JP3736344B2 - Odor generation prevention method of sludge dewatering cake - Google Patents

Odor generation prevention method of sludge dewatering cake Download PDF

Info

Publication number
JP3736344B2
JP3736344B2 JP2000390872A JP2000390872A JP3736344B2 JP 3736344 B2 JP3736344 B2 JP 3736344B2 JP 2000390872 A JP2000390872 A JP 2000390872A JP 2000390872 A JP2000390872 A JP 2000390872A JP 3736344 B2 JP3736344 B2 JP 3736344B2
Authority
JP
Japan
Prior art keywords
sludge
cake
added
nitrite
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000390872A
Other languages
Japanese (ja)
Other versions
JP2002186995A (en
Inventor
康裕 大井
裕弘 麦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000390872A priority Critical patent/JP3736344B2/en
Publication of JP2002186995A publication Critical patent/JP2002186995A/en
Application granted granted Critical
Publication of JP3736344B2 publication Critical patent/JP3736344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥脱水ケーキの臭気発生防止方法に関する。さらに詳しくは、本発明は、下水処理場、し尿処理場などの汚泥脱水ケーキから発生する硫化水素、メチルメルカプタン、アンモニア、アミンなどに由来する臭気を効果的に防止することができる汚泥脱水ケーキの臭気発生防止方法に関する。
【0002】
【従来の技術】
下水処理場、し尿処理場や、食品工場、紙パルプ工場などの有機性産業排水の処理工程などにおいては、各種の汚泥が発生する。例えば、下水を最初沈殿池で固液分離すると初沈生汚泥が発生し、最初沈殿池の上澄水を曝気槽などを用いて浮遊生物方式により処理すると、活性汚泥の量が増加する。曝気槽などで処理された水は最終沈殿池に導かれ、活性汚泥が分離され、その一部は返送汚泥として曝気槽などに返送され、残余は余剰汚泥とされる。初沈生汚泥と余剰汚泥は、汚泥濃縮槽に導かれ、その後、汚泥貯留槽にいったん貯留される。汚泥貯留槽内の汚泥は、次いで脱水機により脱水され、得られた汚泥脱水ケーキは埋め立てや、焼却のために搬出される。
脱水後の汚泥脱水ケーキは、腐敗により悪臭物質を発生する。下水処理場で発生する悪臭物質として頻繁に検出される物質は、硫化水素、メチルメルカプタンなどのイオウ化合物、アンモニア、トリメチルアミンなどの窒素化合物、吉草酸、イソ酪酸などの低級脂肪酸などである。これらの中で、硫化水素とメチルメルカプタンの量が特に多い。
汚泥貯留槽や脱水機の多くは密閉系となっているが、脱水により得られる汚泥脱水ケーキは開放系で運搬、保管される場合が多いので、臭気対策は重要である。すなわち、汚泥脱水ケーキの運搬には、通常コンベアやトラックなどが使われ、臭気発生源である汚泥脱水ケーキが移動するので、覆蓋、臭気の吸引などによる処理が困難であり、臭気対策がむつかしい。また、最終埋め立て地においても、発生する臭気が拡散し、付近の住民に不快感を与えるなど、環境に悪影響を及ぼす。このために、汚泥脱水ケーキから発生する臭気自体を抑制する必要があり、従来よりさまざまな脱臭方法が提案されている。
本発明者らは、特開2000−202494号公報において、非塩素系、非金属系の処理剤を用いて、低コストで効果的に汚泥脱水ケーキの臭気の発生を防止する方法として、亜硝酸塩、亜硫酸塩又は亜硫酸水素塩を汚泥スラリーに添加したのち脱水する方法を提案し、特開2000−288592号公報において、汚泥脱水ケーキ中に窒素分を残留させる亜硝酸塩の添加量を少なくして十分な消臭効果が発現する汚泥脱水ケーキの臭気発生防止方法として、酸化剤、金属塩又は有機系殺菌剤と亜硝酸塩を併用して汚泥スラリーに添加する方法を提案した。また、人や環境に対する影響のない薬剤を用いて汚泥脱水ケーキの臭気発生を防止する方法として、汚泥スラリーに酸化剤と亜硝酸塩、亜硫酸塩又は亜硫酸水素塩を添加したのち、ソルビン酸を添加する方法が有効であることを見いだした。
しかし、これらの方法は、いずれも薬剤を汚泥スラリーに添加するために、薬剤の添加量が多くなり、また、汚泥スラリーの貯留槽と汚泥脱水機での臭気発生を効果的に防止することができるが、汚泥脱水ケーキからの臭気発生効果の持続時間は、数時間ないし最大で半日程度で、前日の汚泥脱水ケーキをケーキホッパーに貯留し、翌日に搬出する場合には、経済的に見合った薬剤添加量では、臭気防止効果がほとんど期待できなかった。
さらに、本発明者らは、特開2000−70999号公報において、少ない薬剤の使用で、汚泥スラリー及び汚泥脱水ケーキのいずれの場合も、悪臭物質の発生を長時間にわたって抑制することができる臭気発生防止方法として、難溶性の硫化物を生成する金属塩と、難溶性のピリチオン化合物とを含む消臭剤を添加する方法を提案した。しかし、汚泥脱水ケーキにこの消臭剤を添加する場合は、添加後に十分に混合する必要があるので、小さい駆動力で均一に混合できるように、脱水前ないし脱水処理中の汚泥に添加することが好ましいとされていた。
【0003】
【発明が解決しようとする課題】
本発明は、汚泥脱水ケーキの臭気発生防止方法に関する。さらに詳しくは、本発明は、汚泥脱水ケーキに静菌剤を添加して、混合することなく防臭効果を発現させ、しかもその効果を持続することができる汚泥脱水ケーキの臭気発生防止方法に関する。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、汚泥脱水ケーキに易溶性の静菌剤を添加することにより、汚泥脱水ケーキを混合しなくても十分な防臭効果が発現し、しかもその効果が持続することを見いだして、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)汚泥脱水ケーキに、25℃において水100mLに20g以上溶解する亜硝酸塩を20重量%以上の濃度の水溶液として添加することを特徴とする汚泥脱水ケーキの臭気発生防止方法、及び、
(2)ケーキホッパーへの落ち口で亜硝酸塩を添加することを特徴とする ( ) 記載の汚泥脱水ケーキの臭気発生防止方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の汚泥脱水ケーキの臭気発生防止方法においては、汚泥脱水ケーキに25℃において水100mLに20g以上、好ましくは35g以上、より好ましくは50g以上溶解する静菌剤を添加する。
本発明方法において、静菌剤とは、細菌の発育あるいは増殖を阻止する薬剤である。本発明方法においては、一般に殺菌剤と称されている薬剤も、低濃度で用いることにより静菌作用を発現させ、静菌剤として使用することができる。本発明方法に用いる静菌剤としては、例えば、亜硝酸塩、次亜塩素酸塩、第四級アンモニウム塩、エタノール、ホルムアルデヒドなどを挙げることができる。これらの中で、亜硝酸塩を好適に用いることができる。25℃において水100mLに20g以上溶解する亜硝酸塩としては、例えば、亜硝酸アンモニウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸セシウム、亜硝酸マグネシウム、亜硝酸カルシウム、亜硝酸ストロンチウム、亜硝酸バリウム、亜硝酸ニッケル、亜硝酸鉛などを挙げることができる。これらの中で、亜硝酸ナトリウム、亜硝酸カリウム及び亜硝酸カルシウムは、取り扱いと入手が容易であり、汚泥脱水ケーキの二次利用の支障とならないので、特に好適に使用することができる。
【0006】
本発明方法において、汚泥脱水ケーキに静菌剤を添加する方法に特に制限はなく、例えば、固体又は液体の静菌剤をそのまま汚泥脱水ケーキに添加することができ、あるいは、静菌剤の水溶液を汚泥脱水ケーキに添加することもできる。静菌剤を水溶液として添加する場合は、希釈倍率が大きいと、水分を多く加えることになり、ケーキ含水率を上昇させることになる。したがって、水溶液の濃度は20重量%以上であることが好ましい。静菌剤を汚泥脱水ケーキに添加する場所に特に制限はないが、例えば、静菌剤を高濃度の水溶液とし、噴霧器を用いて、汚泥脱水ケーキの搬送部、ケーキホッパーへの落ち口などに散布することができる。
従来は、汚泥に含まれる臭気物質の分解や、汚泥からの臭気物質生成を抑制するための消臭剤は、汚泥に均一に混合して反応させるために、汚泥と消臭剤との混合が十分に行われる汚泥スラリーに添加されていた。しかし、消臭剤を汚泥スラリーに添加すると、添加された消臭剤が汚泥脱水ケーキの臭気発生防止に完全には利用されないので、必要な消臭剤の添加量が多くなる。また、汚泥脱水ケーキに消臭剤を添加すると、汚泥脱水ケーキと消臭剤を十分に混合することが必要となるが、汚泥脱水ケーキと消臭剤の混合は既設の設備では実施することができないので新たな混合機の設置が必要であり、混合のために多大の動力を消費し、なおかつ十分な混合を望むことは困難であった。このために、汚泥脱水ケーキへの消臭剤の添加は、発生した臭気を他の芳香薬剤などでマスキングする場合を除いて実施されていなかった。
汚泥脱水ケーキに、25℃において水100mLに20g以上溶解する静菌剤を添加する本発明方法によれば、汚泥脱水ケーキと静菌剤の混合を行わずとも、静菌剤は汚泥脱水ケーキに浸透し、汚泥スラリーに静菌剤を添加する場合に比べて、より少量の静菌剤で十分な臭気発生防止効果が得られ、しかもその効果が長時間にわたって持続する。
【0007】
本発明方法において、静菌剤として亜硝酸塩を用いる場合は、汚泥スラリー又は汚泥脱水ケーキのpHが低いほど静菌剤としての亜硝酸塩の効果が高い。下水汚泥及び下水汚泥脱水ケーキのpHは、通常は5〜6程度であり、このpH範囲では、汚泥脱水ケーキに亜硝酸塩を添加する本発明の臭気発生防止方法が確実に効果を発揮する。
25℃において水100mLに20g以上溶解する静菌剤は、固体又は液体の静菌剤をそのままで、あるいは、高濃度の水溶液として、汚泥脱水ケーキに散布などにより添加したとき、特に汚泥脱水ケーキと静菌剤の混合を行わずとも、汚泥脱水ケーキ全体に浸透する。静菌剤として亜硝酸塩を用いると、亜硝酸塩自体及び亜硝酸が分解するときに生成する酸化窒素が微生物の活動を抑制する。微生物の活動が抑制される結果、硫化水素、メチルメルカプタンなどの臭気成分の発生量が減少するとともに、微生物の活動の証左である炭酸ガスの発生量も減少する。汚泥脱水ケーキからの臭気成分は、主として含イオウ蛋白などが嫌気性微生物によって分解されるために発生するが、静菌剤を汚泥脱水ケーキに添加することにより、これらの分解反応を抑制することができる。
【0008】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
なお、実施例及び比較例において、硫化水素の分析は、ガステック社製ガス検知管4M、4L又は4LLを用い、メチルメルカプタンの分析は、ガステック社製ガス検知管71H又は71を用い、炭酸ガスの分析は、ガステック社製ガス検知管2HH又は2Hを用いて行った。硫化水素とメチルメルカプタンの検出下限濃度は、ともに0.25ppm(容量比)である。
実施例1
下水処理場の混合生汚泥(pH5.06、懸濁物質濃度2.24重量%)250mLに、脱水剤[栗田工業(株)、クリフィックスCP604、カチオンポリマー]30mgを添加して凝集したのち、直径60cmのカラムを用いて2分間重力ろ過し、カラムを取りはずして、さらに圧力0.05MPaで2分間圧搾脱水し、直径約80mm、厚さ5mmの脱水ケーキを得た。得られた脱水ケーキの重量は25gであり、含水率は78重量%であった。
得られた脱水ケーキの片面の3か所に、38重量%亜硝酸ナトリウム水溶液79mgを等分して点滴したのち、脱水ケーキを2つ折りしてテトラバックに入れ、入れ口をヒートシールし、空気600mLを封入して、30℃の恒温器に保管した。
24時間後にガス分析を行ったところ、硫化水素とメチルメルカプタンは検出されず、炭酸ガスは1.3容量%であった。さらに、48時間後にガス分析を行ったところ、硫化水素とメチルメルカプタンは依然として検出されず、炭酸ガスは11.2容量%であった。
実施例2
脱水ケーキの片面1か所に38重量%亜硝酸ナトリウム水溶液79mgを点滴したのち、脱水ケーキを2つ折りしてテトラバックに入れた以外は、実施例1と同じ処理を行った。
24時間後に、硫化水素とメチルメルカプタンは検出されず、炭酸ガスは1.5容量%であった。48時間後に、硫化水素とメチルメルカプタンはいずれも2ppm(容量比)であり、炭酸ガスは12.6容量%であった。
実施例3
脱水ケーキの片面の3か所に、38重量%亜硝酸ナトリウム水溶液79mgを等分して点滴し、脱水ケーキを2つ折りし、さらに手で十分に混練したのちテトラバックに入れた以外は、実施例1と同じ処理を行った。
24時間後に、硫化水素とメチルメルカプタンは検出されず、炭酸ガスは1.3容量%であった。48時間後にも硫化水素とメチルメルカプタンは検出されず、炭酸ガスは10.4容量%であった。
実施例4
脱水ケーキの片面の3か所に、亜硝酸ナトリウムの結晶粉末10mgずつを載置して、脱水ケーキを2つ折りし、テトラバックに入れた以外は、実施例1と同じ処理を行った。
24時間後に、硫化水素とメチルメルカプタンは検出されず、炭酸ガスは1.4容量%であった。48時間後に、硫化水素は2ppm(容量比)、メチルメルカプタンは1ppm(容量比)であり、炭酸ガスは12.2容量%であった。
【0009】
比較例1
実施例1と同じ下水処理場の混合生汚泥250mLに、脱水剤[栗田工業(株)、クリフィックスCP604、カチオンポリマー]30mgを添加して凝集し、直径60cmのカラムを用いて30秒間重力ろ過したのち、38重量%亜硝酸ナトリウム水溶液79mgを加え、スパーテルを用いて30秒間撹拌し、さらに圧力0.05MPaで2分間圧搾脱水して脱水ケーキを得た。得られた脱水ケーキを2つ折りしてテトラバックに入れ、入れ口をヒートシールし、空気600mLを封入して、30℃の恒温器に保管した。
24時間後に、硫化水素は検出されず、メチルメルカプタンは1ppm(容量比)であり、炭酸ガスは7.2容量%であった。48時間後に、硫化水素は150ppm(容量比)、メチルメルカプタンは400ppm(容量比)であり、炭酸ガスは22.0容量%であった。
比較例2
実施例1と同じ下水処理場の混合生汚泥250mLに、38重量%亜硝酸ナトリウム水溶液79mgを添加して60分間撹拌したのち、脱水剤[栗田工業(株)、クリフィックスCP604、カチオンポリマー]30mgを添加して凝集し、直径60cmのカラムを用いて2分間間重力ろ過し、さらに圧力0.05MPaで2分間圧搾脱水して脱水ケーキを得た。得られた脱水ケーキを2つ折りしてテトラバックに入れ、入れ口をヒートシールし、空気600mLを封入して、30℃の恒温器に保管した。
24時間後に、硫化水素は10ppm(容量比)、メチルメルカプタンは12ppm(容量比)であり、炭酸ガスは12.8容量%であった。48時間後に、硫化水素は800ppm(容量比)、メチルメルカプタンは1,200ppm(容量比)であり、炭酸ガスは25.0容量%であった。
比較例3
混合生汚泥への38重量%亜硝酸ナトリウム水溶液の添加量を158mgとした以外は、比較例2と同じ処理を行った。
24時間後に、硫化水素は検出されず、メチルメルカプタンは2ppm(容量比)であり、炭酸ガスは9.6容量%であった。48時間後に、硫化水素は400ppm(容量比)、メチルメルカプタンは900ppm(容量比)であり、炭酸ガスは24.0容量%であった。
比較例4
混合生汚泥への38重量%亜硝酸ナトリウム水溶液の添加量を237mgとした以外は、比較例2と同じ処理を行った。
24時間後に、硫化水素とメチルメルカプタンはともに検出されず、炭酸ガスは5.8容量%であった。48時間後に、硫化水素は120ppm(容量比)、メチルメルカプタンは500ppm(容量比)であり、炭酸ガスは22.0容量%であった。
比較例5
亜硝酸ナトリウム水溶液を点滴しなかった以外は、実施例1と同じ処理を行った。
24時間後に、硫化水素は40ppm(容量比)、メチルメルカプタンは20ppm(容量比)であり、炭酸ガスは14.0容量%であった。48時間後に、硫化水素は1,100ppm(容量比)、メチルメルカプタンは800ppm(容量比)であり、炭酸ガスは25.0容量%であった。
実施例1〜4及び比較例1〜5の結果を、第1表に示す。
【0010】
【表1】

Figure 0003736344
【0011】
実施例1と実施例2は、汚泥脱水ケーキに高濃度の亜硝酸ナトリウム水溶液を点滴した例である。点滴液量は、直径約80mm、重量約25gの汚泥脱水ケーキに対して、約0.08gと水滴で3滴程度の極少量であり、点滴時にはケーキのごく一部にしか付着していないが、ほぼ48時間の臭気発生防止効果を示している。この効果は、実施例3の点滴後に十分混合した場合にほぼ等しいものであった。
また、亜硝酸ナトリウムの結晶粉末を、直径約80mmの汚泥脱水ケーキ1枚の3か所に載置した実施例4においても、良好な臭気防止効果が示され、汚泥脱水ケーキの一部にでも必要量の亜硝酸ナトリウムが付着すれば、特に混合を行わずとも、薬剤が浸透し、良好な臭気防止効果が発現する。また、臭気防止効果が発現している実施例1〜4では、炭酸ガスの発生が著しく少ないことから、微生物活動が抑制されていることが分かる。
一方、これまでの添加方法である汚泥スラリーに亜硝酸ナトリウムを添加する比較例2〜4では、亜硝酸ナトリウムの添加量を、実施例の3倍とした比較例4においても、24時間までの臭気防止が限界であり、48時間後には相当量の硫化水素とメチルメルカプタンが発生した。亜硝酸ナトリウムを効率よく汚泥に混合する方法として、凝集汚泥を重力ろ過した後に添加混合して比較例1では、改善は認めれるものの、効果はまだ不十分であった。
【0012】
実施例5
下水処理場で、脱水ケーキに亜硝酸ナトリウム水溶液を噴霧添加する方法により、汚泥脱水ケーキの臭気発生防止効果の実設備による評価、確認を行った。
この下水処理場は、最初沈殿池からの生汚泥と、最終沈殿池からの余剰汚泥を分離処理しており、かつ余剰汚泥は沈降濃縮のみで、その汚泥の容量が最初沈殿池の生汚泥に対して多く、この結果pHは5.5〜6.0と下水汚泥としては高く、懸濁物質濃度1.4〜1.6重量%であり、薬剤による臭気発生防止のし難い汚泥である。
9時から16時までの7時間の運転中、脱水ケーキ搬送コンベアのホッパーへの落ち口に、38重量%亜硝酸ナトリウム水溶液を3.6L/hの割合で噴霧添加した。7時間の汚泥脱水ケーキの発生量は7.4tであり、汚泥脱水ケーキ100重量部に対して亜硝酸ナトリウム0.13重量部が添加されたことになる。
翌日8時30分、ホッパーから汚泥脱水ケーキを排出するとき、トラック荷台上の汚泥脱水ケーキの上部10cmの空気をとり、ガス検知管により硫化水素とメチルメルカプタンの濃度を測定した。硫化水素は8ppm(容量比)であり、メチルメルカプタンは2ppm(容量比)であった。汚泥脱水ケーキは、脱水直後は茶褐色であったが、翌日には、黒色度がなくなり、明るい茶色を示していた。
比較例6
実施例5と同じ下水処理場において、汚泥貯留槽に脱水1時間前に、汚泥1Lに対して亜硝酸ナトリウム180mgの割合で、38重量%亜硝酸ナトリウム水溶液を一括添加し、途中の汚泥追加に合わせて同じ割合で38重量%亜硝酸ナトリウム水溶液を追加して添加した。
9時から16時までの7時間の運転中、38重量%亜硝酸ナトリウム水溶液50.0kg、すなわち亜硝酸ナトリウムとして19.0kgを添加し、この間の汚泥脱水ケーキの発生量は7.2tであった。汚泥脱水ケーキ100重量部に対して亜硝酸ナトリウム0.26重量部が添加されたことになる。
翌日8時30分、ホッパーから汚泥脱水ケーキを排出するとき、実施例5と同様にして、ガス検知管により硫化水素とメチルメルカプタンの濃度を測定した。硫化水素は400ppm(容量比)であり、メチルメルカプタンは70ppm(容量比)であった。汚泥脱水ケーキは、黒色化し、嫌気腐敗が生じたことを示していた。
比較例7
実施例5と同じ下水処理場において、亜硝酸ナトリウムを添加することなく、脱水処理を行った。
9時から16時までの7時間の運転中、汚泥脱水ケーキの発生量は7.1tであった。
翌日8時30分、ホッパーから汚泥脱水ケーキを排出するとき、実施例5と同様にして、ガス検知管により硫化水素とメチルメルカプタンの濃度を測定した。硫化水素は500ppm(容量比)であり、メチルメルカプタンは100ppm(容量比)であった。汚泥脱水ケーキは、黒色化し、嫌気腐敗が生じたことを示していた。
実施例5及び比較例6〜7の結果を、第2表に示す。
【0013】
【表2】
Figure 0003736344
【0014】
実施例5においては、汚泥脱水ケーキ100重量部に対して亜硝酸ナトリウム0.13重量部を水溶液として噴霧添加することにより、無処理の比較例7に比べて、翌日朝の脱水ケーキの臭気成分は約50分の1に低減している。亜硝酸ナトリウムを汚泥スラリーに添加した比較例6では、実施例5の約2倍量の亜硝酸ナトリウムを用いているにもかかわらず、翌日朝の臭気成分の発生量は、無処理の比較例7と大差はなく、脱水ケーキも黒色化して、嫌気腐敗が生じていることがうかがえる。
【0015】
【発明の効果】
汚泥脱水ケーキに、易溶性の静菌剤を添加する本発明方法により、静菌剤の使用量を低減し、汚泥脱水ケーキと静菌剤を混合することなく防臭効果を発現させ、しかもその効果を持続することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing odor generation of a sludge dewatered cake. More specifically, the present invention provides a sludge dewatering cake that can effectively prevent odors originating from hydrogen sulfide, methyl mercaptan, ammonia, amines, etc. generated from sludge dewatering cakes such as sewage treatment plants and human waste treatment plants. The present invention relates to a method for preventing odor generation.
[0002]
[Prior art]
Various sludges are generated in organic industrial wastewater treatment processes such as sewage treatment plants, human waste treatment plants, food factories, and pulp and paper factories. For example, when solid-liquid separation of sewage is first performed in a sedimentation basin, initial sedimentation sludge is generated. When the supernatant water of the first sedimentation basin is treated by a floating biological system using an aeration tank or the like, the amount of activated sludge increases. The water treated in the aeration tank or the like is guided to the final sedimentation basin, and the activated sludge is separated. A part of the activated sludge is returned to the aeration tank or the like as the return sludge, and the remainder is the surplus sludge. Initially settled sludge and surplus sludge are guided to a sludge concentration tank and then temporarily stored in a sludge storage tank. The sludge in the sludge storage tank is then dehydrated by a dehydrator, and the obtained sludge dehydrated cake is carried out for landfill or incineration.
The sludge dehydrated cake after dehydration generates malodorous substances due to decay. Substances frequently detected as malodorous substances generated in sewage treatment plants are sulfur compounds such as hydrogen sulfide and methyl mercaptan, nitrogen compounds such as ammonia and trimethylamine, and lower fatty acids such as valeric acid and isobutyric acid. Among these, the amount of hydrogen sulfide and methyl mercaptan is particularly large.
Many sludge storage tanks and dehydrators are closed systems, but sludge dewatered cake obtained by dewatering is often transported and stored in an open system, so countermeasures against odor are important. In other words, a conveyor or truck is usually used to transport the sludge dehydrated cake, and the sludge dehydrated cake, which is the source of odor, moves. Therefore, it is difficult to treat with a cover, odor suction, etc., and odor countermeasures are difficult. Also, in the final landfill, the generated odor spreads and adversely affects the environment, causing discomfort to nearby residents. For this reason, it is necessary to suppress the odor itself generated from the sludge dewatering cake, and various deodorizing methods have been proposed.
In JP 2000-202494 A, nitrite is used as a method for effectively preventing the generation of odor of sludge dewatered cake at low cost by using a non-chlorine or non-metallic treatment agent. , And proposed a method of dehydrating after adding sulfite or bisulfite to sludge slurry, and in JP-A-2000-288592, it is sufficient to reduce the amount of nitrite that causes nitrogen to remain in the sludge dewatered cake. As a method for preventing the generation of odor of sludge dewatering cake that exhibits a deodorizing effect, a method of adding oxidizer, metal salt or organic disinfectant and nitrite to sludge slurry was proposed. In addition, as a method to prevent odor generation of sludge dewatering cake using chemicals that do not affect people and the environment, add oxidizer and nitrite, sulfite or bisulfite to sludge slurry, then add sorbic acid We found that the method was effective.
However, both of these methods add chemicals to the sludge slurry, which increases the amount of chemicals added, and can effectively prevent odor generation in the sludge slurry storage tank and sludge dehydrator. However, the duration of the odor generation effect from the sludge dehydrated cake is several hours to a maximum of about half a day, and when the sludge dehydrated cake of the previous day is stored in the cake hopper and transported the next day, it is economically appropriate. Almost no odor prevention effect could be expected with the amount of drug added.
Furthermore, the present inventors disclosed in Japanese Patent Application Laid-Open No. 2000-70999 that odor generation that can suppress the generation of malodorous substances over a long period of time in both cases of sludge slurry and sludge dewatered cake with the use of a small amount of chemicals. As a preventive method, a method of adding a deodorant containing a metal salt that forms a sparingly soluble sulfide and a sparingly soluble pyrithione compound was proposed. However, when this deodorant is added to the sludge dewatering cake, it must be mixed thoroughly after the addition, so it should be added to the sludge before or during dehydration so that it can be mixed uniformly with a small driving force. Was preferred.
[0003]
[Problems to be solved by the invention]
The present invention relates to a method for preventing odor generation of a sludge dewatered cake. More specifically, the present invention relates to a method for preventing the generation of odor of a sludge dewatered cake, which can add a bacteriostatic agent to a sludge dehydrated cake and develop a deodorizing effect without mixing, while maintaining the effect.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have added a readily soluble bacteriostatic agent to the sludge dewatered cake, so that a sufficient deodorizing effect can be obtained without mixing the sludge dehydrated cake. Based on this finding, the present invention has been completed.
That is, the present invention
(1) Addition of 20 g or more of nitrite dissolved in 100 mL of water at 25 ° C. as an aqueous solution having a concentration of 20 wt% or more to the sludge dewatered cake,
(2) in drop port to the cake hopper, characterized in that the addition of nitrite (1) Odor prevention method of sludge dewatering cake according to claim,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method for preventing odor generation of the sludge dewatered cake of the present invention, a bacteriostatic agent capable of dissolving at least 20 g, preferably at least 35 g, more preferably at least 50 g in 100 mL of water at 25 ° C. is added to the sludge dehydrated cake.
In the method of the present invention, the bacteriostatic agent is a drug that inhibits the growth or proliferation of bacteria. In the method of the present invention, a drug generally referred to as a bactericide can also be used as a bacteriostatic agent by developing a bacteriostatic action when used at a low concentration. Examples of the bacteriostatic agent used in the method of the present invention include nitrite, hypochlorite, quaternary ammonium salt, ethanol, formaldehyde and the like. Of these, nitrite can be suitably used. Examples of nitrites that dissolve 20 g or more in 100 mL of water at 25 ° C. include ammonium nitrite, lithium nitrite, sodium nitrite, potassium nitrite, cesium nitrite, magnesium nitrite, calcium nitrite, strontium nitrite, and barium nitrite. , Nickel nitrite, lead nitrite and the like. Among these, sodium nitrite, potassium nitrite, and calcium nitrite are particularly easy to handle and obtain, and do not hinder the secondary use of the sludge dehydrated cake, so that they can be particularly preferably used.
[0006]
In the method of the present invention, there is no particular limitation on the method of adding the bacteriostatic agent to the sludge dewatered cake. For example, a solid or liquid bacteriostatic agent can be added to the sludge dehydrated cake as it is, or an aqueous solution of the bacteriostatic agent. Can also be added to the sludge dewatered cake. When the bacteriostatic agent is added as an aqueous solution, if the dilution ratio is large, a large amount of water is added, and the moisture content of the cake is increased. Therefore, the concentration of the aqueous solution is preferably 20% by weight or more. There are no particular restrictions on where the bacteriostatic agent is added to the sludge dewatered cake.For example, the bacteriostatic agent is made into a high-concentration aqueous solution, and a sprayer is used to transport the sludge dehydrated cake to the dropout to the cake hopper. Can be sprayed.
Conventionally, deodorants for suppressing the decomposition of odorous substances contained in sludge and the generation of odorous substances from sludge are mixed with sludge and reacted in order to mix sludge and deodorant. It was added to a well-performed sludge slurry. However, when the deodorant is added to the sludge slurry, the added deodorant is not used completely for preventing the generation of odor of the sludge dewatered cake, so that the necessary amount of the deodorant is increased. In addition, when a deodorant is added to the sludge dewatering cake, it is necessary to thoroughly mix the sludge dewatering cake and the deodorant. However, mixing of the sludge dewatering cake and the deodorant can be carried out with existing facilities. Since this is not possible, it is necessary to install a new mixer, which consumes a large amount of power for mixing and it is difficult to desire sufficient mixing. For this reason, the addition of a deodorant to the sludge dewatering cake has not been carried out except when the generated odor is masked with another aromatic agent or the like.
According to the method of the present invention in which 20 g or more of a bacteriostatic agent that dissolves in 100 mL of water at 25 ° C. is added to the sludge dehydrated cake, the bacteriostatic agent is converted into the sludge dehydrated cake without mixing the sludge dehydrated cake and the bacteriostatic agent. Compared with the case where the bacteriostatic agent is added to the sludge slurry, a sufficient amount of odor generation prevention effect is obtained with a smaller amount of the bacteriostatic agent, and the effect lasts for a long time.
[0007]
In the method of the present invention, when nitrite is used as a bacteriostatic agent, the lower the pH of the sludge slurry or sludge dewatered cake, the higher the effect of nitrite as a bacteriostatic agent. The pH of the sewage sludge and the sewage sludge dewatering cake is usually about 5 to 6. In this pH range, the odor generation preventing method of the present invention in which nitrite is added to the sludge dewatered cake is surely effective.
A bacteriostatic agent that dissolves 20 g or more in 100 mL of water at 25 ° C. is a solid or liquid bacteriostatic agent as it is or as a high-concentration aqueous solution added to the sludge dewatering cake by spraying or the like. It penetrates the entire sludge dewatering cake without mixing bacteriostatic agents. When nitrite is used as a bacteriostatic agent, nitrite itself and nitric oxide produced when nitrous acid decomposes suppress the activity of microorganisms. As a result of the suppression of the activity of microorganisms, the generation amount of odorous components such as hydrogen sulfide and methyl mercaptan is reduced, and the generation amount of carbon dioxide which is proof of the activity of microorganisms is also reduced. Odor components from sludge dewatered cakes are mainly generated because sulfur-containing proteins are decomposed by anaerobic microorganisms, but adding a bacteriostatic agent to sludge dehydrated cakes can suppress these decomposition reactions. it can.
[0008]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In Examples and Comparative Examples, hydrogen sulfide was analyzed using a gas detection tube 4M, 4L, or 4LL manufactured by Gastec, and methyl mercaptan was analyzed using a gas detection tube 71H or 71 manufactured by Gastech. The gas analysis was performed using a gas detection tube 2HH or 2H manufactured by Gastec. The detection lower limit concentrations of hydrogen sulfide and methyl mercaptan are both 0.25 ppm (volume ratio).
Example 1
After adding 30 mg of dehydrating agent [Kurita Kogyo Co., Ltd., CLIFIX CP604, cationic polymer] to 250 mL of mixed raw sludge (pH 5.06, suspended substance concentration 2.24% by weight) in the sewage treatment plant, Gravity filtration was performed using a column with a diameter of 60 cm for 2 minutes, the column was removed, and pressure dehydration was further performed for 2 minutes at a pressure of 0.05 MPa to obtain a dehydrated cake having a diameter of about 80 mm and a thickness of 5 mm. The weight of the dehydrated cake obtained was 25 g, and the water content was 78% by weight.
After 79 mg of 38 wt% sodium nitrite aqueous solution was equally divided and dripped at three places on one side of the dehydrated cake, the dehydrated cake was folded in two and placed in a tetra bag, and the inlet was heat-sealed. 600 mL was sealed and stored in a thermostat at 30 ° C.
After 24 hours of gas analysis, hydrogen sulfide and methyl mercaptan were not detected, and carbon dioxide gas was 1.3% by volume. Further, when a gas analysis was performed after 48 hours, hydrogen sulfide and methyl mercaptan were still not detected, and carbon dioxide gas was 11.2% by volume.
Example 2
The same treatment as in Example 1 was performed except that 79 mg of a 38 wt% sodium nitrite aqueous solution was instilled on one side of the dehydrated cake, and then the dehydrated cake was folded in two and placed in a tetra bag.
After 24 hours, hydrogen sulfide and methyl mercaptan were not detected, and carbon dioxide gas was 1.5% by volume. After 48 hours, both hydrogen sulfide and methyl mercaptan were 2 ppm (volume ratio), and carbon dioxide gas was 12.6% by volume.
Example 3
Except that 38mg% sodium nitrite aqueous solution 79mg was equally divided and dripped in three places on one side of the dehydrated cake, the dehydrated cake was folded in half, kneaded thoroughly by hand, and then put into a tetra bag. The same treatment as in Example 1 was performed.
After 24 hours, hydrogen sulfide and methyl mercaptan were not detected, and carbon dioxide gas was 1.3% by volume. Even after 48 hours, hydrogen sulfide and methyl mercaptan were not detected, and carbon dioxide gas was 10.4% by volume.
Example 4
The same treatment as in Example 1 was performed except that 10 mg of sodium nitrite crystal powder was placed in three places on one side of the dehydrated cake, the dehydrated cake was folded in two, and placed in a tetra bag.
After 24 hours, hydrogen sulfide and methyl mercaptan were not detected, and carbon dioxide gas was 1.4% by volume. After 48 hours, hydrogen sulfide was 2 ppm (volume ratio), methyl mercaptan was 1 ppm (volume ratio), and carbon dioxide gas was 12.2% by volume.
[0009]
Comparative Example 1
To 250 mL of mixed raw sludge in the same sewage treatment plant as in Example 1, 30 mg of a dehydrating agent [Kurita Kogyo Co., Ltd., CLIFIX CP604, cationic polymer] was added and aggregated, and gravity filtered for 30 seconds using a column with a diameter of 60 cm. Thereafter, 79 mg of a 38% by weight aqueous sodium nitrite solution was added, stirred for 30 seconds using a spatula, and further squeezed and dehydrated at a pressure of 0.05 MPa for 2 minutes to obtain a dehydrated cake. The obtained dehydrated cake was folded in two and placed in a tetra bag, the inlet was heat-sealed, 600 mL of air was sealed, and stored in a thermostat at 30 ° C.
After 24 hours, hydrogen sulfide was not detected, methyl mercaptan was 1 ppm (volume ratio), and carbon dioxide gas was 7.2% by volume. After 48 hours, hydrogen sulfide was 150 ppm (volume ratio), methyl mercaptan was 400 ppm (volume ratio), and carbon dioxide gas was 22.0% by volume.
Comparative Example 2
After adding 79 mg of 38 wt% sodium nitrite aqueous solution to 250 mL of mixed raw sludge in the same sewage treatment plant as in Example 1, and stirring for 60 minutes, dehydrating agent [Kurita Kogyo Co., Ltd., CLIFIX CP604, cationic polymer] 30 mg Was added, and the mixture was agglomerated, gravity filtered for 2 minutes using a column having a diameter of 60 cm, and further pressed and dehydrated at a pressure of 0.05 MPa for 2 minutes to obtain a dehydrated cake. The obtained dehydrated cake was folded in two and placed in a tetra bag, the inlet was heat-sealed, 600 mL of air was sealed, and stored in a thermostat at 30 ° C.
After 24 hours, hydrogen sulfide was 10 ppm (volume ratio), methyl mercaptan was 12 ppm (volume ratio), and carbon dioxide gas was 12.8 volume%. After 48 hours, hydrogen sulfide was 800 ppm (volume ratio), methyl mercaptan was 1,200 ppm (volume ratio), and carbon dioxide gas was 25.0 volume%.
Comparative Example 3
The same treatment as in Comparative Example 2 was performed, except that the amount of the 38 wt% aqueous sodium nitrite solution added to the mixed raw sludge was 158 mg.
After 24 hours, hydrogen sulfide was not detected, methyl mercaptan was 2 ppm (volume ratio), and carbon dioxide gas was 9.6% by volume. After 48 hours, hydrogen sulfide was 400 ppm (volume ratio), methyl mercaptan was 900 ppm (volume ratio), and carbon dioxide gas was 24.0 volume%.
Comparative Example 4
The same treatment as in Comparative Example 2 was performed, except that the amount of the 38 wt% aqueous sodium nitrite solution added to the mixed raw sludge was 237 mg.
After 24 hours, neither hydrogen sulfide nor methyl mercaptan was detected, and carbon dioxide gas was 5.8% by volume. After 48 hours, hydrogen sulfide was 120 ppm (volume ratio), methyl mercaptan was 500 ppm (volume ratio), and carbon dioxide gas was 22.0% by volume.
Comparative Example 5
The same treatment as in Example 1 was performed except that the sodium nitrite aqueous solution was not instilled.
After 24 hours, hydrogen sulfide was 40 ppm (volume ratio), methyl mercaptan was 20 ppm (volume ratio), and carbon dioxide gas was 14.0 volume%. After 48 hours, hydrogen sulfide was 1,100 ppm (volume ratio), methyl mercaptan was 800 ppm (volume ratio), and carbon dioxide gas was 25.0 volume%.
The results of Examples 1 to 4 and Comparative Examples 1 to 5 are shown in Table 1.
[0010]
[Table 1]
Figure 0003736344
[0011]
Examples 1 and 2 are examples in which a highly concentrated aqueous sodium nitrite solution was instilled into a sludge dewatered cake. The amount of drip solution is about 0.08 g and about 3 droplets of water with respect to a sludge dehydrated cake with a diameter of about 80 mm and a weight of about 25 g. At the time of drip, only a small part of the cake is attached. It shows the effect of preventing odor generation for almost 48 hours. This effect was almost equal when the mixture was sufficiently mixed after the instillation of Example 3.
Further, in Example 4 in which the crystal powder of sodium nitrite was placed in three places on one sludge dewatered cake having a diameter of about 80 mm, a good odor prevention effect was shown, and even in a part of the sludge dehydrated cake. If the required amount of sodium nitrite adheres, the drug penetrates without any particular mixing, and a good odor prevention effect is exhibited. Moreover, in Examples 1-4 in which the odor prevention effect is expressed, since the generation of carbon dioxide gas is remarkably small, it can be seen that the microbial activity is suppressed.
On the other hand, in Comparative Examples 2 to 4 in which sodium nitrite is added to the sludge slurry, which is a conventional addition method, in Comparative Example 4 in which the amount of sodium nitrite added is three times that of the example, up to 24 hours. Odor prevention was the limit, and a considerable amount of hydrogen sulfide and methyl mercaptan were generated after 48 hours. As a method for efficiently mixing sodium nitrite with sludge, the coagulated sludge was added and mixed after gravity filtration. In Comparative Example 1, although an improvement was observed, the effect was still insufficient.
[0012]
Example 5
At the sewage treatment plant, the effect of preventing the generation of odor from the sludge dewatered cake was evaluated and confirmed by spraying and adding sodium nitrite aqueous solution to the dewatered cake.
This sewage treatment plant separates raw sludge from the first sedimentation basin and surplus sludge from the final sedimentation basin, and the surplus sludge is only settled and concentrated. On the other hand, as a result, the pH is as high as 5.5 to 6.0 as sewage sludge, and the suspended matter concentration is 1.4 to 1.6% by weight.
During a 7-hour operation from 9:00 to 16:00, a 38 wt% sodium nitrite aqueous solution was sprayed and added to the outlet of the hopper of the dewatered cake transfer conveyor at a rate of 3.6 L / h. The amount of sludge dehydrated cake generated for 7 hours was 7.4 t, and 0.13 parts by weight of sodium nitrite was added to 100 parts by weight of the sludge dehydrated cake.
At 8:30 on the next day, when the sludge dewatered cake was discharged from the hopper, 10 cm of air was taken from the top of the sludge dewatered cake on the truck bed, and the concentrations of hydrogen sulfide and methyl mercaptan were measured with a gas detector tube. Hydrogen sulfide was 8 ppm (volume ratio), and methyl mercaptan was 2 ppm (volume ratio). The sludge dewatered cake was brownish brown immediately after dehydration, but on the next day, the blackness disappeared and a light brown color was shown.
Comparative Example 6
In the same sewage treatment plant as in Example 5, one hour before dehydration in the sludge storage tank, 38% by weight of sodium nitrite aqueous solution was added at a rate of 180 mg of sodium nitrite to 1 L of sludge, and sludge was added during the process. A total of 38% by weight aqueous sodium nitrite solution was additionally added at the same ratio.
During the 7-hour operation from 9:00 to 16:00, 50.0 kg of 38 wt% sodium nitrite aqueous solution, that is, 19.0 kg of sodium nitrite was added, and the amount of sludge dewatered cake generated during this period was 7.2 t. It was. This means that 0.26 parts by weight of sodium nitrite was added to 100 parts by weight of the sludge dewatered cake.
At 8:30 on the next day, when the sludge dewatered cake was discharged from the hopper, the concentrations of hydrogen sulfide and methyl mercaptan were measured with a gas detector tube in the same manner as in Example 5. Hydrogen sulfide was 400 ppm (volume ratio), and methyl mercaptan was 70 ppm (volume ratio). The sludge dewatered cake turned black, indicating that anaerobic rot occurred.
Comparative Example 7
In the same sewage treatment plant as in Example 5, dehydration treatment was performed without adding sodium nitrite.
During the 7-hour operation from 9:00 to 16:00, the amount of sludge dewatered cake generated was 7.1 t.
At 8:30 on the next day, when the sludge dewatered cake was discharged from the hopper, the concentrations of hydrogen sulfide and methyl mercaptan were measured with a gas detector tube in the same manner as in Example 5. Hydrogen sulfide was 500 ppm (volume ratio), and methyl mercaptan was 100 ppm (volume ratio). The sludge dewatered cake turned black, indicating that anaerobic rot occurred.
The results of Example 5 and Comparative Examples 6-7 are shown in Table 2.
[0013]
[Table 2]
Figure 0003736344
[0014]
In Example 5, by adding 0.13 parts by weight of sodium nitrite as an aqueous solution to 100 parts by weight of the sludge dehydrated cake, the odor component of the dehydrated cake in the morning the next day compared to the untreated Comparative Example 7 Is reduced to about 1/50. In Comparative Example 6 in which sodium nitrite was added to the sludge slurry, although the amount of sodium nitrite used was about twice that of Example 5, the amount of odorous components generated in the next morning was an untreated comparative example. There is no big difference from 7 and the dehydrated cake is also blackened, indicating that anaerobic rot has occurred.
[0015]
【The invention's effect】
By the method of the present invention in which an easily soluble bacteriostatic agent is added to the sludge dewatering cake, the amount of the bacteriostatic agent is reduced, and a deodorizing effect is exhibited without mixing the sludge dewatering cake and the bacteriostatic agent, and the effect Can last.

Claims (2)

汚泥脱水ケーキに、25℃において水100mLに20g以上溶解する亜硝酸塩を20重量%以上の濃度の水溶液として添加することを特徴とする汚泥脱水ケーキの臭気発生防止方法。A method for preventing odor generation of a sludge dewatered cake, comprising adding to the sludge dewatered cake 20% or more of a nitrite dissolved in 100 mL of water at 25 ° C. as an aqueous solution having a concentration of 20% by weight or more . ケーキホッパーへの落ち口で亜硝酸塩を添加することを特徴とする請求項1記載の汚泥脱水ケーキの臭気発生防止方法。 2. The method for preventing odor generation of a sludge dewatered cake according to claim 1 , wherein nitrite is added at the outlet to the cake hopper .
JP2000390872A 2000-12-22 2000-12-22 Odor generation prevention method of sludge dewatering cake Expired - Lifetime JP3736344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000390872A JP3736344B2 (en) 2000-12-22 2000-12-22 Odor generation prevention method of sludge dewatering cake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000390872A JP3736344B2 (en) 2000-12-22 2000-12-22 Odor generation prevention method of sludge dewatering cake

Publications (2)

Publication Number Publication Date
JP2002186995A JP2002186995A (en) 2002-07-02
JP3736344B2 true JP3736344B2 (en) 2006-01-18

Family

ID=18857149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000390872A Expired - Lifetime JP3736344B2 (en) 2000-12-22 2000-12-22 Odor generation prevention method of sludge dewatering cake

Country Status (1)

Country Link
JP (1) JP3736344B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421239B (en) * 2004-12-20 2010-06-23 Rhodia Uk Ltd Treatment of sewage sludge
JP5319213B2 (en) * 2008-09-03 2013-10-16 大和ハウス工業株式会社 Odor generation prevention method and malodor generation prevention device from sludge dewatering cake storage tank

Also Published As

Publication number Publication date
JP2002186995A (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US4108771A (en) Elimination of odors from organic wastes
CN104190234B (en) A kind of garbage transfer station deodorizer and preparation method thereof
JP3674939B2 (en) Deodorizing method and deodorizing agent for dehydrated cake
JP2010110666A (en) Method of suppressing production of odor of sludge dehydrated cake
JP3605821B2 (en) Deodorizer and method for deodorizing cake
JP3736344B2 (en) Odor generation prevention method of sludge dewatering cake
JP4174757B2 (en) Odor control method of sludge dewatering cake
JP3900512B2 (en) Odor generation prevention method for dehydrated cake
JP2945402B2 (en) Sludge deodorant
JP2000351000A (en) Deodorant for dewatered sludge cake and method for preventing generation of odor
JP2004275541A (en) Odor retarder and odor suppression method for sludge slurry and sludge dehydrated cake
JPH06320195A (en) Deodorization method of dewatered sludge cake
JP5616872B2 (en) Sludge slurry deodorizing method, dewatering cake deodorizing method, and deodorizing agent
JP4222607B2 (en) Deodorizing method and deodorizing liquid
JP2829685B2 (en) Deodorizing method of dewatered sludge cake
JP4736012B2 (en) Odor generation prevention method of sludge dewatering cake
JP5982852B2 (en) Deodorization method and deodorant kit
JP3619278B2 (en) Sludge deodorant
JP3944909B2 (en) Deodorant and deodorizing method for concentrated sludge slurry
JPS62121699A (en) Method for deodorizing dehydrated cake
JP4523889B2 (en) Deodorizing method and deodorizing agent
JPH11290895A (en) Method for deodorizing sludge dehydrated cake and deodorant for sludge dehydrated cake
JP2004000992A5 (en)
JP2002102891A (en) Method for preventing malodor of sludge and dehydrated cake
JP4611471B2 (en) Deodorization method of sludge dewatering cake

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Ref document number: 3736344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

EXPY Cancellation because of completion of term