JP2006110526A - Sterilized aqueous urea solution and its production method - Google Patents

Sterilized aqueous urea solution and its production method Download PDF

Info

Publication number
JP2006110526A
JP2006110526A JP2004303423A JP2004303423A JP2006110526A JP 2006110526 A JP2006110526 A JP 2006110526A JP 2004303423 A JP2004303423 A JP 2004303423A JP 2004303423 A JP2004303423 A JP 2004303423A JP 2006110526 A JP2006110526 A JP 2006110526A
Authority
JP
Japan
Prior art keywords
urea
solution
aqueous
aqueous solution
urea solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303423A
Other languages
Japanese (ja)
Inventor
Shuichi Sugawara
秀一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purearth Inc
Original Assignee
Purearth Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purearth Inc filed Critical Purearth Inc
Priority to JP2004303423A priority Critical patent/JP2006110526A/en
Publication of JP2006110526A publication Critical patent/JP2006110526A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous urea solution capable of suppressing propagation and decomposition of microorganisms such as mold and fungi during storage and usage fitted as an aqueous urea solution used for SCR denitration for an on-vehicle or installation type apparatus and preventing generation of a harmful ammonia gas and odor, and its production method. <P>SOLUTION: In the production method for the sterilized aqueous urea solution, after carbon dioxide is dissolved in the aqueous urea solution having a urea concentration of 30-50 mass% to adjust a pH value to 7.5 or lower, hydrogen peroxide is added to the aqueous solution. In the obtained aqueous urea solution, pH is maintained to 8.0 or lower under airtight storage at 40°C or lower for one year. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、滅菌された尿素水溶液の製造方法に関するものである。詳しく述べると本発明は、例えば、尿素を還元剤とする選択的触媒脱硝(SCR、Selective Catalytic Reduction)に使用する尿素水溶液の保管中および使用中におけるカビ、細菌等の微生物の増殖や変質を抑制し、有害なアンモニアの発生と臭気を防止する技術に関するものである。   The present invention relates to a method for producing a sterilized aqueous urea solution. More specifically, the present invention, for example, suppresses the growth and alteration of microorganisms such as mold and bacteria during storage and use of an aqueous urea solution used for selective catalytic denitration (SCR) using urea as a reducing agent. The present invention relates to a technology for preventing generation of harmful ammonia and odor.

ディーゼルエンジンの排気ガスなどに含まれる窒素酸化物(NOx)を無害化して除去する方法として、下式(1)に示すようにアンモニアを還元剤とするSCR脱硝が実用化されている。   As a method for detoxifying and removing nitrogen oxides (NOx) contained in exhaust gas of diesel engines, SCR denitration using ammonia as a reducing agent has been put into practical use as shown in the following formula (1).

Figure 2006110526
Figure 2006110526

小型のディーゼル発電機やディーゼル車の排煙脱硝においては、次式に示すように、アンモニアは尿素水を排気管中に噴霧して、熱分解および加水分解によって発生させる方式が主に使用されている(例えば、特許文献1、特許文献2等)。   In flue gas denitration of small diesel generators and diesel vehicles, as shown in the following formula, ammonia is mainly generated by spraying urea water into the exhaust pipe and generating it by thermal decomposition and hydrolysis. (For example, Patent Document 1, Patent Document 2, etc.).

Figure 2006110526
Figure 2006110526

このようなSCR脱硝に使用される尿素水溶液は、SCR触媒に対する触媒毒としての各種のカチオン成分の影響を避けるために、純度に関する規格が検討され、現在ディーゼル車の車載SCR用尿素水溶液(32.5質量%)には、DIN 70 070が規格として存在する。   As for the urea aqueous solution used for such SCR denitration, in order to avoid the influence of various cation components as a catalyst poison for the SCR catalyst, standards regarding purity have been studied, and urea aqueous solution for in-vehicle SCR of diesel vehicles (32. 5 mass%), DIN 70 070 exists as a standard.

尿素水溶液の純度は、原料尿素と原料水の純度に依存し、高純度の尿素水を製造することは、コスト面を度外視すれば、技術的には容易である。   The purity of the aqueous urea solution depends on the purity of the raw material urea and the raw material water, and it is technically easy to produce high-purity urea water if the cost is not taken into consideration.

一方、尿素水の化学的特性として溶液の状態で、常温においても、尿素の加水分解が徐々に進行して、前記化学式(2)によってpHが徐々に上昇する。図1はこのようなpH変化の状態を示す一例であり、尿素水溶液のpHは経時的に変化し、pH9以上に達する。   On the other hand, as a chemical characteristic of urea water, hydrolysis of urea gradually proceeds even at room temperature in a solution state, and the pH gradually increases according to the chemical formula (2). FIG. 1 is an example showing such a state of pH change, and the pH of the urea aqueous solution changes with time and reaches pH 9 or more.

この反応はウロキナーゼ等の酵素による自然界での尿素分解作用と結果的には同一であり、実際の使用において、環境中から尿素水に混入したウロキナーゼ等による尿素の分解もpHの上昇に強く関係している。   This reaction is the same as the natural ureolytic action of enzymes such as urokinase. As a result, in actual use, the decomposition of urea by urokinase and the like mixed in urea water from the environment is strongly related to the increase in pH. ing.

SCR用尿素水を工業的に製造し、輸送、保管さらには車載状態で使用する際に、尿素水溶液からアンモニアを発生することは、腐食や臭気などの点から不都合である。   When the urea water for SCR is produced industrially and transported, stored, or used in an on-vehicle state, it is inconvenient from the viewpoint of corrosion and odor to generate ammonia from the urea aqueous solution.

これまで、SCR脱硝は主としてディーゼル発電装置といった据え置き型装置の排煙脱硝に用いられて来た技術であり、ディーゼル車の車載SCRは環境規制の動向に従って、最近検討がなされてきたものである。このため、据え置き型装置用としては、あまり問題とならなかった事項が、車載用の環境下では、尿素水溶液に対する温度条件の過酷さや、環境からの汚染という問題も加わって、解決されなければならない課題として浮き上がってきたものである。   So far, SCR denitration is a technology that has been mainly used for flue gas denitration of stationary devices such as diesel generators, and on-vehicle SCR for diesel vehicles has been recently studied in accordance with the trend of environmental regulations. For this reason, for stationary devices, matters that have not been a major problem must be resolved in the in-vehicle environment, including the severe temperature conditions for urea aqueous solutions and contamination from the environment. It has emerged as an issue.

このような背景から、尿素水溶液の化学的安定性並びに滅菌性といった諸問題に関しては先行する技術は現況提唱されていない。   Against this background, no prior art has been proposed for various problems such as chemical stability and sterility of aqueous urea solutions.

特開昭53−112273号公報Japanese Patent Laid-Open No. 53-112273 特開昭63−190623号公報JP-A-63-190623

前記したように、SCR脱硝をディーゼル車の排煙脱硝に応用する上では、SCR脱硝用還元剤としての特性を損なわない範囲で、さらにはディーゼル車への車載という実用上での制約の中で、ウロキナーゼ等の酵素や尿素分解作用を有する微生物の混入に起因する、尿素水溶液からの過剰のアンモニアの生成を防止するという課題がある。また、種々のカビの胞子が、外部環境から尿素水溶液中に混入し、増殖することで、尿素水溶液中に多くの異物が発生することを防止する必要もある。ウロキナーゼ等の酵素や尿素分解作用を有する微生物を不活性にするためには、一般に使用される塩素系等の殺菌剤や消毒剤が有効であるが、SCR脱硝においては、脱硝触媒への影響から塩素等の成分は使用ができない。また、加熱処理によって滅菌することも、SCR脱硝用還元剤に対しては適用し得ないものである。さらに、一般の環境下ではウロキナーゼ等は容易に尿素および尿素水溶液に浸入して汚染を起こす。特に、一般に容易に入手できる尿素(粒状)は、肥料用とに解放系でバルクで扱われ、リン酸、カリウムといった他の肥料成分などとの混入の可能性も極めて高いので、尿素水溶液の原料尿素(粒状)は、微生物の繁殖には好ましい栄養条件にあり、尿素原料の状態ですでにこれらによって発生したアンモニアが付着している。   As described above, in applying SCR denitration to exhaust gas denitration of diesel vehicles, it does not impair the characteristics as a reducing agent for SCR denitration, and further within the practical restrictions of mounting on diesel vehicles. There is a problem of preventing generation of excess ammonia from an aqueous urea solution caused by contamination with an enzyme such as urokinase or a microorganism having a urea decomposing action. It is also necessary to prevent various foreign substances from being generated in the aqueous urea solution by mixing and growing various mold spores in the aqueous urea solution from the external environment. In order to inactivate enzymes such as urokinase and microorganisms having ureolytic activity, commonly used chlorine-based disinfectants and disinfectants are effective. However, in SCR denitration, from the influence on denitration catalyst Components such as chlorine cannot be used. Also, sterilization by heat treatment cannot be applied to the reducing agent for SCR denitration. Furthermore, under a general environment, urokinase and the like easily enter urea and an aqueous urea solution to cause contamination. In particular, urea (granular), which is easily available, is handled in bulk in an open system for fertilizers, and is very likely to be mixed with other fertilizer components such as phosphoric acid and potassium. Urea (granular) is in a favorable nutritional condition for the growth of microorganisms, and ammonia generated by these already adheres in the state of urea raw material.

従って本発明は、安定化され滅菌された尿素水溶液の製造方法を提供することを課題とする。本発明はさらに、車載用のSCR脱硝に使用する尿素水溶液として適した、保管中および使用中におけるカビ、細菌等の微生物の増殖や変質を抑制し、有害なアンモニアガスの発生と臭気を防止することのできる尿素水溶液およびその製造方法を提供することを課題とするものである。   Accordingly, an object of the present invention is to provide a method for producing a stabilized and sterilized urea aqueous solution. The present invention further suppresses the growth and alteration of microorganisms such as mold and bacteria during storage and use, which are suitable as an aqueous urea solution used for in-vehicle SCR denitration, and prevents generation of harmful ammonia gas and odor. It is an object of the present invention to provide an aqueous urea solution and a method for producing the same.

上記課題を解決する本発明は、尿素濃度が30〜50質量%の尿素水溶液に対し、二酸化炭素を溶解させてpH値を7.5以下に調整した後、該水溶液に過酸化水素を添加することを特徴とする滅菌された尿素水溶液の製造方法である。   In the present invention for solving the above-mentioned problems, carbon dioxide is dissolved in a urea aqueous solution having a urea concentration of 30 to 50% by mass to adjust the pH value to 7.5 or less, and then hydrogen peroxide is added to the aqueous solution. This is a method for producing a sterilized aqueous urea solution.

上記課題を解決する本発明は、また、予め二酸化炭素を溶解した水を用いて、尿素を溶解し、尿素濃度が30〜50質量%でかつpH値を7.5以下に調整した尿素水溶液に対し、過酸化水素を添加することを特徴とする滅菌された尿素水溶液の製造方法である。   The present invention that solves the above-mentioned problems also provides a urea aqueous solution in which urea is dissolved using water in which carbon dioxide is previously dissolved, the urea concentration is 30 to 50% by mass, and the pH value is adjusted to 7.5 or less. On the other hand, it is a method for producing a sterilized aqueous urea solution characterized by adding hydrogen peroxide.

上記課題を解決する本発明は、また、上記に記載の製造方法により製造されたことを特徴とする滅菌された尿素水溶液である。   The present invention for solving the above-mentioned problems is a sterilized urea aqueous solution characterized by being produced by the production method described above.

本発明はまた、選択的触媒脱硝に使用されるものである上記尿素水溶液を示すものである。   The present invention also shows the urea aqueous solution that is used for selective catalytic denitration.

本発明はさらに、40℃以下で1年間の密封保管下で、pHが8.0以下に維持されていることを特徴とする上記尿素水溶液を示すものである。   The present invention further shows the urea aqueous solution characterized in that the pH is maintained at 8.0 or lower under sealed storage for 1 year at 40 ° C. or lower.

本発明の製造方法により製造した尿素水溶液は、過酸化水素が有効に作用するpH領域に長期間安定して維持されるため、従来の方法で製造された尿素水溶液とは異なり、保管中にウロキナーゼ等の作用によるアンモニア発生とそれに伴うpH上昇が回避されるため、臭気の発生が抑制される。具体的には、製造直後でpH7.5以下、1年間の長期保存でpH8.0以下の範囲に抑制可能である。この結果として、pHが高いことによるアルミニウム等の金属類に対する腐食も防止できる。このことは、特に温度環境が厳しいディーゼル車に対する車載用SCRにおける尿素水溶液の扱いにおいて有利であり、タンクや配管等の腐食を惹起しないので、長期間にわたって安定な運転が可能となる。また、黒麹カビなどに代表される微生物が増殖し、固形異物が増加することもなく、上記DIN規格の不溶成分の規格値(<5mg/kg)を上回ることもなく、脱硝装置における尿素水フィルターの閉塞を来たすこともなく、メンテナンス面においても良好なものとなるものである。   Since the urea aqueous solution produced by the production method of the present invention is stably maintained for a long time in a pH range where hydrogen peroxide effectively acts, unlike the urea aqueous solution produced by the conventional method, urokinase is stored during storage. Since the generation of ammonia and the accompanying increase in pH due to such actions are avoided, the generation of odor is suppressed. Specifically, it can be suppressed to a pH of 7.5 or less immediately after production and a pH of 8.0 or less after long-term storage for one year. As a result, corrosion of metals such as aluminum due to high pH can also be prevented. This is advantageous in handling the urea aqueous solution in the in-vehicle SCR for a diesel vehicle having a particularly severe temperature environment, and does not cause corrosion of tanks and pipes, so that stable operation can be performed for a long period of time. Also, microorganisms typified by black mold and the like grow and solid foreign matter does not increase, and the insoluble component standard value (<5 mg / kg) of the DIN standard is not exceeded, and urea water in the denitration apparatus The filter is not clogged, and the maintenance is good.

以下、本発明を実施形態に基づきより具体的に説明する。   Hereinafter, the present invention will be described more specifically based on embodiments.

尿素水溶液がSCR脱硝の還元剤として要求される特性から、最終的に分解残渣の残らない成分を殺菌剤として使用して、ウロキナーゼやカビ胞子等を殺菌する方法を選択せざるを得ない。表1にDIN 70 070規格の尿素水(32.5%)の特性を示す。   Due to the characteristics required of an aqueous urea solution as a reducing agent for SCR denitration, it is necessary to select a method for sterilizing urokinase, mold spores, and the like by using as a bactericide a component that does not leave decomposition residues. Table 1 shows the characteristics of DIN 70 070 standard urea water (32.5%).

Figure 2006110526
Figure 2006110526

カチオン成分は、0.2ないし0.5mg/kg未満に制限されており、異物(不溶成分)は5mg/kg未満に制限されている。従って、殺菌剤として塩素系化合物やナトリウム塩を成分とするものは、最終的に尿素水溶液中に塩素が残留するので使用が不可能であり、事実上で過酸化水素やオゾンなどの酸素系の殺菌剤に限定されてしまう。ここで、オゾンは殺菌力が強力ではあるが、オゾンガスの発生装置が必要であることと、尿素水溶液への溶解装置が別途必要であるため採用が困難である。従って、過酸化水素(水溶液)が最も使用方法が間便で好ましい殺菌剤であると考えられる。   The cationic component is limited to 0.2 to less than 0.5 mg / kg, and the foreign matter (insoluble component) is limited to less than 5 mg / kg. Therefore, those containing chlorinated compounds or sodium salts as disinfectants cannot be used because chlorine will eventually remain in the urea aqueous solution. In fact, oxygen-based substances such as hydrogen peroxide and ozone Limited to bactericides. Here, ozone has a strong sterilizing power, but is difficult to adopt because it requires an ozone gas generator and a separate dissolving device in an aqueous urea solution. Therefore, hydrogen peroxide (aqueous solution) is considered to be the most preferred disinfectant for the convenience of use.

しかしながら、過酸化水素を尿素水溶液の殺菌に使用するためには、過酸化水素が有効に作用する化学的条件を満たす必要がある。過酸化水素は遊離アンモニアが存在するpHの高い状態では直ちに分解(無効分解)するので、持続した殺菌効果は得がたい。   However, in order to use hydrogen peroxide for sterilization of urea aqueous solution, it is necessary to satisfy the chemical conditions under which hydrogen peroxide works effectively. Since hydrogen peroxide decomposes immediately (ineffective decomposition) in a high pH state where free ammonia exists, it is difficult to obtain a sustained bactericidal effect.

このため、本発明者らは、鋭意検討の結果、尿素の加水分解の化学平衡の原理を用い、上記した化学式(2)の反応平衡を左辺にとどめ、右辺へ進行させない手段として、炭酸ガス、すなわち二酸化炭素を溶液中に吹き込む方法を併用して、pHの中性付近での過酸化水素水の作用を継続する化学的環境を調整して、尿素水溶液の滅菌処理を行ったものである。   For this reason, as a result of intensive studies, the present inventors have used the principle of chemical equilibrium of urea hydrolysis to keep the reaction equilibrium of the above chemical formula (2) on the left side and prevent carbon dioxide gas, That is, the method of injecting carbon dioxide into the solution is used in combination to adjust the chemical environment in which the action of the hydrogen peroxide solution near the neutral pH is continued, and the aqueous urea solution is sterilized.

すなわち、本発明に係る尿素水溶液の製造方法は、尿素濃度が30〜50質量%の尿素水溶液に対し、二酸化炭素を溶解させてpH値を7.5以下に調整した後、該水溶液に殺菌剤である過酸化水素を添加することを特徴とするものであり、尿素水溶液の保管中と使用中におけるウロキナーゼ等の作用による尿素の分解を抑制したものである。また、この方法では尿素水に含まれるカビ胞子、微生物等も死滅するので、有効な滅菌方法である。   That is, in the method for producing an aqueous urea solution according to the present invention, carbon dioxide is dissolved in an aqueous urea solution having a urea concentration of 30 to 50% by mass, and the pH value is adjusted to 7.5 or less. This is characterized by adding hydrogen peroxide, which suppresses the decomposition of urea due to the action of urokinase or the like during storage and use of an aqueous urea solution. Also, this method is an effective sterilization method because mold spores, microorganisms and the like contained in urea water are also killed.

本発明に係る尿素水溶液の製造方法において、尿素濃度を30〜50質量%とするのは、このように高濃度とすることによって、例えば、SCR脱硝に使用した際に、気化分解時における水の潜熱を極力少なくし、アンモニア転化率を良好なものとするためである。なお、濃度が極端に高くなると尿素の加水分解が十分に進行せずアンモニア転化率が低下する虞れがあるため、尿素濃度を上記範囲にすることが望ましい。   In the method for producing an aqueous urea solution according to the present invention, the urea concentration is set to 30 to 50% by mass. By using such a high concentration, for example, when used for SCR denitration, water at the time of vaporization decomposition is used. This is to reduce the latent heat as much as possible and to improve the ammonia conversion rate. Note that when the concentration is extremely high, urea hydrolysis does not proceed sufficiently and the ammonia conversion rate may decrease, so it is desirable that the urea concentration be in the above range.

また、製造時において二酸化炭素を溶解させて尿素水溶液のpHを7.5以下とするのは、上述したように過酸化水素による滅菌作用を継続するためであるが、さらに、遊離アンモニウム等による臭気の問題を抑制し、かつ貯蔵容器、配管等における金属腐食を抑制する上からも望まれるものである。より好ましくは、pHは5.5〜7.5とすることが望ましい。   The reason why the pH of the aqueous urea solution is adjusted to 7.5 or less by dissolving carbon dioxide at the time of production is to continue the sterilization action by hydrogen peroxide as described above. This is also desirable from the viewpoint of suppressing the above problem and suppressing metal corrosion in storage containers, pipes and the like. More preferably, the pH is desirably 5.5 to 7.5.

尿素水溶液に二酸化炭素を溶解させる方法としては、尿素水溶液に二酸化炭素ガスを吹き込む方法であっても、あるいは尿素水溶液にドライアイスを添加する方法であっても良いが、一般的には、二酸化炭素ガスを吹き込む方法、例えば、溶液20リットルに対して50〜200ml/min程度の量で、二酸化炭素が飽和溶解するまで吹き込む方法が望ましい。   The method for dissolving carbon dioxide in the urea aqueous solution may be a method in which carbon dioxide gas is blown into the urea aqueous solution or a method in which dry ice is added to the urea aqueous solution. A method of blowing gas, for example, a method of blowing until carbon dioxide is saturated and dissolved in an amount of about 50 to 200 ml / min for 20 liters of solution is desirable.

本発明において、尿素原料としては、工業的な観点から、肥料用途などの種々の尿素原料用いることが望ましい。   In the present invention, as the urea raw material, it is desirable to use various urea raw materials for fertilizer use from an industrial viewpoint.

また水としては、一般的に電気伝導度が50〜100μS/cmである、工業用水あるいは水道水をそのまま使用することができるが、この場合、得られる尿素水溶液中には、Ca、Fe、NaおよびKなどのイオン性不純物がある程度、例えば、1〜10mg/kg程度存在することとなる。従って、逆浸透膜処理等によって、電気伝導度を2〜8μS/cm程度とした水を用いることがより望ましい。   As water, industrial water or tap water generally having an electric conductivity of 50 to 100 μS / cm can be used as it is. In this case, in the obtained urea aqueous solution, Ca, Fe, Na And ionic impurities such as K are present to some extent, for example, about 1 to 10 mg / kg. Accordingly, it is more desirable to use water having an electric conductivity of about 2 to 8 μS / cm by reverse osmosis membrane treatment or the like.

また、本発明に係る尿素水溶液は、上記したように尿素水溶液に対し、二酸化炭素を溶解する方法に代えて、予め二酸化炭素を溶解させた水を用いて、尿素を溶解することで製造することもできる。すなわち、本発明に係る第2の製造方法は、予め二酸化炭素を溶解した水を用いて、尿素を溶解し、尿素濃度が30〜50質量%でかつpH値を7.5以下に調整した尿素水溶液に対し、過酸化水素を添加することを特徴とするものである。この第2の製造方法においても、二酸化炭素の添加方法、使用する尿素原料および水としては上記と同様のものである。   Further, the urea aqueous solution according to the present invention is manufactured by dissolving urea using water in which carbon dioxide is dissolved in advance, instead of the method of dissolving carbon dioxide in the urea aqueous solution as described above. You can also. That is, the second production method according to the present invention uses urea in which carbon dioxide is dissolved in advance to dissolve urea, the urea concentration is 30 to 50% by mass, and the pH value is adjusted to 7.5 or less. Hydrogen peroxide is added to the aqueous solution. Also in the second production method, the carbon dioxide addition method, the urea raw material to be used, and water are the same as described above.

次に、このように、二酸化炭素を添加されpHが7.5以下とされた尿素水溶液に、過酸化水素を添加する方法としては、特に限定されるわけではないが、適当な濃度、例えば、30%濃度の過酸化水素を、100%濃度過酸化水素換算で、50〜5000mg/kg程度、より好ましくは500〜2000mg/kgとなるように、尿素水溶液に添加することが望まれる。添加された過酸化水素は経時的に分解されるが、上記したような所定量を、製造時に添加することで、長期間安定化した滅菌性が保たれることとなる。   Next, the method for adding hydrogen peroxide to the urea aqueous solution added with carbon dioxide and having a pH of 7.5 or less is not particularly limited, but an appropriate concentration, for example, It is desirable to add 30% hydrogen peroxide to the urea aqueous solution so that the concentration is about 50 to 5000 mg / kg, more preferably 500 to 2000 mg / kg in terms of 100% concentration hydrogen peroxide. The added hydrogen peroxide is decomposed over time, but by adding the above-mentioned predetermined amount during production, sterilization stabilized for a long period of time can be maintained.

このようにして製造される本発明に係る尿素水溶液は、長期間にわたり安定化され、過酸化水素水が有効に作用するpH領域に維持されるため、保管中にウロキナーゼ等の作用によるアンモニア発生とそれに伴うpH上昇が回避される。このため、滅菌化された状態を長期間維持できるものとなり、具体的には、例えば、40℃以下の保管条件下において、少なくとも1年間は、pHが8.0以下に維持されているものとなる。   The aqueous urea solution according to the present invention thus produced is stabilized over a long period of time and is maintained in a pH range where hydrogen peroxide water effectively acts. The associated increase in pH is avoided. Therefore, the sterilized state can be maintained for a long time. Specifically, for example, the pH is maintained at 8.0 or lower for at least one year under storage conditions of 40 ° C. or lower. Become.

以下、本発明を実施例に基づき、より具体的に説明する。   Hereinafter, the present invention will be described more specifically based on examples.

実施例1
肥料用尿素を逆浸透処理水で溶解し、40質量%の尿素水溶液を製造した後、これに二酸化炭素ガスを吹き込み、二酸化炭素ガスを飽和後、過酸化水素を添加した結果を比較例とともに表2に示す。二酸化炭素は、尿素水溶液20リットルに対し、100ml/minの割合で吹き込み、pHはほぼ一定となるまで約25分間処理した。この段階でのpHは表2に示すように6.49であった。さらにこの二酸化炭素を吹き込んだ溶液に対して、30%高純度過酸化水素水を67g(100%過酸化水素換算で1000mg/kg相当)添加した。この段階ではpHの変化ならびに外観の変化は見られなかった(試料4)。さらに12ヶ月間室温(10℃±20℃)にて保管した後は、pHが7.64となり(試料5)、同じく12時間保管後の比較例のpH9.45に比較して低い値に維持されていた。臭気(官能試験)と容器上部空間のアンモニア濃度(ガス検知管測定)もpHの変化を裏付ける結果となった。
Example 1
Urea for fertilizer was dissolved in reverse osmosis treated water to produce a 40 mass% urea aqueous solution, then carbon dioxide gas was blown into this, and the result of adding hydrogen peroxide after saturation with carbon dioxide gas was shown together with a comparative example. It is shown in 2. Carbon dioxide was blown at a rate of 100 ml / min into 20 liters of an aqueous urea solution and treated for about 25 minutes until the pH became substantially constant. The pH at this stage was 6.49 as shown in Table 2. Further, 67 g of 30% high-purity hydrogen peroxide solution (equivalent to 1000 mg / kg in terms of 100% hydrogen peroxide) was added to the solution into which carbon dioxide was blown. At this stage, neither pH nor appearance change was observed (Sample 4). Furthermore, after storing at room temperature (10 ° C. ± 20 ° C.) for 12 months, the pH becomes 7.64 (Sample 5), and is maintained at a low value compared to pH 9.45 of the comparative example after storage for 12 hours. It had been. Odor (sensory test) and ammonia concentration in the upper space of the container (measurement of gas detector tube) also confirmed the change in pH.

Figure 2006110526
Figure 2006110526

なお、濃度を32.5質量%とする以外は上記と同様にして調製した尿素水溶液の試料群についても同様の試験を行ったが、40質量%の尿素水溶液とほぼ同様の結果が得られた。   The same test was performed on a sample group of urea aqueous solution prepared in the same manner as described above except that the concentration was 32.5% by mass, but almost the same result as that of the 40% by mass urea aqueous solution was obtained. .

実施例2
環境中のカビを尿素水溶液中に取り込んで実験した結果、再現性に乏しく、本発明の過酸化水素水の効果を数値で比較することが難しかったので、実験的に故意に黒麹カビを尿素水溶液に添加して比較実験を行った。得られた結果を比較例とともに表3に示す。過酸化水素を添加しないで黒麹カビ100mg/kgを添加した尿素水溶液の場合(試料1,2)は、12ヶ月後に濁りと沈殿がみられ、2000mg/kg程度の不溶解物が含まれ、これは後にろ過しても完全には除去することができなかった。一方、過酸化水素を添加した試料3(黒麹カビ100mg/kg)と試料4(黒麹カビ1000mg/kg)では、12ヶ月間にカビの増殖はなく、濾過した後の不溶解物は3〜4mg/kgと、上記DIN規格の範囲内であった。
Example 2
As a result of experimenting by incorporating mold in the environment into urea aqueous solution, the reproducibility was poor and it was difficult to compare the effect of the hydrogen peroxide solution of the present invention numerically. A comparative experiment was performed by adding to an aqueous solution. The obtained results are shown in Table 3 together with comparative examples. In the case of the urea aqueous solution to which black mold fungus 100 mg / kg was added without adding hydrogen peroxide (samples 1 and 2), turbidity and precipitation were observed after 12 months, and about 2000 mg / kg insoluble matter was contained. This could not be completely removed by subsequent filtration. On the other hand, in sample 3 (black mold 100 mg / kg) and hydrogen peroxide added sample 4 (black mold 1000 mg / kg), there was no growth of mold in 12 months, and the insoluble matter after filtration was 3 It was -4 mg / kg and was within the range of the DIN standard.

Figure 2006110526
Figure 2006110526

なお、濃度を32.5質量%とする以外は上記と同様にして調製した尿素水溶液の試料群についても同様の試験を行ったが、40質量%の尿素水溶液とほぼ同様の結果が得られた。   The same test was performed on a sample group of urea aqueous solution prepared in the same manner as described above except that the concentration was 32.5% by mass, but almost the same result as that of the 40% by mass urea aqueous solution was obtained. .

本発明によれば、二酸化炭素を溶解させ、さらに過酸化水素を添加させることにより、安定化し、かつ滅菌された尿素水溶液を容易にかつ安価にて製造することができる。これによりディーゼル車の車載用やディーゼル発電機等の据え置き型装置用のSCR脱硝用等として、有用な製品を提供することが可能となるものである。   According to the present invention, a stabilized and sterilized urea aqueous solution can be easily and inexpensively manufactured by dissolving carbon dioxide and further adding hydrogen peroxide. This makes it possible to provide useful products for SCR denitration for in-vehicle use of diesel vehicles and stationary devices such as diesel generators.

尿素水溶液の尿素溶解後の加熱処理(2時間)によるpH変化の一例を示すグラフである。It is a graph which shows an example of pH change by the heat processing (2 hours) after urea melt | dissolution of urea aqueous solution.

Claims (5)

尿素濃度が30〜50質量%の尿素水溶液に対し、二酸化炭素を溶解させてpH値を7.5以下に調整した後、該水溶液に過酸化水素を添加することを特徴とする滅菌された尿素水溶液の製造方法。   Sterilized urea characterized by adding carbon dioxide to a urea aqueous solution having a urea concentration of 30 to 50% by mass to adjust the pH value to 7.5 or less and then adding hydrogen peroxide to the aqueous solution. A method for producing an aqueous solution. 予め二酸化炭素を溶解した水を用いて、尿素を溶解し、尿素濃度が30〜50質量%でかつpH値を7.5以下に調整した尿素水溶液に対し、過酸化水素を添加することを特徴とする滅菌された尿素水溶液の製造方法。   Hydrogen peroxide is added to an aqueous urea solution in which urea is dissolved using water in which carbon dioxide is previously dissolved, the urea concentration is 30 to 50% by mass, and the pH value is adjusted to 7.5 or less. A method for producing a sterilized aqueous urea solution. 請求項1または2に記載の製造方法により製造されたことを特徴とする滅菌された尿素水溶液。   A sterilized urea aqueous solution produced by the production method according to claim 1 or 2. 選択的触媒脱硝に使用されるものである請求項3に記載の尿素水溶液。   The aqueous urea solution according to claim 3, which is used for selective catalytic denitration. 40℃以下で1年間の密封保管下で、pHが8.0以下に維持されていることを特徴とする請求項3または4に記載の尿素水溶液。   The aqueous urea solution according to claim 3 or 4, wherein the pH is maintained at 8.0 or lower under sealed storage for 1 year at 40 ° C or lower.
JP2004303423A 2004-10-18 2004-10-18 Sterilized aqueous urea solution and its production method Pending JP2006110526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303423A JP2006110526A (en) 2004-10-18 2004-10-18 Sterilized aqueous urea solution and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303423A JP2006110526A (en) 2004-10-18 2004-10-18 Sterilized aqueous urea solution and its production method

Publications (1)

Publication Number Publication Date
JP2006110526A true JP2006110526A (en) 2006-04-27

Family

ID=36379476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303423A Pending JP2006110526A (en) 2004-10-18 2004-10-18 Sterilized aqueous urea solution and its production method

Country Status (1)

Country Link
JP (1) JP2006110526A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039019A1 (en) * 2013-09-13 2015-03-19 Peroxychem Llc Treatment of nitrogen oxides in flue gas streams
JP2015164724A (en) * 2015-04-03 2015-09-17 クラリアント触媒株式会社 Agent and method for detoxifying metal hydride-containing exhaust gas
CN107194154A (en) * 2017-04-28 2017-09-22 国网天津市电力公司 A kind of SCR denitration assesses computational methods
CN109731487A (en) * 2019-01-22 2019-05-10 河南弘康环保科技有限公司 A kind of preparation method of urea for vehicle solution
US10774715B1 (en) * 2018-03-27 2020-09-15 Southwest Research Institute Stabilization of aqueous urea solutions containing organometallic catalyst precursors
CN111729526A (en) * 2020-06-24 2020-10-02 安阳化学工业集团有限责任公司 Production method for preparing vehicle urea by directly adopting urine
WO2022035459A1 (en) * 2020-08-10 2022-02-17 Southwest Research Institute Stabilization of aqueous urea solutions containing organometallic catalyst precursors

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274691A (en) * 1985-05-29 1986-12-04 Kyowa Hakko Kogyo Co Ltd Production of l-glutamic acid
JPH05229889A (en) * 1991-07-09 1993-09-07 Tomoe Kagaku Kogyo Kk Liquid fertilizer concentrated composition containing stable active oxygen, method for fertilizer application and sterilization and treating agent using the same composition
JP2000185087A (en) * 1998-12-22 2000-07-04 Tomey Corp Liquid formulation for washing and disinfecting medical instrument, and washing and disinfecting method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274691A (en) * 1985-05-29 1986-12-04 Kyowa Hakko Kogyo Co Ltd Production of l-glutamic acid
JPH05229889A (en) * 1991-07-09 1993-09-07 Tomoe Kagaku Kogyo Kk Liquid fertilizer concentrated composition containing stable active oxygen, method for fertilizer application and sterilization and treating agent using the same composition
JP2000185087A (en) * 1998-12-22 2000-07-04 Tomey Corp Liquid formulation for washing and disinfecting medical instrument, and washing and disinfecting method using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015039019A1 (en) * 2013-09-13 2015-03-19 Peroxychem Llc Treatment of nitrogen oxides in flue gas streams
US9114357B2 (en) 2013-09-13 2015-08-25 Peroxychem Llc Treatment of nitrogen oxides in flue gas streams
JP2015164724A (en) * 2015-04-03 2015-09-17 クラリアント触媒株式会社 Agent and method for detoxifying metal hydride-containing exhaust gas
CN107194154A (en) * 2017-04-28 2017-09-22 国网天津市电力公司 A kind of SCR denitration assesses computational methods
US10774715B1 (en) * 2018-03-27 2020-09-15 Southwest Research Institute Stabilization of aqueous urea solutions containing organometallic catalyst precursors
CN109731487A (en) * 2019-01-22 2019-05-10 河南弘康环保科技有限公司 A kind of preparation method of urea for vehicle solution
CN111729526A (en) * 2020-06-24 2020-10-02 安阳化学工业集团有限责任公司 Production method for preparing vehicle urea by directly adopting urine
WO2022035459A1 (en) * 2020-08-10 2022-02-17 Southwest Research Institute Stabilization of aqueous urea solutions containing organometallic catalyst precursors

Similar Documents

Publication Publication Date Title
AU2011348371B8 (en) Method for producing an aqueous stable chlorine dioxide solution
CN104144710B (en) Reduce by the ammonia loss in organic material or refuse to air and the method and apparatus of abnormal smells from the patient
CA2045687A1 (en) Stabilized sterilizing or disinfecting halogen containing composition, method and apparatus
US9682878B2 (en) Sodium nitrite oxidation of hydrogen sulfide
JP2006110526A (en) Sterilized aqueous urea solution and its production method
JP5100432B2 (en) Exhaust gas treatment method
CN101602536A (en) A kind of preparation method who is used for the compound oxidant of catalytic oxidation treatment of high concentration waste water
CN109042726A (en) A kind of drinking water disinfection powder and preparation method thereof, application method
JP2006068680A (en) Denitrating reductant composition and producing method therefor
JP2006111602A (en) Stabilized aqueous solution of urea and method for producing the same
US20230322595A1 (en) Wastewater Ozone Treatment
JP3992614B2 (en) Disinfectant and water-based disinfecting method using the disinfectant
JP3755554B2 (en) Method for treating a solution containing hydrogen peroxide and peracetic acid
JP2011000497A (en) Iron chelate aqueous solution and decontamination method of soil and/or ground water
JPH0328101A (en) Production of water having large amount of dissolved oxygen
CN1295142C (en) Process for producing chlorine dioxide by carbon dioxide and sodium chlorite
JP4399854B2 (en) Treatment method of waste water containing hydrazine
JP3951276B2 (en) Prevention method of hydrogen sulfide generation based on microorganisms
JP2004267896A (en) Contamination preventing method for industrial/waste water system
JPH11267666A (en) Treatment of water containing hydrogen peroxide and peracetic acid
TWI507365B (en) Selective Oxidation of High Concentration Ammonia Nitrogen Wastewater by Catalyst
CN115072667B (en) Preparation method of reactive chlorine dioxide solid preparation using sodium chlorate as raw material
JP3736344B2 (en) Odor generation prevention method of sludge dewatering cake
JP4852877B2 (en) Treatment of wastewater containing nitrite anticorrosive
JPS63117764A (en) Deodorant

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070112

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070529

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831