JP4339134B2 - Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method - Google Patents

Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method Download PDF

Info

Publication number
JP4339134B2
JP4339134B2 JP2004003961A JP2004003961A JP4339134B2 JP 4339134 B2 JP4339134 B2 JP 4339134B2 JP 2004003961 A JP2004003961 A JP 2004003961A JP 2004003961 A JP2004003961 A JP 2004003961A JP 4339134 B2 JP4339134 B2 JP 4339134B2
Authority
JP
Japan
Prior art keywords
molded body
desulfurization
agent molded
gaseous hydrocarbon
hydrocarbon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004003961A
Other languages
Japanese (ja)
Other versions
JP2005193190A (en
Inventor
幸三 高津
岳二 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004003961A priority Critical patent/JP4339134B2/en
Publication of JP2005193190A publication Critical patent/JP2005193190A/en
Application granted granted Critical
Publication of JP4339134B2 publication Critical patent/JP4339134B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、ガス状炭化水素化合物の脱硫剤成形体及び脱硫方法、並びに該脱硫剤成形体を用いて脱硫処理したガス状炭化水素化合物から水素を効果的に製造する方法、更にその水素を用いる燃料電池システムに関する。   The present invention relates to a desulfurizing agent molded body and a desulfurization method for a gaseous hydrocarbon compound, a method for effectively producing hydrogen from a gaseous hydrocarbon compound desulfurized using the desulfurizing agent molded body, and further using the hydrogen. The present invention relates to a fuel cell system.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらにはLPG、ジメチルエーテル、ナフサ、灯油などの石油系炭化水素の使用が研究されている。
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, LPG, dimethyl ether, naphtha, kerosene, etc. The use of petroleum-based hydrocarbons has been studied.

これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に部分酸化改質、オートサーマル改質又は水蒸気改質などで処理する方法が用いられている。
LPG、都市ガス、灯油などの炭化水素燃料を改質して燃料用水素を製造する場合、改質触媒の被毒を抑制するためには、燃料中の硫黄分を0.05ppm以下に低減させることが要求される。また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を0.05ppm以下に低減させることが要求される。
前記LPG中には、硫黄化合物として、一般にメチルメルカプタンや硫化カルボニル(COS)などに加えて、着臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイドなどが含まれている。また、最近ジメチルエーテルを燃料として利用する計画が進められている。このジメチルエーテル自体は、硫黄化合物を含有していないが、漏洩対策から意図的に上記着臭剤の添加が検討されている。
When producing hydrogen using these gaseous or liquid hydrocarbons, generally, there is a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst. It is used.
When reforming hydrocarbon fuels such as LPG, city gas, and kerosene to produce hydrogen for fuel, the sulfur content in the fuel is reduced to 0.05 ppm or less in order to suppress poisoning of the reforming catalyst. Is required. Further, when propylene, butene, etc. are used as a raw material for petrochemical products, it is required to reduce the sulfur content to 0.05 ppm or less in order to prevent poisoning of the catalyst.
In the LPG, as a sulfur compound, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), methyl ethyl sulfide, etc. added as an odorant in addition to methyl mercaptan and carbonyl sulfide (COS) are generally included. include. Recently, a plan to use dimethyl ether as a fuel is underway. Although this dimethyl ether itself does not contain a sulfur compound, the addition of the above odorant has been studied intentionally in order to prevent leakage.

ところで、上記の炭化水素燃料の中で、ガス状炭化水素化合物の方が液状炭化水素化合物に比べて、脱硫において、運転条件が低温、低圧で穏やかであるため、ガス状炭化水素化合物の方が多く採用されつつある。
LPGや都市ガスなどの炭化水素含有ガス中の硫黄化合物を吸着除去する各種吸着剤が知られているが(例えば、特許文献1、特許文献2参照)、従来の吸着剤は吸着容量が十分ではなく、長期間使用するには、しばしば取り替える必要があり実用的ではなかった。
特許文献1には、金属成分と、無機酸化物および/または活性炭とからなる複合化合物を含む燃料ガス処理剤が開示されているが、実施例においては、平均粒径2mmのものしか使用されておらず、長時間吸着活性が持続できないものであった。
特許文献2には、多孔質担体に銅成分が担持された比表面積150m2/g以上の吸着剤と、硫黄化合物を含有する気相成分を接触させる硫黄化合物の除去方法が開示されているが、実施例においては、粒径1〜3mm(平均粒径は1mm超)のものしか使用されておらず、長時間吸着活性が持続できないものであった。
By the way, among the above hydrocarbon fuels, the gaseous hydrocarbon compound is more gentle at low temperature and low pressure in the desulfurization operation than the gaseous hydrocarbon compound, so the gaseous hydrocarbon compound is more preferable. Many are being adopted.
Various adsorbents that adsorb and remove sulfur compounds in hydrocarbon-containing gases such as LPG and city gas are known (see, for example, Patent Document 1 and Patent Document 2), but conventional adsorbents do not have sufficient adsorption capacity. In order to use it for a long period of time, it often needs to be replaced and is not practical.
Patent Document 1 discloses a fuel gas treating agent containing a composite compound composed of a metal component and an inorganic oxide and / or activated carbon. In the examples, only those having an average particle diameter of 2 mm are used. The adsorption activity could not be sustained for a long time.
Patent Document 2 discloses a method for removing a sulfur compound in which an adsorbent having a specific surface area of 150 m 2 / g or more in which a copper component is supported on a porous carrier and a gas phase component containing a sulfur compound are brought into contact with each other. In Examples, only particles having a particle size of 1 to 3 mm (average particle size exceeding 1 mm) were used, and the adsorption activity could not be sustained for a long time.

特開2003−129073号公報JP 2003-129073 A 特開2001−123188号公報JP 2001-123188 A

本発明は、このような状況下でなされたもので、同一の充填質量で長時間にわたり微量の硫黄化合物の流出を抑制できる、ガス状炭化水素化合物中の硫黄化合物を除去する脱硫剤成形体及び脱硫方法、並びにその脱硫剤成形体を用いて脱硫処理したガス状炭化水素化合物から、水素を効果的に製造する方法、更にその水素を用いる燃料電池システムを提供することを目的とするものである。   The present invention was made under such circumstances, and a desulfurization agent molded body for removing sulfur compounds in a gaseous hydrocarbon compound, which can suppress outflow of a trace amount of sulfur compounds over a long period of time with the same filling mass, and It is an object of the present invention to provide a desulfurization method, a method for effectively producing hydrogen from a gaseous hydrocarbon compound desulfurized using the desulfurization agent molding, and a fuel cell system using the hydrogen. .

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、多孔質担体に活性金属が担持されている脱硫剤成形体の平均粒径が0.03〜1.0mmであるものが本発明の目的を効率的に達成できることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive studies to achieve the above object, the inventors of the present invention have an average particle diameter of 0.03-1.0 mm of a desulfurization agent molded body in which an active metal is supported on a porous carrier. Has found that the object of the present invention can be efficiently achieved. The present invention has been completed based on such findings.

すなわち、本発明は、
(1)ガス状炭化水素化合物中の硫黄化合物を除去する脱硫剤であって、多孔質担体に活性金属が担持されてなり、かつ、平均粒径が0.03〜1.0mmである脱硫剤成形体であって、該多孔質担体がゼオライト、アルミニウム、ケイ素及び周期律表第3族に属する金属から選ばれる少なくとも一種の金属の酸化物であることを特徴とする脱硫剤成形体、
(2)平均粒径が0.03〜0.5mmである上記(1)記載の脱硫剤成形体、
(3)多孔質担体が、FAU、BEA、LTL、MOR、MTW、GME、OFF、MFI、MEL、FER、TON、MTT及びLTA構造を有するゼオライトの中から選ばれる少なくとも一種である上記(1)又は(2)に記載の脱硫剤成形体、
)周期律表第3族に属する金属が、Sc、Y、La、Ce、Nd、Pr、Sm、Gd及びYbから選ばれる少なくとも一種である上記(1)又は(2)に記載の脱硫剤成形体、
)活性金属が、Ag、Cu、Co、Ni、Zn、Mn、Fe及びCeから選ばれる少なくとも一種である上記(1)〜(4)のいずれかに記載の脱硫剤成形体、
)ガス状炭化水素化合物が、天然ガス、都市ガス、LPG、エタン、プロパン、プロピレン、ブタン、ブチレン、ブタジエン及びジメチルエーテルから選ばれる少なくとも一種である上記(1)〜(5)のいずれかに記載の脱硫剤成形体、
)上記(1)〜(6)のいずれかに記載の脱硫剤成形体を用いてガス状炭化水素化合物中の硫黄化合物を除去することを特徴とする脱硫方法、
)上記(1)〜(6)のいずれかに記載の脱硫剤成形体を100リットル未満の小型脱硫器に充填して用いる上記()に記載の脱硫方法、
)上記(1)〜(6)のいずれかに記載の脱硫剤成形体を用いて、ガス状炭化水素化合物中の硫黄化合物を脱硫処理したのち、この脱硫処理ガス状炭化水素化合物を部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする水素の製造方法、
(10)部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒がルテニウム系又はニッケル系触媒である上記(9)に記載の水素の製造方法、
(11)上記(9)又は(10)に記載の方法で製造された水素を用いることを特徴とする燃料電池システム、
を提供するものである。
That is, the present invention
(1) a desulfurizing agent to remove sulfur compounds in the gaseous hydrocarbon compound, becomes in active metal on a porous support is supported, and an average particle size of Ru 0.03~1.0mm der de A desulfurizing agent molded body, wherein the porous carrier is an oxide of at least one metal selected from zeolite, aluminum, silicon and a metal belonging to Group 3 of the periodic table,
(2) The desulfurization agent molded body according to (1) , wherein the average particle diameter is 0.03 to 0.5 mm,
(3) The above (1), wherein the porous support is at least one selected from zeolites having a FAU, BEA, LTL, MOR, MTW, GME, OFF, MFI, MEL, FER, TON, MTT and LTA structure. Or the desulfurization agent molded product according to (2),
( 4 ) The desulfurization according to (1) or (2), wherein the metal belonging to Group 3 of the periodic table is at least one selected from Sc, Y, La, Ce, Nd, Pr, Sm, Gd, and Yb Agent molded body,
( 5 ) The desulfurization agent molded body according to any one of (1) to (4) , wherein the active metal is at least one selected from Ag, Cu, Co, Ni, Zn, Mn, Fe, and Ce,
( 6 ) In any one of the above (1) to (5), the gaseous hydrocarbon compound is at least one selected from natural gas, city gas, LPG, ethane, propane, propylene, butane, butylene, butadiene and dimethyl ether. Desulfurizing agent molded body according to the description ,
( 7 ) A desulfurization method comprising removing a sulfur compound in a gaseous hydrocarbon compound using the desulfurization agent molded body according to any one of (1) to (6 ) above,
( 8 ) The desulfurization method according to ( 7 ), wherein the desulfurization agent molded body according to any one of (1) to (6) is used by filling in a small desulfurizer of less than 100 liters,
( 9 ) After desulfurizing the sulfur compound in the gaseous hydrocarbon compound using the desulfurizing agent molded body according to any one of (1) to (6) above , the desulfurized gaseous hydrocarbon compound is partially A method for producing hydrogen, characterized by contacting with an oxidation reforming catalyst, an autothermal reforming catalyst or a steam reforming catalyst,
( 10 ) The method for producing hydrogen according to the above (9), wherein the partial oxidation reforming catalyst, autothermal reforming catalyst or steam reforming catalyst is a ruthenium-based or nickel-based catalyst,
( 11 ) A fuel cell system using hydrogen produced by the method according to (9) or (10 ) above,
Is to provide.

本発明によれば、ガス状炭化水素化合物中の硫黄化合物を、同一の充填質量で長時間にわたり微量の硫黄化合物の流出を抑制できる脱硫剤成形体及び脱硫方法、並びにその脱硫剤成形体を用いて脱硫処理したガス状炭化水素化合物から、水素を効果的に製造する方法、更にその水素を用いる燃料電池システムを提供することができる。   According to the present invention, a sulfur compound in a gaseous hydrocarbon compound is used with a desulfurization agent molded body and a desulfurization method capable of suppressing the outflow of a trace amount of a sulfur compound for a long time with the same filling mass, and the desulfurization agent molded body is used. Thus, it is possible to provide a method for effectively producing hydrogen from a gaseous hydrocarbon compound subjected to desulfurization treatment, and a fuel cell system using the hydrogen.

本発明は、ガス状炭化水素化合物中の硫黄化合物を除去する脱硫剤であって、多孔質担体に活性金属が担持されてなり、かつ、平均粒径が0.03〜1.0mmであることを特徴とする脱硫剤成形体である。
まず、本発明の脱硫剤成形体に使用される多孔質担体として、(a)ゼオライト、(b)アルミニウム、ケイ素及び周期律表第3族に属する金属から選ばれる少なくとも一種の金属の酸化物、(c)その他の多孔質担体が挙げられる。
(a)成分のゼオライトとして、FAU、BEA、LTL、MOR、MTW、GME、OFF、MFI、MEL、FER、TON、MTT及びLTA構造を有するものの中から選ばれる少なくとも一種を用いることができる。これらの中で、10員環細孔を有するFAU、BEA、LTL、MOR、MTW、GME及びOFF構造を有するゼオライトが好ましく、特に吸着性能の点から、FAU、BEA及びLTL構造を有するゼオライトが好適である。また、上記のゼオライトは、アルカリ金属/アルミニウム(原子比)が0.5以下のもの好ましい。
(b)成分のうち、アルミニウム、ケイ素の酸化物として、アルミナ、シリカ、シリカ−アルミナ、珪藻土などが挙げられる。(b)成分のうち、周期律表第3族に属する金属の酸化物として、Sc、Y、La、Ce、Nd、Pr、Sm、Gd、Ybなどの酸化物が挙げられる。これらの中で、効果の点でCeの酸化物が好ましい。さらに、(c)成分のその他の多孔質担体として、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土、活性炭などが挙げられる。
次に、上記多孔質担体に担持される活性金属として、Ag、Cu、Co、Ni、Zn、Mn、Fe、Ceなどが挙げられる。すなわち、Ceは活性金属と担体の両方に機能することがわかる。
上記の活性金属を上記の担体に担持させる方法には、公知の方法、例えばポアフィリング法、浸漬法、沈着法、蒸発乾固法、イオン交換法を用いることができる。この際、乾燥温度は、通常50〜200℃程度であり、焼成温度は、通常250〜500℃程度である。また、脱硫剤中の活性金属の量は金属として、1〜40質量%、好ましくは、3〜30質量%に調整すればよい。
The present invention is a desulfurization agent for removing a sulfur compound in a gaseous hydrocarbon compound, wherein an active metal is supported on a porous carrier, and an average particle diameter is 0.03 to 1.0 mm. Is a desulfurizing agent molded body characterized by
First, as a porous carrier used in the desulfurization agent molded body of the present invention, (a) an oxide of at least one metal selected from (a) zeolite, (b) aluminum, silicon and a metal belonging to Group 3 of the periodic table, (C) Other porous carriers may be mentioned.
As the zeolite of component (a), at least one selected from those having FAU, BEA, LTL, MOR, MTW, GME, OFF, MFI, MEL, FER, TON, MTT and LTA structures can be used. Among these, zeolites having FAU, BEA, LTL, MOR, MTW, GME and OFF structures having 10-membered ring pores are preferable, and zeolites having FAU, BEA and LTL structures are particularly preferable in terms of adsorption performance. It is. Further, the above zeolite preferably has an alkali metal / aluminum (atomic ratio) of 0.5 or less.
Among the components (b), examples of aluminum and silicon oxides include alumina, silica, silica-alumina, and diatomaceous earth. Among the components (b), oxides of metals belonging to Group 3 of the periodic table include oxides such as Sc, Y, La, Ce, Nd, Pr, Sm, Gd, and Yb. Among these, Ce oxide is preferable in terms of effects. Furthermore, as the other porous carrier of the component (c), titania, zirconia, magnesia, zinc oxide, clay, clay, activated carbon and the like can be mentioned.
Next, examples of the active metal supported on the porous carrier include Ag, Cu, Co, Ni, Zn, Mn, Fe, and Ce. That is, it can be seen that Ce functions as both an active metal and a support.
As a method for supporting the active metal on the carrier, a known method such as a pore filling method, an immersion method, a deposition method, an evaporation to dryness method, or an ion exchange method can be used. Under the present circumstances, drying temperature is about 50-200 degreeC normally, and a calcination temperature is about 250-500 degreeC normally. Moreover, what is necessary is just to adjust the quantity of the active metal in a desulfurizing agent to 1-40 mass% as a metal, Preferably, it is 3-30 mass%.

なお、多孔質担体がゼオライトの場合、金属アンミン錯イオンを含む溶液を用いて金属イオン交換してゼオライトに活性金属を担持させて金属イオン交換ゼオライトを調製するのが好ましく、この点について詳述する。金属アンミン錯イオンを含む溶液としては、水溶性の金属アンミン錯イオンを水に溶解させた溶液、あるいは金属の硝酸塩や塩化物などの水溶性金属化合物を水に溶解させ、これに過剰のアンモニア水を加え、金属のアミン錯イオンを形成させてなる溶液などを用いることができる。ここで、金属アンミン錯イオンを含む溶液の金属種としては、Ag、Cu、Co、Ni及びZnの中から選ばれる少なくとも一種が好ましく、特に硫黄化合物の吸着性能の点から、Ag、Cu、Niが好適である。   When the porous carrier is zeolite, it is preferable to prepare a metal ion-exchanged zeolite by carrying out a metal ion exchange using a solution containing a metal ammine complex ion and supporting the active metal on the zeolite, and this point will be described in detail. . As a solution containing a metal ammine complex ion, a solution in which a water-soluble metal ammine complex ion is dissolved in water, or a water-soluble metal compound such as a metal nitrate or chloride is dissolved in water, and excess ammonia water is added thereto. And a solution formed by forming a metal amine complex ion can be used. Here, the metal species of the solution containing the metal ammine complex ion is preferably at least one selected from Ag, Cu, Co, Ni and Zn, and particularly Ag, Cu, Ni from the viewpoint of the adsorption performance of the sulfur compound. Is preferred.

金属イオン交換ゼオライトを調製するには、まず上記の金属アンミン錯イオンを含む溶液に、前述のゼオライトを加え、通常0〜90℃、好ましくは20〜70℃の範囲の温度において、1ないし数時間程度、好ましくは攪拌しながらイオン交換処理する。次いで、固形物をろ過などの手段で分離し、水などで洗浄したのち、500℃以下(好ましくは50〜200℃程度)の温度で乾燥処理する。このイオン交換処理は繰り返し行うことができる。次に、500℃以下(好ましくは200〜500℃程度)の温度で数時間程度焼成処理することにより、目的の金属イオン交換ゼオライトが得られる。
このようにして得られた金属イオン交換ゼオライト中の金属担持量は、金属として5〜30質量%の範囲が好ましく、特に10〜25質量%の範囲が好適である。また、アルカリ金属の含有量が2質量%以下であることが好ましい。
In order to prepare a metal ion exchange zeolite, first, the above zeolite is added to a solution containing the above metal ammine complex ions, and usually at a temperature in the range of 0 to 90 ° C., preferably 20 to 70 ° C., for 1 to several hours. The ion exchange treatment is carried out to an extent, preferably with stirring. Next, the solid is separated by a means such as filtration, washed with water, and then dried at a temperature of 500 ° C. or less (preferably about 50 to 200 ° C.). This ion exchange treatment can be repeated. Next, the target metal ion-exchanged zeolite is obtained by firing for several hours at a temperature of 500 ° C. or less (preferably about 200 to 500 ° C.).
The metal loading in the metal ion exchanged zeolite thus obtained is preferably in the range of 5 to 30% by mass, particularly preferably in the range of 10 to 25% by mass as the metal. Moreover, it is preferable that content of an alkali metal is 2 mass% or less.

以上のようにして調製された脱硫剤は、適当なバインダーを用いて押出成形、打錠成形、転動造粒、スプレードライなどの通常の方法で成形して使用する。また、予め成形した担体に活性金属を担持させてもよい。   The desulfurizing agent prepared as described above is used after being molded by an ordinary method such as extrusion molding, tableting molding, rolling granulation, spray drying and the like using an appropriate binder. Further, the active metal may be supported on a preformed carrier.

本発明においては、上記脱硫剤成形体を破砕して、平均粒径を0.03〜1.0mmにしてガス状炭化水素化合物の脱硫に供する。平均粒径が0.03mm未満であると、使用する際の差圧が大きくなり使用できない。平均粒径が1.0mmを超えると、所望の脱硫性能が得られない。好ましい平均粒径は0.03〜0.5mmである。さらに、該脱硫剤成形体を100リットル未満の小型脱硫器に充填して用いると有効である。
前記のようにして得られた脱硫剤成形体は、天然ガス、都市ガス、LPG、エタン、プロパン、プロピレン、ブタン、ブチレン、ブタジエン及びジメチルエーテルから選ばれるガス状炭化水素化合物燃料に適用される。
本発明の脱硫体成形体が適用されるガス状炭化水素化合物燃料中の硫黄化合物の濃度としては、0.001〜10,000容量ppmが好ましく、特に0.1〜100容量ppmが好ましい。また、脱硫条件としては、通常温度は−50〜300℃の範囲で選ばれ、GHSVは100〜10,000h-1の範囲で選ばれる。
In this invention, the said desulfurization agent molded object is crushed and it uses for desulfurization of a gaseous hydrocarbon compound by making an average particle diameter 0.03-1.0 mm. If the average particle size is less than 0.03 mm, the differential pressure at the time of use becomes large and cannot be used. If the average particle size exceeds 1.0 mm, the desired desulfurization performance cannot be obtained. A preferred average particle size is 0.03 to 0.5 mm. Furthermore, it is effective to use the desulfurization agent compact after filling it in a small desulfurizer of less than 100 liters.
The desulfurization agent molded body obtained as described above is applied to a gaseous hydrocarbon compound fuel selected from natural gas, city gas, LPG, ethane, propane, propylene, butane, butylene, butadiene and dimethyl ether.
As a density | concentration of the sulfur compound in the gaseous hydrocarbon compound fuel to which the desulfurization molded object of this invention is applied, 0.001-10,000 volume ppm is preferable, and 0.1-100 volume ppm is especially preferable. As desulfurization conditions, the normal temperature is selected in the range of −50 to 300 ° C., and the GHSV is selected in the range of 100 to 10,000 h −1 .

次に、本発明の主に燃料電池に使用される水素の製造方法においては、前述の本発明の脱硫剤成形体を用いて、ガス状炭化水素化合物燃料中の硫黄化合物を脱硫処理したのち、この脱硫処理燃料を改質することにより、水素を製造する。   Next, in the method for producing hydrogen mainly used in the fuel cell of the present invention, after desulfurizing the sulfur compound in the gaseous hydrocarbon compound fuel using the above-described desulfurizing agent molded body of the present invention, Hydrogen is produced by reforming the desulfurized fuel.

この際、改質方法として、部分酸化改質、オートサーマル改質、水蒸気改質などの方法を用いることができる。この改質方法においては、脱硫処理炭化水素燃料又はジメチルエーテル燃料中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.1容量ppm以下が好ましく、特に0.005容量ppm以下が好ましい。
前記部分酸化改質は、炭化水素の部分酸化反応により、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、GHSV1,000〜100,000h-1、酸素(O2)/炭素比0.2〜0.8の条件で改質反応が行われる。
また、オートサーマル改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって、オートサーマル改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、酸素(O2)/炭素比0.1〜1、スチーム/炭素比0.1〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
さらに、水蒸気改質は、炭化水素に水蒸気を接触させて、水素を製造する方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜3MPa、反応温度200〜900℃、スチーム/炭素比1.5〜10、GHSV1,000〜100,000h-1の条件で改質反応が行われる。
At this time, methods such as partial oxidation reforming, autothermal reforming, and steam reforming can be used as reforming methods. In this reforming method, the concentration of the sulfur compound in the desulfurized hydrocarbon fuel or dimethyl ether fuel is preferably 0.1 ppm by volume or less, particularly preferably 0.005 ppm by volume or less, from the viewpoint of the life of each reforming catalyst. preferable.
The partial oxidation reforming is a method for producing hydrogen by a partial oxidation reaction of hydrocarbons, and in the presence of a partial oxidation reforming catalyst, usually a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1,100 ° C. The reforming reaction is carried out under the conditions of GHSV 1,000 to 100,000 h −1 and oxygen (O 2 ) / carbon ratio 0.2 to 0.8.
Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined. In the presence of an autothermal reforming catalyst, the reaction pressure is usually from normal pressure to 5 MPa, and the reaction temperature is from 400 to 1,100. The reforming reaction is carried out under the conditions of ° C., oxygen (O 2 ) / carbon ratio of 0.1 to 1, steam / carbon ratio of 0.1 to 10, and GHSV of 1,000 to 100,000 h −1 .
Furthermore, steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon, usually in the presence of a steam reforming catalyst, at a reaction pressure of normal pressure to 3 MPa, a reaction temperature of 200 to 900 ° C., steam. The reforming reaction is performed under the conditions of / carbon ratio of 1.5 to 10 and GHSV of 1,000 to 100,000 h −1 .

本発明においては、前記の部分酸化改質触媒、オートサーマル改質触媒、水蒸気改質触媒としては、従来公知の各触媒の中から適宜選択して用いることができるが、特にルテニウム系及びニッケル系触媒が好適である。また、これらの触媒の担体としては、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含む担体を好ましく挙げることができる。該担体は、これらの金属酸化物のみからなる担体であってもよく、アルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸化物を含有させてなる担体であってもよい。   In the present invention, the partial oxidation reforming catalyst, autothermal reforming catalyst, and steam reforming catalyst can be appropriately selected from conventionally known catalysts, but are particularly ruthenium-based and nickel-based. A catalyst is preferred. Moreover, as a support | carrier of these catalysts, the support | carrier containing at least 1 type chosen from manganese oxide, a cerium oxide, and a zirconia can be mentioned preferably. The carrier may be a carrier composed of only these metal oxides, or may be a carrier obtained by adding the above metal oxide to another refractory porous inorganic oxide such as alumina.

本発明はまた、前記製造方法で得られた水素を用いる燃料電池システムを提供する。以下に本発明の燃料電池システムについて添付図1に従い説明する。
図1は本発明の燃料電池システムの一例を示す概略フロー図である。図1によれば、燃料タンク21内の燃料は、必要に応じて、レギュレータ22で減圧され、脱硫器23に流入する。脱硫器内には本発明の吸着剤を充填することができる。脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合されて、水を気化させ改質器31に送り込まれる。
改質器31の内部には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(水蒸気、酸素及び炭化水素燃料若しくは酸素含有炭化水素燃料を含む混合気体)から、前述した改質反応のいずれかによって水素又は合成ガスが製造される。
The present invention also provides a fuel cell system using hydrogen obtained by the production method. The fuel cell system of the present invention will be described below with reference to FIG.
FIG. 1 is a schematic flowchart showing an example of the fuel cell system of the present invention. According to FIG. 1, the fuel in the fuel tank 21 is decompressed by the regulator 22 as necessary and flows into the desulfurizer 23. The desulfurizer can be filled with the adsorbent of the present invention. The fuel desulfurized by the desulfurizer 23 is mixed with water from the water tank via the water pump 24 to vaporize the water and sent to the reformer 31.
The reformer 31 is filled with the above-described reforming catalyst, and from the fuel mixture (mixed gas containing water vapor, oxygen and hydrocarbon fuel or oxygen-containing hydrocarbon fuel) fed into the reformer 31, Hydrogen or synthesis gas is produced by any of the reforming reactions described above.

このようにして製造された水素又は合成ガスはCO変成器32、CO選択酸化器33を通じてそのCO濃度が燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては、CO変成器32では、鉄―クロム系触媒、銅―亜鉛系触媒あるいは貴金属系触媒が、CO選択酸化炉33では、ルテニウム系触媒、白金系触媒あるいはそれらの混合物等を挙げることができる。
燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子型燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロワー35から送られる空気が、それぞれ必要に応じて適当な加湿処理を行った後(加湿装置は図示せず)導入される。
このとき負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。負極には、白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、正極には白金黒、活性炭担持のPt触媒などが用いられる。
The hydrogen or synthesis gas thus produced is reduced through the CO converter 32 and the CO selective oxidizer 33 to such an extent that the CO concentration does not affect the characteristics of the fuel cell. Examples of the catalyst used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, a platinum catalyst or a noble metal catalyst in the CO selective oxidation furnace 33. The mixture etc. can be mentioned.
The fuel cell 34 is a solid polymer fuel cell having a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B. The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 35 is introduced into the positive electrode side after performing appropriate humidification treatment as necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. . Platinum black, activated carbon-supported Pt catalyst or Pt-Ru alloy catalyst is used for the negative electrode, and platinum black, Pt catalyst supported on activated carbon is used for the positive electrode.

負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。また、正極34B側に接続された気水分離器36において、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水は水蒸気の生成に利用することができる。
なお、燃料電池34では、発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。排熱回収装置37は、反応時に生じた熱を奪う熱交換機37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られた温水は、他の設備などで有効利用することができる。
The surplus hydrogen can be used as fuel by connecting the burner 31A of the reformer 31 to the negative electrode 34A side. Further, in the steam separator 36 connected to the positive electrode 34B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side are separated, and the water is used to generate water vapor. Can be used.
In the fuel cell 34, since heat is generated with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use. The exhaust heat recovery device 37 includes a heat exchanger 37A that takes away the heat generated during the reaction, a heat exchanger 37B that exchanges heat taken by the heat exchanger 37A with water, a cooler 37C, and these heat exchanges. The hot water obtained in the heat exchanger 37B can be effectively used in other facilities. The pumps 37A and 37B and the pump 37D circulate the refrigerant to the cooler 37C.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

実施例1
硝酸銀35gを水1,000mLに溶解し、これに攪拌しながら、30質量%のアンモニア水50gを加え銀アンミン錯イオンを含む溶液を得た。次いで、β型ゼオライト[東ソー社製「HSZ−930NHA」、]の500℃焼成物200gを、上記銀アンミン錯イオンを含む溶液に投入し、スラリーの温度を50℃に保ち、攪拌しながら4時間イオン交換処理を行った。その後、固形物をろ過し、水洗したのち、120℃で乾燥させ、Ag交換β型ゼオライトを得た。次いで、このAg交換β型ゼオライトにプソイドベーマイトゲル(アルミナ含量:70質量%)を29g加え混合した。これに適量の水を加えて捏和し、捏和物を孔径1.7mmの金型を用いて押出成形物を得、さらに120℃で乾燥させ、400℃で3時間焼成した。こうして得られた成形物を成形体母体Aと称する。この成形体母体Aを乳鉢で破砕し、0.5〜0.7mmに篩い分けし、平均粒径0.6mmの成形体を得た。
Example 1
35 g of silver nitrate was dissolved in 1,000 mL of water, and 50 g of 30% by mass of ammonia water was added thereto while stirring to obtain a solution containing silver ammine complex ions. Next, 200 g of a 500 ° C. calcined product of β-type zeolite [“HSZ-930NHA” manufactured by Tosoh Corporation] is added to the solution containing the silver ammine complex ion, and the temperature of the slurry is kept at 50 ° C. for 4 hours while stirring. Ion exchange treatment was performed. Thereafter, the solid was filtered, washed with water, and then dried at 120 ° C. to obtain an Ag-exchanged β-type zeolite. Next, 29 g of pseudoboehmite gel (alumina content: 70% by mass) was added to and mixed with the Ag-exchanged β-type zeolite. An appropriate amount of water was added to this and kneaded, and the kneaded product was obtained by using a mold having a pore diameter of 1.7 mm, further dried at 120 ° C., and calcined at 400 ° C. for 3 hours. The molded product thus obtained is referred to as a molded body matrix A. This molded body matrix A was crushed with a mortar and sieved to 0.5 to 0.7 mm to obtain a molded body having an average particle size of 0.6 mm.

実施例2
成形体母体Aを乳鉢で破砕し、0.21〜0.3mmに篩い分けし、平均粒径0.25mmの成形体を得た。
Example 2
The molded body matrix A was crushed with a mortar and sieved to 0.21 to 0.3 mm to obtain a molded body having an average particle size of 0.25 mm.

実施例3
成形体母体Aを乳鉢で破砕し、0.053〜0.075mmに篩い分けし、平均粒径0.06mmの成形体を得た。
Example 3
The molded body base A was crushed with a mortar and sieved to 0.053 to 0.075 mm to obtain a molded body having an average particle size of 0.06 mm.

比較例1
成形体母体Aを乳鉢で破砕し、1.0〜1.4mmに篩い分けし、平均粒径1.2mmの成形体を得た。
Comparative Example 1
The molded body base A was crushed with a mortar and sieved to 1.0 to 1.4 mm to obtain a molded body having an average particle diameter of 1.2 mm.

実施例4
硝酸セリウム30質量%水溶液を、約50℃に保持した1モル/L濃度の水酸化ナトリウム水溶液に攪拌しながら滴下し、沈殿を生成させた。次いで、生成した沈殿をろ過し、十分洗浄したのち、120℃で乾燥後、400℃で焼成することにより、酸化セリウムを得た。次いで、この酸化セリウムに42質量%濃度の硝酸銀水溶液を含浸させ、乾燥させたのち、400℃で焼成した。得られた粉末を圧縮成形機により固形化した。こうして得られた固形物を成形体母体Bと称する。この成形体母体Bを乳鉢で破砕し、0.5〜0.7mmに篩い分けし、平均粒径0.6mmの成形体を得た。
Example 4
A 30% by mass aqueous solution of cerium nitrate was added dropwise with stirring to a 1 mol / L aqueous sodium hydroxide solution maintained at about 50 ° C. to form a precipitate. Next, the produced precipitate was filtered, washed sufficiently, dried at 120 ° C., and then baked at 400 ° C. to obtain cerium oxide. Next, the cerium oxide was impregnated with an aqueous silver nitrate solution having a concentration of 42% by mass, dried, and then fired at 400 ° C. The obtained powder was solidified by a compression molding machine. The solid material thus obtained is referred to as a molded body base B. This molded body matrix B was crushed with a mortar and sieved to 0.5 to 0.7 mm to obtain a molded body having an average particle size of 0.6 mm.

実施例5
成形体母体Bを乳鉢で破砕し、0.21〜0.3mmに篩い分けし、平均粒径0.25mmの成形体を得た。
Example 5
The molded body matrix B was crushed with a mortar and sieved to 0.21 to 0.3 mm to obtain a molded body having an average particle size of 0.25 mm.

比較例2
成形体母体Bを乳鉢で破砕し、1.0〜1.4mmに篩い分けし、平均粒径1.2mmの成形体を得た。
Comparative Example 2
The molded body matrix B was crushed with a mortar and sieved to 1.0 to 1.4 mm to obtain a molded body having an average particle diameter of 1.2 mm.

なお、本願発明において、脱硫剤成形体の平均粒径の求め方は下記のとおりである。
成形体の平均粒径は、成形体の形状に基づいて以下のように測定する。
(1)成形体が球状の場合;20個以上の成形体を無作為に選び、それぞれの直径を計測し、その平均値を平均粒径とする。
(2)成形体が円柱形の場合;20個以上の成形体を無作為に選び、それぞれの底辺の直径と高さを測定し、(底辺の面積の平均値)×(高さの平均値)=(成形体の体積)とし、(成形体の体積)=(4/3)πr3として得られる直径(=2r)を平均粒径の値とする。
(3)上記(1)(2)以外の形状の成形体(破砕物など)を篩い分けて用いる場合;X1〜X2(X2>X1)に篩い分けられたものの(X2−X1)/2を平均粒径とする。
(4)上記(1)(2)以外の形状の成形体(破砕物など)を篩い分けずに用いる場合;用いた成形体の一部を篩い分け、X1〜X2(X2>X1)に篩い分けられたものの(X2−X1)/2を粒径とし、加重平均値を平均粒径とする。
In the present invention, the method for obtaining the average particle size of the desulfurizing agent molded body is as follows.
The average particle diameter of the molded body is measured as follows based on the shape of the molded body.
(1) When the compact is spherical: 20 or more compacts are randomly selected, the diameters of each are measured, and the average value is taken as the average particle diameter.
(2) When the compact is cylindrical: 20 or more compacts are randomly selected, the diameter and height of each base are measured, and (average value of base area) x (average height) ) = (Volume of compact), and the diameter (= 2r) obtained as (volume of compact) = (4/3) πr 3 is the value of the average particle diameter.
(3) above (1) (2) When used in sieving molded body having a shape other than (such as crushed); X 1 to X 2 though (X 2> X 1) were sieved to (X 2 - X 1) / 2 and the average particle size.
(4) above (1) (2) (such as crushed) other than the molded body shape when used without sieving a; moldings sieving a part of which was used, X 1 ~X 2 (X 2 > X although was sieved to 1) (X 2 -X 1) / 2 and a particle size, the average particle diameter weighted average.

試験例1
実施例1〜3及び比較例1の各脱硫剤成形体7cm3を内径15.8mmの脱硫管に充填した。脱硫温度を20℃とし、市販LPガスを、常圧、GHSV(ガス時空間速度)25,000h-1の条件で流通させた。
脱硫管出口ガスの各硫黄化合物濃度をSCD(Sulfur Chemiluminescence Detector)ガスクロマトグラフィーにより、1時間毎に測定した。硫黄化合物のうち、硫化カルボニルを除く硫黄化合物の総濃度が0.5質量ppmを超える時間(破過時間1)を第1表に示す。
Test example 1
7 cm 3 of each desulfurizing agent molded body of Examples 1 to 3 and Comparative Example 1 was filled in a desulfurization pipe having an inner diameter of 15.8 mm. The desulfurization temperature was 20 ° C., and commercially available LP gas was circulated under the conditions of normal pressure and GHSV (gas hourly space velocity) 25,000 h −1 .
The concentration of each sulfur compound in the desulfurization pipe outlet gas was measured every hour by SCD (Sulfur Chemiluminescence Detector) gas chromatography. Table 1 shows the time during which the total concentration of sulfur compounds excluding carbonyl sulfide exceeds 0.5 mass ppm among the sulfur compounds (breakthrough time 1).

Figure 0004339134
Figure 0004339134

試験例2
実施例4,5及び比較例2の各脱硫剤成形体7cm3を内径15.8mmの脱硫管に充填した。試験例1と同様の試験方法で試験し、硫黄化合物のうち、硫黄化合物の総濃度が0.5質量ppmを超える時間(破過時間2)を第2表に示す。
Test example 2
7 cm 3 of each desulfurizing agent molded body of Examples 4 and 5 and Comparative Example 2 was filled in a desulfurization pipe having an inner diameter of 15.8 mm. Table 2 shows the time when the total concentration of the sulfur compounds exceeds 0.5 mass ppm (breakthrough time 2) in the same test method as in Test Example 1.

Figure 0004339134
Figure 0004339134

試験例3
内径50mmの脱硫管に実施例2記載の平均粒径が0.25mmである脱硫剤成形体を300cm3充填し、市販LPガスを、常圧下、20℃で、2リットル/分で流通させ、脱硫管前後で差圧を測定した。差圧は0.001MPa以下であった。
Test example 3
A desulfurization tube having an inner diameter of 50 mm was filled with 300 cm 3 of a desulfurization agent molded body having an average particle diameter of 0.25 mm described in Example 2, and a commercially available LP gas was allowed to flow at 20 ℃ under normal pressure at 2 liters / minute. The differential pressure was measured before and after the desulfurization pipe. The differential pressure was 0.001 MPa or less.

試験例4
内径50mmの脱硫管に実施例3記載の平均粒径が0.06mmである脱硫剤成形体を300cm3充填し、市販LPガスを、常圧下、20℃で、2リットル/分で流通させ、脱硫管前後で差圧を測定した。差圧は0.002MPaであった。
Test example 4
A desulfurization tube having an inner diameter of 50 mm was filled with 300 cm 3 of a desulfurization agent molded body having an average particle size of 0.06 mm described in Example 3, and a commercially available LP gas was allowed to flow at 20 ° C. and 2 liters / minute under normal pressure. The differential pressure was measured before and after the desulfurization pipe. The differential pressure was 0.002 MPa.

試験例5
内径50mmの脱硫管に、成形体母体Aを乳鉢で粉砕し、0.022〜0.032mmに篩い分けし、平均粒径が0.027mmである脱硫剤成形体を300cm3充填し、市販LPガスを、常圧下、20℃で、2リットル/分で流通させ、脱硫管前後で差圧を測定した。差圧は0.007MPaであった。
Test Example 5
The molded body base A was pulverized in a mortar into a 50 mm inner diameter desulfurization tube, sieved to 0.022 to 0.032 mm, and filled with 300 cm 3 of a desulfurization agent molded body having an average particle size of 0.027 mm. The gas was circulated at 2 liters / minute at 20 ° C. under normal pressure, and the differential pressure was measured before and after the desulfurization pipe. The differential pressure was 0.007 MPa.

本発明の燃料電池システムの一例を示す概略フロー図である。It is a schematic flowchart which shows an example of the fuel cell system of this invention.

符号の説明Explanation of symbols

1: 燃料電池システム
11: 水供給管
12: 燃料導入管
20: 水素製造システム
21: 燃料タンク
22: レギュレータ
23: 脱硫器
31: 改質器
31A:ボイラー
32: CO変成器
33: CO選択酸化器
34: 燃料電池
34A:負極
34B:正極
34C:高分子電解質
36: 気水分離器
37: 排熱回収装置
37A:熱交換機
37B:熱交換器
37C:冷却器

1: Fuel cell system 11: Water supply pipe 12: Fuel introduction pipe 20: Hydrogen production system 21: Fuel tank 22: Regulator 23: Desulfurizer 31: Reformer 31A: Boiler 32: CO converter 33: CO selective oxidizer 34: Fuel cell 34A: Negative electrode 34B: Positive electrode 34C: Polymer electrolyte 36: Steam separator 37: Waste heat recovery device 37A: Heat exchanger 37B: Heat exchanger 37C: Cooler

Claims (11)

ガス状炭化水素化合物中の硫黄化合物を除去する脱硫剤であって、多孔質担体に活性金属が担持されてなり、かつ、平均粒径が0.03〜1.0mmである脱硫剤成形体であって、該多孔質担体がゼオライト、アルミニウム、ケイ素及び周期律表第3族に属する金属から選ばれる少なくとも一種の金属の酸化物であることを特徴とする脱硫剤成形体。 A desulfurization agent for removing sulfur compounds gaseous hydrocarbon compound, active metal on a porous support is being carried, and de-agent molded mean particle size of Ru 0.03~1.0mm der A desulfurization agent molded body, wherein the porous carrier is an oxide of at least one metal selected from zeolite, aluminum, silicon, and a metal belonging to Group 3 of the periodic table. 平均粒径が0.03〜0.5mmである請求項1記載の脱硫剤成形体。 The desulfurizing agent molded body according to claim 1 , wherein the average particle diameter is 0.03 to 0.5 mm. 多孔質担体が、FAU、BEA、LTL、MOR、MTW、GME、OFF、MFI、MEL、FER、TON、MTT及びLTA構造を有するゼオライトの中から選ばれる少なくとも一種である請求項1又は2に記載の脱硫剤成形体。 The porous support is at least one selected from zeolites having a FAU, BEA, LTL, MOR, MTW, GME, OFF, MFI, MEL, FER, TON, MTT and LTA structure. Molded product of desulfurizing agent. 周期律表第3族に属する金属が、Sc、Y、La、Ce、Nd、Pr、Sm、Gd及びYbから選ばれる少なくとも一種である請求項1又は2に記載の脱硫剤成形体。The desulfurization agent molded body according to claim 1 or 2, wherein the metal belonging to Group 3 of the periodic table is at least one selected from Sc, Y, La, Ce, Nd, Pr, Sm, Gd, and Yb. 活性金属が、Ag、Cu、Co、Ni、Zn、Mn、Fe及びCeから選ばれる少なくとも一種である請求項1〜4のいずれかに記載の脱硫剤成形体。The desulfurization agent molded body according to any one of claims 1 to 4, wherein the active metal is at least one selected from Ag, Cu, Co, Ni, Zn, Mn, Fe, and Ce. ガス状炭化水素化合物が、天然ガス、都市ガス、LPG、エタン、プロパン、プロピレン、ブタン、ブチレン、ブタジエン及びジメチルエーテルから選ばれる少なくとも一種である請求項1〜5のいずれかに記載の脱硫剤成形体。The desulfurization agent molded product according to any one of claims 1 to 5, wherein the gaseous hydrocarbon compound is at least one selected from natural gas, city gas, LPG, ethane, propane, propylene, butane, butylene, butadiene and dimethyl ether. . 請求項1〜6のいずれかに記載の脱硫剤成形体を用いてガス状炭化水素化合物中の硫黄化合物を除去することを特徴とする脱硫方法。A desulfurization method, wherein a sulfur compound in a gaseous hydrocarbon compound is removed using the desulfurization agent molded body according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の脱硫剤成形体を100リットル未満の小型脱硫器に充填して用いる請求項7に記載の脱硫方法。The desulfurization method according to claim 7, wherein the desulfurization agent molded body according to any one of claims 1 to 6 is filled in a small desulfurizer of less than 100 liters. 請求項1〜6のいずれかに記載の脱硫剤成形体を用いて、ガス状炭化水素化合物中の硫黄化合物を脱硫処理したのち、この脱硫処理ガス状炭化水素化合物を部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒と接触させることを特徴とする水素の製造方法。After desulfurizing a sulfur compound in the gaseous hydrocarbon compound using the desulfurized agent molded body according to any one of claims 1 to 6, the desulfurized gaseous hydrocarbon compound is converted into a partial oxidation reforming catalyst, auto A method for producing hydrogen, comprising contacting with a thermal reforming catalyst or a steam reforming catalyst. 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒がルテニウム系又はニッケル系触媒である請求項9に記載の水素の製造方法。The method for producing hydrogen according to claim 9, wherein the partial oxidation reforming catalyst, autothermal reforming catalyst, or steam reforming catalyst is a ruthenium-based or nickel-based catalyst. 請求項9又は10に記載の方法で製造された水素を用いることを特徴とする燃料電池システム。A fuel cell system using hydrogen produced by the method according to claim 9 or 10.
JP2004003961A 2004-01-09 2004-01-09 Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method Expired - Lifetime JP4339134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003961A JP4339134B2 (en) 2004-01-09 2004-01-09 Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003961A JP4339134B2 (en) 2004-01-09 2004-01-09 Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method

Publications (2)

Publication Number Publication Date
JP2005193190A JP2005193190A (en) 2005-07-21
JP4339134B2 true JP4339134B2 (en) 2009-10-07

Family

ID=34818712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003961A Expired - Lifetime JP4339134B2 (en) 2004-01-09 2004-01-09 Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method

Country Status (1)

Country Link
JP (1) JP4339134B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4840907B2 (en) * 2005-11-11 2011-12-21 独立行政法人産業技術総合研究所 Method for producing organic sulfur compound adsorbent
JP4969090B2 (en) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel
JP4969091B2 (en) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel
JP2008031306A (en) * 2006-07-28 2008-02-14 Nippon Oil Corp Desulfurization process for hydrocarbon fuel

Also Published As

Publication number Publication date
JP2005193190A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
EP1878781A1 (en) Desulfurizing agent and method of desulfurization with the same
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
WO2008056621A1 (en) Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
WO2006120981A1 (en) Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4339134B2 (en) Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP2006277980A (en) Desulfurization method of fuel for fuel cell
JP2006265480A (en) Method for desulfurizing hydrocarbon-containing gas and fuel battery system
JP2007254177A (en) Methanation process of carbon monoxide
JP2006316154A (en) Liquefied petroleum gas for lp gas fuel cell, its desulfurization method and fuel cell system
JP4822692B2 (en) Desulfurization method, and operation method of fuel cell system and hydrogen production system
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP4953584B2 (en) Fuel cell system
JP2006274206A (en) Liquefied petroleum gas for lp gas fuel cell
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090701

R150 Certificate of patent or registration of utility model

Ref document number: 4339134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

EXPY Cancellation because of completion of term