 was used.

(原料尿素の濁度)
実施例1と同様に、原料尿素の濁度を測定した結果、6.2度(カオリン)であった。
(Turbidity of raw urea)
As in Example 1, the turbidity of the raw material urea was measured and found to be 6.2 degrees (kaolin).

(尿素水中の不溶成分の同定)
実施例1と同様に、尿素水中の不溶成分の同定を行った。尿素と潤滑油の特有の吸収が認められた。
(Identification of insoluble components in urea water)
In the same manner as in Example 1, insoluble components in urea water were identified. Specific absorption of urea and lubricating oil was observed.

(高純度尿素水の製造)
先ず、原料尿素6.5kgを65℃の原料水13.0kgに溶解させて33重量%の尿素水を調製した。得られた尿素水を、40メッシュSUS網と400メッシュSUS網とで順次に処理した。次いで、日本ポール社製のフィルターハウジング(型番「M01DS−1G16」)の内部に表3に示す濾過材(10インチのカートリッジフィルター)をそれぞれ装着し、上記の尿素水を濾過した。濾過後の尿素水について濁度を測定し、その結果を表3に示した。
(Production of high-purity urea water)
First, 6.5 kg of raw material urea was dissolved in 13.0 kg of raw water at 65 ° C. to prepare 33 wt% urea water. The obtained urea water was sequentially treated with a 40 mesh SUS net and a 400 mesh SUS net. Subsequently, the filter medium (10-inch cartridge filter) shown in Table 3 was mounted inside a filter housing (model number “M01DS-1G16”) manufactured by Pall Japan, and the urea water was filtered. Turbidity was measured for the urea water after filtration, and the results are shown in Table 3.

Figure 0005338488
Figure 0005338488

Claims (2)

尿素を水に溶解して尿素水とした後に当該尿素水中の白濁成分を除去する高純度尿素水の製造方法であって、原料尿素として、濁度0度(カオリン)の水に溶解させて33重量%の尿素水とした際、尿素−オイル不溶物から成る白濁成分を生成し且つ濁度が5度(カオリン)を超える尿素を使用し、白濁成分の除去手段として、白濁成分の除去後の尿素水の濁度が5度(カオリン)以下となる濾過材を備えた濾過手段を使用することを特徴とする高純度尿素水の製造方法。   A method for producing high-purity urea water in which urea is dissolved in water to form urea water, and then the white turbid components in the urea water are removed. The raw material urea is dissolved in water with 0 turbidity (kaolin) 33 When urea solution of weight% is used, a cloudy component composed of urea-oil insoluble matter is generated, and urea with a turbidity exceeding 5 degrees (kaolin) is used. A method for producing high-purity urea water, comprising using a filtering means provided with a filter medium having a turbidity of urea water of 5 degrees (kaolin) or less. 白濁成分の除去後の尿素水の濁度が0度(カオリン)である請求項1に記載の製造方法。   The manufacturing method of Claim 1 whose turbidity of urea water after removal of a cloudiness component is 0 degree (kaolin).
JP2009134098A 2009-06-03 2009-06-03 Method for producing high-purity urea water Expired - Fee Related JP5338488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134098A JP5338488B2 (en) 2009-06-03 2009-06-03 Method for producing high-purity urea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134098A JP5338488B2 (en) 2009-06-03 2009-06-03 Method for producing high-purity urea water

Publications (2)

Publication Number Publication Date
JP2010280596A JP2010280596A (en) 2010-12-16
JP5338488B2 true JP5338488B2 (en) 2013-11-13

Family

ID=43537715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134098A Expired - Fee Related JP5338488B2 (en) 2009-06-03 2009-06-03 Method for producing high-purity urea water

Country Status (1)

Country Link
JP (1) JP5338488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5409948B1 (en) * 2013-06-29 2014-02-05 株式会社オプティ A method for producing urea water, a method for removing triuret from urea water, and a method for recovering triuret from an aqueous solution.
JP7440066B2 (en) 2020-05-08 2024-02-28 株式会社キンセイ産業 Method for producing urea water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068680A (en) * 2004-09-03 2006-03-16 Purearth Inc Denitrating reductant composition and producing method therefor
JP2006111602A (en) * 2004-10-18 2006-04-27 Purearth Inc Stabilized aqueous solution of urea and method for producing the same
JP4545631B2 (en) * 2005-04-21 2010-09-15 三井化学株式会社 Method for producing high-purity urea water
JP5066852B2 (en) * 2006-07-10 2012-11-07 日本化成株式会社 Method for removing oil from solid urea containing oil
JP2010280595A (en) * 2009-06-03 2010-12-16 Nippon Kasei Chem Co Ltd Method for producing high-purity urea

Also Published As

Publication number Publication date
JP2010280596A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4545631B2 (en) Method for producing high-purity urea water
CN103212245B (en) Dedusting filter material containing MnO2 catalyst, and preparation method and application thereof
CN103212306A (en) Cyclodextrin modified graphene filter membrane and preparation method thereof
JP5338488B2 (en) Method for producing high-purity urea water
CN104128091A (en) Filter cartridge with denitration function and denitration method
CN109081405A (en) A kind of Efficient antibacterial purifier
CA2832248A1 (en) Methods and systems for gas filtering and carbon dioxide capture
CN103732309B (en) From CO2The method and apparatus that the product of volatile decomposition and degraded is removed in the absorption cycle of separation process
CN201678553U (en) Enhanced-coagulation and air-lifting integrated membrane filter device reducing membrane fouling
CN109133246A (en) A kind of antibacterial ceramic water-purification filter core
CN104918685A (en) Pressure hollow fiber membrane module, and backwashing method using same
CN107165701A (en) High-efficiency multifunctional exhaust purifier
CN208785872U (en) A kind of easy cleaning foldable filter element
CN211098263U (en) Rectifying column waste gas filtering device
CN109731487A (en) A kind of preparation method of urea for vehicle solution
CN205340574U (en) Sewage treatment plant waste gas treatment system
JP2010280595A (en) Method for producing high-purity urea
CN212523605U (en) Injection type low-temperature plasma integrated waste gas treatment equipment
RU2288172C1 (en) Single-module multistep installation of the reactant-free micro- purification of the liquids
CN106237846A (en) A kind of organic exhaust gas photocatalysis treatment Apparatus and method for
CN105780854A (en) Novel efficient air water maker
JP2014008460A (en) Catalyst carrying bag filter
Ramezanalizadeha et al. Photocatalytic degradation of MB as an organic dye over a novel MOF/BiFeO3 composite
CN205360899U (en) System for handle engine exhaust gas with filtrate and scavenging solution
CA2299562A1 (en) Method for reducing nitrous oxide in gases and corresponding catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R150 Certificate of patent or registration of utility model

Ref document number: 5338488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees