JP3900512B2 - Odor generation prevention method for dehydrated cake - Google Patents

Odor generation prevention method for dehydrated cake Download PDF

Info

Publication number
JP3900512B2
JP3900512B2 JP2001297535A JP2001297535A JP3900512B2 JP 3900512 B2 JP3900512 B2 JP 3900512B2 JP 2001297535 A JP2001297535 A JP 2001297535A JP 2001297535 A JP2001297535 A JP 2001297535A JP 3900512 B2 JP3900512 B2 JP 3900512B2
Authority
JP
Japan
Prior art keywords
nitrite
sludge
added
hours
dehydrated cake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001297535A
Other languages
Japanese (ja)
Other versions
JP2003094094A (en
Inventor
康裕 大井
裕弘 麦林
英順 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001297535A priority Critical patent/JP3900512B2/en
Publication of JP2003094094A publication Critical patent/JP2003094094A/en
Application granted granted Critical
Publication of JP3900512B2 publication Critical patent/JP3900512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脱水ケーキの臭気発生防止方法に関する。さらに詳しくは、本発明は、下水処理場、し尿処理場などの脱水ケーキから発生する硫化水素、メチルメルカプタン、アンモニア、アミンなどに由来する臭気を長時間にわたって防止することができる脱水ケーキの臭気発生防止方法に関する。
【0002】
【従来の技術】
下水処理場、し尿処理場や、食品工場、紙パルプ工場などの有機性産業排水の処理工程などにおいては、各種の汚泥が発生する。例えば、下水を最初沈殿池で固液分離すると初沈生汚泥が発生し、最初沈殿池の上澄水を曝気槽などを用いて浮遊生物方式により処理すると、活性汚泥の量が増加する。曝気槽などで処理された水は最終沈殿池に導かれ、活性汚泥が分離され、その一部は返送汚泥として曝気槽などに返送され、残余は余剰汚泥とされる。初沈生汚泥と余剰汚泥は、汚泥濃縮槽に導かれ、その後、汚泥貯留槽にいったん貯留される。汚泥貯留槽内の汚泥は、次いで脱水機により脱水され、得られた脱水ケーキは埋め立てや、焼却のために搬出される。
脱水後の脱水ケーキは、腐敗により悪臭物質を発生する。下水処理場で発生する悪臭物質として頻繁に検出される物質は、硫化水素、メチルメルカプタンなどのイオウ化合物、アンモニア、トリメチルアミンなどの窒素化合物、吉草酸、イソ酪酸などの低級脂肪酸などである。これらの中で、硫化水素とメチルメルカプタンの量が特に多い。
汚泥貯留槽や脱水機の多くは密閉系となっているが、脱水により得られる脱水ケーキは開放系で運搬、保管される場合が多いので、臭気対策は重要である。すなわち、脱水ケーキの運搬には、通常コンベアやトラックなどが使われ、臭気発生源である脱水ケーキが移動するので、覆蓋、臭気の吸引などによる処理が困難であり、臭気対策がむつかしい。また、最終埋め立て地においても、発生する臭気が拡散し、付近の住民に不快感を与えるなど、環境に悪影響を及ぼす。このために、脱水ケーキから発生する臭気自体を抑制する必要があり、従来よりさまざまな脱臭方法が提案されている。
本出願人は、特開2000−202494号公報において、非塩素系、非金属系の処理剤を用いて、低コストで効果的に脱水ケーキの臭気の発生を防止する方法として、亜硝酸塩、亜硫酸塩又は亜硫酸水素塩を汚泥スラリーに添加したのち脱水する方法を提案し、特開2000−288592号公報において、脱水ケーキ中に窒素分を残留させる亜硝酸塩の添加量を少なくして十分な消臭効果が発現する脱水ケーキの臭気発生防止方法として、酸化剤、金属塩又は有機系殺菌剤と亜硝酸塩を併用して汚泥スラリーに添加する方法を提案した。また、脱水ケーキに静菌剤を添加して、混合することなく防臭効果を発現させ、しかもその効果を持続することができる脱水ケーキの臭気発生防止方法として、脱水ケーキに、25℃において水100mLに20g以上溶解する静菌剤を添加する方法を見いだした。しかし、この方法によっても臭気発生防止効果の持続時間は48時間程度であり、さらに長時間にわたって臭気発生を防止し得る方法が求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、下水処理場、し尿処理場などの脱水ケーキから発生する硫化水素、メチルメルカプタン、アンモニア、アミンなどに由来する臭気を長時間にわたって防止することができる脱水ケーキの臭気発生防止方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、汚泥に亜硝酸塩を添加して脱水機により固液分離し、さらに固液分離後の脱水ケーキに静菌剤を添加するか、あるいは、汚泥に亜硝酸塩と水不溶性若しくは汚泥固形物質に吸着される静菌剤を添加して脱水機により固液分離することにより、脱水ケーキの臭気発生を長時間にわたって防止し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)汚泥に亜硝酸塩を添加して脱水機により固液分離し、固液分離後の脱水ケーキに静菌剤を添加することを特徴とする脱水ケーキの臭気発生防止方法、及び、
(2)静菌剤が亜硝酸塩である請求項1記載の脱水ケーキの臭気発生防止方法、を提供するものである。
【0005】
【発明の実施の形態】
本発明の脱水ケーキの臭気発生防止方法においては、汚泥に亜硝酸塩を添加して脱水機により固液分離し、固液分離後の脱水ケーキに静菌剤を添加する。
本発明方法を適用する汚泥に特に制限はなく、例えば、下水処理汚泥、し尿処理汚泥、用水処理汚泥、紙パルプ工場などの工場排水処理汚泥などに適用することができ、また、凝集処理汚泥、生物処理汚泥のいずれにも適用することができる。
本発明方法において、汚泥に添加する亜硝酸塩に特に制限はなく、例えば、亜硝酸アンモニウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸ルビジウム、亜硝酸セシウム、亜硝酸マグネシウム、亜硝酸カルシウム、亜硝酸ストロンチウム、亜硝酸バリウム、亜硝酸ニッケル、亜硝酸亜鉛、亜硝酸タリウムなどを挙げることができる。これらの中で、亜硝酸ナトリウム、亜硝酸カリウム及び亜硝酸カルシウムは、入手と取り扱いが容易であり、脱水ケーキの二次利用の支障とならないので、好適に使用することができる。
【0006】
本発明方法において、汚泥への亜硝酸塩の添加量は、汚泥1L当たり30〜300mgであることが好ましく、汚泥1L当たり50〜200mgであることがより好ましい。亜硝酸塩の添加量が汚泥1L当たり30mg未満であると、臭気発生防止効果が不十分となるおそれがある。亜硝酸塩の添加量は、汚泥1L当たり300mg以下で72時間程度の臭気発生防止効果が十分に発現し、通常は汚泥1L当たり300mgを超える亜硝酸塩を添加する必要はない。
汚泥への亜硝酸塩の添加方法に特に制限はなく、例えば、亜硝酸塩をそのまま添加することができ、あるいは、亜硝酸塩を水溶液として添加することもできる。亜硝酸塩を水溶液として添加する方法は、定量ポンプなどを使用することができ、作業性が良好で運転管理が容易になるので、好適に用いることができる。
汚泥に亜硝酸塩を添加したのち、脱水するまでの時間は15分以上必要で、好ましくは1時間ないし5時間である。脱水するまでの時間すなわち接触時間が短いと、汚泥中の臭気発生に関与する微生物活動を抑制できない。
本発明方法において、汚泥の固液分離に用いる脱水機に特に制限はなく、例えば、遠心脱水機、ベルトプレス脱水機、スクリュープレス脱水機、真空脱水機、フィルタープレス脱水機などを挙げることができる。
【0007】
本発明方法において、静菌剤とは、細菌の発育あるいは増殖を阻止する薬剤である。本発明方法においては、一般に殺菌剤と称されている薬剤も、低濃度で用いることにより静菌作用を発現させ、静菌剤として使用することができる。本発明方法に用いる静菌剤としては、例えば、亜硝酸塩、次亜塩素酸塩、第四級アンモニウム塩、エタノール、ホルムアルデヒド、ピリチオン又はその誘導体、ソルビン酸などを挙げることができる。これらの中で、亜硝酸塩及びピリチオン又はその誘導体を好適に用いることができる。亜硝酸塩としては、例えば、亜硝酸アンモニウム、亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸ルビジウム、亜硝酸セシウム、亜硝酸マグネシウム、亜硝酸カルシウム、亜硝酸ストロンチウム、亜硝酸バリウム、亜硝酸ニッケル、亜硝酸亜鉛、亜硝酸タリウムなどを挙げることができる。ピリチオン又はその誘導体としては、例えば、ピリチオン、ナトリウムピリチオン、亜鉛ピリチオン、ジピリチオンなどを挙げることができる。
【0008】
本発明方法において、脱水ケーキに静菌剤を添加する方法に特に制限はなく、例えば、固体又は液体の静菌剤をそのまま脱水ケーキに添加することができ、あるいは、静菌剤の水溶液又は水分散液を脱水ケーキに添加することもできる。静菌剤を水溶液又は水分散液として添加する場合は、希釈倍率が大きいと、水分を多く加えることになり、ケーキ含水率を上昇させることになる。したがって、水溶液又は水分散液の濃度は、20重量%以上であることが好ましい。静菌剤を脱水ケーキに添加する場所に特に制限はなく、例えば、静菌剤を高濃度の水溶液又は水分散液とし、散布器を用いて、脱水ケーキの搬送部、ケーキホッパーへの落ち口などに散布することができる。
本発明方法において、脱水ケーキへの静菌剤の添加量に特に制限はなく、静菌剤の静菌力などに応じて適宜選択することができる。例えば、静菌剤として亜硝酸塩を用いるときは、その添加量は、脱水ケーキ1kg当たり500〜5,000mgであることが好ましく、脱水ケーキ1kg当たり1,000〜4,000mgであることがより好ましい。静菌剤としてピリチオン又はその誘導体を用いるときは、その添加量は、脱水ケーキ1kg当たり50〜500mgであることが好ましく、脱水ケーキ1kg当たり100〜300mgであることがより好ましい。
【0009】
亜硝酸塩は、汚泥及び脱水ケーキに対して臭気成分を分解する効果と臭気成分の発生を抑制する効果を有するが、汚泥中の微生物により分解され、その濃度が減少する。脱水ケーキ中に亜硝酸イオンが残存しなくなると、その時点から臭気発生が始まる。脱水ケーキでの亜硝酸塩の分解は、微生物濃度が高いために汚泥に比較してかなり大きく、また、経時的にその速度が速まる傾向がある。
本発明方法においては、汚泥に亜硝酸塩を添加して脱水機により固液分離し、固液分離後の脱水ケーキに静菌剤、例えば、亜硝酸塩を添加する。亜硝酸塩を脱水前の汚泥に添加することにより、亜硝酸イオンの初期分解速度を低くし、その結果、脱水ケーキ中の亜硝酸イオンの分解速度は著しく低下して、亜硝酸イオンが長時間にわたって残存するために、脱水ケーキの臭気発生防止時間を大きく延長することが可能になると考えられる。亜硝酸塩の添加量が同じであっても、亜硝酸塩の全量を汚泥に添加して脱水機により固液分離する方法、あるいは、汚泥を固液分離して得られる脱水ケーキに亜硝酸塩の全量を添加する方法に比べて、亜硝酸塩を汚泥と固液分離後の脱水ケーキに分けて添加する本発明方法の方が、長時間にわたって脱水ケーキ中に亜硝酸イオンが残存し、臭気発生防止時間が顕著に延長され、72時間以上の臭気発生防止が可能となる。
脱水ケーキに添加する亜硝酸塩以外の静菌剤に関しては、その分解や機能低下については不明であるが、脱水前の汚泥に添加された亜硝酸塩によって、亜硝酸塩の分解能のみならず、臭気発生に係わる蛋白分解に関与する微生物の活性を低下させているものと推定される。
本発明方法によれば、脱水前の汚泥に添加する亜硝酸塩は、脱水ケーキに添加する静菌剤、又は、汚泥から脱水ケーキに伴われる水不溶性又は汚泥固形物に吸着される静菌剤の効果を高めるのみならず、脱水前の汚泥自体から発生する硫化水素、メチルメルカプタンなどの臭気を防止する。したがって、本発明方法によれば、汚泥貯留槽、脱水工程、脱水ケーキ貯留槽、脱水ケーキの搬出、運搬工程に至る広範な工程のすべてにおいて、臭気発生を防止することができる。
【0010】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
懸濁物質濃度22,000mg/L、懸濁物質中の有機分比率83.2重量%、pH5.1の下水混合生汚泥の処理を行った。
汚泥300mLに、亜硝酸ナトリウム45mgを添加し、2時間経過したのちカチオン系高分子凝集剤[栗田工業(株)、CP604]の0.2重量%水溶液18mLを加え、直径60mmのカラムで重力ろ過し、さらに50kPaの圧力で2分間圧搾脱水して、含水率75.8重量%の脱水ケーキ27.3gを得た。
得られた脱水ケーキに亜硝酸ナトリウム54.5mgを加えて均一に混合し、テトラパックに窒素ガス675mLとともに入れ、ヒートシールして30℃に保管し、24時間後、48時間後及び72時間後の窒素ガス中の硫化水素とメチルメルカプタンの濃度をガス検知管[ガステック(株)]を用いて測定した。
汚泥への亜硝酸ナトリウムの添加量は150mg/Lであって、脱水ケーキに対しては1,650mg/kg−ケーキに相当し、脱水ケーキへの亜硝酸ナトリウムの添加量は2,000mg/kg−ケーキである。
24時間後、48時間後ともに、硫化水素もメチルメルカプタンも検出されなかった。72時間後、硫化水素の濃度は5ppmであり、メチルメルカプタンの濃度は20ppmであった。
実施例2
脱水ケーキへの亜硝酸ナトリウムの添加量を3,000mg/kg−ケーキとして以外は、実施例1と同じ操作を行った。
24時間後、48時間後、72時間後のいずれにおいても、硫化水素もメチルメルカプタンも検出されなかった。
実施例3
脱水ケーキに、亜硝酸ナトリウムの代わりに、ナトリウムピリチオン5.5mgを加えた以外は、実施例1と同じ操作を行った。脱水ケーキへのナトリウムピリチオンの添加量は、200mg/kg−ケーキである。
24時間後、48時間後、72時間後のいずれにおいても、硫化水素もメチルメルカプタンも検出されなかった。
実施例4
ナトリウムピリチオンの代わりに亜鉛ピリチオンを用いた以外は、実施例3と同じ操作を行った。
24時間後、48時間後ともに、硫化水素もメチルメルカプタンも検出されなかった。72時間後に、硫化水素は検出されなかったが、メチルメルカプタンの濃度は5ppmであった。
【0011】
比較例1
実施例1と同じ汚泥300mLに、亜硝酸ナトリウム45mgを添加し、2時間経過したのちカチオン系高分子凝集剤[栗田工業(株)、CP604]の0.2重量%水溶液18mLを加え、直径60mmのカラムで重力ろ過し、さらに50kPaの圧力で2分間圧搾脱水して、含水率75.8重量%の脱水ケーキ27.3gを得た。
得られた脱水ケーキをテトラパックに窒素ガス675mLとともに入れ、ヒートシールして30℃に保管し、24時間後、48時間後及び72時間後の窒素ガス中の硫化水素とメチルメルカプタンの濃度を測定した。
汚泥への亜硝酸ナトリウムの添加量は150mg/Lであって、脱水ケーキに対しては1,650mg/kg−ケーキに相当する。
24時間後、硫化水素の濃度は30ppm、メチルメルカプタンの濃度は100ppmであった。48時間後、硫化水素の濃度は900ppm、メチルメルカプタンの濃度は1,500ppmであった。72時間後、硫化水素の濃度は1,200ppm、メチルメルカプタンの濃度は1,800ppmであった。
比較例2
汚泥への亜硝酸ナトリウムの添加量を300mg/Lとした以外は、比較例1と同じ操作を行った。
比較例3
汚泥への亜硝酸ナトリウムの添加量を450mg/Lとした以外は、比較例1と同じ操作を行った。
比較例4
実施例1と同じ汚泥300mLに、カチオン系高分子凝集剤[栗田工業(株)、CP604]の0.2重量%水溶液18mLを加え、直径60mmのカラムで重力ろ過し、さらに50kPaの圧力で2分間圧搾脱水して、含水率75.8重量%の脱水ケーキ27.3gを得た。
得られた脱水ケーキに亜硝酸ナトリウム81.8mgを加えて均一に混合し、テトラパックに窒素ガス675mLとともに入れ、ヒートシールして30℃に保管し、24時間後、48時間後及び72時間後の窒素ガス中の硫化水素とメチルメルカプタンの濃度を測定した。
脱水ケーキへの亜硝酸ナトリウムの添加量は、3,000mg/kg−ケーキである。
24時間後、硫化水素もメチルメルカプタンも検出されなかった。48時間後、硫化水素の濃度は5ppm、メチルメルカプタンの濃度は20ppmであった。72時間後、硫化水素の濃度は800ppm、メチルメルカプタンの濃度は1,500ppmであった。
比較例5
脱水ケーキへの亜硝酸ナトリウムの添加量を5,000mg/kg−ケーキとした以外は、比較例4と同じ操作を行った。
比較例6
亜硝酸ナトリウムの代わりに、ナトリウムピリチオン200mg/kg−ケーキを添加した以外は、比較例4と同じ操作を行った。
比較例7
亜硝酸ナトリウムの代わりに、亜鉛ピリチオン200mg/kg−ケーキを添加した以外は、比較例4と同じ操作を行った。
比較例8
実施例1と同じ汚泥300mLに、カチオン系高分子凝集剤[栗田工業(株)、CP604]の0.2重量%水溶液18mLを加え、直径60mmのカラムで重力ろ過し、さらに50kPaの圧力で2分間圧搾脱水して、含水率75.8重量%の脱水ケーキ27.3gを得た。
得られた脱水ケーキをテトラパックに窒素ガス675mLとともに入れ、ヒートシールして30℃に保管し、24時間後、48時間後及び72時間後の窒素ガス中の硫化水素とメチルメルカプタンの濃度を測定した。
24時間後、硫化水素の濃度は300ppm、メチルメルカプタンの濃度は450ppmであった。48時間後、硫化水素の濃度は800ppm、メチルメルカプタンの濃度は1,300ppmであった。72時間後、硫化水素の濃度は1,000ppm、メチルメルカプタンの濃度は1,500ppmであった。
実施例1〜4及び比較例1〜8の結果を、第1表に示す。
【0012】
【表1】

Figure 0003900512
【0013】
Figure 0003900512
第1表に見られるように、汚泥に亜硝酸ナトリウムを添加して固液分離し、固液分離後の脱水ケーキに亜硝酸ナトリウム、ナトリウムピリチオン又は亜鉛ピリチオンを添加した実施例1〜4では、48時間後までは硫化水素もメチルメルカプタンも全く検出されず、72時間後も硫化水素とメチルメルカプタンは発生しないか、あるいは、発生してもごく微量である。
これに対して、汚泥にのみ亜硝酸ナトリウムを添加して固液分離した比較例1〜3では、短時間で硫化水素とメチルメルカプタンが発生している。また、脱水ケーキに亜硝酸ナトリウムを添加した比較例4〜5は、比較例1〜3よりは良好な結果であるが、72時間後には多量の硫化水素とメチルメルカプタンが発生している。実施例2と比較例5を比べると、添加した亜硝酸ナトリウムの量は実施例3の方が少ないにもかかわらず、硫化水素とメチルメルカプタンの発生量が少なく、亜硝酸ナトリウムを汚泥と脱水ケーキに分けて添加する本発明方法により、効果的に臭気の発生を防止し得ることが分かる。脱水ケーキにのみナトリウムピリチオン又は亜鉛ピリチオンを添加した比較例6〜7では、24時間後にすでに硫化水素とメチルメルカプタンが発生している。
【0014】
実施例5
懸濁物質濃度24,300mg/L、懸濁物質中の有機分比率84.4重量%、pH5.4の下水混合生汚泥の処理を行った。
汚泥300mLに、亜硝酸ナトリウム45mgを添加し、2時間経過したのちカチオン系高分子凝集剤[栗田工業(株)、CP604]の0.2重量%水溶液18mLを加え、直径60mmのカラムで重力ろ過し、さらに50kPaの圧力で2分間圧搾脱水して、含水率75.7重量%の脱水ケーキ30.0gを得た。
得られた脱水ケーキに亜硝酸ナトリウム60.0mgを加えて均一に混合し、テトラパックに窒素ガス750mLとともに入れ、ヒートシールして30℃に保管し、24時間後、48時間後及び72時間後の窒素ガス中の硫化水素とメチルメルカプタンの濃度をガス検知管[ガステック(株)]を用いて測定した。
汚泥への亜硝酸ナトリウムの添加量は150mg/Lであって、脱水ケーキに対しては1,500mg/kg−ケーキに相当し、脱水ケーキへの亜硝酸ナトリウムの添加量は2,000mg/kg−ケーキである。
24時間後、48時間後ともに、硫化水素もメチルメルカプタンも検出されなかった。72時間後、硫化水素の濃度は2ppmであり、メチルメルカプタンの濃度は10ppmであった。
同様にして、亜硝酸ナトリウムを添加した脱水ケーキを調製し、密封して30℃に保管し、24時間後、48時間後、72時間後に10gずつを取り出して純水各100mLに分散し、JIS K 0102 43.1.2にしたがって亜硝酸イオン濃度を測定し、汚泥ケーキ1kg当たりの亜硝酸イオンの濃度を算出した。亜硝酸イオンの濃度は、24時間後900mg/kg−ケーキ、48時間後400mg/kg−ケーキ、72時間後0mg/kg−ケーキであった。
実施例6
脱水ケーキへの亜硝酸ナトリウムの添加量を3,000mg/kg−ケーキとした以外は、実施例5と同じ操作を行った。
24時間後、48時間後、72時間後ともに、硫化水素もメチルメルカプタンも検出されなかった。亜硝酸イオンの濃度は、24時間後1,700mg/kg−ケーキ、48時間後1,300mg/kg−ケーキ、72時間後600mg/kg−ケーキであった。
【0015】
比較例9
実施例5と同じ汚泥300mLに、カチオン系高分子凝集剤[栗田工業(株)、CP604]の0.2重量%水溶液18mLを加え、直径60mmのカラムで重力ろ過し、さらに50kPaの圧力で2分間圧搾脱水して、含水率75.7重量%の脱水ケーキ30.0gを得た。
得られた脱水ケーキに亜硝酸ナトリウム105mgを加えて均一に混合し、テトラパックに窒素ガス750mLとともに入れ、ヒートシールして30℃に保管し、24時間後、48時間後及び72時間後の窒素ガス中の硫化水素とメチルメルカプタンの濃度を測定した。脱水ケーキへの亜硝酸ナトリウムの添加量は、3,500mg/kg−ケーキである。
24時間後、硫化水素もメチルメルカプタンも検出されなかった。48時間後、硫化水素の濃度は200ppm、メチルメルカプタンの濃度は700ppmであった。72時間後、硫化水素の濃度は900ppm、メチルメルカプタンの濃度は1,800ppmであった。
同様にして、亜硝酸ナトリウムを添加した脱水ケーキを調製し、密封して30℃に保管し、24時間後、48時間後、72時間後に10gずつを取り出して純水各100mLに分散して亜硝酸イオン濃度を測定し、汚泥ケーキ1kg当たりの亜硝酸イオンの濃度を算出した。亜硝酸イオンの濃度は、24時間後500mg/kg−ケーキ、48時間後0mg/kg−ケーキ、72時間後0mg/kg−ケーキであった。
比較例10
脱水ケーキへの亜硝酸ナトリウムの添加量を5,000mg/kg−ケーキとした以外は、比較例9と同じ操作を行った。
24時間後、48時間後ともに、硫化水素もメチルメルカプタンも検出されなかった。72時間後、硫化水素の濃度は100ppm、メチルメルカプタンの濃度は400ppmであった。亜硝酸イオンの濃度は、24時間後2,100mg/kg−ケーキ、48時間後400mg/kg−ケーキ、72時間後0mg/kg−ケーキであった。
実施例5〜6及び比較例9〜10の結果を、第2表に示す。
【0016】
【表2】
Figure 0003900512
【0017】
第2表に見られるように、汚泥に亜硝酸ナトリウム150mg/Lを添加して固液分離し、固液分離後の脱水ケーキにさらに亜硝酸ナトリウム2,000mg/kg−ケーキを添加した実施例5では、48時間後までは硫化水素もメチルメルカプタンも全く検出されず、72時間後の硫化水素とメチルメルカプタンの発生量はごくわずかである。また、脱水ケーキ中には48時間後まで亜硝酸イオンが残存している。脱水ケーキへの亜硝酸ナトリウムの添加量を3,000mg/kg−ケーキに増加した実施例6では、72時間後まで硫化水素もメチルメルカプタンも発生せず、脱水ケーキ中には72時間後も亜硝酸イオンが残存している。
これに対して、脱水ケーキにのみ亜硝酸ナトリウムを添加した比較例9〜10では、72時間後には多量の硫化水素とメチルメルカプタンが発生しており、脱水ケーキ中の亜硝酸イオンの消滅も早い。実施例6と比較例10を比べると、添加した亜硝酸ナトリウムの量は実施例6の方が少ないにもかかわらず、硫化水素とメチルメルカプタンの発生量が少なく、残存する亜硝酸イオンの量が多く、亜硝酸ナトリウムを汚泥と脱水ケーキに分けて添加する本発明方法により、効果的に臭気の発生を防止し得ることが分かる。
【0018】
【発明の効果】
本発明の脱水ケーキの臭気発生防止方法によれば、汚泥に亜硝酸塩を添加して脱水したのち固液分離により得られる脱水ケーキに静菌剤を添加することにより、あるいは、汚泥に亜硝酸塩と水不溶性又は汚泥固形物に吸着される静菌剤を添加して固液分離することにより、長時間にわたって脱水ケーキ中に亜硝酸イオンを残存させ、硫化水素、メチルメルカプタンなどの悪臭物質の発生を効果的に防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing odor generation in a dehydrated cake. More specifically, the present invention relates to the generation of odors in dehydrated cakes that can prevent odors derived from hydrogen sulfide, methyl mercaptan, ammonia, amines, etc. generated from dehydrated cakes such as sewage treatment plants and human waste treatment plants over a long period of time. It relates to a prevention method.
[0002]
[Prior art]
Various sludges are generated in organic industrial wastewater treatment processes such as sewage treatment plants, human waste treatment plants, food factories, and pulp and paper factories. For example, when solid-liquid separation of sewage is first performed in a sedimentation basin, initial sedimentation sludge is generated. When the supernatant water of the first sedimentation basin is treated by a floating biological system using an aeration tank or the like, the amount of activated sludge increases. The water treated in the aeration tank or the like is guided to the final sedimentation basin, and the activated sludge is separated. A part of the activated sludge is returned to the aeration tank or the like as the return sludge, and the remainder is the surplus sludge. Initially settled sludge and surplus sludge are guided to a sludge concentration tank and then temporarily stored in a sludge storage tank. The sludge in the sludge storage tank is then dehydrated by a dehydrator, and the obtained dehydrated cake is carried out for landfill or incineration.
The dehydrated cake after dehydration generates malodorous substances due to decay. Substances frequently detected as malodorous substances generated in sewage treatment plants are sulfur compounds such as hydrogen sulfide and methyl mercaptan, nitrogen compounds such as ammonia and trimethylamine, and lower fatty acids such as valeric acid and isobutyric acid. Among these, the amount of hydrogen sulfide and methyl mercaptan is particularly large.
Many sludge storage tanks and dehydrators are sealed, but dehydrated cake obtained by dehydration is often transported and stored in an open system, so countermeasures against odor are important. In other words, a conveyor or a truck is usually used for transporting the dehydrated cake, and the dehydrated cake that is the source of odor is moved. Therefore, it is difficult to deal with the cover and odor suction, and it is difficult to take measures against odor. Also, in the final landfill, the generated odor spreads and adversely affects the environment, causing discomfort to nearby residents. For this reason, it is necessary to suppress the odor itself generated from the dehydrated cake, and various deodorizing methods have been proposed.
In the Japanese Patent Application Laid-Open No. 2000-202494, the present applicant uses nitrite, sulfite as a method for effectively preventing the generation of odor of dehydrated cake at low cost using a non-chlorine or non-metal treatment agent. A method of dehydration after adding salt or bisulfite to sludge slurry is proposed, and in JP-A-2000-288592, sufficient deodorization is achieved by reducing the amount of nitrite added to leave nitrogen in the dehydrated cake. As a method for preventing the generation of odor in a dehydrated cake that is effective, a method of adding an oxidizing agent, a metal salt or an organic disinfectant and nitrite to a sludge slurry has been proposed. In addition, as a method for preventing the generation of odor of a dehydrated cake, a bacteriostatic agent can be added to the dehydrated cake without causing mixing, and the effect can be maintained. A method of adding a bacteriostatic agent capable of dissolving 20 g or more was found. However, even with this method, the duration of the effect of preventing odor generation is about 48 hours, and a method capable of preventing the generation of odor over a longer time has been demanded.
[0003]
[Problems to be solved by the invention]
The present invention provides a method for preventing odor generation in dehydrated cakes, which can prevent odors derived from hydrogen sulfide, methyl mercaptan, ammonia, amines, etc. generated from dehydrated cakes such as sewage treatment plants and human waste treatment plants over a long period of time. It was made for the purpose of doing.
[0004]
[Means for Solving the Problems]
As a result of intensive research to solve the above problems, the present inventors have added nitrite to sludge and separated into solid and liquid by a dehydrator, and further added a bacteriostatic agent to the dehydrated cake after solid-liquid separation Or by adding nitrite and water-insoluble or bacteriostatic agent adsorbed on sludge solid material to the sludge and solid-liquid separation with a dehydrator to prevent odor generation of the dehydrated cake for a long time As a result, the present invention has been completed based on this finding.
That is, the present invention
(1) Addition of nitrite to sludge, solid-liquid separation with a dehydrator, and addition of a bacteriostatic agent to the dehydrated cake after solid-liquid separation,
(2) The method for preventing odor generation of a dehydrated cake according to claim 1, wherein the bacteriostatic agent is nitrite.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the method for preventing odor generation of a dehydrated cake of the present invention, nitrite is added to sludge, solid-liquid separated by a dehydrator, and a bacteriostatic agent is added to the dehydrated cake after solid-liquid separation.
The sludge to which the method of the present invention is applied is not particularly limited, and can be applied to, for example, sewage treatment sludge, human waste treatment sludge, sewage treatment sludge, industrial wastewater treatment sludge such as a pulp and paper mill, It can be applied to any biological treatment sludge.
In the method of the present invention, the nitrite added to the sludge is not particularly limited. For example, ammonium nitrite, lithium nitrite, sodium nitrite, potassium nitrite, rubidium nitrite, cesium nitrite, magnesium nitrite, calcium nitrite, Examples include strontium nitrate, barium nitrite, nickel nitrite, zinc nitrite, and thallium nitrite. Among these, sodium nitrite, potassium nitrite, and calcium nitrite are easy to obtain and handle and can be suitably used because they do not hinder secondary use of the dehydrated cake.
[0006]
In the method of the present invention, the amount of nitrite added to the sludge is preferably 30 to 300 mg per liter of sludge, and more preferably 50 to 200 mg per liter of sludge. If the amount of nitrite added is less than 30 mg per liter of sludge, the effect of preventing odor generation may be insufficient. The amount of nitrite added is not more than 300 mg per liter of sludge, and the effect of preventing odor generation for about 72 hours is sufficiently manifested. Usually, it is not necessary to add nitrite exceeding 300 mg per liter of sludge.
There is no restriction | limiting in particular in the addition method of nitrite to sludge, For example, nitrite can be added as it is, or nitrite can also be added as aqueous solution. A method of adding nitrite as an aqueous solution can be preferably used because a metering pump or the like can be used, and workability is good and operation management becomes easy.
After adding nitrite to the sludge, it takes 15 minutes or more to dehydrate, preferably 1 to 5 hours. If the time until dehydration, that is, the contact time is short, the microbial activity involved in the generation of odor in the sludge cannot be suppressed.
In the method of the present invention, the dehydrator used for solid-liquid separation of sludge is not particularly limited, and examples thereof include a centrifugal dehydrator, a belt press dehydrator, a screw press dehydrator, a vacuum dehydrator, and a filter press dehydrator. .
[0007]
In the method of the present invention, the bacteriostatic agent is a drug that inhibits the growth or proliferation of bacteria. In the method of the present invention, a drug generally referred to as a bactericide can also be used as a bacteriostatic agent by developing a bacteriostatic action when used at a low concentration. Examples of the bacteriostatic agent used in the method of the present invention include nitrite, hypochlorite, quaternary ammonium salt, ethanol, formaldehyde, pyrithione or derivatives thereof, and sorbic acid. Among these, nitrite and pyrithione or derivatives thereof can be suitably used. Examples of nitrites include ammonium nitrite, lithium nitrite, sodium nitrite, potassium nitrite, rubidium nitrite, cesium nitrite, magnesium nitrite, calcium nitrite, strontium nitrite, barium nitrite, nickel nitrite, Examples thereof include zinc nitrate and thallium nitrite. Examples of pyrithione or derivatives thereof include pyrithione, sodium pyrithione, zinc pyrithione, and dipyrithione.
[0008]
In the method of the present invention, the method for adding the bacteriostatic agent to the dehydrated cake is not particularly limited. For example, a solid or liquid bacteriostatic agent can be added to the dehydrated cake as it is, or an aqueous solution or water of the bacteriostatic agent. The dispersion can also be added to the dehydrated cake. When the bacteriostatic agent is added as an aqueous solution or an aqueous dispersion, if the dilution ratio is large, a large amount of moisture is added, and the moisture content of the cake is increased. Therefore, the concentration of the aqueous solution or aqueous dispersion is preferably 20% by weight or more. There is no particular limitation on the place where the bacteriostatic agent is added to the dehydrated cake. For example, the bacteriostatic agent is a high-concentration aqueous solution or aqueous dispersion, and a sprinkler is used to transfer the dehydrated cake to the cake hopper. Can be sprayed on.
In the method of the present invention, the amount of the bacteriostatic agent added to the dehydrated cake is not particularly limited, and can be appropriately selected according to the bacteriostatic power of the bacteriostatic agent. For example, when nitrite is used as a bacteriostatic agent, the amount added is preferably 500 to 5,000 mg per kg of dehydrated cake, and more preferably 1,000 to 4,000 mg per kg of dehydrated cake. . When pyrithione or a derivative thereof is used as a bacteriostatic agent, the addition amount is preferably 50 to 500 mg per kg of dehydrated cake, and more preferably 100 to 300 mg per kg of dehydrated cake.
[0009]
Nitrite has the effect of decomposing odor components and suppressing the generation of odor components with respect to sludge and dehydrated cake, but it is decomposed by microorganisms in the sludge and its concentration decreases. When no nitrite ions remain in the dehydrated cake, odor generation starts from that point. The decomposition of nitrite in a dehydrated cake is considerably larger than sludge due to the high microbial concentration, and the rate tends to increase over time.
In the method of the present invention, nitrite is added to sludge, solid-liquid separated by a dehydrator, and a bacteriostatic agent, for example, nitrite is added to the dehydrated cake after solid-liquid separation. By adding nitrite to the sludge before dehydration, the initial decomposition rate of nitrite ions is lowered. As a result, the decomposition rate of nitrite ions in the dehydrated cake is remarkably reduced, and nitrite ions are kept for a long time. Therefore, it is considered that the odor generation prevention time of the dehydrated cake can be greatly extended. Even if the amount of nitrite added is the same, the total amount of nitrite is added to the sludge after adding the entire amount of nitrite to the sludge, or the total amount of nitrite is added to the dehydrated cake obtained by solid-liquid separation of the sludge. Compared to the method of adding, the method of the present invention, in which nitrite is added separately to sludge and dehydrated cake after solid-liquid separation, nitrite ions remain in the dehydrated cake for a long time, and the odor generation prevention time Remarkably extended, it is possible to prevent odor generation for 72 hours or more.
Regarding the bacteriostatic agents other than nitrite added to the dehydrated cake, its degradation and functional decline are unknown, but the nitrite added to the sludge before dehydration causes not only nitrite resolution but also odor generation. It is presumed that the activity of microorganisms involved in the proteolysis is reduced.
According to the method of the present invention, the nitrite added to the sludge before dehydration is a bacteriostatic agent added to the dehydrated cake, or a bacteriostatic agent adsorbed on the water-insoluble or sludge solids accompanying the dehydrated cake from the sludge. Not only enhances the effect, but also prevents odors such as hydrogen sulfide and methyl mercaptan generated from the sludge before dehydration. Therefore, according to the method of the present invention, odor generation can be prevented in all of the wide range of processes from the sludge storage tank, the dehydration process, the dewatered cake storage tank, the dewatered cake carry-out, and the transport process.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
A sewage mixed raw sludge having a suspended solid concentration of 22,000 mg / L, an organic content ratio of the suspended solid of 83.2% by weight, and pH 5.1 was performed.
To 300 mL of sludge, 45 mg of sodium nitrite was added, and after 2 hours, 18 mL of a 0.2% by weight aqueous solution of a cationic polymer flocculant [Kurita Kogyo Co., Ltd., CP604] was added, and gravity filtration was performed with a 60 mm diameter column. The mixture was further pressed and dehydrated at a pressure of 50 kPa for 2 minutes to obtain 27.3 g of a dehydrated cake having a water content of 75.8% by weight.
Sodium nitrite (54.5 mg) was added to the resulting dehydrated cake, mixed uniformly, put into Tetra Pak together with 675 mL of nitrogen gas, heat sealed and stored at 30 ° C., after 24, 48 and 72 hours. The concentration of hydrogen sulfide and methyl mercaptan in nitrogen gas was measured using a gas detector tube [Gastech Co., Ltd.].
The amount of sodium nitrite added to the sludge is 150 mg / L, corresponding to 1,650 mg / kg-cake for the dehydrated cake, and the amount of sodium nitrite added to the dehydrated cake is 2,000 mg / kg. -A cake.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 and 48 hours. After 72 hours, the concentration of hydrogen sulfide was 5 ppm and the concentration of methyl mercaptan was 20 ppm.
Example 2
The same operation as in Example 1 was performed except that the amount of sodium nitrite added to the dehydrated cake was 3,000 mg / kg-cake.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 hours, 48 hours or 72 hours.
Example 3
The same operation as in Example 1 was performed except that 5.5 mg of sodium pyrithione was added to the dehydrated cake instead of sodium nitrite. The amount of sodium pyrithione added to the dehydrated cake is 200 mg / kg-cake.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 hours, 48 hours or 72 hours.
Example 4
The same operation as in Example 3 was performed except that zinc pyrithione was used instead of sodium pyrithione.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 and 48 hours. After 72 hours, no hydrogen sulfide was detected, but the methyl mercaptan concentration was 5 ppm.
[0011]
Comparative Example 1
To 300 mL of the same sludge as in Example 1, 45 mg of sodium nitrite was added, and after 2 hours, 18 mL of a 0.2 wt% aqueous solution of a cationic polymer flocculant [Kurita Kogyo Co., Ltd., CP604] was added, and the diameter was 60 mm. And gravity-filtered with a column of 2 and further depressurized and dehydrated at a pressure of 50 kPa for 2 minutes to obtain 27.3 g of a dehydrated cake having a water content of 75.8 wt%.
Put the resulting dehydrated cake in Tetra Pak with 675 mL of nitrogen gas, heat seal and store at 30 ° C., and measure the concentration of hydrogen sulfide and methyl mercaptan in the nitrogen gas after 24, 48 and 72 hours. did.
The amount of sodium nitrite added to the sludge is 150 mg / L, and corresponds to 1,650 mg / kg-cake for the dehydrated cake.
After 24 hours, the concentration of hydrogen sulfide was 30 ppm and the concentration of methyl mercaptan was 100 ppm. After 48 hours, the hydrogen sulfide concentration was 900 ppm and the methyl mercaptan concentration was 1,500 ppm. After 72 hours, the concentration of hydrogen sulfide was 1,200 ppm and the concentration of methyl mercaptan was 1,800 ppm.
Comparative Example 2
The same operation as Comparative Example 1 was performed except that the amount of sodium nitrite added to the sludge was 300 mg / L.
Comparative Example 3
The same operation as Comparative Example 1 was performed except that the amount of sodium nitrite added to the sludge was 450 mg / L.
Comparative Example 4
18 mL of a 0.2 wt% aqueous solution of a cationic polymer flocculant [Kurita Kogyo Co., Ltd., CP604] is added to 300 mL of the same sludge as in Example 1, gravity filtered through a column with a diameter of 60 mm, and further 2 at a pressure of 50 kPa. The mixture was pressed and dehydrated for 2 minutes to obtain 27.3 g of a dehydrated cake having a water content of 75.8% by weight.
Sodium nitrite (81.8 mg) was added to the resulting dehydrated cake, mixed uniformly, put into Tetra Pak with 675 mL of nitrogen gas, heat sealed and stored at 30 ° C., 24 hours, 48 hours and 72 hours later. The concentration of hydrogen sulfide and methyl mercaptan in nitrogen gas was measured.
The amount of sodium nitrite added to the dehydrated cake is 3,000 mg / kg-cake.
After 24 hours, neither hydrogen sulfide nor methyl mercaptan was detected. After 48 hours, the concentration of hydrogen sulfide was 5 ppm and the concentration of methyl mercaptan was 20 ppm. After 72 hours, the hydrogen sulfide concentration was 800 ppm and the methyl mercaptan concentration was 1,500 ppm.
Comparative Example 5
The same operation as in Comparative Example 4 was performed except that the amount of sodium nitrite added to the dehydrated cake was 5,000 mg / kg-cake.
Comparative Example 6
The same operation as Comparative Example 4 was performed except that sodium pyrithione 200 mg / kg-cake was added instead of sodium nitrite.
Comparative Example 7
The same operation as Comparative Example 4 was performed except that zinc pyrithione 200 mg / kg-cake was added instead of sodium nitrite.
Comparative Example 8
18 mL of a 0.2 wt% aqueous solution of a cationic polymer flocculant [Kurita Kogyo Co., Ltd., CP604] is added to 300 mL of the same sludge as in Example 1, gravity filtered through a column with a diameter of 60 mm, and further 2 at a pressure of 50 kPa. The mixture was pressed and dehydrated for 2 minutes to obtain 27.3 g of a dehydrated cake having a water content of 75.8% by weight.
Put the resulting dehydrated cake in Tetra Pak with 675 mL of nitrogen gas, heat seal and store at 30 ° C., and measure the concentration of hydrogen sulfide and methyl mercaptan in the nitrogen gas after 24, 48 and 72 hours. did.
After 24 hours, the concentration of hydrogen sulfide was 300 ppm and the concentration of methyl mercaptan was 450 ppm. After 48 hours, the hydrogen sulfide concentration was 800 ppm and the methyl mercaptan concentration was 1,300 ppm. After 72 hours, the concentration of hydrogen sulfide was 1,000 ppm and the concentration of methyl mercaptan was 1,500 ppm.
The results of Examples 1 to 4 and Comparative Examples 1 to 8 are shown in Table 1.
[0012]
[Table 1]
Figure 0003900512
[0013]
Figure 0003900512
As seen in Table 1, in Examples 1 to 4 in which sodium nitrite was added to sludge and solid-liquid separated, and sodium nitrite, sodium pyrithione or zinc pyrithione was added to the dehydrated cake after solid-liquid separation, Neither hydrogen sulfide nor methyl mercaptan was detected until 48 hours, and hydrogen sulfide and methyl mercaptan were not generated after 72 hours, or very small amounts were generated.
In contrast, in Comparative Examples 1 to 3, in which sodium nitrite was added only to the sludge and solid-liquid separated, hydrogen sulfide and methyl mercaptan were generated in a short time. Further, Comparative Examples 4 to 5 in which sodium nitrite was added to the dehydrated cake were better than Comparative Examples 1 to 3, but a large amount of hydrogen sulfide and methyl mercaptan were generated after 72 hours. When Example 2 is compared with Comparative Example 5, the amount of sodium nitrite added is smaller in Example 3, but the amount of hydrogen sulfide and methyl mercaptan generated is small, so that sodium nitrite is sludge and dehydrated cake. It turns out that generation | occurrence | production of an odor can be effectively prevented by the method of this invention added in divided. In Comparative Examples 6 to 7 in which sodium pyrithione or zinc pyrithione was added only to the dehydrated cake, hydrogen sulfide and methyl mercaptan were already generated after 24 hours.
[0014]
Example 5
The sewage mixed raw sludge having a suspended solid concentration of 24,300 mg / L, an organic content ratio in the suspended solid of 84.4% by weight and pH 5.4 was treated.
To 300 mL of sludge, 45 mg of sodium nitrite was added, and after 2 hours, 18 mL of a 0.2% by weight aqueous solution of a cationic polymer flocculant [Kurita Kogyo Co., Ltd., CP604] was added, and gravity filtration was performed on a column with a diameter of 60 mm. The mixture was further squeezed and dehydrated at a pressure of 50 kPa for 2 minutes to obtain 30.0 g of a dehydrated cake having a water content of 75.7% by weight.
Sodium nitrite (60.0 mg) was added to the resulting dehydrated cake, mixed uniformly, put into Tetra Pak together with 750 mL of nitrogen gas, heat sealed and stored at 30 ° C., after 24, 48 and 72 hours. The concentration of hydrogen sulfide and methyl mercaptan in nitrogen gas was measured using a gas detector tube [Gastech Co., Ltd.].
The amount of sodium nitrite added to the sludge is 150 mg / L, corresponding to 1,500 mg / kg-cake for the dehydrated cake, and the amount of sodium nitrite added to the dehydrated cake is 2,000 mg / kg. -A cake.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 and 48 hours. After 72 hours, the concentration of hydrogen sulfide was 2 ppm and the concentration of methyl mercaptan was 10 ppm.
Similarly, a dehydrated cake to which sodium nitrite was added was prepared, sealed and stored at 30 ° C., 10 g each was taken out after 24 hours, 48 hours and 72 hours and dispersed in 100 mL of pure water. The nitrite ion concentration was measured according to K 0102 43.1.2, and the concentration of nitrite ion per kg of sludge cake was calculated. The concentration of nitrite ions was 900 mg / kg-cake after 24 hours, 400 mg / kg-cake after 48 hours, and 0 mg / kg-cake after 72 hours.
Example 6
The same operation as in Example 5 was performed except that the amount of sodium nitrite added to the dehydrated cake was changed to 3000 mg / kg-cake.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 hours, 48 hours and 72 hours. The concentration of nitrite ions was 1,700 mg / kg-cake after 24 hours, 1,300 mg / kg-cake after 48 hours, and 600 mg / kg-cake after 72 hours.
[0015]
Comparative Example 9
To 300 mL of the same sludge as in Example 5, 18 mL of a 0.2 wt% aqueous solution of a cationic polymer flocculant [Kurita Kogyo Co., Ltd., CP604] was added, gravity filtered through a column with a diameter of 60 mm, and 2 at a pressure of 50 kPa. The mixture was pressed and dehydrated for 3 minutes to obtain 30.0 g of a dehydrated cake having a moisture content of 75.7% by weight.
Sodium nitrite (105 mg) was added to the resulting dehydrated cake, mixed uniformly, put into a Tetra Pak with 750 mL of nitrogen gas, heat sealed and stored at 30 ° C., and after 24, 48 and 72 hours of nitrogen. The concentrations of hydrogen sulfide and methyl mercaptan in the gas were measured. The amount of sodium nitrite added to the dehydrated cake is 3,500 mg / kg-cake.
After 24 hours, neither hydrogen sulfide nor methyl mercaptan was detected. After 48 hours, the concentration of hydrogen sulfide was 200 ppm, and the concentration of methyl mercaptan was 700 ppm. After 72 hours, the hydrogen sulfide concentration was 900 ppm and the methyl mercaptan concentration was 1,800 ppm.
Similarly, a dehydrated cake to which sodium nitrite was added was prepared, sealed and stored at 30 ° C., and 10 g each was taken out after 24 hours, 48 hours, and 72 hours and dispersed in 100 mL of pure water. The nitrate ion concentration was measured, and the concentration of nitrite ions per kg of sludge cake was calculated. The concentration of nitrite ions was 500 mg / kg-cake after 24 hours, 0 mg / kg-cake after 48 hours, and 0 mg / kg-cake after 72 hours.
Comparative Example 10
The same operation as Comparative Example 9 was performed except that the amount of sodium nitrite added to the dehydrated cake was 5,000 mg / kg-cake.
Neither hydrogen sulfide nor methyl mercaptan was detected after 24 and 48 hours. After 72 hours, the concentration of hydrogen sulfide was 100 ppm and the concentration of methyl mercaptan was 400 ppm. The concentration of nitrite ions was 2,100 mg / kg-cake after 24 hours, 400 mg / kg-cake after 48 hours, and 0 mg / kg-cake after 72 hours.
The results of Examples 5 to 6 and Comparative Examples 9 to 10 are shown in Table 2.
[0016]
[Table 2]
Figure 0003900512
[0017]
As can be seen in Table 2, an example in which sodium nitrite 150 mg / L was added to sludge and solid-liquid separated, and sodium nitrite 2,000 mg / kg-cake was further added to the dehydrated cake after solid-liquid separation. In No. 5, neither hydrogen sulfide nor methyl mercaptan was detected until 48 hours later, and the generation amounts of hydrogen sulfide and methyl mercaptan after 72 hours were negligible. Nitrite ions remain in the dehydrated cake until 48 hours later. In Example 6 in which the amount of sodium nitrite added to the dehydrated cake was increased to 3,000 mg / kg-cake, neither hydrogen sulfide nor methyl mercaptan was generated until 72 hours, and in the dehydrated cake, the amount of sodium nitrite was also reduced after 72 hours. Nitrate ions remain.
In contrast, in Comparative Examples 9 to 10 in which sodium nitrite was added only to the dehydrated cake, a large amount of hydrogen sulfide and methyl mercaptan were generated after 72 hours, and the disappearance of nitrite ions in the dehydrated cake was quick. . When Example 6 and Comparative Example 10 are compared, the amount of sodium nitrite added is smaller in Example 6, but the amount of hydrogen sulfide and methyl mercaptan generated is small, and the amount of residual nitrite ions is small. In many cases, it can be seen that odor generation can be effectively prevented by the method of the present invention in which sodium nitrite is added separately to sludge and dehydrated cake.
[0018]
【The invention's effect】
According to the method for preventing odor generation of a dehydrated cake of the present invention, nitrite is added to sludge and then dehydrated, and then added to a dehydrated cake obtained by solid-liquid separation, or by adding nitrite to sludge. By adding a bacteriostatic agent adsorbed on water-insoluble or sludge solids and separating it into solid and liquid, nitrite ions remain in the dehydrated cake for a long time, and the generation of malodorous substances such as hydrogen sulfide and methyl mercaptan is prevented. It can be effectively prevented.

Claims (2)

汚泥に亜硝酸塩を添加して脱水機により固液分離し、固液分離後の脱水ケーキに静菌剤を添加することを特徴とする脱水ケーキの臭気発生防止方法。A method for preventing odor generation of a dehydrated cake, comprising adding nitrite to sludge, solid-liquid separation with a dehydrator, and adding a bacteriostatic agent to the dehydrated cake after solid-liquid separation. 静菌剤が亜硝酸塩である請求項1記載の脱水ケーキの臭気発生防止方法。The method for preventing odor generation of a dehydrated cake according to claim 1, wherein the bacteriostatic agent is nitrite.
JP2001297535A 2001-09-27 2001-09-27 Odor generation prevention method for dehydrated cake Expired - Lifetime JP3900512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001297535A JP3900512B2 (en) 2001-09-27 2001-09-27 Odor generation prevention method for dehydrated cake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001297535A JP3900512B2 (en) 2001-09-27 2001-09-27 Odor generation prevention method for dehydrated cake

Publications (2)

Publication Number Publication Date
JP2003094094A JP2003094094A (en) 2003-04-02
JP3900512B2 true JP3900512B2 (en) 2007-04-04

Family

ID=19118596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001297535A Expired - Lifetime JP3900512B2 (en) 2001-09-27 2001-09-27 Odor generation prevention method for dehydrated cake

Country Status (1)

Country Link
JP (1) JP3900512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116430A (en) * 2004-10-21 2006-05-11 Actree Corp Method for recovering dehydrated cake
JP6172838B2 (en) * 2012-12-28 2017-08-02 無臭元工業株式会社 Wastewater treatment method

Also Published As

Publication number Publication date
JP2003094094A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
US4108771A (en) Elimination of odors from organic wastes
JP2010110666A (en) Method of suppressing production of odor of sludge dehydrated cake
WO2014103549A1 (en) Method for treating sewage
JP3605821B2 (en) Deodorizer and method for deodorizing cake
JP3900512B2 (en) Odor generation prevention method for dehydrated cake
JP4174757B2 (en) Odor control method of sludge dewatering cake
JP5990706B2 (en) Method for suppressing hydrogen sulfide generation in sludge treatment process
JP3736344B2 (en) Odor generation prevention method of sludge dewatering cake
JP2000351000A (en) Deodorant for dewatered sludge cake and method for preventing generation of odor
JP5616872B2 (en) Sludge slurry deodorizing method, dewatering cake deodorizing method, and deodorizing agent
JP2945402B2 (en) Sludge deodorant
JP2004275541A (en) Odor retarder and odor suppression method for sludge slurry and sludge dehydrated cake
JPH01224098A (en) Deodorizing method for dehydrated sludge cake
JP3944909B2 (en) Deodorant and deodorizing method for concentrated sludge slurry
JP4736012B2 (en) Odor generation prevention method of sludge dewatering cake
JP5982852B2 (en) Deodorization method and deodorant kit
JP3705491B2 (en) Deodorized sludge deodorization method and apparatus
JP2796932B2 (en) Sludge deodorization method
JP6205243B2 (en) Odor control method for odor generating substance and odor control composition
JP2015085292A (en) Odor suppression method and odor suppression composition for odor-emitting material
JP2007111457A (en) Deodorant
JP3619278B2 (en) Sludge deodorant
JP2002102891A (en) Method for preventing malodor of sludge and dehydrated cake
JPS63209798A (en) Sludge deodorizer
JP2005169266A (en) Offensive smell inhibitor of sludge slurry or sludge dehydrated cake

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061224

R150 Certificate of patent or registration of utility model

Ref document number: 3900512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140112

Year of fee payment: 7