JP5990706B2 - Method for suppressing hydrogen sulfide generation in sludge treatment process - Google Patents

Method for suppressing hydrogen sulfide generation in sludge treatment process Download PDF

Info

Publication number
JP5990706B2
JP5990706B2 JP2011262662A JP2011262662A JP5990706B2 JP 5990706 B2 JP5990706 B2 JP 5990706B2 JP 2011262662 A JP2011262662 A JP 2011262662A JP 2011262662 A JP2011262662 A JP 2011262662A JP 5990706 B2 JP5990706 B2 JP 5990706B2
Authority
JP
Japan
Prior art keywords
sludge
hydrogen sulfide
sewage
anaerobic
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011262662A
Other languages
Japanese (ja)
Other versions
JP2013111560A (en
Inventor
英則 平嶋
英則 平嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Works Co Ltd
Original Assignee
Katayama Chemical Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Works Co Ltd filed Critical Katayama Chemical Works Co Ltd
Priority to JP2011262662A priority Critical patent/JP5990706B2/en
Publication of JP2013111560A publication Critical patent/JP2013111560A/en
Application granted granted Critical
Publication of JP5990706B2 publication Critical patent/JP5990706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、汚泥処理工程における硫化水素の発生抑制方法に関する。さらに詳しくは、本発明は、タンパク質に由来する工場汚泥または汚水から発生する硫化水素を効果的に抑制し得る方法に関する。   The present invention relates to a method for suppressing the generation of hydrogen sulfide in a sludge treatment process. More specifically, the present invention relates to a method capable of effectively suppressing hydrogen sulfide generated from factory sludge or sewage derived from protein.

食品工場、紙パルプ工場、下水処理場、し尿処理場などの有機物、特に高濃度のタンパク質を含有する汚泥および汚水は、酸素の強制供給がなくなると硫酸還元菌などの微生物の活動により嫌気性腐敗が起こり、硫化水素やメチルメルカプタンなどの含硫黄化合物を発生する。これら嫌気性の汚泥および汚水の処理工程の近くでは、発生した硫化水素などにより労働環境が悪化し、ひどい場合には中毒または死亡事故につながることがある。また、汚泥やその脱水ケーキを運送する場合には、一般道路での臭気が問題となり、一般市民に迷惑がかかるという問題がある。   Organic matter such as food factories, pulp and paper factories, sewage treatment plants, and human waste treatment plants, especially sludge and sewage containing high concentrations of protein, will become anaerobic due to the activity of microorganisms such as sulfate-reducing bacteria when the forced supply of oxygen is lost. And sulfur-containing compounds such as hydrogen sulfide and methyl mercaptan are generated. In the vicinity of these anaerobic sludge and sewage treatment processes, the working environment is deteriorated by the generated hydrogen sulfide, etc., which may lead to poisoning or death. In addition, when transporting sludge and its dehydrated cake, there is a problem that odor on ordinary roads becomes a problem, which causes trouble for ordinary citizens.

これらの対策として、(1)殺菌剤を添加して汚泥または汚水中の菌群を抗菌または殺菌して硫化水素の発生を抑制する方法、(2)発生した硫化水素を酸化剤で酸化して除去する方法、および(3)発生した硫化水素を金属塩などに吸着させて除去する方法などやこれらを組み合わせた方法がとられている。
方法(1)では、殺菌剤として、例えば、2−ブロモ−2−ニトロプロパン−1,3−ジオール、2−ブロモ−2−ニトロプロパン−1,3−ジアセトキシプロパン、2,2−ジブロモ−2−ニトロエタノール、1,2−ベンゾイソチアゾロン、5−クロロ−2−メチルイソチアゾロン、ビスブロモアセトキシ−2−ブテン、ビスブロモアセトキシエタン、α−クロロベンズアルドキシム、3−ヨード−2−プロパギルブチルカーバメート、2,2−ジブロモ−2−シアノプロピオンアミドおよび1−ブロモ−3−クロロ−5,5−ジメチルヒダントインなどが用いられている。
As these countermeasures, (1) a method of suppressing the generation of hydrogen sulfide by antibacterial or sterilizing bacteria in sludge or sewage by adding a bactericidal agent, and (2) oxidizing the generated hydrogen sulfide with an oxidizing agent There are a method of removing, (3) a method of removing generated hydrogen sulfide by adsorbing it to a metal salt or the like, and a method of combining them.
In the method (1), as the bactericidal agent, for example, 2-bromo-2-nitropropane-1,3-diol, 2-bromo-2-nitropropane-1,3-diacetoxypropane, 2,2-dibromo- 2-nitroethanol, 1,2-benzisothiazolone, 5-chloro-2-methylisothiazolone, bisbromoacetoxy-2-butene, bisbromoacetoxyethane, α-chlorobenzaldoxime, 3-iodo-2-propargylbutyl Carbamate, 2,2-dibromo-2-cyanopropionamide and 1-bromo-3-chloro-5,5-dimethylhydantoin are used.

方法(2)では、酸化剤として、例えば、過酸化水素、過酸化ベンゾイル、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、塩素酸ナトリウム、過塩素酸ナトリウム、次亜臭素酸ナトリウム、亜臭素酸ナトリウムおよび塩素化シアヌル酸塩などが用いられている。
方法(3)では、金属塩として、例えば、塩化第一鉄、塩化第二鉄、塩化亜鉛、硝酸亜鉛、塩化銅、硫酸銅、炭酸銅、銀塩、コバルト塩、ニッケル塩、チタン塩および錫塩などが用いられている。
In the method (2), as an oxidizing agent, for example, hydrogen peroxide, benzoyl peroxide, sodium hypochlorite, sodium chlorite, sodium chlorate, sodium perchlorate, sodium hypobromite, sodium bromite And chlorinated cyanurates are used.
In the method (3), examples of the metal salt include ferrous chloride, ferric chloride, zinc chloride, zinc nitrate, copper chloride, copper sulfate, copper carbonate, silver salt, cobalt salt, nickel salt, titanium salt and tin. Salts are used.

例えば、特開昭63−209798号公報(特許文献1)には、イソチアゾロン化合物が汚泥消臭剤として硫化水素やメチルメルカプタンなどの悪臭防止効果に有効であり、その効果が2−ブロモ−2−ニトロプロパン−1,3−ジオールよりも優れていることが開示されている(特許請求の範囲、実施例2の試験結果である第3表中比較例参照)。
また、特開平4−126597号公報(特許文献2)には、酸化剤と静菌剤とを併用して、脱水汚泥ケーキからの硫化水素やメチルメルカプタンなどの悪臭発生を抑制する方法が開示されている(特許請求の範囲参照)。
さらに、特開2004−275541号公報(特許文献3)には、汚泥スラリーや汚泥脱水ケーキに、2−ブロモ−2−ニトロプロパン−1,3−ジオールと塩化亜鉛などを添加する汚泥臭気抑制方法が開示されている(請求項8参照)。
For example, in Japanese Patent Application Laid-Open No. 63-209798 (Patent Document 1), an isothiazolone compound is effective as a sludge deodorant for preventing bad odor such as hydrogen sulfide and methyl mercaptan, and the effect is 2-bromo-2- It is disclosed that it is superior to nitropropane-1,3-diol (see the comparative example in Table 3 which is the test result of the claims and Example 2).
Japanese Patent Laid-Open No. 4-126597 (Patent Document 2) discloses a method for suppressing the generation of malodor such as hydrogen sulfide and methyl mercaptan from a dehydrated sludge cake by using an oxidizing agent and a bacteriostatic agent in combination. (See claims).
Furthermore, Japanese Patent Application Laid-Open No. 2004-275541 (Patent Document 3) discloses a method for suppressing sludge odor by adding 2-bromo-2-nitropropane-1,3-diol and zinc chloride to sludge slurry or sludge dewatered cake. Is disclosed (see claim 8).

また、特開平9−24396号公報(特許文献4)には、汚泥のORP(酸化還元電位)が−100mV以上となるまでオゾン処理すれば、硫酸還元菌の増殖を抑制でき、ORPをモニターすることにより、汚泥腐敗防止効果をモニターできることが開示されている(明細書、段落0034参照)。
また、特開平7−128322号公報(特許文献5)には、解放系容器に収容した水性液状物中の溶存酸素量を経時的に測定し、その測定値に基づいて、水性液状物の腐敗の進行度を予測し、管理処理手段、例えば2−ブロモ−2−ニトロプロパン−1,3−ジオールなどの防腐剤の添加を行う方法が開示されている(請求項1、5および6ならびに明細書、段落0014参照)。そして、ORPでは、腐敗の進行度を予測しようとしても、その変化が確認できず予測が不可能であることが記載されている(明細書、段落0027参照)。
JP-A-9-24396 (Patent Document 4) discloses that if ozone treatment is performed until the ORP (oxidation-reduction potential) of the sludge becomes -100 mV or more, the growth of sulfate-reducing bacteria can be suppressed and the ORP is monitored. Thus, it is disclosed that the effect of preventing sludge decay can be monitored (see the specification, paragraph 0034).
Japanese Patent Application Laid-Open No. 7-128322 (Patent Document 5) discloses a method for measuring the amount of dissolved oxygen in an aqueous liquid material stored in an open system container over time, and based on the measured value, decay of the aqueous liquid material. A method of predicting the degree of progress and adding a preservative such as management treatment means, for example, 2-bromo-2-nitropropane-1,3-diol is disclosed (claims 1, 5 and 6 and specification). Book, paragraph 0014). The ORP states that even if an attempt is made to predict the degree of corruption, the change cannot be confirmed and cannot be predicted (see the specification, paragraph 0027).

特開昭63−209798号公報JP-A 63-209798 特開平4−126597号公報Japanese Patent Laid-Open No. 4-126597 特開2004−275541号公報JP 2004-275541 A 特開平9−24396号公報Japanese Patent Laid-Open No. 9-24396 特開平7−128322号公報Japanese Patent Laid-Open No. 7-128322

上記の先行技術を含めて、これまで、汚泥や汚水などの対象系への殺菌剤や酸化剤などの薬剤の添加に際して、対象系の汚泥などの性状、特に硫酸還元菌、通性嫌気性菌などの微生物の活動状態と薬剤の添加場所、有効添加濃度との関係については特に検討されておらず、添加し易い場所で撹拌混合が可能であればよいとされていた。
例えば、特許文献1には、汚泥に薬剤を添加すること、薬剤の添加量は10〜2000mg/L程度でよいことが記載されている(例えば、明細書、第2頁、右下欄参照)。
また、特許文献2には、汚泥を脱水処理する前であれば、汚泥貯槽の前から脱水機、コンベアに至るまでの所望の場所に添加すること、薬剤の添加量は酸化剤系消臭剤が100〜5000ppm、静菌剤系消臭剤が1〜2000ppmとすることが記載されている(例えば、明細書、第3頁および第1図参照)。
さらに、特許文献3には、最初沈殿池と重力濃縮層の間、混合汚泥貯水槽、ケーキホッパー内に薬剤を添加すること、薬剤の2−ブロモ−2−ニトロプロパン−1,3−ジオールの好ましい添加量は10〜1500mg/Lであることが記載されている(明細書、段落0009および0012ならびに図1参照)。
Including the above-mentioned prior art, the properties of the target sludge, particularly sulfate-reducing bacteria and facultative anaerobic bacteria, have been added to the target systems such as sludge and sewage. The relationship between the activity state of the microorganisms, the place of addition of the drug, and the effective addition concentration has not been particularly studied, and it should have been possible to perform stirring and mixing in a place where addition is easy.
For example, Patent Document 1 describes that a chemical is added to sludge, and the amount of the chemical added may be about 10 to 2000 mg / L (for example, see the specification, page 2, lower right column). .
Patent Document 2 discloses that if it is before dewatering sludge, it is added to a desired place from the front of the sludge storage tank to the dehydrator and the conveyor. Is 100 to 5000 ppm and the bacteriostatic deodorant is 1 to 2000 ppm (for example, see the specification, page 3 and FIG. 1).
Furthermore, Patent Document 3 discloses that a drug is added between a first sedimentation basin and a gravity concentrated layer, a mixed sludge reservoir, a cake hopper, and 2-bromo-2-nitropropane-1,3-diol as a drug. It is described that the preferable addition amount is 10 to 1500 mg / L (see the specification, paragraphs 0009 and 0012 and FIG. 1).

本発明は、汚泥や汚水に殺菌および/または酸化作用を有する薬剤を添加して汚泥処理工程における硫化水素の発生を抑制する方法において、薬剤の添加量を低減することを課題とする。   This invention makes it a subject to reduce the addition amount of a chemical | medical agent in the method which suppresses generation | occurrence | production of the hydrogen sulfide in a sludge process process by adding the chemical | medical agent which has a disinfection and / or oxidation action to sludge or sewage.

本発明の発明者は、薬剤のランニングコストの低減を目指し調査した結果、薬剤の添加場所により有効添加量が異なり、その理由が対象系の汚泥などの微生物の活性状態にあることを見出した。そして、本発明の発明者は、さらに研究を進めた結果、対象系の汚泥が嫌気性になる前の段階で薬剤を添加すれば、嫌気性になった後に薬剤を添加する場合と比較して、薬剤の添加量を1/4程度に削減しても同等の硫化水素の発生抑制効果が発揮される事実を見出し、この発明を完成させた。   As a result of investigation aimed at reducing the running cost of the drug, the inventors of the present invention have found that the effective addition amount differs depending on the place where the drug is added, and that the reason is the active state of microorganisms such as sludge of the target system. As a result of further research, the inventor of the present invention added the drug at a stage before the target sludge becomes anaerobic, compared with the case of adding the drug after becoming anaerobic. The present inventors have found that the same effect of suppressing the generation of hydrogen sulfide can be achieved even if the amount of added chemical is reduced to about 1/4.

具体的には、対象系の汚泥や汚水における酸化還元電位、硫化水素または溶存硫化物(S2-)の有無などの性状を測定し、その測定結果に基づいて殺菌および/または酸化作用を有する薬剤の添加場所を定めて添加することにより、薬剤の添加量を削減しても同等の硫化水素発生抑制効果が発揮される事実を見出し、この発明を完成させた。 Specifically, properties such as oxidation-reduction potential, presence or absence of hydrogen sulfide or dissolved sulfide (S 2− ) in the sludge and sewage of the target system are measured, and sterilization and / or oxidation action is based on the measurement result. The inventors have found the fact that the same effect of suppressing the generation of hydrogen sulfide can be achieved even if the amount of the drug added is reduced by determining the addition location of the drug and completed the present invention.

なお、上記の特許文献4には、ORPを用いてオゾンの殺菌効果をモニターできることが開示されているが、対象汚泥が嫌気性であるか否かを確認する指標としてORPを用いることは開示されていない。また、上記のように、特許文献5には、ORPでは、腐敗の進行度を予測しようとしても、その変化が確認できず予測が不可能であることが記載されている。   In addition, although it is disclosed by said patent document 4 that the sterilization effect of ozone can be monitored using ORP, it is disclosed that ORP is used as an index for confirming whether or not the target sludge is anaerobic. Not. Further, as described above, Patent Document 5 describes that in ORP, even if an attempt is made to predict the degree of progress of corruption, the change cannot be confirmed and prediction is impossible.

かくして、本発明によれば、複数の処理段階およびそれらを接続する経路からなる汚泥処理工程の汚泥または汚水に、殺菌および/または酸化作用を有する薬剤を添加して、前記汚泥または汚水からの硫化水素の発生を抑制する方法であり、
前記汚泥または汚水嫌気性および非嫌気性のいずれの状態にあるかを確認するために、前記処理段階および経路内の硫化水素もしくは溶存硫化物(S 2- )濃度または前記処理段階および経路の汚泥または汚水の酸化還元電位を測定し、
測定された硫化水素もしくは溶存硫化物(S 2- )濃度が0ppmを超えるかまたは酸化還元電位が−100mV未満になり、非嫌気性から嫌気性に変化する処理段階または経路を決定し、
決定した処理段階または経路の前の処理段階または経路に、前記薬剤を添加して、前記汚泥または汚水からの硫化水素の発生を抑制することからなり、
前記薬剤が、2−ブロモ−2−ニトロプロパン−1,3−ジオールまたは亜塩素酸ナトリウムであることを特徴とする汚泥処理工程における硫化水素の発生抑制方法が提供される。
Thus, according to the present invention, by adding a chemical having a sterilizing and / or oxidizing action to sludge or sewage in a sludge treatment process comprising a plurality of treatment stages and paths connecting them, sulfidization from the sludge or sewage A method for suppressing the generation of hydrogen,
In order to confirm whether the sludge or sewage is in an anaerobic state or a non-anaerobic state, the concentration of hydrogen sulfide or dissolved sulfide (S 2− ) in the treatment stage and route or the treatment step and route Measure the redox potential of sludge or sewage,
Determine the treatment stage or pathway in which the measured hydrogen sulfide or dissolved sulfide (S 2− ) concentration exceeds 0 ppm or the redox potential is less than −100 mV and changes from non-anaerobic to anaerobic,
Comprising adding the agent to a treatment step or route prior to the determined treatment step or route to inhibit the generation of hydrogen sulfide from the sludge or sewage ,
Provided is a method for suppressing the generation of hydrogen sulfide in a sludge treatment process , wherein the chemical is 2-bromo-2-nitropropane-1,3-diol or sodium chlorite .

本発明によれば、汚泥や汚水に殺菌および/または酸化作用を有する薬剤を添加して汚泥処理工程における硫化水素の発生を抑制する方法において、薬剤の添加量を低減することができる。
すなわち、本発明によれば、最少量の殺菌剤や酸化剤などの薬剤添加により、汚泥処理工程における硫化水素の発生を抑制することができるので、食品工場、紙パルプ工場、下水処理場、し尿処理場などの有機物、特にタンパク質を高濃度で含有する汚泥または汚水処理工程に適用することができ、低コスト化を図ることができる。
ADVANTAGE OF THE INVENTION According to this invention, the addition amount of a chemical | medical agent can be reduced in the method which suppresses generation | occurrence | production of the hydrogen sulfide in a sludge process process by adding the chemical | medical agent which has a disinfection and / or oxidation action to sludge and sewage.
That is, according to the present invention, since the generation of hydrogen sulfide in the sludge treatment process can be suppressed by adding a minimum amount of chemicals such as bactericides and oxidizing agents, food factories, paper pulp factories, sewage treatment plants, human waste It can be applied to a sludge or sewage treatment process containing a high concentration of organic matter such as a treatment plant, particularly protein, and cost reduction can be achieved.

また、本発明の硫化水素の発生抑制方法は、薬剤が2−ブロモ−2−ニトロプロパン−1,3−ジオールまたは亜塩素酸ナトリウムである場合に、薬剤が水溶性液体組成物として添加される場合に、薬剤が汚泥および/または汚水に対して有効成分として1〜300ppmの濃度で添加される場合に、上記の効果が特に発揮される。   In the method for suppressing the generation of hydrogen sulfide according to the present invention, when the drug is 2-bromo-2-nitropropane-1,3-diol or sodium chlorite, the drug is added as a water-soluble liquid composition. In this case, the above-described effect is particularly exerted when the chemical is added as an active ingredient to the sludge and / or sewage at a concentration of 1 to 300 ppm.

本発明の硫化水素の発生抑制方法を適用し得る、汚泥処理工程の一例を示す概略図である。It is the schematic which shows an example of the sludge process process which can apply the generation | occurrence | production suppression method of the hydrogen sulfide of this invention.

本発明の汚泥処理工程における硫化水素の発生抑制方法は、複数の処理段階およびそれらを接続する経路からなる汚泥処理工程の汚泥または汚水に、殺菌および/または酸化作用を有する薬剤を添加して、前記汚泥または汚水からの硫化水素の発生を抑制する方法であり、
(1)前記汚泥または汚水の嫌気性の性状として、前記処理段階および経路内の硫化水素もしくは溶存硫化物(S2-)濃度または前記処理段階および経路の汚泥または汚水の酸化還元電位を測定し、
(2)測定された硫化水素もしくは溶存硫化物(S2-)濃度が0ppmを超えるかまたは酸化還元電位が−100mV未満になり、非嫌気性から嫌気性に変化する処理段階または経路を決定し、
(3)決定した処理段階または経路の前の処理段階または経路に、前記薬剤を添加して、前記汚泥または汚水からの硫化水素の発生を抑制することを特徴とする。
すなわち、本発明では、殺菌および/または酸化作用を有する薬剤を、汚泥や汚水が嫌気状態になる前の段階で添加することを特徴とする。
The method for suppressing the generation of hydrogen sulfide in the sludge treatment process of the present invention adds a chemical agent having a sterilizing and / or oxidizing action to sludge or sludge in a sludge treatment process comprising a plurality of treatment stages and a path connecting them. It is a method of suppressing the generation of hydrogen sulfide from the sludge or sewage,
(1) As anaerobic properties of the sludge or sewage, measure the concentration of hydrogen sulfide or dissolved sulfide (S 2− ) in the treatment stage and route or the redox potential of sludge or sewage in the treatment step and route. ,
(2) Determine the treatment stage or route in which the measured hydrogen sulfide or dissolved sulfide (S 2− ) concentration exceeds 0 ppm or the redox potential is less than −100 mV and changes from non-anaerobic to anaerobic. ,
(3) It is characterized in that generation of hydrogen sulfide from the sludge or sewage is suppressed by adding the chemical to a processing stage or path before the determined processing stage or path.
That is, the present invention is characterized in that a sterilizing and / or oxidizing agent is added at a stage before sludge or sewage becomes anaerobic.

以下、図面を用いて本発明を具体的に説明するが、これにより本発明が限定されるものではない。
図1は、本発明の硫化水素の発生抑制方法を適用し得る、汚泥処理工程の一例を示す概略図である。
この汚泥処理工程では、工場などで発生した有機性物質、特にタンパク質を高濃度で含有する排水が、流入槽1、油分離槽2および調整槽3を経て、排水加圧浮上槽4または沈殿槽(図示せず)で固液分離される。ここで分離された固形分は50g/L程度のスラリーとして一旦貯留槽5に保管される。続いて高分子凝集槽(凝集剤混合槽)10で高分子凝集剤を用いた凝集処理がなされ、プレスなどの脱水機6で脱水されて汚泥ケーキとなる。続いて得られた汚泥ケーキは、コンベア7で脱水汚泥ホッパー(コンテナ)8に運搬され貯められた後、堆肥化処理、埋立て処分、焼却処分のいずれかがなされる。図中、図番9は計量升を示す。
Hereinafter, the present invention will be specifically described with reference to the drawings, but the present invention is not limited thereto.
FIG. 1 is a schematic view showing an example of a sludge treatment process to which the method for suppressing generation of hydrogen sulfide of the present invention can be applied.
In this sludge treatment process, wastewater containing organic substances generated in factories and the like, particularly protein, at a high concentration passes through the inflow tank 1, the oil separation tank 2 and the adjustment tank 3, and the drainage pressure floating tank 4 or sedimentation tank. Solid-liquid separation is carried out (not shown). The solid content separated here is once stored in the storage tank 5 as a slurry of about 50 g / L. Subsequently, a coagulation treatment using the polymer coagulant is performed in the polymer coagulation tank (coagulant mixing tank) 10 and dehydrated by a dehydrator 6 such as a press to form a sludge cake. Subsequently, the obtained sludge cake is transported and stored in the dewatered sludge hopper (container) 8 by the conveyor 7 and then subjected to any one of composting treatment, landfill disposal, and incineration disposal. In the figure, reference numeral 9 indicates a measuring rod.

通常、上記の固液分離後の貯留槽から汚泥ケーキに至る間で酸素供給不足が生じて、汚泥ケーキが嫌気性になり硫化水素やメチルメルカプタンが発生する。汚泥ケーキは工場によって異なるが通常1〜3日間、長い場合には7日間程度留め置きされ、その間の硫化水素やメチルメルカプタンの発生防止が求められる。
また、排水を活性汚泥槽で処理する場合でも、曝気後に固液分離が行われ、固形部は上記と同様に貯留槽、高分子凝集処理、脱水処理およびホッパー保管が行われる。したがって、上記と同様に固液分離後の貯留槽から汚泥ケーキに至る間で酸素供給不足が生じて嫌気性になり硫化水素やメチルメルカプタンが発生する。
Usually, oxygen supply shortage occurs between the storage tank after the solid-liquid separation and the sludge cake, the sludge cake becomes anaerobic, and hydrogen sulfide and methyl mercaptan are generated. Sludge cakes are usually kept for 1 to 3 days or 7 days if they are long, depending on the factory, and prevention of the generation of hydrogen sulfide and methyl mercaptan during that period is required.
Even when wastewater is treated in an activated sludge tank, solid-liquid separation is performed after aeration, and the solid part is subjected to a storage tank, polymer aggregation treatment, dehydration treatment, and hopper storage in the same manner as described above. Therefore, in the same manner as described above, oxygen supply is insufficient between the storage tank after the solid-liquid separation and the sludge cake, and the gas becomes anaerobic and hydrogen sulfide and methyl mercaptan are generated.

本発明の硫化水素の発生抑制方法では、まず、(1)汚泥または汚水の嫌気性の性状として、処理段階および経路内の硫化水素もしくは溶存硫化物(S2-)濃度または処理段階および経路の汚泥または汚水の酸化還元電位を測定する。
硫化水素濃度および酸化還元電位は、それぞれ実施例で用いられているような市販の硫化水素検知管および酸化還元電位計を用いて測定することができる。また、汚泥または汚水のpHが中性からアルカリ性の場合には、溶存硫化物(S2-)濃度を液体検知管((株)ガステック製液体検知管No.211LL等)用いて測定することができる。
In the method for suppressing generation of hydrogen sulfide of the present invention, first, (1) the concentration of hydrogen sulfide or dissolved sulfide (S 2− ) in the treatment stage and route or the treatment step and route as the anaerobic properties of sludge or sewage. Measure the redox potential of sludge or sewage.
The hydrogen sulfide concentration and the oxidation-reduction potential can be measured using a commercially available hydrogen sulfide detector tube and oxidation-reduction potentiometer as used in the examples. If the pH of sludge or sewage is neutral to alkaline, measure the concentration of dissolved sulfide (S 2− ) using a liquid detector tube (Gastec's liquid detector tube No. 211LL, etc.). Can do.

本発明において「嫌気性」とは、汚泥や汚水中に、溶存酸素、硝酸性窒素などの結合酸素がほとんどない状態でかつ硫化水素が発生している状態を意味する。逆に「非嫌気性」とは、汚泥や汚水中に、溶存酸素、硝酸性窒素などの結合酸素がある状態でかつ硫化水素が発生していない状態を意味する。
このような「嫌気性」または「非嫌気性」の状態を「嫌気性の性状」という。
これらの状態は、硫化水素の有無または特定の酸化還元電位を指標として確認することができ、本発明ではこれらを測定する。
In the present invention, “anaerobic” means a state in which hydrogen sulfide is generated in sludge and sewage with almost no bound oxygen such as dissolved oxygen and nitrate nitrogen. Conversely, “non-anaerobic” means a state in which sludge and sewage have bound oxygen such as dissolved oxygen and nitrate nitrogen and no hydrogen sulfide is generated.
Such a state of “anaerobic” or “non-anaerobic” is referred to as “anaerobic property”.
These states can be confirmed using the presence or absence of hydrogen sulfide or a specific oxidation-reduction potential as an index, and these are measured in the present invention.

本発明において「複数の処理段階」とは、上記のような粗大固形物の分離処理、油分離処理、固液分離処理、微小固形物などの凝集処理、脱水処理などを意味し、「経路」とは、これらの処理段階を接続する配液管、配送管、水路などを意味する。   In the present invention, “a plurality of treatment stages” means a coarse solid separation process, an oil separation process, a solid-liquid separation process, an agglomeration process such as a fine solid, a dehydration process, and the like. The term “distribution pipe”, “distribution pipe”, “water channel”, etc. connecting these processing stages.

次いで、(2)測定された硫化水素濃度が0ppmを超えるかまたは酸化還元電位が−100mV未満になり、非嫌気性から嫌気性に変化する処理段階または経路を決定する。
硫化水素もしくは溶存硫化物(S2-)の有無は、硫化水素もしくは溶存硫化物(S2-)濃度が0ppm(測定限界以下)であるか、または0ppmを超えるかにより判断する。
また、酸化還元電位の測定では、汚泥や汚水の状態に多少異なる場合もあるが概ね−100mV以上であるか、−100mV未満になるかにより、前者を非嫌気性、後者を嫌気性と判断する。
上記の判断に基づいて、非嫌気性から嫌気性に変化する処理段階または経路を決定する。
Next, (2) a treatment stage or route in which the measured hydrogen sulfide concentration exceeds 0 ppm or the oxidation-reduction potential becomes less than −100 mV and changes from non-anaerobic to anaerobic is determined.
The presence or absence of hydrogen sulfide or a dissolved sulfide (S 2-) is judged by whether hydrogen sulfide or dissolved sulfide (S 2-) concentration or a 0 ppm (lower than the detection limit), or more than 0 ppm.
In addition, in the measurement of the oxidation-reduction potential, the state of sludge and sewage may be slightly different, but the former is judged to be non-anaerobic and the latter to be anaerobic depending on whether it is -100 mV or more or less than -100 mV. .
Based on the above determination, a processing stage or route that changes from non-anaerobic to anaerobic is determined.

次いで、(3)決定した処理段階または経路の直前の処理段階または経路に、薬剤を添加して、汚泥または汚水からの硫化水素の発生を抑制する。
本発明の硫化水素の発生抑制方法において用いることができる殺菌および/または酸化作用を有する薬剤としては、添加対象の汚泥やその中の微生物を殺菌または酸化して本発明の効果を発現し得るものであれば特に限定されず、例えば当該技術分野で公知の殺菌剤や酸化剤が挙げられ、添加対象の汚泥やその中の微生物の種類や量などにより適宜選択すればよい。
Next, (3) a chemical is added to the treatment stage or route immediately before the decided treatment stage or route to suppress generation of hydrogen sulfide from the sludge or waste water.
The agent having a sterilizing and / or oxidizing action that can be used in the method for suppressing the generation of hydrogen sulfide of the present invention can sterilize or oxidize the sludge to be added and the microorganisms therein and exhibit the effects of the present invention. If it is, it will not specifically limit, For example, a disinfectant and oxidizing agent well-known in the said technical field are mentioned, What is necessary is just to select suitably by the kind and quantity, etc. of the sludge of addition object, and the microorganisms in it.

本発明において「決定した処理段階または経路の前の処理段階または経路」とは、例えば、A処理段階、B経路およびC処理段階が順次設けられた汚泥処理工程において、C処理段階で非嫌気性から嫌気性に変化したとき、すなわちB経路で0ppmであった硫化水素もしくは溶存硫化物(S2-)濃度がC処理段階で0ppmを超えたとき、またはB経路で−100mV以上であった酸化還元電位がC処理段階で−100mV未満になったとき、B経路またはA処理段階を意味する。
ここで、薬剤の添加場所は、直前のB経路とするのが最も好ましいが、装置構成や添加した薬剤の攪拌条件などによっては、その直前のA処理段階としてもよい。
In the present invention, the “processing stage or path before the determined processing stage or path” means, for example, a non-anaerobic condition in the C processing stage in a sludge processing process in which the A processing stage, the B path, and the C processing stage are sequentially provided. When the hydrogen sulfide or dissolved sulfide (S 2− ) concentration, which was 0 ppm in the B path, exceeded 0 ppm in the C treatment stage, or when the oxidation was more than −100 mV in the B path When the reduction potential is less than −100 mV in the C treatment stage, it means the B path or the A treatment stage.
Here, it is most preferable that the place where the drug is added is the B path immediately before, but it may be the A process stage immediately before depending on the apparatus configuration, the stirring conditions of the added drug, and the like.

そのような殺菌剤や酸化剤としては、具体的には、2−ブロモ−2−ニトロプロパン−1,3−ジオール、2−ブロモ−2−ニトロプロパン−1,3−ジアセトキシプロパン、2,2−ジブロモ−2−ニトロエタノール、1,2−ベンゾイソチアゾロン、5−クロロ−2−メチルイソチアゾロン、ビスブロモアセトキシ−2−ブテン、ビスブロモアセトキシエタン、α−クロロベンズアルドキシム、3−ヨード−2−プロパギルブチルカーバメート、2,2−ジブロモ−2−シアノプロピオンアミド、1−ブロモ−3−クロロ−5,5−ジメチルヒダントイン、過酸化水素、過酸化ベンゾイル、次亜塩素酸ナトリウム、亜塩素酸ナトリウム、塩素酸ナトリウム、過塩素酸ナトリウム、次亜臭素酸ナトリウム、亜臭素酸ナトリウム、塩素化シアヌル酸塩などが挙げられる。   Specific examples of such bactericides and oxidizing agents include 2-bromo-2-nitropropane-1,3-diol, 2-bromo-2-nitropropane-1,3-diacetoxypropane, 2, 2-dibromo-2-nitroethanol, 1,2-benzisothiazolone, 5-chloro-2-methylisothiazolone, bisbromoacetoxy-2-butene, bisbromoacetoxyethane, α-chlorobenzaldoxime, 3-iodo-2 -Propargyl butyl carbamate, 2,2-dibromo-2-cyanopropionamide, 1-bromo-3-chloro-5,5-dimethylhydantoin, hydrogen peroxide, benzoyl peroxide, sodium hypochlorite, chlorous acid Sodium, sodium chlorate, sodium perchlorate, sodium hypobromite, sodium bromite, chlorinated cyanide Such as Le acid salts.

本発明においては、殺菌および/または酸化作用を有する薬剤を、水やジエチレングリコールなどの水溶性溶媒に溶解した水溶性液体組成物として汚泥や汚水に添加するのが、汚泥や汚水と迅速に接触させることができる点で好ましい。   In the present invention, a drug having a sterilizing and / or oxidizing action is added to sludge or sewage as a water-soluble liquid composition dissolved in water or a water-soluble solvent such as diethylene glycol, so that the sludge or sewage can be brought into contact quickly. It is preferable in that it can be performed.

上記の殺菌および/または酸化作用を有する薬剤の中でも、硫化水素の発生抑制効果、取扱性、経済性、容易に水溶性液体組成物とすることができる点で、2−ブロモ−2−ニトロプロパン−1,3−ジオールおよび亜塩素酸ナトリウムが特に好ましい。   Among the above-mentioned chemicals having sterilization and / or oxidation action, 2-bromo-2-nitropropane is effective in suppressing the generation of hydrogen sulfide, handleability, economy, and can be easily made into a water-soluble liquid composition. Particularly preferred are -1,3-diol and sodium chlorite.

また、水溶性液体組成物を汚泥や汚水に添加する方法としては、特に限定されず、薬剤を正確に供給できる方法が好ましく、例えば、ダイヤフラム式やプランジャー式の定量ポンプなどを用いる方法が挙げられる。これらの方法では、薬剤の連続添加または間欠添加で薬剤濃度管理を行うことができる。   In addition, the method for adding the water-soluble liquid composition to sludge or sewage is not particularly limited, and a method capable of accurately supplying a drug is preferable, for example, a method using a diaphragm type or plunger type metering pump or the like. It is done. In these methods, the drug concentration can be managed by continuous or intermittent addition of the drug.

本発明における殺菌および/または酸化作用を有する薬剤の添加量は、汚泥ケーキの保存期間などにより増減するが、汚泥および/または汚水に対して、通常、有効成分として1〜300ppmの濃度であるのが好ましい。特に好ましい濃度は1〜210ppmである。   The amount of the agent having a sterilizing and / or oxidizing action in the present invention varies depending on the storage period of the sludge cake, etc., but is usually 1 to 300 ppm as an active ingredient with respect to sludge and / or sewage. Is preferred. A particularly preferred concentration is 1-210 ppm.

本発明を製剤例および試験例によりさらに具体的に説明するが、本発明はこれらの製剤例および試験例により限定されるものではない。   The present invention will be described more specifically with formulation examples and test examples, but the present invention is not limited to these formulation examples and test examples.

(製剤例1)
試薬の80%亜塩素酸ナトリウム(白色粉末)31.25gにイオン交換水68.75gを加え混合して、無色透明液体(水溶性液体組成物、「製剤1」という)を得た。
(製剤例2)
2−ブロモ−2−ニトロプロパン−1,3−ジオール(白色結晶)35.0g、ジエチレングリコール55.0gおよびイオン交換水10.0gを混合し1時間撹拌して、無色透明液体(水溶性液体組成物、「製剤2」という)を得た。
(Formulation example 1)
68.75 g of ion-exchanged water was added to and mixed with 31.25 g of 80% sodium chlorite (white powder) as a reagent to obtain a colorless transparent liquid (water-soluble liquid composition, referred to as “Formulation 1”).
(Formulation example 2)
2-Bromo-2-nitropropane-1,3-diol (white crystals) 35.0 g, diethylene glycol 55.0 g and ion-exchanged water 10.0 g were mixed and stirred for 1 hour to obtain a colorless transparent liquid (water-soluble liquid composition). Product, “formulation 2”).

(試験例1)
この試験では、原料として卵と乳を用いている某食品加工工場の排水加圧浮上槽から分離採取した直後のスラリー汚泥(SS分:54g/L、pH:5.4、溶解性BOD:600mg/L)を用いて、薬剤の添加時点を変化させたときの硫化水素およびメチルメルカプタンの濃度を測定した。
(Test Example 1)
In this test, slurry sludge (SS content: 54 g / L, pH: 5.4, soluble BOD: 600 mg) immediately after being separated and collected from a wastewater pressure floatation tank of a salmon food processing plant using eggs and milk as raw materials. / L) was used to measure the concentration of hydrogen sulfide and methyl mercaptan when the time of addition of the drug was changed.

具体的には、容量1Lのポリ瓶に汚泥200mLを入れて封印し、これを設定温度30℃の恒温槽に静置した。汚泥の分離採取から10分以内、1時間後、2時間後および6時間後に、表1に示すように製剤1または製剤2をスラリー汚泥に対して300mg/Lまたは600mg/Lの濃度で各ポリ瓶に添加すると共に、汚泥の分離採取から1.1時間後、2.1時間後、6.1時間後、24時間後、72時間後および168時間後に、各ポリ瓶を10回振とう混合し、その直後にガス検知管(株式会社ガステック製、検知管4LK、4LL、4HM)を用いて、各ポリ瓶のヘッドスペースの硫化水素(H2S)濃度を測定した。また、168時間後には、ガス検知管(株式会社ガステック製、検知管70、70L)を用いて、メチルメルカプタン(MM)濃度を測定した。 Specifically, 200 mL of sludge was put in a 1 L capacity plastic bottle and sealed, and this was left in a constant temperature bath at a set temperature of 30 ° C. Within 10 minutes from the separation and collection of sludge, 1 hour, 2 hours and 6 hours later, as shown in Table 1, each of the preparations 1 and 2 was added to the slurry sludge at a concentration of 300 mg / L or 600 mg / L. Add to the bottle and shake and mix each plastic bottle 10 times after 1.1 hours, 2.1 hours, 6.1 hours, 24 hours, 72 hours and 168 hours. Immediately thereafter, the hydrogen sulfide (H 2 S) concentration in the head space of each poly bottle was measured using a gas detector tube (manufactured by Gastec Co., Ltd., detector tubes 4LK, 4LL, 4HM). Further, after 168 hours, methyl mercaptan (MM) concentration was measured using a gas detector tube (manufactured by Gastec Co., Ltd., detector tubes 70 and 70L).

得られた結果を表1に示す。
試験No.2、3、6、7、10、11、14および15は実施例であり、試験No.1、4、5、8、9、12、13、16および17は比較例である。
なお、表中の「ND」は検出限界未満を意味する。
The obtained results are shown in Table 1.
Test No. 2, 3, 6, 7, 10, 11, 14 and 15 are examples. 1, 4, 5, 8, 9, 12, 13, 16 and 17 are comparative examples.
In the table, “ND” means less than the detection limit.

表1の結果から、まず薬剤無添加の汚泥(試験No.1)は短時間のうちに嫌気性になり2時間経過すれば硫化水素が発生することがわかる。
汚泥が嫌気性になる1時間前(分離採取から1時間経過)までに、製剤1(亜塩素酸ナトリウム水溶液)または製剤2(2−ブロモ−2−ニトロプロパン−1,3−ジオール溶液)を添加した場合と、汚泥が嫌気性になった2時間(分離採取から2時間経過)以降に製剤1または製剤2を添加した場合とでは、明らかに硫化水素およびメチルメルカプタンの発生抑制効力差が認められる。
したがって、嫌気性になる前に薬剤添加することの有効性がわかる。
From the results in Table 1, it can be seen that the sludge without any chemical added (test No. 1) first becomes anaerobic within a short time and hydrogen sulfide is generated after 2 hours.
Preparation 1 (sodium chlorite aqueous solution) or preparation 2 (2-bromo-2-nitropropane-1,3-diol solution) must be prepared 1 hour before sludge becomes anaerobic (1 hour after separation and collection). There is a clear difference in the suppression effect of hydrogen sulfide and methyl mercaptan between the case where it is added and the case where Formulation 1 or 2 is added after 2 hours after the sludge becomes anaerobic (2 hours after separation and collection) It is done.
Therefore, the effectiveness of adding a drug before becoming anaerobic can be seen.

(試験例2)
原料として豆乳を用いている某食品加工工場の設備を用いて試験した。
この設備は、図1に示すような(A)排水加圧浮上槽(図番4)の浮上汚泥→(B)貯留槽(図番5)→(C)高分子凝集槽(図番10)→(D)脱水機(図番6)→(E)脱水汚泥ホッパー(図番8)からなる装置を備えている。この工場では排水量の都合により(C)から(E)までの装置を48時間当たり7時間の割合で稼働させている。(A)から(D)までは同じ建屋内に設置され、その建屋内の(D)付近の硫化水素濃度は、労働安全衛生法の規制値(許容濃度)未満ではあるが、平均2ppmという建屋内での最高値を示していた。
(Test Example 2)
It was tested using equipment from a coffee processing factory using soy milk as a raw material.
As shown in FIG. 1, this equipment consists of (A) Flotation sludge of drainage pressurization floating tank (Figure 4) → (B) Storage tank (Figure 5) → (C) Polymer coagulation tank (Figure 10) → (D) A dehydrator (Fig. 6) → (E) A device comprising a dewatered sludge hopper (Fig. 8) is provided. In this factory, the devices from (C) to (E) are operated at a rate of 7 hours per 48 hours due to the amount of drainage. (A) to (D) are installed in the same building, and the hydrogen sulfide concentration in the vicinity of (D) in the building is less than the regulation value (allowable concentration) of the Industrial Safety and Health Act, but the building has an average of 2 ppm. It showed the highest value indoors.

製剤2(2−ブロモ−2−ニトロプロパン−1,3−ジオール)を、(B)貯留槽の入口配管(薬剤添加ポイントA)(ORP:−100mV、硫化水素濃度:0ppm)に直接、24時間当たり0.6kgの割合で15分毎の間欠注入を実施した(添加濃度:500mg/L)。この操作を2週間(添加量:8.4kg/14日)続けたところ、(D)脱水機付近の硫化水素濃度が検出限界未満になった(実施例)。
なお、ORPは、ポータブルORP計(東亜ディーケーケー株式会社製、型式:RM−20P)を用いて測定した。
Formulation 2 (2-bromo-2-nitropropane-1,3-diol) was directly added to (B) storage tank inlet pipe (drug addition point A) (ORP: -100 mV, hydrogen sulfide concentration: 0 ppm). Intermittent injection was performed every 15 minutes at a rate of 0.6 kg per hour (addition concentration: 500 mg / L). When this operation was continued for 2 weeks (added amount: 8.4 kg / 14 days), (D) the hydrogen sulfide concentration in the vicinity of the dehydrator was below the detection limit (Example).
The ORP was measured using a portable ORP meter (manufactured by Toa DKK Co., Ltd., model: RM-20P).

製剤2(2−ブロモ−2−ニトロプロパン−1,3−ジオール)を、(B)貯留槽の出口配管(薬剤添加ポイントB)(ORP:−248mV、硫化水素濃度:50ppm)に、凝集脱水機が稼働する7時間に2.4kgの割合で連続均等注入(添加濃度:1000mg/L)を実施した。この操作を2週間(添加量:16.8kg/14日)続けたところ、脱水機付近の硫化水素濃度は平均1ppmに低下したが、検出限界以下には至らなかった(比較例)。比較例では実施例の2倍量の薬剤を使用しても硫化水素濃度が検出限界以下にはならなかったことが分かる。   Formulation 2 (2-bromo-2-nitropropane-1,3-diol) was agglomerated and dehydrated into (B) storage tank outlet piping (drug addition point B) (ORP: -248 mV, hydrogen sulfide concentration: 50 ppm). Continuous uniform injection (addition concentration: 1000 mg / L) was carried out at a rate of 2.4 kg in 7 hours when the machine was operating. When this operation was continued for 2 weeks (added amount: 16.8 kg / 14 days), the hydrogen sulfide concentration in the vicinity of the dehydrator decreased to an average of 1 ppm, but did not reach the detection limit (Comparative Example). In the comparative example, it can be seen that the hydrogen sulfide concentration did not fall below the detection limit even when twice the amount of the drug was used.

これらの結果から、嫌気性になる前のポイントAに薬剤を添加することの有効性とORP値を指標として薬剤添加することの有効性がわかる。   From these results, the effectiveness of adding the drug to the point A before becoming anaerobic and the effectiveness of adding the drug using the ORP value as an index can be understood.

1 流入槽
2 油分離槽
3 調整槽
4 排水加圧浮上槽
5 貯留槽
6 脱水機
7 コンベア
8 脱水汚泥ホッパー(コンテナ)
9 計量升
10 高分子凝集槽
A、B 薬剤添加ポイント
DESCRIPTION OF SYMBOLS 1 Inflow tank 2 Oil separation tank 3 Adjustment tank 4 Drain pressure pressurization levitation tank 5 Storage tank 6 Dehydrator 7 Conveyor 8 Dehydrated sludge hopper (container)
9 Weighing bowl 10 Polymer coagulation tank A, B Drug addition point

Claims (3)

複数の処理段階およびそれらを接続する経路からなる汚泥処理工程の汚泥または汚水に、殺菌および/または酸化作用を有する薬剤を添加して、前記汚泥または汚水からの硫化水素の発生を抑制する方法であり、
前記汚泥または汚水嫌気性および非嫌気性のいずれの状態にあるかを確認するために、前記処理段階および経路内の硫化水素もしくは溶存硫化物(S 2- )濃度または前記処理段階および経路の汚泥または汚水の酸化還元電位を測定し、
測定された硫化水素もしくは溶存硫化物(S 2- )濃度が0ppmを超えるかまたは酸化還元電位が−100mV未満になり、非嫌気性から嫌気性に変化する処理段階または経路を決定し、
決定した処理段階または経路の前の処理段階または経路に、前記薬剤を添加して、前記汚泥または汚水からの硫化水素の発生を抑制することからなり、
前記薬剤が、2−ブロモ−2−ニトロプロパン−1,3−ジオールまたは亜塩素酸ナトリウムであることを特徴とする汚泥処理工程における硫化水素の発生抑制方法。
A method for suppressing the generation of hydrogen sulfide from the sludge or sewage by adding a sterilizing and / or oxidizing agent to the sludge or sewage in the sludge treatment process comprising a plurality of treatment stages and paths connecting them. Yes,
In order to confirm whether the sludge or sewage is in an anaerobic state or a non-anaerobic state, the concentration of hydrogen sulfide or dissolved sulfide (S 2− ) in the treatment stage and route or the treatment step and route Measure the redox potential of sludge or sewage,
Determine the treatment stage or pathway in which the measured hydrogen sulfide or dissolved sulfide (S 2− ) concentration exceeds 0 ppm or the redox potential is less than −100 mV and changes from non-anaerobic to anaerobic,
Comprising adding the agent to a treatment step or route prior to the determined treatment step or route to inhibit the generation of hydrogen sulfide from the sludge or sewage ,
The method for suppressing generation of hydrogen sulfide in a sludge treatment step , wherein the chemical is 2-bromo-2-nitropropane-1,3-diol or sodium chlorite .
前記薬剤が、水溶性液体組成物として添加される請求項1に記載の硫化水素の発生抑制方法。 The method for suppressing hydrogen sulfide generation according to claim 1, wherein the drug is added as a water-soluble liquid composition. 前記薬剤が、前記汚泥および/または汚水に対して有効成分として1〜300ppmの濃度で添加される請求項1または2に記載の硫化水素の発生抑制方法。 The method for suppressing the generation of hydrogen sulfide according to claim 1 or 2 , wherein the chemical is added to the sludge and / or sewage as an active ingredient at a concentration of 1 to 300 ppm.
JP2011262662A 2011-11-30 2011-11-30 Method for suppressing hydrogen sulfide generation in sludge treatment process Active JP5990706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011262662A JP5990706B2 (en) 2011-11-30 2011-11-30 Method for suppressing hydrogen sulfide generation in sludge treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011262662A JP5990706B2 (en) 2011-11-30 2011-11-30 Method for suppressing hydrogen sulfide generation in sludge treatment process

Publications (2)

Publication Number Publication Date
JP2013111560A JP2013111560A (en) 2013-06-10
JP5990706B2 true JP5990706B2 (en) 2016-09-14

Family

ID=48707686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011262662A Active JP5990706B2 (en) 2011-11-30 2011-11-30 Method for suppressing hydrogen sulfide generation in sludge treatment process

Country Status (1)

Country Link
JP (1) JP5990706B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6205242B2 (en) * 2013-11-01 2017-09-27 日鉄住金環境株式会社 Odor control method for odor generating substance and odor control composition
WO2015145479A1 (en) * 2014-03-24 2015-10-01 伯東株式会社 Recirculated wet-coating booth water treatment agent and treatment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101196A (en) * 1981-12-14 1983-06-16 Idemitsu Kosan Co Ltd Preventing method for generation of bad smell in metal working oil
JP2991001B2 (en) * 1993-05-10 1999-12-20 栗田工業株式会社 Deodorizing method of dewatered sludge cake
JP3572727B2 (en) * 1995-07-14 2004-10-06 株式会社明電舎 Ozone injection amount control method and ozone injection amount control device in sludge treatment system
JP2002336897A (en) * 2001-05-15 2002-11-26 Mitsubishi Gas Chem Co Inc Method for deodorizing
US7326340B2 (en) * 2003-03-05 2008-02-05 Siemens Water Technologies Holding Corp. System for controlling sulfide generation
EP1765735B1 (en) * 2004-06-01 2014-01-22 BCR Environmental Corporation Sludge treatment process

Also Published As

Publication number Publication date
JP2013111560A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
US5984993A (en) Method and composition for odor control
US9067812B1 (en) Methods for managing sulfide in wastewater systems
JP3674939B2 (en) Deodorizing method and deodorizing agent for dehydrated cake
JP5990706B2 (en) Method for suppressing hydrogen sulfide generation in sludge treatment process
JP2010110666A (en) Method of suppressing production of odor of sludge dehydrated cake
JP2002028696A (en) Method for treating sludge
WO2016178218A1 (en) Nitrate removal by ion exchange and bioregeneration
JP3605821B2 (en) Deodorizer and method for deodorizing cake
JP6513151B2 (en) Method and disinfectant for disinfecting ammonia nitrogen containing wastewater
JP2991001B2 (en) Deodorizing method of dewatered sludge cake
JP5616872B2 (en) Sludge slurry deodorizing method, dewatering cake deodorizing method, and deodorizing agent
JP4174757B2 (en) Odor control method of sludge dewatering cake
JP5280602B2 (en) Odor generation prevention method
JP2000351000A (en) Deodorant for dewatered sludge cake and method for preventing generation of odor
JP3900512B2 (en) Odor generation prevention method for dehydrated cake
JP5666644B2 (en) Odor generation prevention method for dehydrated cake
JP5982852B2 (en) Deodorization method and deodorant kit
JP6254484B2 (en) Deodorized cake deodorization method and sludge treatment apparatus
JP2005073942A (en) Deodorizer and deodorizing method for dehydration cake
JP3705491B2 (en) Deodorized sludge deodorization method and apparatus
JP3944909B2 (en) Deodorant and deodorizing method for concentrated sludge slurry
JP2005334832A (en) Deodorant for sludge or dehydrated cake and sludge or dehydrated cake deodorizing method
JP2004275541A (en) Odor retarder and odor suppression method for sludge slurry and sludge dehydrated cake
JP5282767B2 (en) Odor generation prevention method
JP2002186995A (en) Prevention method for against emission of malodor from dehydrated sludge cake

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5990706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250