JP2006111602A - Stabilized aqueous solution of urea and method for producing the same - Google Patents

Stabilized aqueous solution of urea and method for producing the same Download PDF

Info

Publication number
JP2006111602A
JP2006111602A JP2004303422A JP2004303422A JP2006111602A JP 2006111602 A JP2006111602 A JP 2006111602A JP 2004303422 A JP2004303422 A JP 2004303422A JP 2004303422 A JP2004303422 A JP 2004303422A JP 2006111602 A JP2006111602 A JP 2006111602A
Authority
JP
Japan
Prior art keywords
urea
aqueous solution
carbon dioxide
solution
stabilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303422A
Other languages
Japanese (ja)
Inventor
Shuichi Sugawara
秀一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purearth Inc
Original Assignee
Purearth Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purearth Inc filed Critical Purearth Inc
Priority to JP2004303422A priority Critical patent/JP2006111602A/en
Publication of JP2006111602A publication Critical patent/JP2006111602A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stabilized aqueous solution of urea for an SCR (selective catalytic reaction) denitrification apparatus for automobile or stationary use and free from the problems of the generation of ammonia gas and ammonia odor and metal corrosion of piping, etc., during transportation or storage. <P>SOLUTION: A stabilized aqueous solution of urea is produced by dissolving carbon dioxide in an aqueous solution of urea having a urea concentration of 30-50 mass% to lower the pH to ≤7.5. The aqueous solution of urea produced by the method has stabilized properties to keep the pH to ≤7.5 after the storage at 60°C for 2 hr and to ≤7.5 after the storage at ≤40°C for 30 days. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、安定化された尿素水溶液およびその製造方法に関するものである。詳しく述べると本発明は、例えば、尿素を還元剤とする選択的触媒脱硝(SCR、Selective Catalytic Reduction)に使用する尿素水溶液の保管中および使用中におけるアンモニアの発生を抑制して、pHの上昇を抑え、アンモニアの臭気を防止すると同時に、尿素水タンク、配管および噴射装置等における金属腐食を防止する技術に関するものである。   The present invention relates to a stabilized urea aqueous solution and a method for producing the same. More specifically, the present invention, for example, suppresses the generation of ammonia during storage and use of an aqueous urea solution used for selective catalytic denitration (SCR) using urea as a reducing agent, thereby increasing the pH. The present invention relates to a technique for suppressing and preventing ammonia odor and at the same time preventing metal corrosion in a urea water tank, piping, an injection device, and the like.

ディーゼルエンジンの排気ガスなどに含まれる窒素酸化物(NOx)を無害化して除去する方法として、下式(1)に示すようにアンモニアを還元剤とするSCR脱硝が実用化されている。   As a method for detoxifying and removing nitrogen oxides (NOx) contained in exhaust gas of diesel engines, SCR denitration using ammonia as a reducing agent has been put into practical use as shown in the following formula (1).

Figure 2006111602
Figure 2006111602

小型のディーゼル発電機やディーゼル車の排煙脱硝においては、次式に示すように、アンモニアは尿素水を排気管中に噴霧して、熱分解および加水分解によって発生させる方式が主に使用されている(例えば、特許文献1、特許文献2等)。   In flue gas denitration of small diesel generators and diesel vehicles, as shown in the following formula, ammonia is mainly generated by spraying urea water into the exhaust pipe and generating it by thermal decomposition and hydrolysis. (For example, Patent Document 1, Patent Document 2, etc.).

Figure 2006111602
Figure 2006111602

このようなSCR脱硝に使用される尿素水溶液は、SCR触媒に対する触媒毒としての各種のカチオン成分の影響を避けるために、純度に関する規格が検討され、現在ディーゼル車の車載SCR用尿素水溶液(32.5質量%)には、DIN 70 070が規格として存在する。   As for the urea aqueous solution used for such SCR denitration, in order to avoid the influence of various cation components as a catalyst poison for the SCR catalyst, standards regarding purity have been studied, and urea aqueous solution for in-vehicle SCR of diesel vehicles (32. 5 mass%), DIN 70 070 exists as a standard.

尿素水溶液の純度は、原料尿素と原料水の純度に依存し、高純度の尿素水を製造することは、コスト面を度外視すれば、技術的には容易である。   The purity of the aqueous urea solution depends on the purity of the raw material urea and the raw material water, and it is technically easy to produce high-purity urea water if the cost is not taken into consideration.

一方、尿素水の化学的特性として溶液の状態で、常温においても、尿素の加水分解が徐々に進行して、前記化学式(2)によってpHが徐々に上昇する。SCR脱硝は、エンジンの排気管に噴霧された尿素水溶液が上記したように化学式(2)によって分解して還元剤であるアンモニアを発生させることが原理であるが、排気管に噴霧される以前に分解してしまうことは次の理由から好ましくない。   On the other hand, as a chemical characteristic of urea water, hydrolysis of urea gradually proceeds even at room temperature in a solution state, and the pH gradually increases according to the chemical formula (2). SCR denitration is based on the principle that the urea aqueous solution sprayed on the exhaust pipe of the engine is decomposed according to the chemical formula (2) to generate ammonia as a reducing agent as described above, but before being sprayed on the exhaust pipe, Decomposing is not preferable for the following reason.

すなわち、SCR用尿素水を工業的に製造し、輸送、保管さらには車載状態で使用する際に、尿素水溶液からアンモニアを発生することは、金属材料のアルカリ腐食や臭気などの点から不都合である。   That is, it is inconvenient from the viewpoint of alkali corrosion, odor, etc. of the metal material to produce ammonia from the urea aqueous solution when the urea water for SCR is industrially manufactured, transported, stored, or used in a vehicle. .

これまで、SCR脱硝は主としてディーゼル発電装置といった据え置き型装置の排煙脱硝に用いられて来た技術であり、ディーゼル車の車載SCRは環境規制の動向に従って、最近検討がなされてきたものである。このため、据え置き型装置用としては、あまり問題とならなかった事項が、車載用の環境下では、尿素水溶液に対する温度条件の過酷さ等という問題も加わって、解決されなければならない課題として浮き上がってきたものである。   So far, SCR denitration is a technology that has been mainly used for flue gas denitration of stationary devices such as diesel generators, and on-vehicle SCR for diesel vehicles has been recently studied in accordance with the trend of environmental regulations. For this reason, matters that have not been a major problem for stationary devices have emerged as issues that must be solved in the in-vehicle environment, including the problem of severe temperature conditions for urea aqueous solutions. It is a thing.

このような背景から、尿素水溶液の化学的安定性といった問題に関しては先行する技術は現況提唱されていない。   Against this background, no prior art has been proposed for problems such as the chemical stability of aqueous urea solutions.

特開昭53−112273号公報Japanese Patent Laid-Open No. 53-112273 特開昭63−190623号公報JP-A-63-190623

前記したように、SCR脱硝をディーゼル車の排煙脱硝に応用する上では、SCR脱硝用還元剤としての特性を損なわない範囲で、特に、表1に示すようなDIN規格に規定された尿素水溶液の特性値を維持できる範囲において、上記したような尿素水溶液の化学的安定化を図る必要がある。さらにはディーゼル車への車載における温度環境などの厳しい条件の中で、尿素水溶液からの過剰のアンモニアが生成してpHが上昇することと、それに伴い臭気が発生することを防止すること、さらには尿素水タンク、配管および噴射装置等における金属腐食を防止する技術を確立する必要がある。   As described above, in applying SCR denitration to exhaust gas denitration of diesel vehicles, urea aqueous solutions defined in the DIN standards as shown in Table 1 are particularly selected as long as the characteristics as a reducing agent for SCR denitration are not impaired. As long as the characteristic value can be maintained, it is necessary to chemically stabilize the urea aqueous solution as described above. Furthermore, in severe conditions such as in-vehicle temperature environment for diesel vehicles, excessive ammonia is generated from the aqueous urea solution to increase pH and prevent odor from being generated, It is necessary to establish a technique for preventing metal corrosion in a urea water tank, piping, and an injection device.

Figure 2006111602
Figure 2006111602

従って本発明は、安定化された尿素水溶液およびその製造方法を提供することを課題とする。本発明はさらに、車載用、あるいは据え置き型装置用のSCR脱硝に使用する尿素水溶液として適した、輸送、および保管中における、必要以上のアンモニアガスの発生とこれによる臭気発生、おおび配管等に対する金属腐食の問題を防止することのできる安定化された尿素水溶液およびその製造方法を提供することを課題とするものである。   Accordingly, an object of the present invention is to provide a stabilized urea aqueous solution and a method for producing the same. Further, the present invention is suitable as an aqueous urea solution used for SCR denitration for in-vehicle use or for stationary devices, and is suitable for generation of excessive ammonia gas and generation of odor due to this, during transport and storage, and for piping, etc. It is an object of the present invention to provide a stabilized urea aqueous solution capable of preventing the problem of metal corrosion and a method for producing the same.

上記したような課題を解決するにあたっては、例えば、SCR脱硝の還元剤としての実際的な制限の中で、尿素水溶液の安定化を図る必要があるため、種々の化学品を添加する方法は採用することができない。例えば、尿素水溶液に有機酸を添加する方法は、アンモニアの生成防止とpHの制御には有効ではあるが、SCR脱硝時に、これらの酸が酸化されて、排気管よりアルデヒド等として排出されることとなるため好ましくなく、採用し得ない。また、発生したアンモニアを窒素ガス等の吹込みで除去する方法も有効ではあるが、化学平衡によって尿素から再びアンモニアが発生し、根本的な解決手段とはならない。   In solving the above-mentioned problems, for example, it is necessary to stabilize the aqueous urea solution under practical restrictions as a reducing agent for SCR denitration, so the method of adding various chemicals is adopted. Can not do it. For example, the method of adding an organic acid to an aqueous urea solution is effective in preventing ammonia generation and controlling the pH, but these acids are oxidized and discharged as aldehyde etc. from the exhaust pipe during SCR denitration. Therefore, it is not preferable and cannot be adopted. A method of removing generated ammonia by blowing nitrogen gas or the like is also effective, but ammonia is generated again from urea due to chemical equilibrium, which is not a fundamental solution.

本発明者らは、このような観点から、鋭意検討の結果、尿素の加水分解の化学平衡の原理を用い、上記した化学式(2)の反応平衡を左辺にとどめ、右辺へ進行させない手段として、二酸化炭素を溶液中に吹き込む方法を採択することにより、尿素水溶液が非常に安定化されることを見出し、本発明に至ったものである。   From such a viewpoint, the present inventors, as a result of diligent investigation, use the principle of chemical equilibrium of urea hydrolysis, keep the reaction equilibrium of the above chemical formula (2) on the left side, and as a means not to proceed to the right side, By adopting a method of blowing carbon dioxide into a solution, it was found that an aqueous urea solution is very stabilized, and the present invention has been achieved.

すなわち、上記課題を解決する本発明は、尿素濃度が30〜50質量%の尿素水溶液に対し、二酸化炭素を溶解させてpH値を7.5以下に低下させることを特徴とする安定化された尿素水溶液の製造方法である。   That is, the present invention that solves the above problems is stabilized by dissolving carbon dioxide in a urea aqueous solution having a urea concentration of 30 to 50% by mass to lower the pH value to 7.5 or less. It is a manufacturing method of urea aqueous solution.

上記課題を解決する本発明は、また、予め二酸化炭素を飽和含有した水を用いて、尿素を溶解し、尿素濃度が30〜50質量%でかつpH値を7.5以下に調整することを特徴とする安定化された尿素水溶液の製造方法である。   The present invention that solves the above-mentioned problems is also that water is previously saturated with carbon dioxide, urea is dissolved, the urea concentration is 30 to 50% by mass, and the pH value is adjusted to 7.5 or less. This is a method for producing a stabilized aqueous urea solution.

本発明に係る上記尿素水溶液の製造方法においては、さらに、二酸化炭素の飽和によって、尿素水溶液に生成した炭酸塩の沈殿物を濾去する工程をさらに有することが好ましい。   The method for producing an aqueous urea solution according to the present invention preferably further includes a step of filtering out a carbonate precipitate formed in the aqueous urea solution by carbon dioxide saturation.

上記課題を解決する本発明はさらに、上記の製造方法により製造されたことを特徴とする安定化された尿素水溶液である。   The present invention for solving the above-mentioned problems is further a stabilized urea aqueous solution produced by the above production method.

本発明に係る尿素水溶液は、選択的触媒脱硝に好適に使用されるものである。   The aqueous urea solution according to the present invention is suitably used for selective catalytic denitration.

本発明は、さらに、Ca濃度が0.5mg/kg以下でかつ不溶成分が5mg/kg以下である尿素水溶液を示すものである。   The present invention further shows an aqueous urea solution having a Ca concentration of 0.5 mg / kg or less and an insoluble component of 5 mg / kg or less.

本発明はまた、60℃で、2時間における保管条件下で、pHが7.5以下に維持されていることを特徴とする尿素水溶液を示すものである。   The present invention also shows an aqueous urea solution characterized in that the pH is maintained at 7.5 or lower under storage conditions at 60 ° C. for 2 hours.

本発明はまた、40℃以下で、30日間における保管条件下で、pHが7.5以下に維持されていることを特徴とする尿素水溶液を示すものである。   The present invention also shows an aqueous urea solution characterized in that the pH is maintained at 7.5 or lower under storage conditions for 30 days at 40 ° C. or lower.

本発明の製造方法により製造した尿素水溶液は、従来の尿素水溶液とは異なり、30℃以下の温度での数ヶ月の長期の保管中、および40〜60℃程度の昇温状況下でも、アンモニアの発生が抑制されるので、pHの上昇が少なく、アンモニアの臭気も抑えられる。アンモニアは人体に対する毒性が大きいので、作業環境の許容濃度は25mg/kg(ACGIH)に制限されているが、本発明に係る尿素水溶液は、上記したようにアンモニアの発生が抑制されるので、作業環境を規制値以下に維持する上で効果がある。   The urea aqueous solution produced by the production method of the present invention is different from the conventional urea aqueous solution, during the long-term storage for several months at a temperature of 30 ° C. or lower, and even under a temperature rising condition of about 40 to 60 ° C. Since the generation is suppressed, there is little increase in pH and the odor of ammonia can be suppressed. Since ammonia is highly toxic to the human body, the allowable concentration in the working environment is limited to 25 mg / kg (ACGIH), but the urea aqueous solution according to the present invention suppresses the generation of ammonia as described above. It is effective in maintaining the environment below the regulation value.

また、一般に、金属類、特にアルミニウム等の軽金属はpHが9.5以上では腐食が著しく、また銅金属も同じく腐食が大きく、従来の尿素水溶液との接触部に使用する上では問題であった。本発明に係る尿素水溶液は、pHが7.5以下であり、実際的に上記の金属材料のアルカリ腐食も大幅に抑制される。この効果は特に、温度環境が厳しいディーゼル車載用のSCRの尿素水溶液の取扱いにおいて有利であり、タンク、配管及び噴射装置等の腐食を起こし難いので、配管やタンク等へのアルミニウムなどの金属材料の使用が可能となる利点がある。   In general, light metals such as aluminum, particularly aluminum, are extremely corroded at a pH of 9.5 or more, and copper metal is also corroded greatly, which is a problem when used in a contact portion with a conventional aqueous urea solution. . The urea aqueous solution according to the present invention has a pH of 7.5 or less, and practically alkaline corrosion of the metal material is greatly suppressed. This effect is particularly advantageous in handling the SCR urea aqueous solution for diesel automobiles, which has a severe temperature environment, and is unlikely to cause corrosion of tanks, pipes, and injection devices. There is an advantage that it can be used.

以上を総合して、本発明に係る尿素水溶液によって、例えば、長期間にわたって安定なSCR装置の運転が可能となる効果が奏せられる。   In summary, the urea aqueous solution according to the present invention provides an effect that enables stable operation of the SCR device over a long period of time, for example.

以下、本発明を実施形態に基づきより具体的に説明する。   Hereinafter, the present invention will be described more specifically based on embodiments.

本発明に係る尿素水溶液の製造方法は、尿素濃度が30〜50質量%の尿素水溶液に対し、二酸化炭素を溶解させてpH値を7.5以下に低下させることを特徴とする。   The urea aqueous solution production method according to the present invention is characterized in that the pH value is lowered to 7.5 or less by dissolving carbon dioxide in a urea aqueous solution having a urea concentration of 30 to 50 mass%.

本発明に係る尿素水溶液の製造方法において、尿素濃度を30〜50質量%とするのは、このように高濃度とすることによって、例えば、SCR脱硝に使用した際に、気化分解時における水の潜熱を極力少なくし、アンモニア転化率を良好なものとするためである。なお、濃度が極端に高くなると尿素の加水分解が十分に進行せずアンモニア転化率が低下する虞れがあるため、尿素濃度を上記範囲にすることが望ましい。   In the method for producing an aqueous urea solution according to the present invention, the urea concentration is set to 30 to 50% by mass. By using such a high concentration, for example, when used for SCR denitration, water at the time of vaporization decomposition is used. This is to reduce the latent heat as much as possible and to improve the ammonia conversion rate. Note that when the concentration is extremely high, urea hydrolysis does not proceed sufficiently and the ammonia conversion rate may decrease, so it is desirable that the urea concentration be in the above range.

また、製造時において二酸化炭素を溶解させて尿素水溶液のpHを7.5以下とするのは、遊離アンモニウム等による臭気の問題を抑制し、かつ貯蔵容器、配管等における金属腐食を抑制する上から望まれるものである。より好ましくは、pHは5.5〜7.5とすることが望ましい。   Moreover, the reason why the pH of the urea aqueous solution is adjusted to 7.5 or less by dissolving carbon dioxide at the time of production is to suppress the problem of odor due to free ammonium and the like, and to suppress metal corrosion in storage containers, piping, etc. Is desired. More preferably, the pH is desirably 5.5 to 7.5.

尿素水溶液に二酸化炭素を溶解させる方法としては、尿素水溶液に二酸化炭素ガスを吹き込む方法であっても、あるいは尿素水溶液にドライアイスを添加する方法であっても良いが、一般的には、二酸化炭素ガスを吹き込む方法、例えば、溶液20リットルに対して50〜200ml/min程度の量で、二酸化炭素が飽和溶解するまで吹き込む方法が望ましい。   The method for dissolving carbon dioxide in the urea aqueous solution may be a method in which carbon dioxide gas is blown into the urea aqueous solution or a method in which dry ice is added to the urea aqueous solution. A method of blowing gas, for example, a method of blowing until carbon dioxide is saturated and dissolved in an amount of about 50 to 200 ml / min for 20 liters of solution is desirable.

本発明において、尿素原料としては、工業的な観点から、肥料用途などの種々の尿素原料用いることが望ましい。   In the present invention, as the urea raw material, it is desirable to use various urea raw materials for fertilizer use from an industrial viewpoint.

また水としては、一般的に電気伝導度が50〜100μS/cmである、工業用水あるいは水道水をそのまま使用することができるが、この場合、得られる尿素水溶液中には、Ca、Fe、NaおよびKなどのイオン性不純物がある程度、例えば、1〜10mg/kg程度存在することとなる。従って、後述するような濾過処理工程を設けない場合には、予め水を清浄化することが望ましく、例えば、逆浸透膜処理等によって、電気伝導度を2〜8μS/cm程度とした水を用いることがより望ましい。   As water, industrial water or tap water generally having an electric conductivity of 50 to 100 μS / cm can be used as it is. In this case, in the obtained urea aqueous solution, Ca, Fe, Na And ionic impurities such as K are present to some extent, for example, about 1 to 10 mg / kg. Therefore, it is desirable to clean the water in advance when a filtration process step as will be described later is not provided. For example, water having an electrical conductivity of about 2 to 8 μS / cm by reverse osmosis membrane treatment or the like is used. It is more desirable.

また、本発明に係る尿素水溶液は、上記したように尿素水溶液に対し、二酸化炭素を溶解する方法に代えて、予め二酸化炭素を飽和含有した水を用いて、尿素を溶解することで製造することもできる。すなわち、本発明に係る第2の製造方法は、予め二酸化炭素を飽和含有した水を用いて、尿素を溶解し、尿素濃度が30〜50質量%でかつpH値を7.5以下に調整することを特徴とするものである。   Further, the urea aqueous solution according to the present invention is produced by dissolving urea using water saturated with carbon dioxide in advance, instead of the method of dissolving carbon dioxide in the urea aqueous solution as described above. You can also. That is, in the second production method according to the present invention, urea is dissolved using water saturated with carbon dioxide in advance, and the urea concentration is adjusted to 30 to 50% by mass and the pH value is adjusted to 7.5 or less. It is characterized by this.

この第2の製造方法においても、二酸化炭素の添加方法、使用する尿素原料および水としては上記と同様のものである。   Also in the second production method, the carbon dioxide addition method, the urea raw material to be used, and water are the same as described above.

さらに、本発明の製造方法においては、尿素水溶液中に二酸化炭素が溶解されるが、尿素水溶液中にイオン性不純物、代表的には、Caが含まれている場合には、当該二酸化炭素の添加によって、イオン性不純物が炭酸塩として析出してくる場合がある。したがって、本発明の製造方法においては、上記したような処理の後、尿素水溶液に生成した炭酸塩の沈殿物を、濾過面積が大きく目詰まりを起こしにくい適当なフィルター、例えば、ポリエステルワインドカートリッジフィルター(東洋濾紙(株)製)などの長繊維巻捲型カートリッジフィルター等によって濾去する工程を付することが望ましい。これによって、尿素水溶液中に含まれるイオン性不純物の濃度の低下と、不溶物の除去が可能となる。   Furthermore, in the production method of the present invention, carbon dioxide is dissolved in the urea aqueous solution. When the ionic impurity, typically Ca, is contained in the urea aqueous solution, the addition of the carbon dioxide is performed. Depending on the case, ionic impurities may be precipitated as carbonates. Therefore, in the production method of the present invention, the carbonate precipitate formed in the urea aqueous solution after the treatment as described above is applied to an appropriate filter having a large filtration area and less likely to be clogged, such as a polyester wind cartridge filter ( It is desirable to add a step of filtering with a long-fiber wound type cartridge filter such as Toyo Filter Paper Co., Ltd. As a result, the concentration of ionic impurities contained in the urea aqueous solution can be reduced and insoluble matters can be removed.

このようにして製造される本発明に係る尿素水溶液は、長期間にわたり安定化されたものとなり、具体的には、例えば、40℃以下の保管条件下において、少なくとも30日間は、pHが7.5以下に維持されているものとなる。また、より昇温された温度条件下においても、安定化しており、具体的には、例えば、60℃での保管条件下で、少なくとも2時間は、pHが7.5以下に維持されているものとなる。   The urea aqueous solution according to the present invention thus produced is stabilized over a long period of time. Specifically, for example, under storage conditions of 40 ° C. or lower, the pH is 7. It will be maintained below 5. In addition, the temperature is stabilized even under a higher temperature condition. Specifically, for example, the pH is maintained at 7.5 or lower for at least 2 hours under storage conditions at 60 ° C. It will be a thing.

また、本発明に係る尿素水溶液は、上記したように溶液中に二酸化炭素が溶解されることにより、尿素水溶液中に含まれていた原料由来のCa等のイオン性不純物が炭酸塩として析出するため、これを濾去する工程を付することで、Ca濃度0.5mg/kg以下で、かつ不溶成分が5mg/kg以下という、上記したようなDIN規格を満たすものとすることができるものである。   In addition, since the aqueous urea solution according to the present invention dissolves carbon dioxide in the solution as described above, ionic impurities such as Ca derived from the raw material contained in the aqueous urea solution are precipitated as carbonates. By adding a step of filtering this out, the Ca concentration of 0.5 mg / kg or less and the insoluble component of 5 mg / kg or less can satisfy the DIN standard as described above. .

以下、本発明を実施例に基づき、より具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples.

実施例1
電気伝導度が5μS/cmの逆浸透膜処理水に工業用尿素を溶解し、32.5質量%および40.0質量%の尿素水溶液を作製した。それぞれの試料を2つに分け、一方は二酸化炭素ガスを20リットルに対して100ml/minで30分間吹込み、二酸化炭素ガスを飽和させた後、室温(20℃±10℃)で30日間保管した。一方は、未処理のままで同様に保管した、それぞれのpHの測定値を表2に比較して示した。
Example 1
Industrial urea was dissolved in reverse osmosis membrane-treated water having an electric conductivity of 5 μS / cm to prepare urea aqueous solutions of 32.5% by mass and 40.0% by mass. Each sample is divided into two parts, one is blown with carbon dioxide gas at 100 ml / min for 30 liters for 20 liters to saturate the carbon dioxide gas, and then stored at room temperature (20 ° C ± 10 ° C) for 30 days did. On the other hand, the measured values of the respective pH values stored in the same manner as untreated are shown in Table 2.

表2に示すように未処理のものはpHが9以上であるのに対して、二酸化炭素で飽和した尿素水溶液においてはpHが6.21および6.49であり、pHの上昇はなかった。また二酸化炭素で飽和した尿素水溶液はアンモニアの臭気は感じられなかった。尿素水溶液の比重は濃度と比例関係にあり、濃度32.5質量%のもので1.08g/ml、40.0質量%のもので1.10g/mlであるが、二酸化炭素ガスの飽和および30日間の放置で比重の変化は見られず、尿素水溶液の品質に変化がないことが確認された。   As shown in Table 2, the untreated sample had a pH of 9 or more, whereas the urea aqueous solution saturated with carbon dioxide had a pH of 6.21 and 6.49, and the pH did not increase. The urea aqueous solution saturated with carbon dioxide did not feel the odor of ammonia. The specific gravity of the urea aqueous solution is proportional to the concentration, and is 1.08 g / ml at a concentration of 32.5% by mass and 1.10 g / ml at a concentration of 40.0% by mass. It was confirmed that there was no change in specific gravity after standing for 30 days, and there was no change in the quality of the urea aqueous solution.

Figure 2006111602
Figure 2006111602

実施例2
電気伝導度が5μS/cmの逆浸透膜処理水にそれぞれ生産地の異なる工業用尿素(A)および(B)を溶解し、32.5質量%の尿素水溶液を2種類作製した。それぞれの試料を2つに分け、一方は二酸化炭素ガスを20リットルに対して100ml/minで60分間吹込み、二酸化炭素ガスを飽和させた後、室温(20℃±10℃)で12時間間保管した後に、60℃の環境で2時間保管した。それぞれのpHの測定値を表3に比較して示した。
Example 2
Industrial ureas (A) and (B) having different production locations were dissolved in reverse osmosis membrane treated water having an electric conductivity of 5 μS / cm to prepare two types of 32.5 mass% urea aqueous solutions. Each sample was divided into two parts, one of which was blown with carbon dioxide gas at 100 ml / min for 60 minutes for 20 liters to saturate the carbon dioxide gas and then at room temperature (20 ° C. ± 10 ° C.) for 12 hours. After storage, it was stored in an environment of 60 ° C. for 2 hours. The measured values of each pH are shown in Table 3.

表3に示すように未処理のものはpHが9以上であり、60℃の処理でさらにpHが上昇する。一方、二酸化炭素で飽和した尿素水溶液においては60℃処理後でpHが7.15および6.58であり、pHの上昇は抑制され、また二酸化炭素で飽和した尿素水溶液はアンモニアの臭気は感じられなかった。   As shown in Table 3, the untreated material has a pH of 9 or more, and the pH is further increased by the treatment at 60 ° C. On the other hand, the pH of the urea aqueous solution saturated with carbon dioxide is 7.15 and 6.58 after 60 ° C. treatment, and the increase in pH is suppressed, and the urea aqueous solution saturated with carbon dioxide feels the odor of ammonia. There wasn't.

Figure 2006111602
Figure 2006111602

実施例3
電気伝導度が5μS/cmの逆浸透膜処理水20リットルに対して、窒素ガスおよび二酸化炭素ガスを100ml/minの割合で吹込み、pHがほぼ一定になった40分後に吹込みを中止して窒素ガス飽和水(N2)および二酸化炭素飽和水(X2,Y2の同一内容の2種類)を調製した。なお、比較としてガスを吹込まない逆浸透処理水(ブランク)も用意した。それぞれのpH値を図1に示した。二酸化炭素を吹込んだ逆浸透処理水のpHは4.49である。これらの水に32.5質量%相当の尿素を溶解し、その直後のpH値を測定した結果を同じく図1に示したが、ブランクおよびN2は、9.82および9.81と高いpH値を示す。一方、二酸化炭素で飽和したX2とY2は尿素溶解後もpHは5.52と5.35と低い。以上の尿素水溶液4種類を更に、80℃の環境で2時間処理した。この間は、尿素水溶液を入れた容器は軽く栓を載せた状態であり、ガス等が発生した場合には揮発していく状態としていた。80℃処理後のpH値を測定した結果も図1に示すが、80℃処理後のpHはブランクおよびN2はアンモニアの揮発でわずかに下がるが9以上である。一方、二酸化炭素を飽和した水に溶解したX2およびY2は、pHは上昇するが7.84および7.51であり、アンモニアの臭気もほとんど感じられなかった。
Example 3
Nitrogen gas and carbon dioxide gas were blown at a rate of 100 ml / min into 20 liters of reverse osmosis membrane treated water having an electric conductivity of 5 μS / cm, and the blowing was stopped 40 minutes after the pH became almost constant. Thus, nitrogen gas saturated water (N2) and carbon dioxide saturated water (two types having the same contents of X2 and Y2) were prepared. In addition, reverse osmosis treated water (blank) without blowing gas was also prepared for comparison. The respective pH values are shown in FIG. The pH of the reverse osmosis treated water into which carbon dioxide has been blown is 4.49. The results of measuring 32.5% by weight of urea in these waters and measuring the pH value immediately after that are shown in FIG. 1, but the blank and N2 have high pH values of 9.82 and 9.81. Indicates. On the other hand, X2 and Y2 saturated with carbon dioxide have a low pH of 5.52 and 5.35 even after dissolution of urea. The above four urea aqueous solutions were further treated for 2 hours in an environment at 80 ° C. During this time, the container containing the urea aqueous solution was in a state in which the stopper was lightly placed, and when gas or the like was generated, the container was volatilized. The results of measuring the pH value after the treatment at 80 ° C. are also shown in FIG. 1. The pH after the treatment at 80 ° C. is 9 or more, although the blank and N2 slightly decrease due to the volatilization of ammonia. On the other hand, X2 and Y2 dissolved in water saturated with carbon dioxide increased in pH to 7.84 and 7.51, and almost no odor of ammonia was felt.

実施例4
不純物としてCa含有量の多い汎用尿素原料を使用して、DIN規格(DIN 70 070)に適合する尿素水溶液を製造した。実施経過を表4に示す。尿素溶解直後の40質量%尿素水溶液(試料1)は、24.1mg/kgのCaを含む。これに対して、実施例1と同様の方法で二酸化炭素を飽和した試料2、さらに公称3μmの濾過性能を有するポリエステルワインドカートリッジフィルターで濾過処理した試料3について、Ca濃度、pH値および不溶解物量をそれぞれ測定した。結果を表4に示す。pH値が低下するのは実施例1〜3と同様の効果であるが、試料2ではCaが不溶性の炭酸カルシウムとして沈殿しており、濾過した後の試料3ではさらにCa濃度は低下している。尿素水溶液に含まれる不溶物は大部分が炭酸カルシウムであるので、濾過によって不溶解物は0.1mg/kg(DIN規格で5.0mg/kg)まで低下する。
Example 4
Using a general-purpose urea raw material with a high Ca content as an impurity, a urea aqueous solution meeting the DIN standard (DIN 70 070) was produced. The implementation progress is shown in Table 4. The 40 mass% urea aqueous solution (sample 1) immediately after urea dissolution contains 24.1 mg / kg of Ca. On the other hand, for the sample 2 saturated with carbon dioxide in the same manner as in Example 1, and further for the sample 3 filtered with a polyester wind cartridge filter having a nominal filtration performance of 3 μm, the Ca concentration, pH value and insoluble matter amount Was measured respectively. The results are shown in Table 4. The decrease in pH value is the same effect as in Examples 1 to 3, but in Sample 2, Ca is precipitated as insoluble calcium carbonate, and in Sample 3 after filtration, the Ca concentration is further decreased. . Since most of the insoluble matter contained in the urea aqueous solution is calcium carbonate, the insoluble matter is reduced to 0.1 mg / kg (5.0 mg / kg in the DIN standard) by filtration.

Figure 2006111602
Figure 2006111602

本発明によれば、二酸化炭素を溶解させることにより、安定化した尿素水溶液を容易にかつ安価にて製造することができる。これによりディーゼル車の車載用、ディーゼル発電装置などの据え置き型装置用のSCR脱硝、あるいは化粧料原料等として、有用な製品を提供することが可能となるものである。   According to the present invention, a stabilized urea aqueous solution can be easily and inexpensively manufactured by dissolving carbon dioxide. As a result, it is possible to provide useful products as SCR denitration for stationary vehicles such as on-board diesel vehicles and diesel generators, or cosmetic raw materials.

本発明に係る実施例において測定された、各種ガス飽和水での尿素溶解直後および80℃で2時間処理後のpH値を示すグラフである。It is a graph which shows the pH value measured in the Example which concerns on this invention immediately after urea melt | dissolution by various gas saturated water, and after 2 hours processing at 80 degreeC.

Claims (8)

尿素濃度が30〜50質量%の尿素水溶液に対し、二酸化炭素を溶解させてpH値を7.5以下に低下させることを特徴とする安定化された尿素水溶液の製造方法。   A method for producing a stabilized urea aqueous solution, wherein carbon dioxide is dissolved in a urea aqueous solution having a urea concentration of 30 to 50% by mass to lower the pH value to 7.5 or less. 予め二酸化炭素を飽和含有した水を用いて、尿素を溶解し、尿素濃度が30〜50質量%でかつpH値を7.5以下に調整することを特徴とする安定化された尿素水溶液の製造方法。   Production of a stabilized aqueous urea solution characterized in that urea is dissolved using water saturated with carbon dioxide in advance, the urea concentration is adjusted to 30 to 50% by mass, and the pH value is adjusted to 7.5 or less. Method. 請求項1または2に記載の製造方法において、二酸化炭素の飽和によって、尿素水溶液に生成した炭酸塩の沈殿物を濾去する工程をさらに有することを特徴とする請求項1または2に記載の製造方法。   The production method according to claim 1, further comprising a step of filtering out a carbonate precipitate formed in the urea aqueous solution by saturation of carbon dioxide. Method. 請求項1〜3のいずれかに記載の製造方法により製造されたことを特徴とする安定化された尿素水溶液。   A stabilized urea aqueous solution produced by the production method according to claim 1. 選択的触媒脱硝に使用されるものである請求項4に記載の尿素水溶液。   The aqueous urea solution according to claim 4, which is used for selective catalytic denitration. Ca濃度が0.5mg/kg以下でかつ不溶成分が5mg/kg以下である請求項4または5に記載の尿素水溶液。   The urea aqueous solution according to claim 4 or 5, wherein the Ca concentration is 0.5 mg / kg or less and the insoluble component is 5 mg / kg or less. 60℃で、2時間における保管条件下で、pHが7.5以下に維持されていることを特徴とする請求項4〜6のいずれかに記載の尿素水溶液。   The aqueous urea solution according to any one of claims 4 to 6, wherein the pH is maintained at 7.5 or lower under storage conditions at 60 ° C for 2 hours. 40℃以下で、30日間における保管条件下で、pHが7.5以下に維持されていることを特徴とする請求項4〜6のいずれかに記載の尿素水溶液。   The aqueous urea solution according to any one of claims 4 to 6, wherein the pH is maintained at 7.5 or lower under storage conditions at 40 ° C or lower for 30 days.
JP2004303422A 2004-10-18 2004-10-18 Stabilized aqueous solution of urea and method for producing the same Pending JP2006111602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303422A JP2006111602A (en) 2004-10-18 2004-10-18 Stabilized aqueous solution of urea and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303422A JP2006111602A (en) 2004-10-18 2004-10-18 Stabilized aqueous solution of urea and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006111602A true JP2006111602A (en) 2006-04-27

Family

ID=36380415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303422A Pending JP2006111602A (en) 2004-10-18 2004-10-18 Stabilized aqueous solution of urea and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006111602A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298828A (en) * 2005-04-21 2006-11-02 Mitsui Chemicals Inc Production method of high-purity urea water
JP2008013529A (en) * 2006-07-10 2008-01-24 Nippon Kasei Chem Co Ltd Method for removing oil in oil-containing solid urea
JP2010280596A (en) * 2009-06-03 2010-12-16 Nippon Kasei Chem Co Ltd Method for producing high-purity urea water
JP2010280595A (en) * 2009-06-03 2010-12-16 Nippon Kasei Chem Co Ltd Method for producing high-purity urea
US20160228862A1 (en) * 2008-07-31 2016-08-11 Casale Sa Process and plant for the production of a urea solution for use in scr process for reduction of nox
US10538237B2 (en) 2016-11-28 2020-01-21 Cummins Inc. Fuel and reagent degradation reduction in hybrid electrical vehicle systems
CN113006908A (en) * 2021-04-21 2021-06-22 南通大学 SCR intelligent ammonia spraying system and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2067262A1 (en) * 1992-04-27 1993-10-28 Roger A. Brown Methods for producing stable, acidic urea solutions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2067262A1 (en) * 1992-04-27 1993-10-28 Roger A. Brown Methods for producing stable, acidic urea solutions

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298828A (en) * 2005-04-21 2006-11-02 Mitsui Chemicals Inc Production method of high-purity urea water
JP4545631B2 (en) * 2005-04-21 2010-09-15 三井化学株式会社 Method for producing high-purity urea water
JP2008013529A (en) * 2006-07-10 2008-01-24 Nippon Kasei Chem Co Ltd Method for removing oil in oil-containing solid urea
US20160228862A1 (en) * 2008-07-31 2016-08-11 Casale Sa Process and plant for the production of a urea solution for use in scr process for reduction of nox
JP2010280596A (en) * 2009-06-03 2010-12-16 Nippon Kasei Chem Co Ltd Method for producing high-purity urea water
JP2010280595A (en) * 2009-06-03 2010-12-16 Nippon Kasei Chem Co Ltd Method for producing high-purity urea
US10538237B2 (en) 2016-11-28 2020-01-21 Cummins Inc. Fuel and reagent degradation reduction in hybrid electrical vehicle systems
CN113006908A (en) * 2021-04-21 2021-06-22 南通大学 SCR intelligent ammonia spraying system and method thereof
CN113006908B (en) * 2021-04-21 2022-08-09 南通大学 SCR intelligent ammonia spraying system and method thereof

Similar Documents

Publication Publication Date Title
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
KR101702831B1 (en) Abatement of Nitrogen Oxides and Sulfur Oxides
CN100518887C (en) Low energy SO2 scrubbing process
KR20110091676A (en) Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
US20110274605A1 (en) Process and device for simultaneously desulfurizing and denitrating the flue gas with the seawater
US6872371B2 (en) Method and apparatus for NOx and SO2 removal
JP2006111602A (en) Stabilized aqueous solution of urea and method for producing the same
CN101602536A (en) A kind of preparation method who is used for the compound oxidant of catalytic oxidation treatment of high concentration waste water
Han et al. An investigation on NO removal by wet scrubbing using NaClO 2 seawater solution
KR101672430B1 (en) Vessel engine reduction device using fuel cell system
JP5066852B2 (en) Method for removing oil from solid urea containing oil
JP5050447B2 (en) Treatment method for chemical cleaning waste liquid
JP5951303B2 (en) Method for producing ferric nitrate aqueous solution and sodium nitrite
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
JP2006068680A (en) Denitrating reductant composition and producing method therefor
JP2006110526A (en) Sterilized aqueous urea solution and its production method
JP2010149050A (en) Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst
WO2017056518A1 (en) Purification treatment method of liquid containing harmful substance, and purification treatment device of liquid containing harmful substance for carrying out said method
JP2005329304A (en) Method for treating nitric acid waste solution
JP4852877B2 (en) Treatment of wastewater containing nitrite anticorrosive
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JPS5948675B2 (en) Treatment method for wet flue gas treatment liquid
JPS5889987A (en) Treatment for purification of waste water after desulfurization and denitration
JP4049455B2 (en) Biological denitrification method for nitrate drainage
JP2003275747A (en) Method and device for treating waste water containing ammonium fluoride

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070112

A072 Dismissal of procedure

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A073

A625 Written request for application examination (by other person)

Effective date: 20071018

Free format text: JAPANESE INTERMEDIATE CODE: A625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809