JPS61274691A - Production of l-glutamic acid - Google Patents

Production of l-glutamic acid

Info

Publication number
JPS61274691A
JPS61274691A JP11569585A JP11569585A JPS61274691A JP S61274691 A JPS61274691 A JP S61274691A JP 11569585 A JP11569585 A JP 11569585A JP 11569585 A JP11569585 A JP 11569585A JP S61274691 A JPS61274691 A JP S61274691A
Authority
JP
Japan
Prior art keywords
glutamic acid
carbon source
glucose
ability
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11569585A
Other languages
Japanese (ja)
Other versions
JPH055476B2 (en
Inventor
Kazumi Araki
和美 荒木
Shuichi Ishino
石野 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP11569585A priority Critical patent/JPS61274691A/en
Publication of JPS61274691A publication Critical patent/JPS61274691A/en
Publication of JPH055476B2 publication Critical patent/JPH055476B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a large amount of L-glutamic acid inexpensively, by cultivating a specific mold belonging to the genus Corynebacterium in a mold. CONSTITUTION:A cell of Corynebacterium glutamicum B-15 is suspended in a buffer solution, and varied by ultraviolet light irradiation, to give a variant (e.g., Corynebacterium glutamicum G-28) which grows in a minimum medium comprising glucose as a carbon source but has no ability or extremely reduced ability to grow using L-glutamine or L-glutamic acid as the only carbon source. Then, the variant is aerobically cultivated in a medium consisting of a carbon source (e.g., glucose), a nitrogen source (e.g., peptone), an inorganic salt (e.g., NaCl), a growth factor, etc. at 5-9pH at 24-37 deg.C for 2-7, and L-glutamic acid is accumulated in the culture mixture. Then, L-glutamic acid is isolated by in exchange resin method, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はL−グルタミン酸の製造法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for producing L-glutamic acid.

従来の技術 従来、微生物を用いるL−グルタミン酸の製造法として
は種々の方法が知られているが、本発明にかかわるもの
としては、ブレビバクテリウム属に属するL−グルタミ
ン酸を唯一の炭素源とじて利用できない変異株を用いる
方法が公知である(特開昭57−138395)。
BACKGROUND OF THE INVENTION Conventionally, various methods have been known for producing L-glutamic acid using microorganisms, but the method related to the present invention uses L-glutamic acid belonging to the genus Brevibacterium as the sole carbon source. A method using unavailable mutant strains is known (Japanese Unexamined Patent Publication No. 57-138395).

発明が解決しようとする問題点 近年、L−グルタミン酸の需要は増大しており、L−グ
ルタミン酸の生産性を向上させる方法の改良は常に望ま
れている。
Problems to be Solved by the Invention In recent years, the demand for L-glutamic acid has increased, and improvements in methods for increasing the productivity of L-glutamic acid are always desired.

問題点を解決するための手段 本発明者らは、コリネバクテリウム属に属するL−グル
タミン酸生産菌のうち、L−グルタミンまたはL−グル
タミン酸を唯一の炭素源として生育する能力の欠失(不
完全欠失を含む)した菌株を用いることにより収率よく
L−グルタミン酸を得ることができることを見出し、本
発明を完成した。
Means for Solving the Problems The present inventors have discovered that L-glutamic acid producing bacteria belonging to the genus Corynebacterium lack the ability to grow using L-glutamine or L-glutamic acid as the sole carbon source (incomplete). The inventors have discovered that L-glutamic acid can be obtained in good yield by using a bacterial strain containing deletions (including deletions), and have completed the present invention.

以下に本発明について詳細に説明する。The present invention will be explained in detail below.

本発明は、コリネバクテリウム属に属し、L−グルタミ
ン酸生産能を有し、L−グルタミンまたはL−グルタミ
ン酸を唯一の炭素源として生育する能力が欠失または著
しく低下した微生物を培地に培養し、培養物中にL−グ
ルタミン酸を蓄積させ、該培養物から蓄積したL−グル
タミン酸を採取することを特徴とする発酵法によるL−
グルタミン酸の製造法を提供する。
The present invention involves culturing in a medium a microorganism that belongs to the genus Corynebacterium and has the ability to produce L-glutamic acid, and has lost or significantly reduced the ability to grow using L-glutamine or L-glutamic acid as the sole carbon source, L-glutamic acid is produced by a fermentation method characterized by accumulating L-glutamic acid in a culture and collecting the accumulated L-glutamic acid from the culture.
Provided is a method for producing glutamic acid.

本発明に使用する微生物としては、コリネバクチリウム
属に属し、L−グルタミン酸生産能を存し、L−グルタ
ミンまたはL−グルタミン酸を唯一の炭素源として生育
する能力が欠失または著しく低下した微生物であればい
ずれでも用いることができる。
The microorganisms used in the present invention are microorganisms that belong to the genus Corynebacterium, have the ability to produce L-glutamic acid, and have lost or significantly reduced the ability to grow using L-glutamine or L-glutamic acid as the sole carbon source. Any one can be used.

すなわち、本発明の微生物は、グルコースを唯一の炭素
源とする最少培地では生育できるが、L−グルタミンま
たはL−グルタミン酸を唯一の炭素源とする最少培地で
は生育しないかもしくは生育が極めて遅い。
That is, the microorganism of the present invention can grow in a minimal medium containing glucose as the sole carbon source, but does not grow or grows extremely slowly on a minimal medium containing L-glutamine or L-glutamic acid as the sole carbon source.

本発明に使用する微生物は、L−グルタミン酸生産能を
存する微生物に変異処理を施して、L−グルタミンまた
はL−グルタミン酸を唯一の炭素源として生育する能力
が欠失または著しく低下した変異株を誘導することによ
って得ることができる。
The microorganism used in the present invention is a microorganism that has the ability to produce L-glutamic acid and is subjected to mutation treatment to induce a mutant strain that lacks or significantly reduces the ability to grow using L-glutamine or L-glutamic acid as the sole carbon source. You can get it by doing

変異処理としては、通常の変異処理法、例えば紫外線照
射またはN−メチル−N′−二トローN−二トロングア
ニジン(NTG)、亜硝酸などの化学処理を施す常法が
採用される。また、他の遺伝的手法(例えば遺伝子組換
え操作法、形質導入法、細胞融合法など)によっても変
異株を誘導することができる。さらに、本発明の微生物
は上記の性質に加えて他の性質(例えば各種栄養要求性
As the mutation treatment, a conventional mutation treatment method such as ultraviolet irradiation or chemical treatment with N-methyl-N'-nitro-N-nitroguanidine (NTG), nitrous acid, etc. is employed. Mutant strains can also be induced by other genetic techniques (eg, genetic recombination, transduction, cell fusion, etc.). Furthermore, in addition to the above-mentioned properties, the microorganism of the present invention has other properties (for example, various nutritional auxotrophies).

薬剤耐性、薬剤感受性、薬剤依存性、各種糖類あるいは
有機酸類の資化性の変化など)をあわせ持っていてもよ
い。
(drug resistance, drug sensitivity, drug dependence, changes in assimilation of various sugars or organic acids, etc.).

本発明に使用する微生物の具体例としては、L−グルタ
ミン酸生産菌であるコリネバクテリウム・グルタミクム
B−15(微工研菌寄7982号)から誘導したコリネ
バクテリウム・グルタミクムG−28およびG−37が
挙げられる。
Specific examples of microorganisms used in the present invention include Corynebacterium glutamicum G-28 and G- 37 are mentioned.

次に、このような微生物を得る具体的な操作例を説明す
る。
Next, a specific example of operation for obtaining such microorganisms will be explained.

操作例 コリネバクテリウム・グルタミクムB−15(以下、B
−15と称す)の細胞を0.1規定のトリス−マレイン
酸緩衝液(pH6,0)中に108個/mlになるよう
に懸濁した。これに、N−メチル−N′−二トローN−
二トロングアニジンを最終s度0.2■/mlになるよ
うに添加し、室温で30分間放置後グルコースを唯一の
炭素源とする最少寒天培地(グルコース0.5g/d1
.KH2F0゜0、15 g7dl、 K2HPO40
,05g/dl、 NaC10,01g/a、Mg5O
<・7820 0.05g/di、 CaC1z ・2
 H2Olx/ml、 Pe5o4・7 H2O10J
1g/m1. MnC1* ” 4 Ha○7g/ml
、チアミ7 ・HCI  O,lx/m1.硫安0、1
5 g /a、 ヒtfン30x/J、 寒天1.5 
g/di(Na011でpH7,2に調整)〕の表面に
塗抹し30℃で3日間静置培養した。
Operation example Corynebacterium glutamicum B-15 (hereinafter referred to as B
-15) cells were suspended in 0.1N Tris-maleate buffer (pH 6.0) at a concentration of 108 cells/ml. To this, N-methyl-N'-nitroN-
Nitroguanidine was added to a final concentration of 0.2 μg/ml and left at room temperature for 30 minutes.
.. KH2F0゜0, 15 g7dl, K2HPO40
,05g/dl, NaC10,01g/a, Mg5O
<・7820 0.05g/di, CaC1z・2
H2Olx/ml, Pe5o4・7 H2O10J
1g/m1. MnC1*” 4 Ha○7g/ml
, Chiami7 ・HCI O, lx/m1. Ammonium sulfate 0,1
5 g/a, Hitfon 30x/J, Agar 1.5
g/di (adjusted to pH 7.2 with Na011)] and statically cultured at 30°C for 3 days.

ついで、コロニー状に生育した細胞を、上述の最少寒天
培地と、L−グルタミンを唯一の炭素源とする最少寒天
培地(上述のグルコース培地からグルコースを除き、0
.5x/JのL−グルタミンを添加した培地)にレプリ
カ法で転写して30℃で3日間静置培養を行った結果、
グルコースを炭素源とする最少培地では生育するが、L
−グルタミンを炭素源とする最少培地では生育しないか
もしくは親株であるB−15と比較して生育の著しく遅
い変異株を多数得た。これらの変異株を、さらにグルコ
ースを炭素源とする最少培地、L−グルタミンを炭素源
とする最少培地およびL−グルタミン酸を炭素源とする
最少培地(上述のグルコースを炭素源とする最少培地か
らグルコースを除き、L−グルタミン酸ナトリウム0.
5g/d1を添加した培地)の3種の培地に塗抹して、
グルコースを炭素源とする最少培地ではよく生育するが
、L−グルタミンを炭素源とする最少培地およびL−グ
ルタミン酸を炭素源とする最少培地の両培地では生育し
ないかもしくは親株と比較して生育が著しく遅い変異株
を40株分離した。これらの変異株すべてを、L−グル
タミン酸発酵試験(実施例1と同じ方法)にかけて、親
株よりL−グルタミン酸生産性のすぐれた菌株としてG
−28およびG−37の両株を選択した。
Next, the cells grown in colonies were placed on the above-mentioned minimal agar medium and on a minimal agar medium containing L-glutamine as the sole carbon source (glucose was removed from the above-mentioned glucose medium, and 0%
.. As a result of transferring to a medium (medium supplemented with 5x/J L-glutamine) using the replica method and statically culturing at 30°C for 3 days,
Although it grows on a minimal medium with glucose as the carbon source, L
- We obtained many mutant strains that either do not grow on a minimal medium containing glutamine as a carbon source or grow significantly slower than the parent strain B-15. These mutant strains were further grown in a minimal medium containing glucose as a carbon source, a minimal medium containing L-glutamine as a carbon source, and a minimal medium containing L-glutamic acid as a carbon source (from the above-mentioned minimal medium containing glucose as a carbon source to Excluding sodium L-glutamate 0.
5g/d1 supplemented medium).
It grows well on a minimal medium with glucose as the carbon source, but it does not grow or grows poorly compared to the parent strain on both minimal medium with L-glutamine as the carbon source and minimal medium with L-glutamic acid as the carbon source. We isolated 40 significantly slower mutant strains. All of these mutant strains were subjected to an L-glutamic acid fermentation test (same method as in Example 1), and G.
Both strains -28 and G-37 were selected.

G−28は昭和60年5月2タ日付で工業技術院微生物
工業技術研究所(微工研)に寄託されており、その寄託
番号はFERM  P−g2b7である。
G-28 has been deposited with the Institute of Microbial Technology (Feikoken) of the Agency of Industrial Science and Technology on May 2, 1985, and its deposit number is FERM P-g2b7.

これらの菌株の各種炭素源を含む最少寒天培地での生育
試験の結果は第1表に示すとおりである。
The results of growth tests of these strains on minimal agar media containing various carbon sources are shown in Table 1.

第   1   表 G−28++++−− G−37++++         −−B−15(親
株)  ++++     ++      ++各種
炭素源を含む最少寒天培地に細胞を塗抹し、30℃で4
日間静置培養した時の生育度を示す。
Table 1 G-28++++-- G-37++++ --B-15 (parent strain) +++++ ++ ++ Cells were spread on a minimum agar medium containing various carbon sources, and incubated at 30°C for 4 hours.
It shows the growth rate when statically cultured for days.

−二生育せず、++:良好な生育、 ++++ :極め
て良好な生育。
− No growth, ++: good growth, ++++: extremely good growth.

基本培地の組成は本文中に示す。The composition of the basal medium is shown in the text.

本発明において、微生物を培養する培地としては、炭素
源、窒素源、無機塩類、生育因子などを含有する栄養培
地または合成培地が用いられる。
In the present invention, as a medium for culturing microorganisms, a nutrient medium or a synthetic medium containing a carbon source, a nitrogen source, inorganic salts, growth factors, etc. is used.

炭素源としては、グルコース、フラクトース。Carbon sources include glucose and fructose.

シュークロース、糖蜜、デンプン、デンプン加水分解物
、果汁などの炭水化物、エタノール、メタノール、プロ
パツールなどのアルコール類が使用できる。
Carbohydrates such as sucrose, molasses, starch, starch hydrolyzate, and fruit juice, and alcohols such as ethanol, methanol, and propatool can be used.

窒素源としては、硫酸アンモニウム、硝酸アンモニウム
、塩酸アンモニウム、リン酸アンモニウム、酢酸アンモ
ニウム、アンモニア、アミン類。
Nitrogen sources include ammonium sulfate, ammonium nitrate, ammonium hydrochloride, ammonium phosphate, ammonium acetate, ammonia, and amines.

ペプトン、肉エキス、酵母エキス、コーン・スチープ・
リカー、カゼイン加水分解物、各種発酵菌体およびその
消化物が使用できる。
Peptone, meat extract, yeast extract, corn steep
Liquor, casein hydrolyzate, various fermented microbial cells, and digested products thereof can be used.

無機塩としては、リン酸−カリウム、リン酸二カリウム
、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリ
ウム、硫酸第一鉄、硫酸マンガン。
Inorganic salts include potassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, and manganese sulfate.

炭酸カルシウムなどが使用できる。Calcium carbonate etc. can be used.

栄養要求性を示す変異株を使用する場合には、それらの
要求物質を標品もしくはそれを含有する天然物として添
加する。
When using mutant strains that exhibit auxotrophy, the auxotrophic substances are added as standard products or natural products containing them.

培養は、通気攪拌、振盪培養などの好気的条件下で行う
。培養温度は24〜37℃、培養日数は2〜7日間であ
る。培養液のpHは5〜9の範囲に維持する。p)Iの
調整には中和剤として尿素、炭酸カルシウム、アンモニ
アガス、アンモニア水、リン酸マグネシウムなどを用い
る。
Cultivation is performed under aerobic conditions such as aeration and shaking culture. The culture temperature is 24-37°C, and the number of culture days is 2-7 days. The pH of the culture solution is maintained in the range of 5-9. p) To adjust I, urea, calcium carbonate, ammonia gas, aqueous ammonia, magnesium phosphate, etc. are used as a neutralizing agent.

培養終了後、培養液からL−グルタミン酸を単離する方
法としては公知の方法、例えば、イオン交換樹脂法、溶
媒抽出法などが用いられる。
After completion of the culture, known methods such as ion exchange resin method and solvent extraction method are used to isolate L-glutamic acid from the culture solution.

以下に実施例を挙げて本発明を具体的に示す。The present invention will be specifically illustrated by giving examples below.

実施例1゜ 種菌として、コリネバクテリウム・グルタミクムG−2
8およびG−37を使用した。
Example 1゜ Corynebacterium glutamicum G-2 as inoculum
8 and G-37 were used.

これらの変異株をグルコース40 g/l 、ペプトン
10 g/l 、肉エキス5g/l、酵母エキス5g/
l 、KH2PO41g/l 、に2HPO41g/j
!、Mg50m・?H200,5g/LFeSO4’ 
7820 20mg/CMn5On・4H2020■/
l、尿素5 g / l 、  (NH4)zsO45
g/lからなる種培地(p)I7.2 ) 20mlを
含む300IIll容三角フラスコに接種し30℃で2
4時間培養した。この培養液7mlを発酵培地〔グルコ
ース77g/l、尿素7.7 g /1 、  (NH
4)2so4 3 g /1 。
These mutants were treated with 40 g/l of glucose, 10 g/l of peptone, 5 g/l of meat extract, and 5 g/l of yeast extract.
l, KH2PO41g/l, 2HPO41g/j
! , Mg50m・? H200,5g/LFeSO4'
7820 20mg/CMn5On・4H2020■/
l, urea 5 g/l, (NH4)zsO45
A 300 II Erlenmeyer flask containing 20 ml of a seed medium (p)I7.2) consisting of g/l was inoculated and incubated at 30°C for 2 hours.
It was cultured for 4 hours. 7 ml of this culture solution was added to fermentation medium [glucose 77 g/l, urea 7.7 g/1, (NH
4) 2so4 3 g/1.

KH,PO41,5g/l 、に2HP0.1.5g/
l 。
KH, PO41.5g/l, 2HP0.1.5g/l
l.

M n S 04 ・4 Hzo  30mg/ 1 
、ピオチン77z/1.パントテン酸カルシウム770
■/1.ニコチン酸アミドT70躍/l、チアミン・H
Cl300g/l 、 pH7,2113mlを含む3
00ml容三角フラスコに接種し、さらにペニシリンG
溶液(1[111)を最終濃度5U/mlになるように
添加して34℃で振盪培養した。培養中、培養液のpH
を6.5から8.0に保つように殺菌した10%尿素溶
液3.5mlを添加しながら30時間培養した。対照と
して、同一条件下で同時に親株である日−15を培養し
た。各々の菌株のL−グルタミン酸の蓄積量は第2表に
示す通りであった。
M n S 04 ・4 Hzo 30mg/1
, Piotine 77z/1. Calcium pantothenate 770
■/1. Nicotinamide T70/l, Thiamine H
Cl 300g/l, pH 7, containing 2113ml 3
00ml Erlenmeyer flask, and then inoculated with penicillin G.
Solution (1[111) was added to the final concentration of 5 U/ml, and cultured with shaking at 34°C. During culture, the pH of the culture solution
The cells were cultured for 30 hours while adding 3.5 ml of sterilized 10% urea solution to maintain the pH between 6.5 and 8.0. As a control, the parent strain Day-15 was cultured at the same time under the same conditions. The amount of L-glutamic acid accumulated by each strain was as shown in Table 2.

G−2826,0 G−3728,2 発明の効果 本発明方法によれば、L−グルタミン酸の発酵生産を著
しく向上させることができるので、L−グルタミン酸を
大量に安価に供給することができる。
G-2826,0 G-3728,2 Effects of the Invention According to the method of the present invention, the fermentation production of L-glutamic acid can be significantly improved, so that L-glutamic acid can be supplied in large quantities at low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)コリネバクテリウム属に属し、L−グルタミン酸
生産能を有し、L−グルタミンまたはL−グルタミン酸
を唯一の炭素源として生育する能力が欠失または著しく
低下した微生物を培地に培養し、培養物中にL−グルタ
ミン酸を蓄積させ、該培養物から蓄積したL−グルタミ
ン酸を採取することを特徴とする発酵法によるL−グル
タミン酸の製造法。
(1) A microorganism that belongs to the genus Corynebacterium and has the ability to produce L-glutamic acid, and has lost or significantly reduced the ability to grow using L-glutamine or L-glutamic acid as the sole carbon source, is cultured in a medium. A method for producing L-glutamic acid by a fermentation method, which comprises accumulating L-glutamic acid in a culture and collecting the accumulated L-glutamic acid from the culture.
(2)該微生物が、コリネバクテリウム・グルタミクム
に属することを特徴とする特許請求の範囲第1項記載の
方法。
(2) The method according to claim 1, wherein the microorganism belongs to Corynebacterium glutamicum.
JP11569585A 1985-05-29 1985-05-29 Production of l-glutamic acid Granted JPS61274691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11569585A JPS61274691A (en) 1985-05-29 1985-05-29 Production of l-glutamic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11569585A JPS61274691A (en) 1985-05-29 1985-05-29 Production of l-glutamic acid

Publications (2)

Publication Number Publication Date
JPS61274691A true JPS61274691A (en) 1986-12-04
JPH055476B2 JPH055476B2 (en) 1993-01-22

Family

ID=14668949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11569585A Granted JPS61274691A (en) 1985-05-29 1985-05-29 Production of l-glutamic acid

Country Status (1)

Country Link
JP (1) JPS61274691A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110526A (en) * 2004-10-18 2006-04-27 Purearth Inc Sterilized aqueous urea solution and its production method
JP2012521205A (en) * 2009-03-25 2012-09-13 ネステク ソシエテ アノニム Natural flavor base for enhancing taste and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110526A (en) * 2004-10-18 2006-04-27 Purearth Inc Sterilized aqueous urea solution and its production method
JP2012521205A (en) * 2009-03-25 2012-09-13 ネステク ソシエテ アノニム Natural flavor base for enhancing taste and preparation method thereof

Also Published As

Publication number Publication date
JPH055476B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
JPH06237779A (en) Production of l-glutamic acid by fermentation method
JP3008565B2 (en) Method for producing L-glutamic acid by fermentation method
JPH022598B2 (en)
EP0054311B1 (en) Process for producing l-glutamic acid
JPH0632626B2 (en) Fermentation method for producing L-threonine
JP2578474B2 (en) Method for producing L-glutamic acid
JPH057493A (en) Production of l-valine by fermentation
JPS61274691A (en) Production of l-glutamic acid
US3939042A (en) Process for the production of L-glutamic acid
JPS61119194A (en) Production of l-ornithine through fermentation process
US4560652A (en) Process for producing L-tryptophan by fermentation
JP3100763B2 (en) Method for producing L-arginine by fermentation
JPS59113894A (en) Preparation of l-glutamic acid by fermentation
JPS61274692A (en) Production of l-histidine
EP0098122B1 (en) Processes for producing l-proline by fermentation
JPS61139398A (en) Production of l-glutamic acid
JPH029384A (en) Production of l-glutamic acid by fermentation process
JP3006907B2 (en) Method for producing L-alanine by fermentation method
US3361642A (en) Method for producing hypoxanthine by fermentation
JPS60221097A (en) Production of l-lysine
JPS5811198B2 (en) Hatsukouhou Niyoru Urokanin Sanno Seizouhou
JPH0594A (en) Production of anthranilic acid by fermentation
JPS61128897A (en) Production of l-phenylalanine by fermentation method
JPS59120094A (en) Preparation of l-proline by fermentation
JPS58111695A (en) Preparation of 5&#39;-inosinic acid by fermentation