JP2005125148A - Methanol reforming catalyst and its manufacturing method - Google Patents

Methanol reforming catalyst and its manufacturing method Download PDF

Info

Publication number
JP2005125148A
JP2005125148A JP2003360712A JP2003360712A JP2005125148A JP 2005125148 A JP2005125148 A JP 2005125148A JP 2003360712 A JP2003360712 A JP 2003360712A JP 2003360712 A JP2003360712 A JP 2003360712A JP 2005125148 A JP2005125148 A JP 2005125148A
Authority
JP
Japan
Prior art keywords
methanol
reforming catalyst
reforming
reformer
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360712A
Other languages
Japanese (ja)
Inventor
Kazuto Matsuda
和人 松田
Masataka Furuyama
雅孝 古山
Katsumi Takahashi
克巳 高橋
Shiyaden Riyuu
社田 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
IHI Corp
Original Assignee
Honda Motor Co Ltd
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, IHI Corp filed Critical Honda Motor Co Ltd
Priority to JP2003360712A priority Critical patent/JP2005125148A/en
Publication of JP2005125148A publication Critical patent/JP2005125148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methanol reforming catalyst improved in the gas conversion ratio of methanol and reducing the amount of CO generated. <P>SOLUTION: This methanol reforming catalyst is a Pd/ZnO catalyst wherein Pd particles are supported on the surfaces of ZnO particles and a metal M is contained as a third component so that the atomic ratio (M/Zn) of the metal M and Zn is 0.02-0.05. Further, F or Cr is selected as the metal M. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体燃料電池の改質器に用いるメタノール改質触媒及びその製造方法に関するものである。   The present invention relates to a methanol reforming catalyst used for a reformer of a solid fuel cell and a method for producing the same.

近年、地球環境問題の高まりの中で、化石燃料に変わる新たなエネルギー源として、水素が注目されている。この水素を燃料とし、水素と酸素とを電気化学的に反応させることで、発電を行う固体高分子形燃料電池(以下、PEFC(Polymer Electrolyte Fuel Cell)と表す)がある。   In recent years, hydrogen has attracted attention as a new energy source to replace fossil fuels as global environmental problems increase. There is a polymer electrolyte fuel cell (hereinafter referred to as PEFC (Polymer Electrolyte Fuel Cell)) that generates electricity by electrochemically reacting hydrogen and oxygen with hydrogen as a fuel.

PEFC向けの水素は、一般に、メタンを主成分とする都市ガスや天然ガス、液化石油ガス(LPG)、メタノールなどのアルコール、ナフサなどから製造される。これらの燃料ガスの内、メタノールは、化石燃料から容易に合成される安価な液体燃料であり、しかも触媒を用いることで比較的容易に水素を製造できるという特長を有していることから、PEFC向けの水素原料として有望視されている。メタノールから水素を製造する方法として、水蒸気改質法が主流となっている。   Hydrogen for PEFC is generally produced from city gas and natural gas mainly composed of methane, liquefied petroleum gas (LPG), alcohol such as methanol, naphtha, and the like. Among these fuel gases, methanol is an inexpensive liquid fuel that is easily synthesized from fossil fuels, and has the feature that hydrogen can be produced relatively easily using a catalyst. As a hydrogen source for As a method for producing hydrogen from methanol, a steam reforming method has become the mainstream.

メタノールから水素を生成する改質反応の1つである水蒸気改質反応(下記の式(1)参照)は、比較的大きな吸熱反応であることから、反応熱を供給するために下記の式(2)〜式(4)に示す少なくとも1つのメタノールの部分酸化反応を併用する方法(酸化的水蒸気改質(Oxygen Steam Reforming又はAutothermal)反応)が多く用いられている。   The steam reforming reaction (see the following formula (1)), which is one of the reforming reactions that generate hydrogen from methanol, is a relatively large endothermic reaction, so that the following formula ( A method (Oxygen Steam Reforming or Autothermal reaction) in which at least one partial oxidation reaction of methanol represented by 2) to (4) is used in combination.

CH3OH+H2O→3H2+CO2 …式(1)
CH3OH+1/2O2→CO2+2H2 …式(2)
CH3OH+1/2O2→CO+H2+H2O …式(3)
CH3OH+O2→CO2+H2+H2O …式(4)
CH 3 OH + H 2 O → 3H 2 + CO 2 Formula (1)
CH 3 OH + 1 / 2O 2 → CO 2 + 2H 2 Formula (2)
CH 3 OH + 1 / 2O 2 → CO + H 2 + H 2 O Formula (3)
CH 3 OH + O 2 → CO 2 + H 2 + H 2 O Formula (4)

酸化的水蒸気改質反応に供する従来のメタノール改質触媒としては、Cu及びZnに、第3,第4成分(Al,Zr)を加えたCu/ZnO系のメタノール触媒(例えば、特許文献1参照)や、Pd、ZnOに、第3成分(Ce、Zrなど)を加えてなるPd担持量が0.1〜10wt%のPd/ZnO系のメタノール触媒が挙げられる(例えば、特許文献2参照)。   As a conventional methanol reforming catalyst used for the oxidative steam reforming reaction, a Cu / ZnO-based methanol catalyst in which third and fourth components (Al, Zr) are added to Cu and Zn (see, for example, Patent Document 1) And a Pd / ZnO-based methanol catalyst in which a third component (Ce, Zr, etc.) is added to Pd and ZnO and the Pd loading is 0.1 to 10 wt% (for example, see Patent Document 2). .

特開2001−347169号公報JP 2001-347169 A 特開2001−232193号公報JP 2001-232193 A

ところで、特許文献1記載のCu/ZnO系触媒を用いたハニカム触媒などにおいては、改質の経過に伴って、ハニカム触媒におけるメタノール導入側端部において急激な温度上昇が生じてしまう。その結果、100時間程度という短時間で触媒の活性低下が生じるという問題があった。   By the way, in the honeycomb catalyst using the Cu / ZnO-based catalyst described in Patent Document 1, a rapid temperature rise occurs at the methanol introduction side end of the honeycomb catalyst as the reforming progresses. As a result, there was a problem that the activity of the catalyst was reduced in a short time of about 100 hours.

一方、特許文献2記載のPd/ZnO系触媒を用いたハニカム触媒は、Cu/ZnO系触媒を用いたハニカム触媒と比較すると、改質の経過に伴う触媒の活性低下の度合いは小さい。しかし、Cu/ZnO系触媒と比較し、ガス転化率が同じ場合におけるCO発生量が相対的に多いという問題があった。COはPEFCアノードの被毒物質であるため、改質ガス中に含まれるCOは極力少ないことが好ましい。   On the other hand, the honeycomb catalyst using the Pd / ZnO-based catalyst described in Patent Document 2 has a lower degree of catalyst activity decrease with the progress of reforming than the honeycomb catalyst using the Cu / ZnO-based catalyst. However, compared with the Cu / ZnO-based catalyst, there is a problem that the amount of CO generated is relatively large when the gas conversion rate is the same. Since CO is a poisoning substance for the PEFC anode, it is preferable that the amount of CO contained in the reformed gas is as small as possible.

以上の事情を考慮して創案された本発明の目的は、メタノールのガス転化率が良好で、かつ、COの発生量が少ないメタノール改質触媒及びその製造方法を提供することにある。   An object of the present invention, which was created in view of the above circumstances, is to provide a methanol reforming catalyst having a good methanol gas conversion rate and a low CO generation amount, and a method for producing the same.

上記目的を達成すべく本発明に係るメタノール改質触媒は、ZnO粒子の表面にPd粒子が担持されたPd/ZnO系触媒であって、かつ、第3成分として金属Mを、金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲で含むものである。   In order to achieve the above object, the methanol reforming catalyst according to the present invention is a Pd / ZnO-based catalyst in which Pd particles are supported on the surface of ZnO particles, and includes a metal M as a third component, a metal M and Zn. And the atomic ratio (M / Zn) is in the range of 0.02 to 0.05.

ここで、金属MがFe又はCrであることが好ましい。   Here, the metal M is preferably Fe or Cr.

以上によれば、Pd/ZnO系触媒に、第3成分として所定量添加、例えばFe又はCr(金属M)を、金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲で添加することで、メタノールのガス転化率は良好に保ったまま、COの選択率を低くすることができる。   According to the above, a predetermined amount is added to the Pd / ZnO-based catalyst as the third component, for example, Fe or Cr (metal M), and the atomic ratio (M / Zn) between the metal M and Zn is 0.02 to 0.00. By adding in the range of 05, the selectivity of CO can be lowered while maintaining a good gas conversion rate of methanol.

本発明によれば、メタノールのガス転化率が良好で、かつ、COの発生量が少ないPd/ZnO系のメタノール改質触媒を得ることができる。   According to the present invention, it is possible to obtain a Pd / ZnO-based methanol reforming catalyst having good methanol gas conversion and low CO generation.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係るメタノール改質触媒は、メタノールの酸化的水蒸気改質又は通常の水蒸気改質に用いられる触媒である。具体的には、Pd/ZnO系触媒であって、その大部分がZnO粒子の表面にZnO粒子よりも微細なPd粒子が担持されたもので構成され、かつ、第3成分として金属Mを、金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲で含むものである。また、金属MとしてはFe又はCrが用いられ、特にFeが好ましい。   The methanol reforming catalyst according to a preferred embodiment of the present invention is a catalyst used for oxidative steam reforming or normal steam reforming of methanol. Specifically, it is a Pd / ZnO-based catalyst, most of which is composed of ZnO particles having finer Pd particles supported on the surface of the ZnO particles, and a metal M as a third component. The atomic ratio (M / Zn) between the metal M and Zn is within a range of 0.02 to 0.05. Further, as the metal M, Fe or Cr is used, and Fe is particularly preferable.

ここで、ZnO粒子の表面にPd粒子が担持された複合粒子(Pd/ZnO粒子)は、ZnO粒子とPd粒子との接触部がPdZnの合金部となっている。また、各複合粒子の周りには、非常に微細な金属Mの粒子が付着しており、これによって、隣接する複合粒子同士が結合するのを防いでいる。   Here, in the composite particles (Pd / ZnO particles) in which the Pd particles are supported on the surfaces of the ZnO particles, the contact portion between the ZnO particles and the Pd particles is an alloy portion of PdZn. In addition, very fine metal M particles are adhered around each composite particle, thereby preventing adjacent composite particles from being bonded to each other.

また、触媒全体に占めるPd成分の担持割合は特に限定するものではなく、例えば、メタノール改質触媒として慣用的に用いられているPd/ZnO系触媒におけるPd成分の担持割合(0.1〜10wt%)と同等又はそれ以上とされる。   Further, the supporting ratio of the Pd component in the entire catalyst is not particularly limited. For example, the supporting ratio of the Pd component in a Pd / ZnO-based catalyst conventionally used as a methanol reforming catalyst (0.1 to 10 wt. %) Or higher.

金属Mとして、Fe又はCrを選択し、かつ、それらの添加量を限定した理由を以下に述べる。   The reason for selecting Fe or Cr as the metal M and limiting the amount of addition thereof will be described below.

各種の第3成分添加によるCO2+COの転化率(μmol/g-cat/s)の変化、CO選択率(%)の変化を、それぞれ図1、図2に示す。ここで、図1,図2における左側の斜線棒グラフは500℃で還元した触媒、右側の白抜き棒グラフは400℃で還元した触媒である。また、触媒全体に占めるPd成分の担持割合は6.5wt%、第3成分である金属MとZnの原子比(M/Zn)は0.04である。さらに、メタノールの改質を行う反応温度(改質温度)は250℃、被改質原料中の、水とメタノールのモル比(水/メタノール)は1.5、酸素とメタノールのモル比(酸素/メタノール)は0.1である。また、メタノール(水とメタノールの混合溶液)の供給割合は、WCH3OHHSV(Wood Alcohol Hourly Space Velocity)=50(h-1)である。WHSVが50(h-1)ということは、1gの触媒に対して、1時間当たり50gのメタノール(又は78gの水とメタノールの混合溶液)を供給することを意味している。 Changes in CO 2 + CO conversion (μmol / g-cat / s) and CO selectivity (%) due to addition of various third components are shown in FIGS. 1 and 2, respectively. Here, in FIG. 1 and FIG. 2, the hatched bar graph on the left is a catalyst reduced at 500 ° C., and the white bar graph on the right is a catalyst reduced at 400 ° C. Further, the supporting ratio of the Pd component in the entire catalyst is 6.5 wt%, and the atomic ratio (M / Zn) of the metal M and Zn as the third component is 0.04. Furthermore, the reaction temperature (reforming temperature) for reforming methanol is 250 ° C., the molar ratio of water to methanol (water / methanol) in the raw material to be reformed is 1.5, and the molar ratio of oxygen to methanol (oxygen) / Methanol) is 0.1. The supply ratio of methanol (mixed solution of water and methanol) is W CH3OH HSV (Wood Alcohol Hourly Space Velocity) = 50 (h −1 ). A WHSV of 50 (h −1 ) means that 50 g of methanol (or 78 g of a mixed solution of water and methanol) is supplied per 1 g of the catalyst.

各種第3成分(Cr、Mn、Fe、Co、Ni、Cu、Mg、Al、Zr、La、Ce、及びRu)の添加によるCO2+COの転化率の変化を図1に示すように、第3成分無添加のPd/ZnO触媒の転化率(500℃還元のものは約250(μmol/g-cat/s)、400℃還元のものは約280(μmol/g-cat/s))と比較して、Cr、Fe、Zr、La、又はCeを添加した500℃還元の触媒は、転化率が約255〜270(μmol/g-cat/s)に向上した。400℃還元の触媒は全て、第3成分を添加しても転化率が向上しなかった。 As shown in FIG. 1, the change in the CO 2 + CO conversion rate due to the addition of various third components (Cr, Mn, Fe, Co, Ni, Cu, Mg, Al, Zr, La, Ce, and Ru) Conversion rate of the Pd / ZnO catalyst without addition of three components (about 250 (μmol / g-cat / s) for 500 ° C. reduction, about 280 (μmol / g-cat / s) for 400 ° C. reduction) In comparison, the 500 ° C. reduction catalyst to which Cr, Fe, Zr, La, or Ce was added improved the conversion rate to about 255 to 270 (μmol / g-cat / s). All the catalysts reduced at 400 ° C. did not improve the conversion even when the third component was added.

また、各種第3成分(Cr、Mn、Fe、Co、Ni、Cu、Mg、Al、Zr、La、Ce、及びRu)の添加によるCO選択率の変化を図2に示すように、第3成分無添加のPd/ZnO触媒のCO選択率(500℃還元のものは約8(%)、400℃還元のものは約9(%))と比較して、Cr、Fe、又はCuを添加した500℃還元の触媒は、CO選択率が約5〜6(%)に低下した。400℃還元の触媒は全て、第3成分を添加してもCO選択率は低下しなかった。   Further, as shown in FIG. 2, the change in CO selectivity due to the addition of various third components (Cr, Mn, Fe, Co, Ni, Cu, Mg, Al, Zr, La, Ce, and Ru) Compared with the CO selectivity of the Pd / ZnO catalyst with no component added (about 8% for 500 ° C reduction, about 9% for 400 ° C reduction), Cr, Fe, or Cu added The 500 ° C. reduction catalyst had a CO selectivity of about 5 to 6%. All of the 400 ° C. reduction catalysts did not decrease CO selectivity even when the third component was added.

図1のCO2+COの転化率と図2のCO選択率との兼ね合いにより、第3成分としてCr、Fe、又はCuが、好ましくはCr又はFeが選択される。また、第3成分無添加のPd/ZnO触媒の、好ましい還元温度は400〜500℃であるが、図1,図2に示したように、還元温度は高温である方が、即ち400℃よりも500℃の方が、CO選択率が低くなるため、より好ましい。 According to the trade-off between the CO 2 + CO conversion rate in FIG. 1 and the CO selectivity rate in FIG. 2, Cr, Fe, or Cu is selected as the third component, preferably Cr or Fe. Further, the preferred reduction temperature of the Pd / ZnO catalyst without addition of the third component is 400 to 500 ° C., but as shown in FIGS. 1 and 2, the reduction temperature is higher, that is, than 400 ° C. Further, the temperature of 500 ° C. is more preferable because the CO selectivity is lowered.

一方、Fe又はCrの原子比(M/Zn)を変化させることによるCO2+COの転化率(μmol/g-cat/s)の変化、CO選択率(%)の変化を、それぞれ図3、図4に示す。ここで、触媒全体に占めるPd成分の担持割合は6.5wt%である。また、メタノールの改質を行う反応温度(改質温度)は250℃、被改質原料中の、水とメタノールのモル比(水/メタノール)は1.5、酸素とメタノールのモル比(酸素/メタノール)は0.1である。さらに、メタノール(水とメタノールの混合溶液)の供給割合は、WCH3OHHSV=47(h-1)である。 On the other hand, the change in CO 2 + CO conversion (μmol / g-cat / s) and the change in CO selectivity (%) by changing the atomic ratio (M / Zn) of Fe or Cr are shown in FIG. As shown in FIG. Here, the supporting ratio of the Pd component in the entire catalyst is 6.5 wt%. Further, the reaction temperature (reforming temperature) for reforming methanol is 250 ° C., the molar ratio of water to methanol (water / methanol) in the raw material to be reformed is 1.5, and the molar ratio of oxygen to methanol (oxygen) / Methanol) is 0.1. Furthermore, the supply ratio of methanol (mixed solution of water and methanol) is W CH3OH HSV = 47 (h −1 ).

図3に示すように、第3成分としてFeを添加した場合、Fe添加量の増加に伴って転化率は徐々に減少し、原子比が約0.02の時に最小値(約227(μmol/g-cat/s))となる。その後は、徐々に転化率が上昇に転じ、原子比が約0.05の時に第3成分無添加の時の転化率(約243(μmol/g-cat/s))とほぼ同等となる。また、第3成分としてCrを添加した場合、Crの添加によって転化率は急激に減少し、原子比が約0.01の時に最小値(約207(μmol/g-cat/s))となる。その後は、徐々に転化率が上昇に転じ、原子比が約0.04〜0.08の時に転化率は一旦飽和し、第3成分無添加の時の転化率(約243(μmol/g-cat/s))とほぼ同等となる。   As shown in FIG. 3, when Fe is added as the third component, the conversion rate gradually decreases as the amount of Fe added increases. When the atomic ratio is about 0.02, the minimum value (about 227 (μmol / g-cat / s)). Thereafter, the conversion rate gradually increases, and when the atomic ratio is about 0.05, the conversion rate when the third component is not added (about 243 (μmol / g-cat / s)) is almost the same. In addition, when Cr is added as the third component, the conversion rate is drastically reduced by the addition of Cr and becomes the minimum value (about 207 (μmol / g-cat / s)) when the atomic ratio is about 0.01. . Thereafter, the conversion rate gradually started to increase. When the atomic ratio was about 0.04 to 0.08, the conversion rate was once saturated, and the conversion rate when the third component was not added (about 243 (μmol / g- cat / s)).

また、図4に示すように、第3成分としてCrを添加した場合、Crの添加によってCO選択率は急激に減少し、原子比が約0.01の時に最小値(約5.6%)となる。その後は、徐々に転化率が上昇に転じ、原子比が約0.05の時に第3成分無添加の時のCO選択率(約6.4%)とほぼ同等となる。また、第3成分としてFeを添加した場合、Fe添加量の増加に伴ってCO選択率は徐々に減少し、原子比が約0.04の時に最小値(約4.7%)となる。その後は、徐々にCO選択率が上昇に転じ、原子比が約0.07の時に、第3成分無添加の時のCO選択率(約6.4%)とほぼ同等となる。   In addition, as shown in FIG. 4, when Cr is added as the third component, the CO selectivity rapidly decreases due to the addition of Cr, and the minimum value (about 5.6%) when the atomic ratio is about 0.01. It becomes. Thereafter, the conversion rate gradually increases, and when the atomic ratio is about 0.05, the CO selectivity (about 6.4%) when the third component is not added is substantially equal. Further, when Fe is added as the third component, the CO selectivity gradually decreases as the amount of Fe added increases, and reaches a minimum value (about 4.7%) when the atomic ratio is about 0.04. Thereafter, the CO selectivity gradually increases, and when the atomic ratio is about 0.07, the CO selectivity when the third component is not added (about 6.4%) is almost the same.

図3のCO2+COの転化率と図4のCO選択率との兼ね合いにより、第3成分であるFe又はCrは、第3成分の金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲で添加することが好ましい。特に、Feの場合、原子比(M/Zn)は0.03〜0.05が好ましく、Crの場合、原子比(M/Zn)は0.02〜0.04が好ましい。 Due to the trade-off between the CO 2 + CO conversion ratio of FIG. 3 and the CO selectivity of FIG. 4, the third component Fe or Cr has an atomic ratio (M / Zn) of the third component metal M to Zn of 0. It is preferable to add in the range of 0.02 to 0.05. In particular, in the case of Fe, the atomic ratio (M / Zn) is preferably 0.03 to 0.05, and in the case of Cr, the atomic ratio (M / Zn) is preferably 0.02 to 0.04.

次に、本実施の形態に係るメタノール改質触媒の製造方法を説明する。   Next, a method for producing a methanol reforming catalyst according to the present embodiment will be described.

本実施の形態に係るメタノール改質触媒の製造方法は、先ず、亜鉛金属塩、パラジウム金属塩、第3成分の金属塩を蒸留水に溶解して第1溶液を形成する。ここで、亜鉛金属塩としては、例えば、亜鉛六水和物[Zn(NO32・6H2O]などが、パラジウム金属塩としては、例えば、硝酸パラジウム[Pd(NO32]などが、第3成分の金属塩としては、硝酸鉄九水和物[Fe(NO33・9H2O]又は硝酸クロム九水和物[Cr(NO33・9H2O]などが挙げられる。また、亜鉛金属塩とパラジウム金属塩との混合割合(亜鉛金属塩/パラジウム金属塩)は、例えば、1600〜10、好ましくは35〜15となるように、それぞれの添加量が調整される。この混合割合の調整により、後述する触媒全体に占めるPd成分の担持割合が調整される。さらに、第3成分の金属塩の混合割合は、第3成分の金属MとZnとの原子比(M/Zn)が0.02〜0.05の範囲となるように、添加量が調整される。 In the method for producing a methanol reforming catalyst according to the present embodiment, first, a zinc metal salt, a palladium metal salt, and a third component metal salt are dissolved in distilled water to form a first solution. Here, examples of the zinc metal salt include zinc hexahydrate [Zn (NO 3 ) 2 .6H 2 O], and examples of the palladium metal salt include palladium nitrate [Pd (NO 3 ) 2 ]. However, as the metal salt of the third component, iron nitrate nonahydrate [Fe (NO 3 ) 3 · 9H 2 O] or chromium nitrate nonahydrate [Cr (NO 3 ) 3 · 9H 2 O] Can be mentioned. Moreover, the amount of each added is adjusted so that the mixing ratio (zinc metal salt / palladium metal salt) of zinc metal salt and palladium metal salt may be, for example, 1600 to 10, preferably 35 to 15. By adjusting the mixing ratio, the supporting ratio of the Pd component in the entire catalyst described later is adjusted. Further, the mixing ratio of the third component metal salt is adjusted so that the atomic ratio (M / Zn) of the third component metal M to Zn is in the range of 0.02 to 0.05. The

一方、炭酸ナトリウムを蒸留水に溶解して第2溶液を形成する。ここで、炭酸ナトリウムの濃度が0.5〜5mol/l、好ましくは1〜2mol/lとなるように、炭酸ナトリウムの添加量が調整される。   Meanwhile, sodium carbonate is dissolved in distilled water to form a second solution. Here, the amount of sodium carbonate added is adjusted so that the concentration of sodium carbonate is 0.5 to 5 mol / l, preferably 1 to 2 mol / l.

次に、蒸留水中に第1溶液及び第2溶液をゆっくりと滴下すると共に、室温でpHを7〜10程度の一定値に保ちながら沈殿物を生成させる(共沈法)。この時、第1溶液は、0.5〜10ml/min、好ましくは1〜5ml/min前後の速度で滴下され、混合液のpHが10±0.5となるように第2溶液の滴下速度が調整される。得られた沈殿物は、50〜80℃の温度で0.5〜5hr、好ましくは1〜3hr、特に好ましくは2hr前後熟成され、共沈反応を完全(又はほぼ完全)に進行させる。   Next, while slowly dropping the first solution and the second solution into distilled water, a precipitate is generated while maintaining the pH at a constant value of about 7 to 10 at room temperature (coprecipitation method). At this time, the first solution is dropped at a rate of 0.5 to 10 ml / min, preferably about 1 to 5 ml / min, and the dropping rate of the second solution so that the pH of the mixed solution becomes 10 ± 0.5. Is adjusted. The obtained precipitate is aged at 0.5 to 5 hr, preferably 1 to 3 hr, particularly preferably about 2 hr at a temperature of 50 to 80 ° C., and the coprecipitation reaction proceeds completely (or almost completely).

次に、混合液における上澄み液を捨てた後、残渣である沈殿物に蒸留水を注入して攪拌、水洗、真空濾過を適宜繰り返し、濾過物を取り出す。この時、廃液(濾液)のpHが7±0.5になるまで、水洗、濾過を繰り返す。   Next, after discarding the supernatant in the mixed solution, distilled water is poured into the precipitate, which is the residue, and stirring, washing with water, and vacuum filtration are repeated as appropriate to take out the filtrate. At this time, washing and filtration are repeated until the pH of the waste liquid (filtrate) becomes 7 ± 0.5.

その濾過物を50〜150℃、好ましくは100℃程度で、1〜15hr、好ましくは6〜10hr、特に好ましくは8hr程度乾燥させる。その後、濾過物に、大気雰囲気下、300〜600℃、好ましくは400〜500℃、特に好ましくは450〜500℃の温度で、1〜5hr、好ましくは3hr前後の焼成処理を施す。これによって、Pd成分の担持割合が0.1〜10wt%であるPd/(ZnO+Fe34)又はPd/(ZnO+Cr23)系メタノール改質触媒(焼成物)が得られる。 The filtrate is dried at 50 to 150 ° C., preferably about 100 ° C., for 1 to 15 hours, preferably 6 to 10 hours, particularly preferably about 8 hours. Thereafter, the filtrate is subjected to a baking treatment in an air atmosphere at a temperature of 300 to 600 ° C., preferably 400 to 500 ° C., particularly preferably 450 to 500 ° C. for 1 to 5 hours, preferably about 3 hours. As a result, a Pd / (ZnO + Fe 3 O 4 ) or Pd / (ZnO + Cr 2 O 3 ) -based methanol reforming catalyst (calcined product) having a Pd component loading ratio of 0.1 to 10 wt% is obtained.

得られたメタノール改質触媒は、適宜、プレス(粉砕)処理及び分級処理が施される。この粉末体をペレット触媒としてそのまま用いるか、或いは粉末体を金属製(又はセラミックス製)のハニカム担体に担持させてハニカム触媒として用いる。製品として触媒を使用する際には、使用前に400〜500℃の還元処理を施すことが好ましい。ここで、ペレット触媒としては、粉末状態のままでも使用可能であるが、粉末触媒に圧縮成型を施し、ペレット体(円柱体、球体)に成形してもよい。これによって、触媒の取扱性が向上する。圧縮成型方法としては、打錠成形法、転動造粒法、押出成形法が挙げられるが、打錠成形法が最も好ましい。   The obtained methanol reforming catalyst is appropriately subjected to press (pulverization) treatment and classification treatment. The powder body is used as it is as a pellet catalyst, or the powder body is supported on a metal (or ceramic) honeycomb carrier and used as a honeycomb catalyst. When using a catalyst as a product, it is preferable to perform a reduction treatment at 400 to 500 ° C. before use. Here, as the pellet catalyst, it can be used even in a powder state, but the powder catalyst may be compression-molded and formed into a pellet body (cylindrical body, sphere). This improves the handleability of the catalyst. Examples of the compression molding method include a tableting molding method, a rolling granulation method, and an extrusion molding method, and the tableting molding method is most preferable.

次に、本実施の形態の作用を説明する。   Next, the operation of the present embodiment will be described.

本実施の形態に係るメタノール改質触媒は、前述した製造方法(共沈法)によって製造を行っているため、得られるPd粒子及びZnO粒子は、従来のスラリー法により製造したPd/ZnO系触媒のPd粒子及びZnO粒子よりも微細となる。ここで、Pd/ZnO系触媒におけるPd粒子及びZnO粒子が微細である程、PdとZnOとの合金(PdZn)化の部分(Pd粒子とZnO粒子の接触領域(接合領域))が多くなり、各粒子間の合金化が進行し易くなる。その結果、合金化の部分が多くなって、Pd/ZnO系触媒自体の活性が高くなる   Since the methanol reforming catalyst according to the present embodiment is manufactured by the above-described manufacturing method (coprecipitation method), the obtained Pd particles and ZnO particles are Pd / ZnO-based catalysts manufactured by a conventional slurry method. It becomes finer than the Pd particles and ZnO particles. Here, the finer the Pd particles and ZnO particles in the Pd / ZnO-based catalyst, the more the portion of Pd and ZnO alloyed (PdZn) (the contact region (bonding region) between the Pd particles and the ZnO particles). Alloying between each particle easily proceeds. As a result, the part of alloying increases and the activity of the Pd / ZnO-based catalyst itself increases.

また、本実施の形態に係るメタノール改質触媒では、第3成分である金属M(Fe又はCr)を添加しているが、金属Mを過少に添加すると、メタノールのガス転化率が著しく減少する。しかし、本実施の形態に係るメタノール改質触媒は、金属Mを、金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲に調整して添加していることで、金属Mを無添加の時とほぼ同等の転化率を得ることができる(図3参照)。   Further, in the methanol reforming catalyst according to the present embodiment, the third component metal M (Fe or Cr) is added. However, if the metal M is added in an excessive amount, the gas conversion rate of methanol is remarkably reduced. . However, in the methanol reforming catalyst according to the present embodiment, the metal M is added while adjusting the atomic ratio (M / Zn) between the metal M and Zn to 0.02 to 0.05. Thus, it is possible to obtain a conversion rate substantially equal to that when no metal M is added (see FIG. 3).

また、本実施の形態に係るメタノール改質触媒は、第3成分である金属M(Fe又はCr)を所定量添加することで、下記に示す式(5)及び式(7)の各反応が促進され、式(6)の反応が抑制される。その結果、COの発生(副生)量を抑制することができる。   In addition, the methanol reforming catalyst according to the present embodiment adds the predetermined amount of the metal M (Fe or Cr) as the third component so that the reactions of the following formulas (5) and (7) The reaction of formula (6) is suppressed. As a result, the amount of CO generated (by-product) can be suppressed.

CH3OH+H2O→3H2+CO2 …式(5)
CH3OH→CO+2H2 …式(6)
CO+H2O→CO2+H2 …式(7)
CH 3 OH + H 2 O → 3H 2 + CO 2 Formula (5)
CH 3 OH → CO + 2H 2 Formula (6)
CO + H 2 O → CO 2 + H 2 Formula (7)

ここで、第3成分である金属M(Fe又はCr)を過剰に添加すると、CO選択率が著しく増大する。しかし、本実施の形態に係るメタノール改質触媒は、金属Mを、金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲に調整して添加していることで、メタノール改質の活性を殆ど下げることなく、金属Mを無添加の時よりもCO選択率を低くすることができる(図4参照)。   Here, if the metal M (Fe or Cr) as the third component is added excessively, the CO selectivity is remarkably increased. However, in the methanol reforming catalyst according to the present embodiment, the metal M is added while adjusting the atomic ratio (M / Zn) between the metal M and Zn to 0.02 to 0.05. Thus, the CO selectivity can be made lower than when no metal M is added without substantially reducing the methanol reforming activity (see FIG. 4).

以上より、本実施の形態に係るメタノール改質触媒を用いたハニカム触媒は、従来のPd/ZnO系触媒を用いたハニカム触媒と比較して、メタノール改質率はほぼ同じに保ったまま、改質ガス中に含まれるCO濃度(CO選択率)を低くする(最大で約2%低くする)ことができる。   As described above, the honeycomb catalyst using the methanol reforming catalyst according to the present embodiment is improved while maintaining the methanol reforming rate substantially the same as the honeycomb catalyst using the conventional Pd / ZnO-based catalyst. The CO concentration (CO selectivity) contained in the quality gas can be lowered (lower by about 2% at the maximum).

メタノールの改質を行う反応温度(改質温度)としては250〜350℃が好ましい。また、水蒸気改質反応または酸化的水蒸気改質反応における被改質原料中の水とメタノールのモル比(水/メタノール)は、1〜3が好ましく、1.5前後が特に好ましい。さらに、酸化的水蒸気改質反応における被改質原料中の酸素とメタノールのモル比(酸素/メタノール)は、0〜0.2が好ましく、0.1前後が特に好ましい。また、メタノール(水とメタノールの混合溶液)の供給割合は、WCH3OHHSVが30〜200(h-1)が好ましく、30〜80(h-1)がより好ましく、50前後(h-1)が特に好ましい。 The reaction temperature (reforming temperature) for reforming methanol is preferably 250 to 350 ° C. In addition, the molar ratio of water to methanol (water / methanol) in the raw material to be reformed in the steam reforming reaction or the oxidative steam reforming reaction is preferably 1 to 3, particularly preferably around 1.5. Further, the molar ratio of oxygen to methanol (oxygen / methanol) in the raw material to be reformed in the oxidative steam reforming reaction is preferably 0 to 0.2, particularly preferably around 0.1. Methanol feed rate (water and a mixed solution of methanol) is, W CH3 OH HSV is 30 to 200 (h -1), more preferably 30 to 80 (h -1), 50 before and after (h -1) Is particularly preferred.

また、メタノール改質触媒、特にPEFC向けのメタノール改質触媒としては、以下に示す特長を有していることが必要である。
(1) メタノールのガス転化率(改質率)が良好である。
(2) PEFCアノードの被毒物質であるCOの発生量が極力少ない。COはPEFCアノードの被毒物質であるため、一般には、50ppm以下のレベルまでCO濃度を低減する必要がある。改質ガス中の微量のCOは、酸素による選択酸化反応により、PEFCアノードに無害なCO2に酸化されるが、この時、COの酸化と同時に改質ガスの主成分であるH2も一部燃焼してしまうため、改質ガス中に含まれるCOは極力少ない方が好ましい。
(3) 一般的な発電用PEFCの耐久性目標である数万時間、例えば約4万時間の耐久寿命を満足する触媒寿命を有する。
In addition, a methanol reforming catalyst, particularly a methanol reforming catalyst for PEFC, must have the following characteristics.
(1) Gas conversion rate (reforming rate) of methanol is good.
(2) The amount of CO that is a poisoning substance for the PEFC anode is minimized. Since CO is a poisoning substance for the PEFC anode, it is generally necessary to reduce the CO concentration to a level of 50 ppm or less. A small amount of CO in the reformed gas is oxidized into CO 2 that is harmless to the PEFC anode by a selective oxidation reaction with oxygen. At this time, H 2 that is the main component of the reformed gas is also simultaneously with the oxidation of CO. Since partial combustion occurs, it is preferable that the amount of CO contained in the reformed gas is as small as possible.
(3) It has a catalyst life satisfying a durability life of tens of thousands of hours, for example, about 40,000 hours, which is a durability target of a general power generation PEFC.

本実施の形態に係るメタノール改質触媒は、上述した(1)〜(3)を十分に満足しており、PEFC向けのメタノール改質触媒として適したものとなる。   The methanol reforming catalyst according to the present embodiment sufficiently satisfies the above (1) to (3), and is suitable as a methanol reforming catalyst for PEFC.

一方、本実施の形態に係るメタノール改質触媒(粉末触媒)を、反応器のハニカム担体に担持させ、その反応器に、反応器内にメタノール及び水蒸気を供給する供給ラインを接続すると共に、メタノールを改質して生成された水素を排出する水素ラインを接続することで、水蒸気改質反応用のメタノール改質器を得ることができる。ここで、メタノールの水蒸気改質反応を酸化雰囲気下で行う、いわゆるオートサーマル改質反応用のメタノール改質器の場合、メタノール及び水蒸気を供給する供給ラインの他に、空気を供給する供給ラインを設ける必要がある。また、触媒として、ペレット触媒を用いる場合は、反応器内にペレット触媒を装填するだけでよい。   On the other hand, the methanol reforming catalyst (powder catalyst) according to the present embodiment is supported on the honeycomb carrier of the reactor, and a supply line for supplying methanol and water vapor into the reactor is connected to the reactor. A methanol reformer for steam reforming reaction can be obtained by connecting a hydrogen line for discharging hydrogen produced by reforming the steam. Here, in the case of a methanol reformer for so-called autothermal reforming reaction in which the steam reforming reaction of methanol is performed in an oxidizing atmosphere, a supply line for supplying air is provided in addition to a supply line for supplying methanol and steam. It is necessary to provide it. Further, when a pellet catalyst is used as the catalyst, it is only necessary to load the pellet catalyst into the reactor.

また、これらのメタノール改質器の各供給ラインに、メタノール供給手段(貯蔵タンク)及び水蒸気供給手段(又はメタノール供給手段(貯蔵タンク)、水蒸気供給手段、及び空気供給手段)をそれぞれ接続すると共に、メタノール改質器の水素ラインに燃料電池を接続することで、メタノールの改質によって生成された水素を用いて発電を行うことができる固体高分子形燃料電池システムを得ることができる。ここで、水素を用いて発電することによって生成された水蒸気を回収して、水蒸気供給手段にフィードバックするようにしてもよい。   In addition, methanol supply means (storage tank) and steam supply means (or methanol supply means (storage tank), steam supply means, and air supply means) are connected to the supply lines of these methanol reformers, By connecting the fuel cell to the hydrogen line of the methanol reformer, it is possible to obtain a polymer electrolyte fuel cell system that can generate power using hydrogen generated by reforming methanol. Here, the steam generated by generating electricity using hydrogen may be recovered and fed back to the steam supply means.

前述した本実施の形態に係るメタノール改質触媒を用いた各メタノール改質器は、高い熱効率を有し、コンパクトで、起動・停止が容易で、かつ、実用に耐える耐久性を備えたものとなる。よって、これらのメタノール改質器を用いた固体高分子形燃料電池システムは、燃料電池車や家庭用・ポータブル用及び分散電源用の発電装置などに適したシステムとなる。   Each methanol reformer using the methanol reforming catalyst according to the embodiment described above has high thermal efficiency, is compact, can be easily started and stopped, and has durability to withstand practical use. Become. Therefore, a polymer electrolyte fuel cell system using these methanol reformers is a system suitable for a fuel cell vehicle, a power generator for home / portable use, and a distributed power source.

以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.

各種の第3成分添加によるCO2+COの転化率(μmol/g-cat/s)の変化を示す図である。Is a graph showing changes in conversion of CO 2 + CO by the third component added various (μmol / g-cat / s ). 各種の第3成分添加によるCO選択率(%)の変化を示す図である。It is a figure which shows the change of CO selectivity (%) by various 3rd component addition. Fe又はCrの原子比(M/Zn)を変化させることによるCO2+COの転化率(μmol/g-cat/s)の変化を示す図である。Is a diagram showing changes in the atomic ratio of Fe or Cr (M / Zn) by varying the CO 2 + CO conversion (μmol / g-cat / s ). Fe又はCrの原子比(M/Zn)を変化させることによるCO選択率(%)の変化を示す図である。It is a figure which shows the change of CO selectivity (%) by changing the atomic ratio (M / Zn) of Fe or Cr.

Claims (11)

ZnO粒子の表面にPd粒子が担持されたPd/ZnO系触媒であって、かつ、第3成分として金属Mを、金属MとZnとの原子比(M/Zn)が0.02〜0.05となる範囲で含むことを特徴とするメタノール改質触媒。   A Pd / ZnO-based catalyst in which Pd particles are supported on the surface of ZnO particles, the metal M as the third component, and the atomic ratio (M / Zn) of the metal M to Zn is 0.02 to 0.03. A methanol reforming catalyst characterized by comprising a range of 05. 上記金属MがFe又はCrである請求項1記載のメタノール改質触媒。   The methanol reforming catalyst according to claim 1, wherein the metal M is Fe or Cr. 上記Pd/ZnO系触媒全体に占めるPd成分の担持割合が0.1〜10wt%である請求項1又は2記載のメタノール改質触媒。   The methanol reforming catalyst according to claim 1 or 2, wherein a supporting ratio of the Pd component in the entire Pd / ZnO-based catalyst is 0.1 to 10 wt%. 亜鉛金属塩、パラジウム金属塩、及び第3成分の金属塩を蒸留水に溶解して第1溶液を形成し、炭酸ナトリウムを蒸留水に溶解して第2溶液を形成し、蒸留水中に第1溶液及び第2溶液を滴下すると共に、室温でpHを7〜10程度に保ちながら沈殿物を生成させ、その沈殿物を濾過して濾過物を取り出し、その濾過物に大気雰囲気下で400〜500℃×1〜5hrの焼成処理を施すことを特徴とするメタノール改質触媒の製造方法。   A zinc metal salt, a palladium metal salt, and a metal salt of the third component are dissolved in distilled water to form a first solution, sodium carbonate is dissolved in distilled water to form a second solution, and the first solution is added to the distilled water. The solution and the second solution are added dropwise, and a precipitate is generated while maintaining the pH at about 7 to 10 at room temperature. The precipitate is filtered to take out the filtrate, and the filtrate is subjected to 400 to 500 in an air atmosphere. The manufacturing method of the methanol reforming catalyst characterized by performing a baking process of 1 degreeC for 5 degreeC. 上記焼成処理後の焼成物に、400〜500℃で還元処理を施す請求項4記載のメタノール改質触媒の製造方法。   The method for producing a methanol reforming catalyst according to claim 4, wherein the calcined product after the calcining treatment is subjected to a reduction treatment at 400 to 500 ° C. 請求項1から3いずれかに記載のメタノール改質触媒を用いてメタノールを水蒸気改質し、水素を生成することを特徴とするメタノール改質方法。   A methanol reforming method comprising steam-reforming methanol with the methanol reforming catalyst according to claim 1 to generate hydrogen. 請求項1から3いずれかに記載のメタノール改質触媒を用いてメタノールを酸化雰囲気下で水蒸気改質し、水素を生成することを特徴とするメタノール改質方法。   A methanol reforming method characterized in that methanol is steam reformed in an oxidizing atmosphere using the methanol reforming catalyst according to any one of claims 1 to 3 to generate hydrogen. 請求項1から3いずれかに記載のメタノール改質触媒を内包する反応器と、反応器内にメタノール及び水蒸気を供給する供給ラインと、メタノールを改質して生成された水素を排出する水素ラインとを備えたことを特徴とするメタノール改質器。   A reactor containing the methanol reforming catalyst according to any one of claims 1 to 3, a supply line for supplying methanol and water vapor into the reactor, and a hydrogen line for discharging hydrogen generated by reforming the methanol A methanol reformer characterized by comprising: 請求項1から3いずれかに記載のメタノール改質触媒を内包する反応器と、反応器内にメタノール、水蒸気、及び空気を供給する供給ラインと、メタノールを改質して生成された水素を排出する水素ラインとを備えたことを特徴とするメタノール改質器。   A reactor containing the methanol reforming catalyst according to any one of claims 1 to 3, a supply line for supplying methanol, water vapor, and air into the reactor, and hydrogen generated by reforming the methanol is discharged. A methanol reformer characterized by comprising a hydrogen line. 請求項8記載のメタノール改質器と、その改質器の各供給ラインにそれぞれ接続されるメタノール供給手段及び水蒸気供給手段と、その改質器の水素ラインに接続される燃料電池とを備えたことを特徴とする固体高分子形燃料電池システム。   9. A methanol reformer according to claim 8, a methanol supply means and a steam supply means connected to each supply line of the reformer, and a fuel cell connected to a hydrogen line of the reformer. A polymer electrolyte fuel cell system. 請求項9記載のメタノール改質器と、その改質器の各供給ラインにそれぞれ接続されるメタノール供給手段、水蒸気供給手段、及び空気供給手段と、その改質器の水素ラインに接続される燃料電池とを備えたことを特徴とする固体高分子形燃料電池システム。
10. A methanol reformer according to claim 9, a methanol supply means, a steam supply means, an air supply means connected to each supply line of the reformer, and a fuel connected to a hydrogen line of the reformer. A solid polymer fuel cell system comprising a battery.
JP2003360712A 2003-10-21 2003-10-21 Methanol reforming catalyst and its manufacturing method Pending JP2005125148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360712A JP2005125148A (en) 2003-10-21 2003-10-21 Methanol reforming catalyst and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360712A JP2005125148A (en) 2003-10-21 2003-10-21 Methanol reforming catalyst and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005125148A true JP2005125148A (en) 2005-05-19

Family

ID=34640945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360712A Pending JP2005125148A (en) 2003-10-21 2003-10-21 Methanol reforming catalyst and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005125148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105696A1 (en) * 2006-03-14 2007-09-20 Mitsubishi Gas Chemical Company, Inc. Hydrogen generator and process for producing hydrogen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105696A1 (en) * 2006-03-14 2007-09-20 Mitsubishi Gas Chemical Company, Inc. Hydrogen generator and process for producing hydrogen
JPWO2007105696A1 (en) * 2006-03-14 2009-07-30 三菱瓦斯化学株式会社 Hydrogen production apparatus and hydrogen production method

Similar Documents

Publication Publication Date Title
Whang et al. Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals
US20110121238A1 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP2008221200A (en) Reforming catalyst of oxygen-containing hydrocarbon, manufacturing method of hydrogen or synthetic gas using it and fuel cell system
JP4774197B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
TWI294413B (en) Method for converting co and hydrogen into methane and water
KR100782383B1 (en) Co-B catalyst for hydrogen generating reaction using alkaline borohydrides solution and method to prepare the same
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
US20110223502A1 (en) Fuel Reforming Apparatus And Fuel Cell System
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
JP3756565B2 (en) Method for removing CO in hydrogen gas
JP2006346535A (en) Co removal catalyst and fuel cell system
JP3574469B2 (en) Method for oxidizing CO to CO2 and method for producing hydrogen-containing gas for fuel cell
JP2005125148A (en) Methanol reforming catalyst and its manufacturing method
TWI433722B (en) A method for producing hydrogen or a catalyst for the modification of oxygen-containing hydrocarbons, and a fuel cell system
JP2005125147A (en) Methanol reforming catalyst and its manufacturing method
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP4127685B2 (en) Carbon monoxide selective methanator, carbon monoxide shift reactor and fuel cell system
KR100460433B1 (en) Catalyst for Purifying Reformate Gas and Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using the Same
JP2005103515A (en) Methanol reforming catalyst and its production method
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP4339134B2 (en) Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method
JP2007244963A (en) Methanol reforming catalyst, its manufacturing method, methanol reforming method and methanol reformer
KR100440907B1 (en) Process for Selectively Removing Carbon Monoxide Contained in Hydrogen-enriched Reformate Gas Using Natural Manganese Ore
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
JP2006252929A (en) Co modification catalyst for dss operating fuel cell, its manufacturing method, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090623