JP3414513B2 - Treatment method of reclaimed wastewater from condensate desalination equipment - Google Patents

Treatment method of reclaimed wastewater from condensate desalination equipment

Info

Publication number
JP3414513B2
JP3414513B2 JP20006694A JP20006694A JP3414513B2 JP 3414513 B2 JP3414513 B2 JP 3414513B2 JP 20006694 A JP20006694 A JP 20006694A JP 20006694 A JP20006694 A JP 20006694A JP 3414513 B2 JP3414513 B2 JP 3414513B2
Authority
JP
Japan
Prior art keywords
ammonia
nitrite
water
nitrogen
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20006694A
Other languages
Japanese (ja)
Other versions
JPH0839081A (en
Inventor
芳郎 湯浅
進 泉谷
敏次 中原
泰彦 高林
良弘 恵藤
勲 上甲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP20006694A priority Critical patent/JP3414513B2/en
Publication of JPH0839081A publication Critical patent/JPH0839081A/en
Application granted granted Critical
Publication of JP3414513B2 publication Critical patent/JP3414513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、復水脱塩装置の再生排
水中のアンモニアの分解方法に関するものである。さら
に詳しくは、本発明は、処理水中の全窒素濃度が低く、
かつ安定した水質の処理水を得ることができる新規なア
ンモニア含有排水の処理方法に関するものである。 【0002】 【従来の技術】ボイラの復水脱塩装置、例えば、火力、
原子力発電用ボイラの復水脱塩装置の再生排水には、ア
ンモニアがかなりの量含まれており、このアンモニアの
除去方法として、例えば、生物学的硝化脱窒素法、アン
モニアストリッピング法、塩素酸化法、接触分解法など
が知られている。これらのアンモニアの除去方法の中
で、生物学的硝化脱窒素法は、硝化細菌によりアンモニ
アを亜硝酸性又は硝酸性窒素に酸化したのち、脱窒素細
菌により窒素ガスに還元する方法である。しかしなが
ら、この方法は、微生物反応であるため、種々の変動要
因に対して分解活性が不安定である上、広い設置面積が
必要であり、かつ汚泥の後処理が必要であるなどの欠点
を有している。また、アンモニアストリッピング法は、
アルカリ性条件下に大量の空気と接触させて、アンモニ
アを大気中に放散させる方法である。しかしながら、こ
の方法はアルカリコストが高く、かつ放散させたアンモ
ニアを再度吸着除去する必要があり、経済的ではない。
一方、塩素酸化法は塩素添加によりアンモニウムイオン
を、クロラミンを経由して窒素ガスに酸化する方法であ
る。この方法は塩素添加量がアンモニアの10倍程度必
要であり、アンモニア濃度の高い排水処理には不向きで
ある上、残留塩素の後処理が必要である。これらの方法
に対し、接触分解法は、装置の設置面積が小さい、運転
管理が容易である、汚泥や残留塩素といった後処理を必
要とする物質が生成しない、などの優れた特徴を有する
処理方法であり、注目されている。本発明者らは、この
接触分解法に着目し、先に、アンモニアを含む被処理水
に、酸化剤として亜硝酸塩を添加したのち、触媒の存在
下で熱を加えることにより、アンモニアが効率よく酸化
分解されることを見いだした(特開平4−293553
号公報)。しかしながら、この場合、亜硝酸塩が過剰に
添加されるとアンモニアは除去されるが処理水中に亜硝
酸イオンが残留し、脱窒素という点では十分に目的を達
成できないという不都合が生じる。特に近年、湖沼、内
海の富栄養化防止対策として排水の窒素規制が強化さ
れ、全窒素として10mg/リットル以下という低い基準
値が定められている自治体もあり、このような厳しい基
準値を達成するためには、亜硝酸塩だけを酸化剤として
用いる従来の方法では、被処理水のアンモニア濃度を正
確に測定し、かつアンモニア濃度に見合った亜硝酸塩が
添加されるように厳密に添加量を制御する必要があっ
た。例えば、窒素として1000mg/リットルのアンモ
ニアを含む水を処理する場合には、誤差の大きさが窒素
として10mg/リットル以下となるような精度、すなわ
ち相対誤差が1%以下という高い測定精度が要求されて
いた。また、被処理水のアンモニア濃度の測定値をもと
に亜硝酸塩の添加量を決定するために、被処理水のアン
モニア濃度の変動に対して、亜硝酸塩の添加量の制御が
少なくとも分析に要する時間の分だけ遅れてしまい、そ
の結果安定した処理水質が得られないという問題もあっ
た。このような問題を解決する手段として、本発明者ら
は、アンモニア含有排水に酸化剤として亜硝酸塩及び酸
素若しくは酸素源物質を添加したのち、加温下に金属触
媒と接触させてアンモニアを分解させる方法が有効であ
ることを見いだした。しかし、この方法によっても、な
お、亜硝酸の一部が次の反応によって硝酸及び一酸化窒
素となり、 3HNO2 → 2NO+HNO3+H2O 生成した硝酸は、亜硝酸塩及び酸素若しくは酸素源物質
による酸化分解では除去できないので、処理水中に残留
することになるため、処理水中の全窒素濃度を十分に低
下させることができないという問題があった。 【0003】 【発明が解決しようとする課題】本発明は、このような
酸化剤として亜硝酸塩及び酸素若しくは酸素源物質を用
いてアンモニアを接触分解するアンモニアの除去方法が
有する問題を解決し、被処理水中のアンモニア濃度を高
精度で測定する必要がない上、全窒素濃度が低く、かつ
安定した水質の処理水が得られるとともに、装置コスト
の低減を図ることができるアンモニア含有排水の処理方
法を提供することを目的としてなされたものである。特
に、復水脱塩装置の再生排水中にはアンモニアが比較的
高濃度に含まれ、処理水中の全窒素濃度を安定して低く
することが望まれている。 【0004】 【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、復水脱塩装置
の再生排水中のアンモニアを接触分解する方法におい
て、亜硝酸塩を添加して接触分解を行ったのち、さらに
過酸化水素を添加して接触分解を行うことにより、その
目的を達成しうることを見いだし、この知見に基づいて
本発明を完成するに至った。すなわち、本発明は、 (1)復水脱塩装置の再生時に排出されるアンモニア含
有排水に亜硝酸塩を添加し、酸又はアルカリによりpHを
5.6〜7.2に調整して、加温下に貴金属系触媒と接触
させて大部分のアンモニアを分解したのち、さらに過酸
化水素を添加し貴金属系触媒と接触させて残存するアン
モニアを分解することを特徴とする復水脱塩装置の再生
排水の処理方法を提供するものである。さらに本発明の
好ましい態様として、 (2)亜硝酸塩が亜硝酸ナトリウムであり、亜硝酸性窒
素/アンモニア性窒素の比が0.8〜1.0となるよう亜
硝酸ナトリウムを添加する第(1)項記載の処理方法、 (3)貴金属系触媒がチタニア、γ−アルミナなどの粒
状担体に白金を担持させた触媒である第(1)又は(2)項
記載の処理方法、及び、 (4)過酸化水素の添加量が、残留するアンモニアに対
し、過酸化水素/アンモニア性窒素が重量比で3.6〜
10.9となるよう過酸化水素を添加する第(1)〜(3)
項記載の処理方法を挙げることができる。 【0005】以下、本発明を詳細に説明する。本発明方
法においては、復水脱塩装置の再生排水に、亜硝酸塩を
添加し、酸又はアルカリによりpHを5〜8に調整したの
ち、加温下に貴金属系触媒と接触させてアンモニアを分
解させる。亜硝酸塩の添加とpHの調整の順序は任意であ
り、亜硝酸塩を添加したのちpHを5〜8に調整してもよ
く、あるいは、pHを5〜8に調整したのち亜硝酸塩を添
加することもできる。復水脱塩装置の再生排水は、復水
をイオン交換樹脂を用いて脱塩する装置において、イオ
ン交換樹脂を再生するときに発生する排水であり、アン
モニアを高濃度で含有する。本発明方法において用いら
れる貴金属系触媒としては、例えば、α−アルミナ、γ
−アルミナ、チタニア、活性炭、ジルコニア、ゼオライ
ト、ガラス、シリカ、シリカアルミナ、イオン交換樹脂
などの担体に、白金、パラジウム、ルテニウム、ロジウ
ム、銀、銅などの貴金属を担持したものを用いることが
できるが、特に、チタニア、γ−アルミナなどの粒状担
体に白金を担持させた触媒が好ましい。金属の担持量
は、担体に対して通常0.1〜10重量%程度である。
これらの触媒はカラムに充填し、加温下に亜硝酸塩が添
加されたアンモニア含有排水を通液して反応を行うのが
好ましく、かつ、この場合は上向流通液が望ましい。本
発明方法において用いられる亜硝酸塩としては、水に対
して可溶性であり、カチオンが環境に悪影響を与えない
ものであれば、特に制限なく使用することができ、この
ような亜硝酸塩としては、例えば、亜硝酸リチウム、亜
硝酸ナトリウム、亜硝酸カリウム、亜硝酸マグネシウ
ム、亜硝酸カルシウムなどを挙げることができるが、特
に、亜硝酸ナトリウムが好ましい。アンモニアと亜硝酸
ナトリウムは次式にしたがって反応し、無害な窒素ガス
となって除去される。 NH3+NaNO2 → N2+NaOH+H2O 亜硝酸塩の添加量は、亜硝酸性窒素/アンモニア性窒素
の比が0.8〜1.0となるよう添加することが好まし
い。亜硝酸性窒素/アンモニア性窒素の比が0.8未満
であると、亜硝酸塩によって分解されずに残存するアン
モニアの量が多くなる。亜硝酸性窒素/アンモニア性窒
素の比が1.0を超えると、過剰の亜硝酸塩は排水中に
残存し、次の過酸化水素による分解工程では除去するこ
とができないので好ましくない。本発明方法において、
アンモニア含有排水中のアンモニアの亜硝酸塩との反応
による分解は、酸又はアルカリにより排水のpHを5〜
8、好ましくはpHを6〜7に調整して行われる。排水の
pHの調整は、塩酸、硫酸などの酸、あるいは、水酸化ナ
トリウム、水酸化カリウム、炭酸ナトリウムなどのアル
カリを用いて行うことができる。排水のpHが5未満であ
ると、亜硝酸イオンの一部が除去することができない硝
酸イオンに変化し、処理水中の窒素濃度が上昇するので
好ましくない。排水のpHが8を超えると、アンモニアと
亜硝酸塩の反応速度が低下し、処理水中の窒素濃度が上
昇するおそれがあるので好ましくない。本発明方法にお
いては、亜硝酸塩を添加し、酸又はアルカリによりpHを
5〜8に調整して、加温下に貴金属系触媒と接触させる
ことにより大部分のアンモニアを除去して得られた処理
水に、さらに過酸化水素を添加して貴金属系触媒と接触
させ残存するアンモニアを分解する。アンモニアと過酸
化水素は次式にしたがって反応し、無害な窒素ガスとな
って除去される。 2NH3+3H22 → N2+6H2O 本式にしたがえば、過酸化水素/アンモニア性窒素の理
論重量比は3.6であるが、過酸化水素の添加量は、残
存するアンモニアに対し、過酸化水素/アンモニア性窒
素の重量比が3.6〜10.9となるよう添加することが
好ましい。過酸化水素の添加量が、残存するアンモニア
に対し、過酸化水素/アンモニア性窒素の重量比で3.
6未満であると、アンモニアが完全に分解除去されず
に、なお残存するので好ましくない。過酸化水素の添加
量が、残存するアンモニアに対し、過酸化水素/アンモ
ニア性窒素の重量比で10.9を超えても、残存するア
ンモニアの除去効率は過酸化水素の添加量の増加に見合
っては向上しない。 【0006】次に、本発明方法を実施するための装置に
ついて説明する。図1は、本発明方法を実施するための
装置の一例の概略図である。まず、アンモニア含有排水
は被処理水貯槽1に導かれ、酸又はアルカリを添加する
ことにより、pHを5〜8に調整される。亜硝酸塩水溶液
貯槽2に貯留されている亜硝酸塩水溶液がポンプ3aを
介して、被処理水貯槽からポンプ3bによって送られて
くる被処理水に添加される。この際、亜硝酸塩水溶液
は、亜硝酸性窒素の量が、被処理水中のアンモニア性窒
素の量に対し、亜硝酸性窒素/アンモニア性窒素の比が
0.8〜1.0となるよう添加することが好ましい。亜硝
酸塩水溶液が添加された被処理水は、熱交換器4及びヒ
ーター5を通って第一触媒塔6に送液され、第一触媒塔
内における分解反応により被処理水中のアンモニアの大
部分が分解される。第一触媒塔を出た処理水に、過酸化
水素水溶液貯槽7に貯留されている過酸化水素水溶液
が、ポンプ3cを介して添加される。この際、過酸化水
素水溶液は、過酸化水素/アンモニア性窒素が重量比で
3.6〜10.9となるよう添加することが好ましい。過
酸化水素水溶液が添加された処理水は第二触媒塔8に送
液され、第二触媒塔内における分解反応により残存する
アンモニアが分解される。第二触媒塔を出た処理水は熱
交換器を通り、調圧バルブ9を介して系外へ排出され
る。本発明方法においては、アンモニア分解のための酸
化剤として亜硝酸塩及び過酸化水素を用いてアンモニア
の分解を2段に行い、酸化剤全体としてはアンモニアの
量に対して当量又は過剰量が添加されるので、高いアン
モニア除去率を達成することがでる。しかも、亜硝酸塩
についてのみ着目すると、アンモニアに対して当量より
少なくなっているため、処理水中に未反応の亜硝酸イオ
ンが残留することがなく、良好な水質の処理水を得るこ
とが可能となる。また、過酸化水素が過剰に添加された
場合には、次式に示すように過剰の過酸化水素は酸素と
水に分解されるため、処理水の水質にはなんら影響を与
えない。 2H22 → O2+2H2O なお、酸化剤として亜硝酸塩を用いることなく、過酸化
水素のみを用いる場合には、分解効率が悪く、当量の5
倍以上を添加しなければ、アンモニアを十分に分解する
ことができない。本発明方法において、触媒塔における
アンモニアの分解条件は、温度は通常70〜300℃、
好ましくは80〜250℃の範囲で選ばれ、反応時間は
通常3〜120分間、好ましくは12〜30分間程度で
ある。SVは0.5〜20hr-1、好ましくは2〜5hr-1
の範囲が有利である。 【0007】 【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。 実施例1 火力発電所の復水処理装置のカチオン交換樹脂の再生排
水を用い、図1に示す装置により、アンモニアの分解除
去試験を行った。排水の水質は、アンモニア性窒素98
0mg/リットル、亜硝酸性窒素1mg/リットル以下、硝
酸性窒素1mg/リットル以下、pH2.5であった。被処
理水貯槽において、排水に水酸化ナトリウム水溶液を加
えて撹拌することにより、pHを6.5に調整した。この
被処理水をポンプ3bを用いて送り出し、亜硝酸塩水溶
液貯槽より亜硝酸ナトリウム水溶液をポンプ3aによ
り、亜硝酸性窒素/アンモニア性窒素が0.9になるよ
う添加した。亜硝酸ナトリウム水溶液を添加した被処理
水は、熱交換器及びヒーターにより加熱され、0.5重
量%白金/チタニア触媒(平均粒径:1.5mm)1リッ
トルを充填した第一触媒塔に3リットル/hrの流速、す
なわちSV=3hr-1で通液し、158〜163℃で分解
処理を行った。第一触媒塔より流出する処理水の水質
は、アンモニア性窒素96mg/リットル、亜硝酸性窒素
1mg/リットル以下、硝酸性窒素1mg/リットル以下、
pH11.9であった。続いて、ポンプ3cにより過酸化
水素水を第一触媒塔より流出する処理水に、過酸化水素
の濃度が670mg/リットルになるよう添加し、0.5
重量%白金/チタニア触媒(平均粒径:1.5mm)0.3
リットルを充填した第二触媒塔に3リットル/hrの流
速、すなわちSV=10hr-1で通液し、158〜163
℃で分解処理を行った。第二触媒塔より流出する処理水
の水質は、アンモニア性窒素1mg/リットル以下、亜硝
酸性窒素1mg/リットル以下、硝酸性窒素1mg/リット
ル以下、pH11.2であり、本発明の処理方法により処
理水中の全窒素濃度は3mg/リットル以下となることが
確認された。 比較例1 実施例1と同じ火力発電所の復水処理装置のカチオン交
換樹脂の再生排水を用い、排水のpHを調整することな
く、pH2.5のまま処理したこと以外は、実施例1と全
く同じ操作を繰り返した。第一触媒塔より流出する処理
水の水質は、アンモニア性窒素173mg/リットル、亜
硝酸性窒素1mg/リットル以下、硝酸性窒素63mg/リ
ットル以下、pH2.6であった。また、第二触媒塔より
流出する処理水の水質は、アンモニア性窒素6mg/リッ
トル、亜硝酸性窒素1mg/リットル以下、硝酸性窒素6
3mg/リットル、pH2.4であり、排水のpHを5〜8に
調整しない場合には、第一触媒塔において硝酸性窒素が
生成し、そのまま最終処理水中に残留するため、全窒素
濃度が高くなることが明らかとなった。 実施例2及び比較例2 アンモニア性窒素の含有量1500mg/リットル、pH
2.5の被処理水を用い、被処理水のpHの値を3.6〜
9.0の範囲に調整して、アンモニアの分解除去試験を
行い、被処理水のpHと第二触媒塔より流出する処理水中
の全窒素濃度の関係を調べた。図2は、被処理水のpHと
処理水中の全窒素濃度の関係を示すグラフである。被処
理水に水酸化ナトリウム水溶液を加えて撹拌することに
より、pHを3.6に調整したのち、亜硝酸性窒素の濃度
が1350mg/リットルになるよう亜硝酸ナトリウム水
溶液を添加した。この被処理水を、0.5重量%白金/
チタニア触媒(平均粒径:1.5mm)を充填した第一触
媒塔にSV=2hr-1で通液し、160℃で接触酸化分解
処理を行った。さらに、第一触媒塔より流出する処理水
に、過酸化水素の濃度が730mg/リットルになるよう
過酸化水素水を添加し、0.5重量%白金/チタニア触
媒(平均粒径:1.5mm)を充填した第二触媒塔にSV
=10hr-1で通液し、160℃で分解処理を行った。第
二触媒塔より流出する処理水中の全窒素濃度は100mg
/リットルであった。この値は、図2のグラフの左端の
点に相当する。続いて、同じ被処理水を用い、被処理水
のpHを3.8に調整して、上と同じ操作を繰り返したと
ころ、第二触媒塔より流出する処理水中の全窒素濃度は
80mg/リットルであった。以下、同様にして、種々の
pH値に調整した被処理水を用い、上と同じ条件で接触酸
化分解を行い、第二触媒塔より流出する処理水中の全窒
素濃度を測定し、被処理水のpHと処理水中の全窒素濃度
の関係を示す点をグラフに記入し、グラフ上の点を滑ら
かな曲線でつないだところ、図2が得られた。図2よ
り、処理水中の全窒素濃度を10mg/リットル以下にす
るためには、被処理水のpHを5〜8の範囲に制御する必
要があり、また、処理水中の全窒素濃度を5mg/リット
ル以下にするためには、被処理水のpHを5.6〜7.2の
範囲に制御する必要があることが分かる。被処理水のpH
が5未満の場合は、pHが低くなると処理水中の全窒素濃
度が急激に増加している。これは酸性側では、亜硝酸よ
り硝酸及び一酸化窒素が生成し、この際生成した硝酸は
接触酸化分解によっては除去しえないためと考えられ
る。被処理水のpHが8を超えると、pHの上昇とともに処
理水中の全窒素濃度は徐々に増加している。これは、ア
ルカリ条件下ではアンモニアと亜硝酸の反応速度が低下
することによると判断される。 【0008】 【発明の効果】本発明方法によれば、被処理水中のアン
モニア濃度を高精度で測定する必要がなく、酸化剤の注
入量制御の簡素化が可能となり、その結果装置コストの
低減を図ることができるとともに、酸化剤を過剰に加え
ることが可能になるため、被処理水のアンモニア濃度の
変動の影響が小さくなり、全窒素濃度が低く、かつ安定
した水質の処理水が得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing ammonia in reclaimed waste water of a condensate and desalination unit. More specifically, the present invention has a low total nitrogen concentration in treated water,
The present invention relates to a novel method for treating ammonia-containing wastewater that can obtain treated water having stable water quality. [0002] Boiler condensate desalination equipment, for example, thermal power,
A large amount of ammonia is contained in the reclaimed wastewater from the condensate desalination unit of a nuclear power boiler. Methods for removing this ammonia include, for example, biological nitrification denitrification, ammonia stripping, and chlorine oxidation. Methods and catalytic cracking methods are known. Among these methods for removing ammonia, the biological nitrification denitrification method is a method in which ammonia is oxidized to nitrite or nitrate nitrogen by nitrifying bacteria and then reduced to nitrogen gas by denitrifying bacteria. However, since this method is a microbial reaction, it has disadvantages such as unstable decomposition activity against various fluctuation factors, a large installation area, and post-treatment of sludge. are doing. Also, the ammonia stripping method
This is a method in which ammonia is released into the atmosphere by contact with a large amount of air under alkaline conditions. However, this method is not economical because the alkali cost is high and it is necessary to adsorb and remove the released ammonia again.
On the other hand, the chlorine oxidation method oxidizes ammonium ions into nitrogen gas via chloramine by adding chlorine. This method requires about 10 times the amount of chlorine added to ammonia, is not suitable for wastewater treatment with a high concentration of ammonia, and requires post treatment of residual chlorine. In contrast to these methods, the catalytic cracking method is a treatment method having excellent features such as a small installation area of the apparatus, easy operation management, and generation of substances requiring post-treatment such as sludge and residual chlorine. And is attracting attention. The present inventors have focused on this catalytic cracking method, and, first, after adding nitrite as an oxidizing agent to the water to be treated containing ammonia, and then adding heat in the presence of a catalyst, ammonia is efficiently produced. Oxidative decomposition (JP-A-4-293553).
No.). However, in this case, if the nitrite is added excessively, the ammonia is removed but the nitrite ion remains in the treated water, and there is a disadvantage that the purpose cannot be sufficiently achieved in terms of denitrification. In particular, in recent years, regulations on nitrogen in wastewater have been strengthened as measures to prevent eutrophication of lakes and inland seas, and some municipalities have established low standards of 10 mg / liter or less as total nitrogen, achieving such strict standards. Therefore, in the conventional method using only nitrite as an oxidizing agent, the ammonia concentration of the water to be treated is accurately measured, and the addition amount is strictly controlled so that the nitrite corresponding to the ammonia concentration is added. Needed. For example, in the case of treating water containing 1000 mg / liter of ammonia as nitrogen, an accuracy such that the magnitude of the error is 10 mg / liter or less as nitrogen, that is, a high measurement accuracy of a relative error of 1% or less is required. I was In addition, in order to determine the amount of nitrite to be added based on the measured value of the ammonia concentration of the water to be treated, control of the amount of nitrite added to the fluctuation of the ammonia concentration of the water to be treated is at least required for analysis. There was also a problem that it was delayed by the time, and as a result, stable treated water quality could not be obtained. As a means to solve such a problem, the present inventors add nitrite and oxygen or an oxygen source material as an oxidizing agent to an ammonia-containing wastewater, and then contact the metal catalyst with heating to decompose ammonia. The method was found to be effective. However, even by this method, A part of nitrous acid is nitric acid and nitric oxide by the following reaction, 3HNO 2 → 2NO + HNO 3 + H 2 O The resulting nitric acid, the oxidation degradation by nitrite and oxygen or oxygen source material Therefore, there is a problem that the total nitrogen concentration in the treated water cannot be sufficiently reduced because it remains in the treated water because it cannot be removed. [0003] The present invention solves the problem of the method for removing ammonia by catalytic decomposition of ammonia using nitrite and oxygen or an oxygen source material as such an oxidizing agent. It is not necessary to measure the ammonia concentration in the treated water with high accuracy, and a method for treating ammonia-containing wastewater that can achieve treated water with a low total nitrogen concentration and stable water quality and that can reduce equipment costs. It was made for the purpose of providing. In particular, ammonia is contained in a relatively high concentration in the reclaimed wastewater of the condensate desalination apparatus, and it is desired to stably reduce the total nitrogen concentration in the treated water. Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above-mentioned object, and as a result, in a method for catalytically decomposing ammonia in reclaimed wastewater of a condensate desalination apparatus, After performing catalytic cracking by adding nitrite, and further performing catalytic cracking by adding hydrogen peroxide, it was found that the object could be achieved, and based on this finding, the present invention was completed. Was. That is, the present invention provides: (1) nitrite is added to ammonia-containing wastewater discharged during regeneration of a condensate desalination apparatus, and the pH is adjusted with an acid or alkali.
After adjusting to 5.6 to 7.2 and contacting with a noble metal catalyst under heating to decompose most of the ammonia, further adding hydrogen peroxide and contacting with the noble metal catalyst to remove residual ammonia It is intended to provide a method for treating reclaimed waste water of a condensate desalination apparatus characterized by decomposition. Further, as a preferred embodiment of the present invention, (2) the nitrite is sodium nitrite, and sodium nitrite is added so that the ratio of nitrite nitrogen / ammonium nitrogen becomes 0.8 to 1.0. (3) The treatment method according to (1) or (2), wherein the noble metal-based catalyst is a catalyst in which platinum is supported on a granular carrier such as titania, γ-alumina, and the like. ) The amount of hydrogen peroxide to be added is such that the weight ratio of hydrogen peroxide / ammoniacal nitrogen to the remaining ammonia is 3.6 to
(1) to (3) in which hydrogen peroxide is added so as to obtain 10.9
The processing method described in the item can be exemplified. Hereinafter, the present invention will be described in detail. In the method of the present invention, nitrite is added to the reclaimed wastewater of the condensate desalination unit, the pH is adjusted to 5 to 8 with an acid or alkali, and then the ammonia is decomposed by contact with a noble metal catalyst under heating. Let it. The order of the addition of nitrite and the adjustment of pH are optional. The pH may be adjusted to 5 to 8 after adding nitrite, or the nitrite may be added after adjusting the pH to 5 to 8 Can also. The reclaimed wastewater from the condensate desalination device is wastewater generated when regenerating the ion exchange resin in a device for desalinating condensate using an ion exchange resin, and contains ammonia at a high concentration. As the noble metal-based catalyst used in the method of the present invention, for example, α-alumina, γ
-A carrier such as alumina, titania, activated carbon, zirconia, zeolite, glass, silica, silica alumina, ion exchange resin, or the like, which supports a noble metal such as platinum, palladium, ruthenium, rhodium, silver, or copper can be used. Particularly, a catalyst in which platinum is supported on a granular carrier such as titania or γ-alumina is preferable. The amount of the metal carried is usually about 0.1 to 10% by weight based on the carrier.
It is preferable that these catalysts are packed in a column, and the reaction is carried out by passing an ammonia-containing wastewater to which nitrite has been added under heating, and in this case, an upward flowing liquid is desirable. The nitrite used in the method of the present invention can be used without particular limitation as long as it is soluble in water and the cation does not adversely affect the environment. Examples of such a nitrite include, for example, , Lithium nitrite, sodium nitrite, potassium nitrite, magnesium nitrite, calcium nitrite, and the like, with sodium nitrite being particularly preferred. Ammonia and sodium nitrite react according to the following equation and are removed as harmless nitrogen gas. NH 3 + NaNO 2 → N 2 + NaOH + H 2 O It is preferable to add nitrite so that the ratio of nitrite nitrogen / ammonia nitrogen becomes 0.8 to 1.0. If the ratio of nitrite nitrogen / ammonium nitrogen is less than 0.8, the amount of ammonia remaining without being decomposed by nitrite increases. If the ratio of nitrite nitrogen / ammonium nitrogen exceeds 1.0, excess nitrite remains in the waste water and cannot be removed in the subsequent decomposition step with hydrogen peroxide, which is not preferable. In the method of the present invention,
Decomposition of ammonia in the ammonia-containing wastewater by reaction with nitrite is performed by adjusting the pH of the wastewater to 5 to 5 with an acid or alkali.
8, preferably by adjusting the pH to 6-7. Drainage
The pH can be adjusted using an acid such as hydrochloric acid or sulfuric acid, or an alkali such as sodium hydroxide, potassium hydroxide or sodium carbonate. If the pH of the wastewater is less than 5, a part of the nitrite ion changes to a non-removable nitrate ion, and the nitrogen concentration in the treated water is undesirably increased. If the pH of the wastewater exceeds 8, the reaction rate between ammonia and nitrite decreases, and the concentration of nitrogen in the treated water may undesirably increase. In the method of the present invention, a treatment obtained by adding a nitrite, adjusting the pH to 5 to 8 with an acid or an alkali, and removing most of the ammonia by contact with a noble metal-based catalyst under heating. Hydrogen peroxide is further added to water to make contact with the noble metal catalyst to decompose residual ammonia. Ammonia and hydrogen peroxide react according to the following equation and are removed as harmless nitrogen gas. 2NH 3 + 3H 2 O 2 → N 2 + 6H 2 O According to this formula, the theoretical weight ratio of hydrogen peroxide / ammoniacal nitrogen is 3.6, but the amount of added hydrogen peroxide depends on the remaining ammonia. On the other hand, it is preferable to add hydrogen peroxide / ammoniacal nitrogen in a weight ratio of 3.6 to 9.9. The amount of added hydrogen peroxide was 3.% by weight of hydrogen peroxide / ammoniacal nitrogen to the remaining ammonia.
If it is less than 6, ammonia is not completely decomposed and removed, but remains, which is not preferable. Even if the added amount of hydrogen peroxide exceeds 10.9 in terms of the weight ratio of hydrogen peroxide / ammoniacal nitrogen to the remaining ammonia, the efficiency of removing the remaining ammonia is commensurate with the increase in the added amount of hydrogen peroxide. Does not improve. Next, an apparatus for carrying out the method of the present invention will be described. FIG. 1 is a schematic view of an example of an apparatus for performing the method of the present invention. First, the ammonia-containing wastewater is guided to the treated water storage tank 1, and the pH is adjusted to 5 to 8 by adding an acid or an alkali. The aqueous nitrite solution stored in the aqueous nitrite storage tank 2 is added via the pump 3a to the water to be processed sent from the water storage tank by the pump 3b. At this time, the nitrite aqueous solution was added so that the amount of nitrite nitrogen was 0.8 to 1.0 with respect to the amount of ammonia nitrogen in the water to be treated. Is preferred. The water to be treated to which the aqueous nitrite solution has been added is sent to the first catalyst tower 6 through the heat exchanger 4 and the heater 5, and most of the ammonia in the water to be treated is decomposed by the decomposition reaction in the first catalyst tower. Decomposed. The aqueous hydrogen peroxide solution stored in the aqueous hydrogen peroxide storage tank 7 is added to the treated water that has exited the first catalyst tower via the pump 3c. At this time, the aqueous hydrogen peroxide solution is preferably added so that the weight ratio of hydrogen peroxide / ammonium nitrogen is 3.6 to 9.9. The treated water to which the aqueous hydrogen peroxide solution has been added is sent to the second catalyst tower 8, and the remaining ammonia is decomposed by a decomposition reaction in the second catalyst tower. The treated water leaving the second catalyst tower passes through a heat exchanger and is discharged out of the system via a pressure regulating valve 9. In the method of the present invention, ammonia is decomposed in two stages using nitrite and hydrogen peroxide as an oxidizing agent for decomposing ammonia, and an equivalent or excess amount of the entire oxidizing agent is added to the amount of ammonia. Therefore, a high ammonia removal rate can be achieved. Moreover, when focusing only on nitrite, since it is less than the equivalent to ammonia, unreacted nitrite ions do not remain in the treated water, and it is possible to obtain treated water of good quality. . Further, when hydrogen peroxide is excessively added, the excess hydrogen peroxide is decomposed into oxygen and water as shown in the following formula, so that the quality of the treated water is not affected at all. 2H 2 O 2 → O 2 + 2H 2 O When only hydrogen peroxide is used without using nitrite as an oxidizing agent, the decomposition efficiency is poor and an equivalent of 5
If not more than twice, ammonia cannot be sufficiently decomposed. In the method of the present invention, the conditions for decomposing ammonia in the catalyst tower are as follows.
Preferably, it is selected within the range of 80 to 250 ° C., and the reaction time is usually about 3 to 120 minutes, preferably about 12 to 30 minutes. SV is 0.5 to 20 hr -1 , preferably 2 to 5 hr -1.
Is advantageous. Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 A test for decomposing and removing ammonia was carried out by using an apparatus shown in FIG. The quality of the waste water is ammonia nitrogen 98
It was 0 mg / liter, nitrite nitrogen 1 mg / liter or less, nitrate nitrogen 1 mg / liter or less, and pH 2.5. In the treated water storage tank, the pH was adjusted to 6.5 by adding an aqueous solution of sodium hydroxide to the wastewater and stirring the solution. The water to be treated was sent out using a pump 3b, and an aqueous solution of sodium nitrite was added from an aqueous nitrite storage tank by the pump 3a so that the ratio of nitrite nitrogen / ammonia nitrogen was 0.9. The water to be treated to which the aqueous solution of sodium nitrite was added was heated by a heat exchanger and a heater, and charged to a first catalyst column filled with 1 liter of 0.5% by weight platinum / titania catalyst (average particle size: 1.5 mm). The solution was passed at a flow rate of liter / hr, that is, SV = 3 hr −1 , and the decomposition treatment was performed at 158 to 163 ° C. The quality of the treated water flowing out of the first catalyst tower is 96 mg / l for ammonia nitrogen, 1 mg / l or less for nitrite nitrogen, 1 mg / l or less for nitrate nitrogen,
pH was 11.9. Subsequently, the hydrogen peroxide solution was added to the treated water flowing out of the first catalyst tower by the pump 3c so that the concentration of the hydrogen peroxide became 670 mg / liter, and 0.5 was added.
0.3% by weight platinum / titania catalyst (average particle size: 1.5 mm)
The solution was passed through the second catalyst column filled with 1 liter at a flow rate of 3 liter / hr, that is, SV = 10 hr -1 , and 158 to 163
Decomposition treatment was performed at ℃. The quality of the treated water flowing out of the second catalyst tower is 1 mg / l or less for ammonia nitrogen, 1 mg / l or less for nitrite nitrogen, 1 mg / l or less for nitrate nitrogen, and pH 11.2. It was confirmed that the total nitrogen concentration in the treated water was 3 mg / liter or less. Comparative Example 1 The same operation as in Example 1 was carried out except that the regenerated wastewater of the cation exchange resin was used in the condensate treatment unit of the thermal power plant as in Example 1 and the pH was adjusted to 2.5 without adjusting the pH of the wastewater. The exact same operation was repeated. The quality of the treated water flowing out of the first catalyst tower was 173 mg / liter of ammonia nitrogen, 1 mg / liter or less of nitrite nitrogen, 63 mg / liter or less of nitrate nitrogen, and pH 2.6. The quality of the treated water flowing out from the second catalyst tower is 6 mg / l for ammonia nitrogen, 1 mg / l or less for nitrite nitrogen, and 6 mg / l for nitrate nitrogen.
If the pH of the waste water is not adjusted to 5 to 8 since nitrate nitrogen is generated in the first catalyst column and remains in the final treated water, the total nitrogen concentration is high. It became clear that it became. Example 2 and Comparative Example 2 Content of ammonia nitrogen: 1500 mg / liter, pH
The pH value of the water to be treated is 3.6 to
After adjusting to a range of 9.0, a test for decomposing and removing ammonia was conducted to examine the relationship between the pH of the water to be treated and the total nitrogen concentration in the treated water flowing out of the second catalyst tower. FIG. 2 is a graph showing the relationship between the pH of the water to be treated and the total nitrogen concentration in the treated water. An aqueous sodium hydroxide solution was added to the water to be treated and the mixture was stirred to adjust the pH to 3.6, and then an aqueous sodium nitrite solution was added so that the concentration of nitrite nitrogen became 1350 mg / liter. The water to be treated is 0.5% by weight platinum /
The solution was passed through a first catalyst tower filled with a titania catalyst (average particle size: 1.5 mm) at SV = 2 hr -1 and subjected to catalytic oxidative decomposition at 160 ° C. Further, an aqueous solution of hydrogen peroxide was added to the treated water flowing out of the first catalyst tower so that the concentration of hydrogen peroxide became 730 mg / liter, and a 0.5% by weight platinum / titania catalyst (average particle size: 1.5 mm ) Is packed in the second catalyst column.
= 10 hr -1 , and decomposition treatment was performed at 160 ° C. Total nitrogen concentration in treated water flowing out of the second catalyst tower is 100mg
/ Liter. This value corresponds to the leftmost point in the graph of FIG. Subsequently, using the same water to be treated, adjusting the pH of the water to be treated to 3.8, and repeating the same operation as above, the total nitrogen concentration in the treated water flowing out of the second catalyst tower was 80 mg / liter. Met. Hereinafter, similarly, various
Using the water to be treated adjusted to a pH value, perform catalytic oxidative decomposition under the same conditions as above, measure the total nitrogen concentration in the treated water flowing out of the second catalyst tower, and determine the pH of the treated water and the total nitrogen in the treated water. Points indicating the relationship between the concentrations were plotted on a graph, and the points on the graph were connected by a smooth curve to obtain FIG. From FIG. 2, it is necessary to control the pH of the water to be treated in the range of 5 to 8 in order to reduce the total nitrogen concentration in the treated water to 10 mg / liter or less. It can be seen that it is necessary to control the pH of the water to be treated in the range of 5.6 to 7.2 in order to make it less than liter. PH of water to be treated
Is less than 5, the total nitrogen concentration in the treated water sharply increases as the pH decreases. This is probably because nitric acid and nitric oxide are generated from nitrous acid on the acidic side, and the nitric acid generated at this time cannot be removed by catalytic oxidative decomposition. When the pH of the water to be treated exceeds 8, the total nitrogen concentration in the treated water gradually increases as the pH increases. This is considered to be due to the fact that the reaction rate between ammonia and nitrous acid decreases under alkaline conditions. According to the method of the present invention, it is not necessary to measure the ammonia concentration in the water to be treated with high accuracy, and the control of the injection amount of the oxidizing agent can be simplified, and as a result, the cost of the apparatus can be reduced. And the oxidizing agent can be added in excess, so that the effect of fluctuations in the ammonia concentration of the water to be treated is reduced, and the total nitrogen concentration is low and treated water of stable water quality can be obtained. .

【図面の簡単な説明】 【図1】図1は、本発明方法を実施するための装置の一
例の概略図である。 【図2】図2は、被処理水のpHと処理水の全窒素濃度の
関係を示すグラフである。 【符号の説明】 1 被処理水貯槽 2 亜硝酸塩水溶液貯槽 3a ポンプ 3b ポンプ 3c ポンプ 4 熱交換器 5 ヒーター 6 第一触媒塔 7 過酸化水素水溶液貯槽 8 第二触媒塔 9 調圧バルブ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an example of an apparatus for performing the method of the present invention. FIG. 2 is a graph showing the relationship between the pH of the water to be treated and the total nitrogen concentration of the treated water. [Description of Signs] 1 Treated water storage tank 2 Nitrite aqueous solution storage tank 3a Pump 3b Pump 3c Pump 4 Heat exchanger 5 Heater 6 First catalyst tower 7 Hydrogen peroxide aqueous solution storage tank 8 Second catalyst tower 9 Pressure regulating valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 敏次 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (72)発明者 高林 泰彦 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (72)発明者 恵藤 良弘 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (72)発明者 上甲 勲 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (56)参考文献 特開 平7−328653(JP,A) 特開 平6−99180(JP,A) 特開 平4−367784(JP,A) 特開 平4−293553(JP,A) 特開 平4−190882(JP,A) 特開 平7−8974(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/72 ZAB C02F 1/58 ZAB B01J 23/42 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiji Nakahara 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Kurita Water Industries Co., Ltd. (72) Inventor Yasuhiko Takabayashi 3-4-1, Nishishinjuku, Shinjuku-ku, Tokyo No. 7 Kurita Kogyo Co., Ltd. (72) Yoshihiro Endo 3-7-4 Nishi-Shinjuku, Shinjuku-ku, Tokyo, Japan No. 7 Innovator Kurita Kogyo Co., Ltd. No. 4, No. 7, Kurita Water Industries Co., Ltd. (56) References JP-A-7-328653 (JP, A) JP-A-6-99180 (JP, A) JP-A-4-367784 (JP, A) JP-A-4-293553 (JP, A) JP-A-4-190882 (JP, A) JP-A-7-8974 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1 / 72 ZAB C02F 1/58 ZAB B01J 23/42

Claims (1)

(57)【特許請求の範囲】 【請求項1】復水脱塩装置の再生時に排出されるアンモ
ニア含有排水に亜硝酸塩を添加し、酸又はアルカリによ
りpHを5.6〜7.2に調整して、加温下に貴金属系触媒
と接触させて大部分のアンモニアを分解したのち、さら
に過酸化水素を添加し貴金属系触媒と接触させて残存す
るアンモニアを分解することを特徴とする復水脱塩装置
の再生排水の処理方法。
(57) [Claims] [Claim 1] Nitrite is added to ammonia-containing wastewater discharged during regeneration of a condensate desalination unit, and the pH is adjusted to 5.6 to 7.2 with an acid or alkali. And condensing most of the ammonia by contacting it with a precious metal catalyst under heating, and then adding hydrogen peroxide to contact the precious metal catalyst to decompose the remaining ammonia. A method for treating reclaimed wastewater from a desalination unit.
JP20006694A 1994-08-02 1994-08-02 Treatment method of reclaimed wastewater from condensate desalination equipment Expired - Fee Related JP3414513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20006694A JP3414513B2 (en) 1994-08-02 1994-08-02 Treatment method of reclaimed wastewater from condensate desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20006694A JP3414513B2 (en) 1994-08-02 1994-08-02 Treatment method of reclaimed wastewater from condensate desalination equipment

Publications (2)

Publication Number Publication Date
JPH0839081A JPH0839081A (en) 1996-02-13
JP3414513B2 true JP3414513B2 (en) 2003-06-09

Family

ID=16418280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20006694A Expired - Fee Related JP3414513B2 (en) 1994-08-02 1994-08-02 Treatment method of reclaimed wastewater from condensate desalination equipment

Country Status (1)

Country Link
JP (1) JP3414513B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147453A (en) * 2005-11-28 2007-06-14 Hitachi Ltd Method and device for processing ammonia-containing regenerated waste solution from condensate demineralizer
JP2010064074A (en) * 2009-12-07 2010-03-25 Hitachi-Ge Nuclear Energy Ltd Method and apparatus for treating ammonia-containing regeneration waste liquid from condensate demineralizer
CN107364943A (en) * 2017-09-10 2017-11-21 杭州东日节能技术有限公司 Catalytic wet oxidation administers the device and its technique of hydrochloric organic wastewater

Also Published As

Publication number Publication date
JPH0839081A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JP5303263B2 (en) Solid catalyst for treating nitrate nitrogen-containing water and method for treating nitrate nitrogen-containing water using the catalyst
JP3425000B2 (en) Treatment of flue gas desulfurization wastewater
JP3507553B2 (en) Treatment method for ammoniacal nitrogen-containing water
JP3401844B2 (en) Ammonia-containing water treatment method
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP2001321780A (en) Method and apparatus for treating wastewater containing ammonia and hydrogen peroxide
JPH1066985A (en) Treatment of nitrogen compound-containing waste water
JP3822520B2 (en) Nitrogen compound-containing water treatment method
JP3358905B2 (en) Method for treating wastewater containing nitrate nitrogen and ammonia nitrogen
JP3492413B2 (en) Wastewater treatment method
JP3420697B2 (en) Method for treating ethanolamine-containing water
JPH078971A (en) Treatment of ammonium fluoride-containing water
JP3630352B2 (en) Method for treating urea-containing water
JP3269176B2 (en) Method of treating ammonium fluoride-containing water
JP2000167570A (en) Treatment of waste water
JP3238741B2 (en) Method of treating ammonium fluoride-containing water
JP2000312890A (en) Method for treating inorganic wastewater containing ammonia
JP3509186B2 (en) Denitrification treatment method
JP2002172384A (en) Method for treating waste water containing ammonia and hydrogen peroxide
JP3148498B2 (en) Treatment of wastewater containing ammonia
JPH07265870A (en) Treatment of dithionate ion-containing water
JP4390357B2 (en) Method for treating ammonia-containing water
JP3477804B2 (en) Method for treating water containing ammonia and nitrate ions

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees