JP3951276B2 - Prevention method of hydrogen sulfide generation based on microorganisms - Google Patents

Prevention method of hydrogen sulfide generation based on microorganisms Download PDF

Info

Publication number
JP3951276B2
JP3951276B2 JP26926996A JP26926996A JP3951276B2 JP 3951276 B2 JP3951276 B2 JP 3951276B2 JP 26926996 A JP26926996 A JP 26926996A JP 26926996 A JP26926996 A JP 26926996A JP 3951276 B2 JP3951276 B2 JP 3951276B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
nitrate
ions
water
nitrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26926996A
Other languages
Japanese (ja)
Other versions
JPH1085785A (en
Inventor
礼治 丸岡
康裕 大井
従郎 有村
洋 明楽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP26926996A priority Critical patent/JP3951276B2/en
Publication of JPH1085785A publication Critical patent/JPH1085785A/en
Application granted granted Critical
Publication of JP3951276B2 publication Critical patent/JP3951276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02W10/12

Description

【0001】
【発明の属する技術分野】
本発明は、微生物に基づく硫化水素発生の防止方法に関し、さらに詳しくは、下水管路や下水処理場、総合排水処理工程、活性炭塔を利用した排水処理工程などにおいて、微生物に基づく排水中などからの硫化水素の発生を効果的に防止する方法に関するものである。
【0002】
【従来の技術】
従来、下水管路や下水処理場、総合排水処理工程、活性炭塔を利用した排水処理工程などにおいては、排水中から、しばしば硫化水素が発生する。硫化水素は毒性が強く、かつ悪臭を有し、環境汚染をもたらす上、金属を腐食する。この硫化水素の発生は、排水中などに生息している硫酸還元菌の作用によるものである。
この硫酸還元菌は硫酸塩還元細菌とも呼ばれ、嫌気性のグラム陰性菌の一種であって、嫌気的条件下で硫酸塩を還元して硫化水素を発生する。硫酸還元菌による硫酸塩還元経路は次のように考えられている[「生物化学辞典第2版」1991年、東京化学同人発行]。
【化1】

Figure 0003951276
▲1▼:ATPスルフリラーゼ
▲2▼:APSレダクターゼ
▲3▼:亜硫酸レダクターゼ
▲4▼:三チオン酸レダクターゼ
▲5▼:チオ硫酸レダクターゼ
硫酸イオンはまず活性化されてアデニリル硫酸(APS)になり、次いで亜硫酸イオンに還元されたのち、上段及び下段のルートにより、硫化水素に還元される。各工程では▲1▼〜▲5▼から選ばれた酵素が関与する。
従来、硫酸還元菌による硫化水素の発生を防止する方法としては、例えば殺菌剤を添加する方法、酸化剤を添加又は空気を吹込む方法、加熱殺菌する方法、pH調整を行う方法などが知られている。しかしながら、殺菌剤を添加する方法においては、殺菌剤は一般に高価であり、また塩素は安価であるが、毒性を有し、かつ金属の腐食をもたらすため、好ましくない。過酸化水素などの酸化剤を添加する方法や空気を吹込む方法は有効な手段であるが、硫酸還元菌の増殖の程度によっては適用できないことがある。また、加熱殺菌やpH調整を行う方法は、環境によっては適用しにくいことがある。
そこで、硫酸還元菌による硫化水素の発生を防止する方法として、硝酸塩を添加し、共生する脱窒菌が活動できる環境にすることにより、硫酸還元菌の活動を抑制する方法が提案されている。脱窒菌は脱窒細菌とも呼ばれ、嫌気的条件下で、硝酸イオンや亜硝酸イオンを還元し、ガス状窒素にして放出する細菌である。この脱窒菌による脱窒の経路は次のように考えられている[「生物化学辞典第2版」1991年、東京化学同人発行]。
【化2】
Figure 0003951276
硝酸イオンはまず亜硝酸イオンに還元されたのち、酸化窒素、亜酸化窒素を経由して、ガス状窒素に還元される。
この脱窒菌の脱窒活性は、酸素、pH、温度などの環境要因に左右され、最適水温は37〜39℃程度、最適pHは7.0〜7.5程度である。
しかしながら、硫化水素の発生を防止するために硝酸塩を添加した場合、硝酸イオンが被処理水中に残留している間は、脱窒菌が活動できる環境となり、硫酸還元菌の活動を抑制できるが、脱窒により硝酸イオンがなくなると硫酸還元菌の活動により硫化水素が発生する。この際、被処理水の環境要因が脱窒菌の脱窒活性の発現に適していれば、脱窒による硝酸イオンの消費が速く、硫化水素の発生を防止する効果が持続せず、硝酸塩の添加量を多くする必要があるという問題が生じる。
また、上記の硝酸塩の添加の代わりに、被処理水中に亜硝酸イオンを存在させる方法が提案されている(特公平1−60319号公報)。しかしながら、この方法も、原理は上記硝酸塩の場合と同様であり、同じような問題を有している。
【0003】
【発明が解決しようとする課題】
本発明は、このような事情のもとで、下水管路や下水処理場、総合排水処理工程、活性炭塔を利用した排水処理工程などにおいて、微生物に基づく排水中などからの硫化水素の発生を効果的に防止する方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、被処理水中に硝酸イオンや亜硝酸イオンを存在させるとともに、脱窒菌の最適pH範囲外であるpH6.5以下に調整することにより、硫酸還元菌と共生する脱窒菌の活動を抑制し、硝酸イオンや亜硝酸イオンの消費を抑え、硫化水素の発生を長期間にわたって抑制しうることを見い出し、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)硫酸還元菌及び脱窒菌が共生する被処理水中に硝酸塩、硝酸、亜硝酸塩又は亜硝酸を添加するとともに、被処理水のpHを4〜6に調整することを特徴とする微生物に基づく硫化水素発生の防止方法、
(2)硝酸塩と酸を併用して被処理水中に添加する前記第(1)項記載の硫化水素発生の防止方法、及び
(3)硝酸イオン及び/又は亜硝酸イオンを初期濃度が30〜300mg/リットルになるように存在させる前記第(1)又は第(2)項記載の硫化水素発生の防止方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明方法が適用される被処理水としては、硫酸還元菌及び脱窒菌が共生するもの、例えば下水管路や下水処理場、総合排水処理工程、活性炭塔を利用した排水処理工程、メタン発酵工程などにおける排水、あるいは油タンクの底水、汚濁河川や田畑の水、水溶性潤滑油などを挙げることができる。
本発明方法においては、被処理水中に硝酸イオン又は亜硝酸イオンあるいはその両方を存在させることが必要である。これらのイオンを存在させることにより、硫酸還元菌は活動せず、脱窒菌が活動して硝酸イオンや亜硝酸イオンを窒素ガスに還元する。硝酸イオンを形成する化合物としては、例えば硝酸ナトリウム、硝酸カリウム、硝酸カルシウムなどの硝酸塩及び硝酸などが挙げられ、亜硝酸イオンを形成する化合物としては、例えば亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウムなどの亜硝酸塩及び亜硝酸などが挙げられる。これらの中で、経済性の点から硝酸塩及び硝酸が好適である。また、これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明においては、被処理水中の硝酸イオン及び/又は亜硝酸イオンの存在量は、初期濃度が30mg/リットル以上であるのが望ましい。この濃度が30mg/リットル未満では硫酸還元菌の活動抑制期間が短すぎ、本発明の目的が充分に達せられない。また、この濃度があまり高すぎると経済的に不利となるので、上限は300mg/リットル程度が有利である。
前記硝酸イオンや亜硝酸イオンを形成する化合物は、被処理水中に一度に又は間欠的に添加してもよいし、連続的に添加してもよい。
本発明方法においては、前記したように被処理水中に硝酸イオン及び/又は亜硝酸イオンを存在させるとともに、被処理水のpHを6.5以下に調整することが必要である。このpHが6.5を超えると脱窒菌の活動を効果的に抑制することができず、その結果、脱窒による硝酸イオンや亜硝酸イオンの消費が速くなり、硫酸還元菌による硫化水素の発生を長期間抑制することが困難となる。また、pHがあまり低すぎると腐食やその他の不都合が生じるので、特に好ましいpHは4〜6の範囲である。
このpHの調整に用いる酸については特に制限はなく、様々な酸を用いることができるが、例えば塩酸や硫酸などの鉱酸が好ましい。なお、硝酸イオン源や亜硝酸イオン源として、硝酸や亜硝酸を用い、かつpHが前記範囲にあれば、改めて他の酸を添加する必要はない。
本発明においては、経済性及び取扱い性などの面から、硝酸塩と塩酸や硫酸などの酸を併用して、被処理水に添加するのが好ましい。
また、本発明における処理温度については特に制限はないが、経済性の点から、被処理水の加熱操作や冷却操作は好ましくなく、そのときの被処理水の温度において処理するのが有利である。
さらに、本発明においては、本発明の目的が損なわれない範囲で、所望により、被処理水中に公知の殺菌剤や酸化剤などを添加してもよい。
【0006】
【作用】
硫酸還元菌及び脱窒菌が共生する場合、硝酸イオンや亜硝酸イオンの存在下では、硫酸還元菌は活動せず、脱窒菌が活動して硝酸イオンや亜硝酸イオンを窒素ガスに還元する。この脱窒菌の脱窒速度は水温及びpHの影響を大きく受け、最適水温は37〜39℃程度、最適pHは7.0〜7.5程度である。
被処理水の水温を調整するのは難しいが、pHの調整は比較的簡単である。したがって、本発明においては、被処理水中に硝酸イオンや亜硝酸イオンを存在させるとともに、そのpHを脱窒菌の最適範囲外とすることにより、脱窒菌の活動を抑制し、硝酸イオンや亜硝酸イオンの消費を抑え、硫化水素発生を長期間抑制することができる。
【0007】
【実施例】
次に本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
実施例
A処理場に流入する下水管路から採取した下水[pH7.6、SS(浮遊物質)150mg/リットル、BOD(生物学的酸素要求量)200mg/リットル]1000mlを密封容器に入れ、硝酸ナトリウムと塩酸を加えて撹拌し、硝酸イオンの初期濃度43mg/リットル、pH5.8の試料を得たのち、25℃の恒温槽に保存した。各経過時間毎に試料を分取し、硝酸イオン濃度、亜硝酸イオン濃度及びイオウイオン(S2-)濃度を測定した。結果を第1表に示す。
【0008】
【表1】
Figure 0003951276
【0009】
比較例
実施例において、塩酸を添加しなかったこと以外は、実施例と同様にして、硝酸イオンの初期濃度42mg/リットル、pH7.6の試料を得たのち、試験を行った。結果を第2表に示す。
【0010】
【表2】
Figure 0003951276
【0011】
第1表と第2表の比較から分かるように、実施例のpH5.8に調整したものは、比較例のpH7.6のものに比べて、硝酸イオン、亜硝酸イオンの消費速度が遅く、イオウイオン発生の抑制時間が長い。
【0012】
【発明の効果】
本発明によると、下水管路や下水処理場、総合排水処理工程、活性炭塔を利用した排水処理工程などにおいて、微生物に基づく排水中などからの硫化水素の発生を効果的に防止することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing the generation of hydrogen sulfide based on microorganisms, and more particularly, from wastewater based on microorganisms in sewage pipes, sewage treatment plants, general wastewater treatment processes, wastewater treatment processes using activated carbon towers, and the like. The present invention relates to a method for effectively preventing the generation of hydrogen sulfide.
[0002]
[Prior art]
Conventionally, in a sewage pipe, a sewage treatment plant, a comprehensive wastewater treatment process, a wastewater treatment process using an activated carbon tower, hydrogen sulfide is often generated from wastewater. Hydrogen sulfide is highly toxic and has an offensive odor, causing environmental pollution and corroding metals. This generation of hydrogen sulfide is caused by the action of sulfate-reducing bacteria that live in the wastewater.
This sulfate-reducing bacterium is also called a sulfate-reducing bacterium and is a kind of anaerobic gram-negative bacterium, which generates hydrogen sulfide by reducing sulfate under anaerobic conditions. The sulfate reduction pathway by sulfate-reducing bacteria is considered as follows ["Biochemical Dictionary 2nd Edition", published by Tokyo Chemical Doujin in 1991].
[Chemical 1]
Figure 0003951276
(1): ATP sulfurylase (2): APS reductase (3): Sulphite reductase (4): Trithionate reductase (5): Thiosulfate reductase sulfate is first activated to adenylyl sulfate (APS), After being reduced to sulfite ion, it is reduced to hydrogen sulfide by the upper and lower routes. In each step, an enzyme selected from (1) to (5) is involved.
Conventionally, methods for preventing the generation of hydrogen sulfide by sulfate-reducing bacteria include, for example, a method of adding a bactericidal agent, a method of adding an oxidizing agent or blowing air, a method of heat sterilization, a method of adjusting pH, and the like. ing. However, in the method of adding a bactericidal agent, the bactericidal agent is generally expensive and chlorine is inexpensive, but it is not preferable because it is toxic and causes corrosion of the metal. Although a method of adding an oxidizing agent such as hydrogen peroxide or a method of blowing air is an effective means, it may not be applied depending on the degree of growth of sulfate-reducing bacteria. Moreover, the method of performing heat sterilization and pH adjustment may be difficult to apply depending on the environment.
Thus, as a method for preventing the generation of hydrogen sulfide by sulfate-reducing bacteria, a method for suppressing the activity of sulfate-reducing bacteria by adding nitrate to create an environment where symbiotic denitrifying bacteria can be active has been proposed. Denitrifying bacteria, also called denitrifying bacteria, are bacteria that reduce nitrate ions and nitrite ions to release gaseous nitrogen under anaerobic conditions. The route of denitrification by this denitrifying bacterium is considered as follows ["Biochemical Dictionary 2nd Edition" published by Tokyo Chemical Doujin in 1991].
[Chemical 2]
Figure 0003951276
The nitrate ions are first reduced to nitrite ions, and then reduced to gaseous nitrogen via nitric oxide and nitrous oxide.
The denitrifying activity of this denitrifying bacterium depends on environmental factors such as oxygen, pH and temperature, and the optimum water temperature is about 37 to 39 ° C. and the optimum pH is about 7.0 to 7.5.
However, when nitrate is added to prevent the generation of hydrogen sulfide, while nitrate ions remain in the water to be treated, an environment in which denitrifying bacteria can be activated and the activity of sulfate-reducing bacteria can be suppressed. When nitrate ions disappear due to nitrogen, hydrogen sulfide is generated by the activity of sulfate-reducing bacteria. At this time, if the environmental factors of the treated water are suitable for the expression of denitrification activity of the denitrifying bacteria, the consumption of nitrate ions by denitrification is fast and the effect of preventing the generation of hydrogen sulfide does not last, and the addition of nitrate The problem arises that the amount needs to be increased.
In addition, a method has been proposed in which nitrite ions are present in the water to be treated instead of adding the above nitrate (Japanese Patent Publication No. 1-60319). However, this method is similar in principle to the above-described nitrate and has the same problems.
[0003]
[Problems to be solved by the invention]
Under such circumstances, the present invention prevents generation of hydrogen sulfide from wastewater based on microorganisms in sewage pipes, sewage treatment plants, comprehensive wastewater treatment processes, wastewater treatment processes using activated carbon towers, and the like. It was made for the purpose of providing an effective prevention method.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors made nitrate ions and nitrite ions exist in the water to be treated, and adjusted the pH to 6.5 or less, which is outside the optimum pH range of denitrifying bacteria. It is found that the activity of denitrifying bacteria symbiotic with sulfate-reducing bacteria can be suppressed, the consumption of nitrate ions and nitrite ions can be suppressed, and the generation of hydrogen sulfide can be suppressed over a long period of time. The invention has been completed.
That is, the present invention
(1) Based on a microorganism characterized in that nitrate, nitric acid, nitrite or nitrous acid is added to the treated water in which sulfate-reducing bacteria and denitrifying bacteria coexist, and the pH of the treated water is adjusted to 4-6 A method for preventing hydrogen sulfide generation,
(2) The method for preventing hydrogen sulfide generation according to (1) above, wherein nitrate and acid are used in combination in the water to be treated, and (3) nitrate ions and / or nitrite ions have an initial concentration of 30 to 300 mg. The method for preventing hydrogen sulfide generation as described in the item (1) or (2), wherein
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The treated water to which the method of the present invention is applied is one in which sulfate-reducing bacteria and denitrifying bacteria coexist, such as sewage pipes and sewage treatment plants, comprehensive wastewater treatment processes, wastewater treatment processes using activated carbon towers, and methane fermentation processes. For example, drainage of oil tanks, bottom water of oil tanks, water of polluted rivers and fields, water-soluble lubricating oil, and the like.
In the method of the present invention, it is necessary that nitrate ions and / or nitrite ions exist in the water to be treated. When these ions are present, sulfate-reducing bacteria are not activated, and denitrifying bacteria are activated to reduce nitrate ions and nitrite ions to nitrogen gas. Examples of the compound that forms nitrate ions include nitrates and nitric acid such as sodium nitrate, potassium nitrate, and calcium nitrate. Examples of the compounds that form nitrite ions include sodium nitrite, potassium nitrite, and calcium nitrite. Examples thereof include nitrite and nitrous acid. Among these, nitrate and nitric acid are preferable from the viewpoint of economy. Moreover, these may be used independently and may be used in combination of 2 or more type.
In the present invention, it is desirable that the initial concentration of nitrate ions and / or nitrite ions in the water to be treated is 30 mg / liter or more. If this concentration is less than 30 mg / liter, the activity-reducing period of sulfate-reducing bacteria is too short, and the object of the present invention cannot be sufficiently achieved. Further, if this concentration is too high, it is economically disadvantageous, so the upper limit is advantageously about 300 mg / liter.
The compound that forms nitrate ions or nitrite ions may be added to the water to be treated at once, intermittently, or continuously.
In the method of the present invention, as described above, it is necessary to cause nitrate ions and / or nitrite ions to exist in the water to be treated and to adjust the pH of the water to be treated to 6.5 or less. When this pH exceeds 6.5, the activity of denitrifying bacteria cannot be effectively suppressed. As a result, the consumption of nitrate ions and nitrite ions by denitrification becomes faster, and the generation of hydrogen sulfide by sulfate-reducing bacteria. It becomes difficult to suppress for a long time. Further, if the pH is too low, corrosion and other inconveniences occur, so a particularly preferred pH is in the range of 4-6.
There is no restriction | limiting in particular about the acid used for adjustment of this pH, Although various acids can be used, For example, mineral acids, such as hydrochloric acid and a sulfuric acid, are preferable. If nitric acid or nitrous acid is used as the nitrate ion source or nitrite ion source and the pH is within the above range, it is not necessary to add another acid again.
In the present invention, it is preferable to add nitrate and an acid such as hydrochloric acid or sulfuric acid to the water to be treated from the viewpoints of economy and handleability.
Further, the treatment temperature in the present invention is not particularly limited, but from the viewpoint of economy, heating operation or cooling operation of the water to be treated is not preferable, and it is advantageous to perform treatment at the temperature of the water to be treated at that time. .
Furthermore, in this invention, you may add a well-known disinfectant, an oxidizing agent, etc. in to-be-processed water if desired in the range which does not impair the objective of this invention.
[0006]
[Action]
When sulfate-reducing bacteria and denitrifying bacteria coexist, sulfate-reducing bacteria do not act in the presence of nitrate ions or nitrite ions, and denitrifying bacteria act to reduce nitrate ions or nitrite ions to nitrogen gas. The denitrification rate of the denitrifying bacteria is greatly affected by the water temperature and pH, and the optimum water temperature is about 37 to 39 ° C. and the optimum pH is about 7.0 to 7.5.
Although it is difficult to adjust the temperature of the water to be treated, pH adjustment is relatively easy. Therefore, in the present invention, nitrate ions and nitrite ions are present in the water to be treated, and the pH is outside the optimum range of the denitrifying bacteria, thereby suppressing the activities of the denitrifying bacteria, and nitrate ions and nitrite ions. The generation of hydrogen sulfide can be suppressed for a long time.
[0007]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited at all by these examples.
Example A 1000 ml of sewage [pH 7.6, SS (suspended substance) 150 mg / liter, BOD (biological oxygen demand) 200 mg / liter)] collected from a sewage pipe flowing into a treatment plant is placed in a sealed container. Sodium and hydrochloric acid were added and stirred to obtain a sample having an initial concentration of nitrate ions of 43 mg / liter and a pH of 5.8, and then stored in a thermostatic bath at 25 ° C. Samples were collected at each elapsed time, and nitrate ion concentration, nitrite ion concentration and sulfur ion (S 2− ) concentration were measured. The results are shown in Table 1.
[0008]
[Table 1]
Figure 0003951276
[0009]
Comparative Example In the same manner as in the example except that hydrochloric acid was not added, a sample having an initial nitrate ion concentration of 42 mg / liter and a pH of 7.6 was tested. The results are shown in Table 2.
[0010]
[Table 2]
Figure 0003951276
[0011]
As can be seen from the comparison between Table 1 and Table 2, the consumption rate of nitrate ions and nitrite ions was slower in the example adjusted to pH 5.8 than in the comparative example pH 7.6, Suppression time of sulfur ion generation is long.
[0012]
【The invention's effect】
According to the present invention, generation of hydrogen sulfide from wastewater based on microorganisms can be effectively prevented in sewage pipes, sewage treatment plants, comprehensive wastewater treatment processes, wastewater treatment processes using activated carbon towers, and the like. .

Claims (3)

硫酸還元菌及び脱窒菌が共生する被処理水中に硝酸塩、硝酸、亜硝酸塩又は亜硝酸を添加するとともに、被処理水のpHを4〜6に調整することを特徴とする微生物に基づく硫化水素発生の防止方法。Hydrogen sulfide generation based on microorganisms characterized in that nitrate, nitric acid, nitrite or nitrous acid is added to the treated water in which sulfate reducing bacteria and denitrifying bacteria coexist, and the pH of the treated water is adjusted to 4-6 Prevention method. 硝酸塩と酸を併用して被処理水中に添加する請求項1記載の硫化水素発生の防止方法。  The method for preventing hydrogen sulfide generation according to claim 1, wherein nitrate and acid are used in combination in the water to be treated. 硝酸イオン及び/又は亜硝酸イオンを初期濃度が30〜300mg/リットルになるように存在させる請求項1又は2記載の硫化水素発生の防止方法。  The method for preventing hydrogen sulfide generation according to claim 1 or 2, wherein nitrate ions and / or nitrite ions are present so as to have an initial concentration of 30 to 300 mg / liter.
JP26926996A 1996-09-19 1996-09-19 Prevention method of hydrogen sulfide generation based on microorganisms Expired - Fee Related JP3951276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26926996A JP3951276B2 (en) 1996-09-19 1996-09-19 Prevention method of hydrogen sulfide generation based on microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26926996A JP3951276B2 (en) 1996-09-19 1996-09-19 Prevention method of hydrogen sulfide generation based on microorganisms

Publications (2)

Publication Number Publication Date
JPH1085785A JPH1085785A (en) 1998-04-07
JP3951276B2 true JP3951276B2 (en) 2007-08-01

Family

ID=17470010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26926996A Expired - Fee Related JP3951276B2 (en) 1996-09-19 1996-09-19 Prevention method of hydrogen sulfide generation based on microorganisms

Country Status (1)

Country Link
JP (1) JP3951276B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834908B2 (en) * 2000-12-08 2011-12-14 栗田工業株式会社 Odor generation prevention method
DE102009055381A1 (en) * 2009-12-29 2011-06-30 Yara International Asa Wastewater treatment agent for rapid suppression of putrefactive bacteria in wastewater and process
JP5282767B2 (en) * 2010-06-15 2013-09-04 栗田工業株式会社 Odor generation prevention method
JP6205242B2 (en) * 2013-11-01 2017-09-27 日鉄住金環境株式会社 Odor control method for odor generating substance and odor control composition

Also Published As

Publication number Publication date
JPH1085785A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US7553420B2 (en) Systems and methods for wastewater odor control
JP4373498B2 (en) Biological treatment of used caustic soda
EP0576124B1 (en) Composition and method for sulfide control
US20060006121A1 (en) Synergistic composition and method for odor control
Dai et al. Nitrous oxide emission during denitrifying phosphorus removal process: a review on the mechanisms and influencing factors
EP1624089A1 (en) Method of preventing hydrogen sulfide odor generation in an aqueous medium
JPH0160319B2 (en)
JP2008126143A (en) Water treatment method
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP3951276B2 (en) Prevention method of hydrogen sulfide generation based on microorganisms
WO1996012867A1 (en) Inhibition of sulfate-reducing bacteria via nitrite production
JPH10323685A (en) Biological odorproofing deodorization method and excess-sludge digestion volume reduction method
Leeson et al. Biomineralization of atrazine ozonation products. Application to the development of a pesticide waste disposal system
JP2003047985A (en) Treatment method of organic waste water
US20070131625A1 (en) Methods of inhibiting biogenic sulfide formation in aqueous systems
JP5267190B2 (en) Method for treating wastewater containing sulfur-based COD components
Boon et al. Odour generation and control
Ben‐Dov et al. Impact of Biocides on Hydrogen Sulfide Production and Growth of Desulfovibrio vulgaris
JP2000117239A (en) Inhibitor for inhibiting generation of hydrogen sulfide and method for inhibiting generation of hydrogen sulfide in wastewater treatment process
JP2002018482A (en) Reactor for reducing selenic acid
JP2000033383A (en) Method for inhibiting formation of sulfide by sulfate reduction bacterium
JPH09174089A (en) Aerobic treatment method for waste liquid containing terephthalic acid
JPH06285492A (en) Treatment process for phenol containing gas
JPH09174088A (en) Aerobic treatment method for waste liquid containing terephthalic acid
JP2004351419A (en) Method for treating wastewater containing ethanolamine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees