JP2007254177A - Methanation process of carbon monoxide - Google Patents

Methanation process of carbon monoxide Download PDF

Info

Publication number
JP2007254177A
JP2007254177A JP2006077605A JP2006077605A JP2007254177A JP 2007254177 A JP2007254177 A JP 2007254177A JP 2006077605 A JP2006077605 A JP 2006077605A JP 2006077605 A JP2006077605 A JP 2006077605A JP 2007254177 A JP2007254177 A JP 2007254177A
Authority
JP
Japan
Prior art keywords
reactor
carbon monoxide
group
methanation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077605A
Other languages
Japanese (ja)
Other versions
JP4912706B2 (en
Inventor
Takayoshi Mizuno
隆喜 水野
Katsuhiro Kino
勝博 城野
Tsuguo Koyanagi
嗣雄 小柳
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2006077605A priority Critical patent/JP4912706B2/en
Publication of JP2007254177A publication Critical patent/JP2007254177A/en
Application granted granted Critical
Publication of JP4912706B2 publication Critical patent/JP4912706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient process for removing carbon monoxide, which is easy to control its reaction temperature and does not generate a run away reaction. <P>SOLUTION: A methanation process of carbon monoxide comprises bringing a catalyst for carbon monoxide methanation into contact with a hydrogen gas containing carbon monoxide gas, wherein a first reactor is connected with a second reactor, the reaction temperature (T<SB>1</SB>) of the first reactor is in the range of 170-250°C, the reaction temperature (T<SB>2</SB>) of the second reactor is in the range of 100-170°C and the reaction temperature difference (T<SB>1</SB>)-(T<SB>2</SB>) is in the range of 20-150°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素含有ガス中の一酸化炭素の除去方法に関する。さらに詳しくは、シフト反応によって生成した高温の水素含有ガスを比較的高温で活性の高い触媒を充填した第1反応器と、比較的低温で活性の高い触媒を充填した第2反応器とを直列に接続した反応装置を用いる効率的な一酸化炭素の除去方法に関する。   The present invention relates to a method for removing carbon monoxide in a hydrogen-containing gas. More specifically, a first reactor in which a high-temperature hydrogen-containing gas generated by the shift reaction is filled with a catalyst having a high activity at a relatively high temperature and a second reactor filled with a catalyst having a high activity at a relatively low temperature are connected in series. The present invention relates to an efficient method for removing carbon monoxide using a reaction apparatus connected to a reactor.

近年、燃料電池による発電は、低公害でエネルギーロスが少なことから、注目を集めており、実用化に向けた研究開発が進められている。
燃料電池には、燃料や電解質の種類あるいは作動温度等によって種々のタイプのものが知られているが、中でも水素を還元剤(活物質)とし、酸素あるいは空気等を酸化剤とする水素−酸素燃料電池(低温作動型の燃料電池)の開発が最も進んでいる。
In recent years, power generation using fuel cells has been attracting attention because of its low pollution and low energy loss, and research and development for practical use is being promoted.
Various types of fuel cells are known, depending on the type of fuel and electrolyte, operating temperature, etc. Among them, hydrogen-oxygen using hydrogen as a reducing agent (active material) and oxygen or air or the like as an oxidizing agent. The development of fuel cells (low temperature operation type fuel cells) is the most advanced.

水素−酸素燃料電池には電解質の種類や電極等の種類によって種々のタイプのものがあり、その代表的なものとして、例えば、リン酸型燃料電池、固体高分子型燃料電池などがある。このような燃料電池には、多くの場合、電極に白金触媒が使用されている。ところが、電極に用いている白金は一酸化炭素(以下、COともいう。)によって被毒されやすいので、燃料中にCOがあるレベル以上含まれていると発電性能が低下したり、濃度によっては全く発電ができなくなってしまうという重大な問題点がある。   There are various types of hydrogen-oxygen fuel cells depending on the type of electrolyte, the type of electrodes, and the like, and typical examples include phosphoric acid fuel cells and solid polymer fuel cells. In such fuel cells, platinum catalysts are often used for electrodes. However, platinum used in the electrode is easily poisoned by carbon monoxide (hereinafter also referred to as CO). Therefore, if the fuel contains more than a certain level of CO, the power generation performance may be reduced or depending on the concentration. There is a serious problem that power generation becomes impossible.

このCO被毒による触媒の活性劣化は、特に低温ほど著しいので、この問題は、低温作動型の燃料電池の場合に特に深刻となる。
したがって、こうした白金系電極触媒を用いる燃料電池の燃料としては純粋な水素が好ましいが、実用的な点からは安価で貯蔵性等に優れたあるいは既に公共的な供給システムが完備されている各種の燃料、例えば、メタン、天然ガス(LNG )、プロパン、ブタ
ン等の石油ガス(LPG )、ナフサ、ガソリン、灯油、軽油等の各種の炭化水素系燃料
あるいはメタノール等のアルコール系燃料、あるいは都市ガス、その他の水素製造用燃料等の水蒸気改質等によって得られる水素含有ガスを用いることが一般的になっており、このような改質設備を組み込んだ燃料電池発電システムの普及が進められている。しかしながら、こうした改質ガス中には、一般に、水素の他にかなりの濃度のCOが含まれているので、このCOを白金系電極触媒に無害なものに転化し、燃料中のCO濃度を減少させる技術の開発が強く望まれている。
The deterioration of the activity of the catalyst due to CO poisoning is particularly remarkable at low temperatures, and this problem becomes particularly serious in the case of a low temperature operation type fuel cell.
Therefore, pure hydrogen is preferable as a fuel for a fuel cell using such a platinum-based electrode catalyst. However, from a practical point of view, it is inexpensive and has excellent storage properties or is already equipped with a public supply system. Fuel, for example, methane, natural gas (LNG), petroleum gas (LPG) such as propane, butane, various hydrocarbon fuels such as naphtha, gasoline, kerosene, light oil, alcohol fuel such as methanol, city gas, It has become common to use hydrogen-containing gas obtained by steam reforming of other fuels for hydrogen production or the like, and fuel cell power generation systems incorporating such reforming equipment are being promoted. However, since these reformed gases generally contain a considerable concentration of CO in addition to hydrogen, this CO is converted into a harmless to the platinum-based electrode catalyst, and the CO concentration in the fuel is reduced. There is a strong demand for the development of technologies that can be used.

例えば、固体高分子型燃料電池ではCO濃度を、通常100容量ppm以下、好ましくは50容量ppm以下、更に好ましくは10容量ppm以下という低濃度にまで低減することが望ましいとされている。上記の問題を解決するために、燃料ガス(改質ガス中の水素含有ガス)中のCOの濃度を低減させる手段の一つとして、下記の式(1)で表されるシフト反応(水性ガスシフト反応)を利用する技術が提案されている。
CO + H2O = CO2 + H2 (1)
しかしながら、このシフト反応のみによる反応では、化学平衡上の制約からCO濃度の低減には限界があり、一般に、CO濃度を1%以下にするのは困難である。そこで、CO濃度をより低濃度まで低減する手段として、改質ガス中に酸素または酸素含有ガス(空気等)を導入し、COをCO2に変換する方法が提案されている。しかしながら、この場合
改質ガス中には水素が多量存在しているため、COを酸化しようとすると水素も酸化されてしまい、水素がロスするとともにCOの除去が不充分となることがあった。
For example, in a polymer electrolyte fuel cell, it is desirable to reduce the CO concentration to a low concentration of usually 100 ppm by volume or less, preferably 50 ppm by volume or less, more preferably 10 ppm by volume or less. In order to solve the above problem, as one of means for reducing the concentration of CO in the fuel gas (hydrogen-containing gas in the reformed gas), a shift reaction represented by the following formula (1) (water gas shift) A technique using reaction) has been proposed.
CO + H 2 O = CO 2 + H 2 (1)
However, in the reaction using only this shift reaction, there is a limit to the reduction of the CO concentration due to restrictions on chemical equilibrium, and it is generally difficult to reduce the CO concentration to 1% or less. Therefore, as a means for reducing the CO concentration to a lower concentration, a method has been proposed in which oxygen or an oxygen-containing gas (air or the like) is introduced into the reformed gas and CO is converted to CO 2 . However, in this case, since a large amount of hydrogen is present in the reformed gas, hydrogen is also oxidized when attempting to oxidize CO, resulting in loss of hydrogen and insufficient removal of CO.

ところで、最近COを水素でメタネーション(以下、メタン化ともいう。)することに
よりメタンに変換する方法も見直されている。例えば、特開平3−93602号公報(特許文献1)、特開平11−86892号公報(特許文献2)には、γ−アルミナ担体にRuを担持した触媒(Ru/γ−アルミナ触媒)と、COを含有する水素ガスを接触させる方法が開示されている。しかし、水素ガスに二酸化炭素(CO2)が含まれている場合、
副反応である二酸化炭素のメタン化反応も起こり、それだけ水素が消費され望ましくない。したがって、主反応であるCOのメタン化反応の活性が高く、選択率の高い(二酸化炭素のメタン化反応の少ない)触媒の開発が望まれている。
Recently, a method of converting CO to methane by methanation with hydrogen (hereinafter also referred to as methanation) has been reviewed. For example, in JP-A-3-93602 (Patent Document 1) and JP-A-11-86892 (Patent Document 2), a catalyst (Ru / γ-alumina catalyst) in which Ru is supported on a γ-alumina carrier, A method of contacting hydrogen gas containing CO is disclosed. However, if the hydrogen gas contains carbon dioxide (CO 2 ),
Carbon dioxide methanation, which is a side reaction, also occurs and hydrogen is consumed, which is undesirable. Therefore, it is desired to develop a catalyst having a high CO methanation reaction, which is the main reaction, and a high selectivity (less carbon dioxide methanation reaction).

上記問題点を解決するために無機酸化物担体にRu化合物とアルカリ金属化合物および/またはアルカリ土類金属化合物を担持した触媒が提案されている(特開2002−068707号公報、特許文献3参照)。
特開平3−93602号公報 特開平11−86892号公報 特開2002−068707号公報
In order to solve the above problems, a catalyst in which a Ru compound and an alkali metal compound and / or an alkaline earth metal compound are supported on an inorganic oxide carrier has been proposed (see JP 2002-068707 A and Patent Document 3). .
Japanese Patent Laid-Open No. 3-93602 JP-A-11-86892 JP 2002-068707 A

しかしながら、上記従来の触媒は、特に低温作動型の燃料電池用電極触媒では、活性が不充分であったり、時に暴走反応により反応温度が急激に上昇するなどの問題があった。   However, the above-mentioned conventional catalysts, particularly in the case of a low temperature operation type fuel cell electrode catalyst, have problems such as insufficient activity and sometimes a rapid increase in reaction temperature due to runaway reaction.

本発明は、反応温度の調整が容易で暴走反応を起こすことがなく、効率的な一酸化炭素の除去方法を提供することを目的としている。   An object of the present invention is to provide an efficient method for removing carbon monoxide, which can easily adjust the reaction temperature and does not cause a runaway reaction.

このため、本発明者等は上記課題を解決すべく鋭意検討した結果、第1反応器と第2反応器とを直列に接続した反応装置を用い、第1反応器に比較的高温で活性の高い触媒を充填し、第2反応器に比較的低温で活性の高い触媒を充填した反応装置を用いると、反応温度の調整が容易で暴走反応を起こすことがなく、効率的に一酸化炭素を除去できることを見出して本発明を完成するに至った。   For this reason, as a result of intensive studies to solve the above problems, the present inventors have used a reaction apparatus in which a first reactor and a second reactor are connected in series, and the first reactor is active at a relatively high temperature. Using a reactor filled with a high catalyst and filled with a highly active catalyst at a relatively low temperature in the second reactor, the reaction temperature can be easily adjusted, and no runaway reaction occurs. The inventors have found that it can be removed and have completed the present invention.

本発明の構成は以下の通りである。
[1]一酸化炭素メタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させる一酸化
炭素のメタネーション方法において、反応器が第1反応器と該第1反応器と接続された第2反応器とからなり、
第1反応器の反応温度(T1)が170〜250℃の範囲にあり、第2反応器の反応温
度(T2)が100〜170℃の範囲にあり、
第2反応器の反応温度(T2)との反応温度差(T1)−(T2)が20〜150℃の範
囲にある一酸化炭素のメタネーション方法。
[2]前記第1反応器に供給される一酸化炭素ガス含有水素ガス中のCO濃度(CFCO)が
0.3〜1.0Vol%の範囲にあり、第1反応器の出口ガス中のCO濃度(C1CO)が5
00ppm以下の範囲にあり、第2反応器の出口ガス中のCO濃度(C2CO)が10ppm以下である[1]の一酸化炭素のメタネーション方法。
[3]第1反応器に用いる一酸化炭素メタネーション触媒が反応温度(T1)190〜210℃でCO除去率が最も高くなる触媒であり、第2反応器に用いる一酸化炭素メタネーション触媒が反応温度(T2)120〜140℃でCO除去率が最も高くなる触媒である[1]または[2]の一酸化炭素のメタネーション方法。
[4]前記第1反応器に用いる一酸化炭素メタネーション触媒のCO除去率が95%以上で
あり、前記第2反応器に用いる一酸化炭素メタネーション触媒のCO除去率が98%以上である[1]〜[3]の一酸化炭素のメタネーション方法。
[5]前記第1反応器に用いる一酸化炭素メタネーション用触媒が、 前記第1反応器に用
いる一酸化炭素メタネーション用触媒が、ZrO2、CeO2、NiO、CoO、Co34、Fe23、Al23、TiO2、SiO2から選ばれる1種以上の酸化物または複合酸化物からなり、さらにアルカリ金属酸化物、アルカリ土類金属酸化物および希土類金属酸化物の少なくとも1種を含み、必要に応じて、4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されたものであり、
前記第2反応器に用いる一酸化炭素メタネーション用触媒がNiO、CoO、Co34、ZrO2、CeO2、Al23、TiO2、SiO2から選ばれる1種以上の酸化物または複合酸化物担体に4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されている[1]〜[4]の一酸化炭素のメタネーション方法。
[6]前記4B族の金属がSnであり、6A族の金属がMo、Wであり、7A族の金属がM
n、Reであり、8族の金属がRu、Pt、Pd、Ni、FeおよびCoである[1]〜[5]の一酸化炭素のメタネーション方法。
[7]前記第2反応器に用いる一酸化炭素メタネーション用触媒中の金属の担持量が0.5
〜15重量%の範囲にある[1]〜[6]の一酸化炭素メタネーション用触媒。
[8]前記金属としてRuを含み、担持された金属中のRuの割合が20〜90重量%の範囲にある[1]〜[7]の一酸化炭素のメタネーション方法。
[9]前記第2反応器に、CO吸着剤が充填されたCO吸着塔が接続されている[1]〜[8]の
一酸化炭素のメタネーション方法。
[10]前記CO吸着剤が、4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されたゼオライトからなり、該CO吸着剤中の金属の含有量が0.5〜15重量%の範囲にある[1]〜[9]の一酸化炭素のメタネーション方法。
[11]前記ゼオライトがZSM−5型ゼオライト、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、βゼオライトから選ばれる1種以上である[10]の一酸化炭素のメタネーション方法。
The configuration of the present invention is as follows.
[1] In a carbon monoxide methanation method in which a catalyst for carbon monoxide methanation and a hydrogen gas containing carbon monoxide gas are brought into contact with each other, a reactor is connected to the first reactor and to the second reactor. Consisting of a vessel,
The reaction temperature (T 1 ) of the first reactor is in the range of 170 to 250 ° C., the reaction temperature (T 2 ) of the second reactor is in the range of 100 to 170 ° C.,
A carbon monoxide methanation method in which the reaction temperature difference (T 1 ) − (T 2 ) with the reaction temperature (T 2 ) of the second reactor is in the range of 20 to 150 ° C.
[2] The CO concentration (CF 2 CO 3 ) in the carbon monoxide gas-containing hydrogen gas supplied to the first reactor is in the range of 0.3 to 1.0 Vol%, and the CO in the outlet gas of the first reactor CO concentration (C1 CO ) is 5
Is in the range 00Ppm, methanation process of carbon monoxide CO concentration in the outlet gas of the second reactor (C2 CO) is 10ppm or less [1].
[3] The carbon monoxide methanation catalyst used in the first reactor has the highest CO removal rate at a reaction temperature (T 1 ) of 190 to 210 ° C., and the carbon monoxide methanation catalyst used in the second reactor Is a catalyst having the highest CO removal rate at a reaction temperature (T 2 ) of 120 to 140 ° C. [1] or [2] carbon monoxide methanation method.
[4] The CO removal rate of the carbon monoxide methanation catalyst used in the first reactor is 95% or more, and the CO removal rate of the carbon monoxide methanation catalyst used in the second reactor is 98% or more. [1] to [3] Carbon monoxide methanation method.
[5] The carbon monoxide methanation catalyst used in the first reactor is a carbon monoxide methanation catalyst used in the first reactor is ZrO 2 , CeO 2 , NiO, CoO, Co 3 O 4 , It consists of one or more oxides or composite oxides selected from Fe 2 O 3 , Al 2 O 3 , TiO 2 , and SiO 2 , and at least of alkali metal oxides, alkaline earth metal oxides, and rare earth metal oxides 1 type is included, and one or more metals selected from 4B group, 6A group, 7A group and 8 group are supported as required.
The carbon monoxide methanation catalyst used in the second reactor is one or more oxides selected from NiO, CoO, Co 3 O 4 , ZrO 2 , CeO 2 , Al 2 O 3 , TiO 2 , and SiO 2 , or [1] to [4] carbon monoxide methanation method in which one or more metals selected from Group 4B, Group 6A, Group 7A and Group 8 are supported on the composite oxide support.
[6] The group 4B metal is Sn, the group 6A metal is Mo, W, and the group 7A metal is M.
[1] to [5] carbon monoxide methanation method in which n, Re, and Group 8 metal are Ru, Pt, Pd, Ni, Fe, and Co.
[7] The amount of metal supported in the catalyst for carbon monoxide methanation used in the second reactor is 0.5.
[1] to [6] carbon monoxide methanation catalyst in the range of ˜15 wt%.
[8] The carbon monoxide methanation method according to [1] to [7], wherein Ru is contained as the metal, and the ratio of Ru in the supported metal is in the range of 20 to 90% by weight.
[9] The carbon monoxide methanation method of [1] to [8], wherein a CO adsorption tower filled with a CO adsorbent is connected to the second reactor.
[10] The CO adsorbent is made of zeolite on which one or more metals selected from Group 4B, Group 6A, Group 7A and Group 8 are supported, and the content of metal in the CO adsorbent is 0.5. [1] to [9] carbon monoxide methanation method in the range of ˜15 wt%.
[11] The carbon monoxide methanation method, wherein the zeolite is at least one selected from ZSM-5 type zeolite, mordenite type zeolite, faujasite type zeolite, and β zeolite.

本発明によると、シフト反応によって生成した高温の水素含有ガスを比較的高温で活性の高い触媒を充填した第1反応器と、比較的低温で活性の高い触媒を充填した第2反応器とを直列に接続した反応装置を用いる効率的な一酸化炭素の除去方法を提供することができる。   According to the present invention, a high temperature hydrogen-containing gas generated by the shift reaction is filled with a catalyst having a high activity at a relatively high temperature, and a second reactor is charged with a catalyst having a high activity at a relatively low temperature. An efficient method for removing carbon monoxide using a reactor connected in series can be provided.

以下、本発明を実施するための形態について説明する。
本発明に係る一酸化炭素のメタネーション方法は、一酸化炭素メタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させる一酸化炭素のメタネーション方法において、反応器が第1反応器と該第1反応器と接続された第2反応器とからなり、第1反応器の反応温度(T1)と第2反応器の反応温度(T2)との反応温度差(T1)−(T2)が20〜150℃の範囲にあることを特徴としている。
Hereinafter, modes for carrying out the present invention will be described.
The carbon monoxide methanation method according to the present invention is a carbon monoxide methanation method in which a carbon monoxide methanation catalyst and a carbon monoxide gas-containing hydrogen gas are brought into contact with each other. A second reactor connected to one reactor, and a reaction temperature difference (T 1 ) − (T between the reaction temperature (T 1 ) of the first reactor and the reaction temperature (T 2 ) of the second reactor. 2 ) is in the range of 20 to 150 ° C.

本発明のように、第1反応器と該第1反応器と直列に接続された第2反応器とからなり、両者を異なる反応温度とすることによって、反応温度の調節が容易となる。このとき、前記第1反応器の反応温度(T1)が170〜250℃、さらには190〜210℃の範
囲にあることが好ましく、第2反応器の反応温度(T2)が100〜170℃、さらには
120〜150℃の範囲にあることが好ましい。
Like this invention, it consists of a 1st reactor and the 2nd reactor connected in series with this 1st reactor, and adjustment of reaction temperature becomes easy by making both into different reaction temperature. At this time, the reaction temperature (T 1 ) of the first reactor is preferably 170 to 250 ° C., more preferably 190 to 210 ° C., and the reaction temperature (T 2 ) of the second reactor is 100 to 170. It is preferable that it exists in the range of 120 degreeC and 120-150 degreeC.

第1反応器の反応温度(T1)が低い場合は、第1反応器に用いる触媒によっては充分
な性能が得られず、高濃度のCOが第2反応器へ供給されることになる。反応温度(T1
)が高すぎても、CO2のメタネーション反応も同時に起こり、水素消費が著しく、所望
の目的を達成することが困難である。
When the reaction temperature (T 1 ) of the first reactor is low, sufficient performance cannot be obtained depending on the catalyst used in the first reactor, and a high concentration of CO is supplied to the second reactor. Reaction temperature (T 1
) Is too high, CO 2 methanation occurs simultaneously, hydrogen consumption is significant, and it is difficult to achieve the desired purpose.

また、第1反応器の反応温度(T1)と第2反応器の反応温度(T2)との反応温度は同じであってもよいが、反応温度差(T1)−(T2)が20〜150℃、さらには40〜80℃の範囲にあることが好ましい。 Further, the reaction temperature of the reaction temperature (T 1 ) of the first reactor and the reaction temperature (T 2 ) of the second reactor may be the same, but the reaction temperature difference (T 1 ) − (T 2 ). Is preferably in the range of 20 to 150 ° C, more preferably 40 to 80 ° C.

前記反応温度差(T1)−(T2)が小さいと、第2反応器出口のCO濃度が十分に下がらないことがある。前記反応温度差(T1)−(T2)が大きすぎても、第1反応器でCO2メタネーションが起こりやすくなるとともに第2反応器の反応温度が低すぎてCO濃度
が十分に下がらないことがある。
If the reaction temperature difference (T 1 ) − (T 2 ) is small, the CO concentration at the outlet of the second reactor may not be lowered sufficiently. Even if the reaction temperature difference (T 1 ) − (T 2 ) is too large, CO 2 methanation is likely to occur in the first reactor, and the reaction temperature in the second reactor is too low to sufficiently reduce the CO concentration. There may not be.

前記第1反応器に供給される一酸化炭素ガス含有水素ガスは、通常シフト反応生成ガスが用いられる。シフト反応生成ガスには水素ガス、一酸化炭素ガス、二酸化炭素ガス、および水蒸気等を含んでおり、メタンを含む場合もある。   As the carbon monoxide gas-containing hydrogen gas supplied to the first reactor, a shift reaction product gas is usually used. The shift reaction product gas contains hydrogen gas, carbon monoxide gas, carbon dioxide gas, water vapor, and the like, and may contain methane.

シフト反応生成ガス中の水素ガスの濃度は概ね71〜89vol%、一酸化炭素ガス濃度
は0.3〜1.0vol%、二酸化炭素ガス濃度は10〜25vol%、メタンガス濃度0〜3.0vol%(ガス組成)である。さらにシフト反応生成ガスに対して水蒸気を20vol%〜70vol%の割合で含んでいる。
The hydrogen gas concentration in the shift reaction product gas is approximately 71 to 89 vol%, the carbon monoxide gas concentration is 0.3 to 1.0 vol%, the carbon dioxide gas concentration is 10 to 25 vol%, and the methane gas concentration is 0 to 3.0 vol%. (Gas composition). Furthermore, it contains water vapor at a ratio of 20 vol% to 70 vol% with respect to the shift reaction product gas.

シフト反応生成ガスの温度は180〜250℃のガスであり、該ガス中のCO濃度(CFCO)が好ましくは0.5Vol%以下の範囲にある。該ガス中のCO濃度(CFCO)が多
すぎると、COメタネーション反応に伴い消費される水素量が多くなり、燃料電池に供給するための水素消費量が多くなる。
The temperature of the shift reaction product gas is 180 to 250 ° C., and the CO concentration (CF 2 CO 3 ) in the gas is preferably in the range of 0.5 Vol% or less. When the CO concentration (CF 2 CO 3 ) in the gas is too large, the amount of hydrogen consumed in association with the CO methanation reaction increases, and the amount of hydrogen consumed to supply the fuel cell increases.

また、第1反応器の出口ガス中のCO濃度(C1CO)が500ppm以下、さらには100ppmの範囲にあることが好ましい。第1反応器の出口ガス中のCO濃度(C1CO)が多すぎると、第2反応器での反応によりCO濃度が充分に低下しない場合がある。 The CO concentration (C1 CO ) in the outlet gas of the first reactor is preferably 500 ppm or less, more preferably in the range of 100 ppm. If the CO concentration (C1 CO 2 ) in the outlet gas of the first reactor is too large, the CO concentration may not be sufficiently lowered due to the reaction in the second reactor.

また、第2反応器の出口ガス中のCO濃度(C2CO)が10ppm以下、さらには5ppm以下であることが好ましい。第2反応器の出口ガス中のCO濃度(C2CO)が多いものは、燃料電池へ供給した場合、CO濃度が高いために燃料電池の電極をCOにより短時間で被毒する問題がある。 Moreover, CO concentration in the outlet gas of the second reactor (C2 CO) is 10ppm or less, and further preferably not 5ppm or less. When the CO concentration (C 2 CO 2 ) in the outlet gas of the second reactor is large, when the fuel cell is supplied, the CO concentration is high, and therefore there is a problem that the electrodes of the fuel cell are poisoned with CO in a short time.

本発明で第1反応器に用いる一酸化炭素メタネーション触媒が反応温度(T1)190
〜210℃でCO除去率が最も高くなる触媒であり、このときのCO除去率が95%以上であることが好ましい。第1反応器にこのような触媒を用いると、第2反応器にてCO濃度を容易に、概ね10ppm以下まで低減することができる。
The carbon monoxide methanation catalyst used in the first reactor in the present invention is a reaction temperature (T 1 ) 190.
The catalyst has the highest CO removal rate at ˜210 ° C., and the CO removal rate at this time is preferably 95% or more. When such a catalyst is used in the first reactor, the CO concentration can be easily reduced to approximately 10 ppm or less in the second reactor.

また、第2反応器に用いる一酸化炭素メタネーション触媒が反応温度(T2)120〜
140℃でCO除去率が最も高くなる触媒であり、このときのCO除去率が98%以上であることが好ましい。第2反応器にこのような触媒を用いると、CO濃度を容易に、概ね10ppm以下まで低減することができる。
In addition, the carbon monoxide methanation catalyst used in the second reactor is a reaction temperature (T 2 ) of 120˜
The catalyst has the highest CO removal rate at 140 ° C., and the CO removal rate at this time is preferably 98% or more. When such a catalyst is used in the second reactor, the CO concentration can be easily reduced to approximately 10 ppm or less.

なお、このときのCO除去率は、SV:500〜25,000h-1、原料ガス組成:H2濃度75〜80vol%、CO濃度0.3〜1.0vol%、CO2濃度10〜25vol%、C
4濃度0〜3.0vol%、さらに前記原料ガスに対して水蒸気を20vol%〜70vol%含む条件で、反応温度を変えて求めた値である。
Incidentally, CO removal rate at this time, SV: 500~25,000h -1, feed gas composition: H 2 concentration 75~80vol%, CO concentration 0.3~1.0vol%, CO 2 concentration 10~25Vol% , C
It is a value obtained by changing the reaction temperature under the condition that the H 4 concentration is 0 to 3.0 vol% and further the water vapor is contained in the raw material gas in an amount of 20 vol% to 70 vol%.

[第1反応器に用いる一酸化炭素メタネーション用触媒]
第1反応器に用いる一酸化炭素メタネーション用触媒として、ZrO2、CeO2、NiO、CoO、Co34、Fe23、Al23、TiO2、SiO2から選ばれる1種以上の酸化
物または複合酸化物からなる。特に複合酸化物からなる触媒は、反応温度が170℃以上でCOメタネーション反応を選択的に行うことが可能である。特に前記したように190〜210℃でCO除去率が最も高くなるものが好ましい。
[Catalyst for carbon monoxide methanation used in the first reactor]
As a catalyst for carbon monoxide methanation used in the first reactor, one selected from ZrO 2 , CeO 2 , NiO, CoO, Co 3 O 4 , Fe 2 O 3 , Al 2 O 3 , TiO 2 , and SiO 2. It consists of the above oxide or composite oxide. In particular, a catalyst composed of a composite oxide can selectively perform a CO methanation reaction at a reaction temperature of 170 ° C. or higher. In particular, those having the highest CO removal rate at 190 to 210 ° C. as described above are preferable.

このような触媒の組成には、アルカリ(土類)金属酸化物、希土類金属酸化物が含まれている。このような金属酸化物としては、Na2O、K2O、Li2O、BeO、MgO、
CaO、BaO、La23等、およびこれらの混合物あるいは複合酸化物が挙げられる。該触媒中のアルカリ金属酸化物等の含有量は0.05〜3重量%、さらには0.1〜2重量%の範囲にあることが好ましい。
Such a catalyst composition includes alkali (earth) metal oxides and rare earth metal oxides. Examples of such metal oxides include Na 2 O, K 2 O, Li 2 O, BeO, MgO,
Examples thereof include CaO, BaO, La 2 O 3 and the like, and mixtures or composite oxides thereof. The content of the alkali metal oxide or the like in the catalyst is preferably 0.05 to 3% by weight, more preferably 0.1 to 2% by weight.

アルカリ金属酸化物等の含有量が少ないは、比較的高温での活性が不充分となり、第1反応器に用いる触媒としては適さない。アルカリ金属酸化物等の含有量が多すぎると、高温で活性を示すようになるものの、使用中にアルカリ金属酸化物などが凝集しやすくなり、触媒寿命が短くなる。   If the content of alkali metal oxide or the like is small, the activity at a relatively high temperature becomes insufficient, and it is not suitable as a catalyst used in the first reactor. If the content of the alkali metal oxide or the like is too large, it becomes active at a high temperature, but the alkali metal oxide or the like tends to aggregate during use and the catalyst life is shortened.

第1反応器に用いる触媒には、必要に応じて、4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されていてもよい。担持金属量は、2重量%以下、好まし
くは1重量%以下であることが望ましい。。
The catalyst used in the first reactor may carry one or more metals selected from Group 4B, Group 6A, Group 7A, and Group 8 as necessary. The amount of supported metal is 2% by weight or less, preferably 1% by weight or less. .

[第2反応器に用いる一酸化炭素メタネーション用触媒]
第2反応器に用いる一酸化炭素メタネーション用触媒が4B族、6A族、7A族および8族から選ばれる1種以上の金属が金属酸化物担体に担持されてなることが好ましい。具体的に金属成分として、4B族の金属としてはSn、6A族の金属としてはMo、W、7A族の金属としてはRe、8族の金属としてはRu、Pt、Pd、Rh、Ni、CoおよびIrから選ばれる1種以上の金属が好適に用いられる。上記した各金属の好ましい理由については必ずしも明らかではないが、Snの場合、Snまたは他の金属に吸着した炭素種の脱離を促進することにより活性を向上させることが考えられる。Mo、Wの場合、H2の解離吸着による活性水素が生成して水素化を促進することにより活性を向上させてい
ることが考えられる。Reの場合、Reまたは他の金属への炭素種の吸着および脱離を促進することにより活性を向上させていることが考えられる。Ru、Pt、Pd、RhおよびNi、Coの場合、COおよびH2を解離吸着することにより活性を向上させているこ
とが考えられる。
[Catalyst for carbon monoxide methanation used in the second reactor]
The carbon monoxide methanation catalyst used in the second reactor is preferably formed by supporting one or more metals selected from Group 4B, Group 6A, Group 7A and Group 8 on a metal oxide support. Specifically, as the metal component, Sn as the group 4B metal, Mo, W as the group 6A metal, Re as the group 7A metal, Ru, Pt, Pd, Rh, Ni, Co as the group 8 metal And one or more metals selected from Ir and Ir are preferably used. The reason why each of the above metals is preferable is not clear, but in the case of Sn, it is conceivable to improve the activity by promoting the elimination of the carbon species adsorbed on Sn or another metal. In the case of Mo and W, it is considered that active hydrogen is generated by dissociative adsorption of H 2 and promotes hydrogenation to improve the activity. In the case of Re, it is considered that the activity is improved by promoting the adsorption and desorption of carbon species to Re or other metals. In the case of Ru, Pt, Pd, Rh, Ni, and Co, it is considered that the activity is improved by dissociating and adsorbing CO and H 2 .

なかでも、金属成分が8族から選ばれる1種以上の金属であることが好ましく、具体的にはRu、Pt、Pd、Rh、Ni、Co、Ir等が挙げられる。
特に、金属成分としてRuが含まれていると、低温での活性および選択性が向上し、第2反応器に用いる触媒用の成分として好適である。
Especially, it is preferable that a metal component is 1 or more types of metals chosen from 8 groups, and specifically, Ru, Pt, Pd, Rh, Ni, Co, Ir etc. are mentioned.
In particular, when Ru is contained as a metal component, the activity and selectivity at low temperatures are improved, and it is suitable as a component for the catalyst used in the second reactor.

このとき、金属成分中のRuの割合は金属として20重量%以上、さらに25重量%以上の範囲にあることが好ましい。
金属成分中のRuの割合が金属として20重量%未満の場合は、低温での活性が低く、反応による発熱が少ないため、第2反応器での反応性が低下し、結果としてCO濃度を充分に低減できないことがある。
At this time, the ratio of Ru in the metal component is preferably 20% by weight or more, more preferably 25% by weight or more as a metal.
When the ratio of Ru in the metal component is less than 20% by weight as a metal, the activity at the low temperature is low and the heat generated by the reaction is small, so the reactivity in the second reactor is lowered, and as a result, the CO concentration is sufficiently high. May not be reduced.

このような金属成分の担持量は、第2反応器に用いる触媒中に金属として0.5〜15重量%、さらには1〜10重量%の範囲にあることが好ましい。
金属成分の担持量が触媒中に0.5重量%未満の場合は、活性および選択性が不充分となることがある。
金属成分の担持量が触媒中に15重量%を超えると活性は高いもののCO2のメタネーシ
ョン反応が起こるために選択性が低下し、結果としてCOの除去効果が不充分となる。
The supported amount of such a metal component is preferably in the range of 0.5 to 15% by weight, more preferably 1 to 10% by weight as a metal in the catalyst used in the second reactor.
When the supported amount of the metal component is less than 0.5% by weight in the catalyst, the activity and selectivity may be insufficient.
When the supported amount of the metal component exceeds 15% by weight in the catalyst, although the activity is high, the CO 2 methanation reaction takes place, the selectivity is lowered, and as a result, the effect of removing CO becomes insufficient.

金属酸化物担体成分としては、NiO、CoO、Co34、ZrO2、CeO2、Al2
3、TiO2、SiO2からから選ばれる1種以上の酸化物、特に複合酸化物からなること
が好ましい。具体的にはZrO2-CoO、ZrO2-NiO、ZrO2-CeO2、ZrO2-
CoO-NiO、NiO-CoO、CoO-CeO2、NiO-CoO-CeO2、ZrO2-N
iO-CoO-CeO2、Al23−Co34、Al23−CeO2−CoO、Al23−NiO、TiO2−CoO、TiO2−NiO、TiO2−SiO2−Co34等が挙げられる。
Examples of the metal oxide support component include NiO, CoO, Co 3 O 4 , ZrO 2 , CeO 2 , Al 2.
It is preferably made of one or more oxides selected from O 3 , TiO 2 , and SiO 2 , particularly complex oxides. Specifically, ZrO 2 —CoO, ZrO 2 —NiO, ZrO 2 —CeO 2 , ZrO 2
CoO—NiO, NiO—CoO, CoO—CeO 2 , NiO—CoO—CeO 2 , ZrO 2 —N
iO—CoO—CeO 2 , Al 2 O 3 —Co 3 O 4 , Al 2 O 3 —CeO 2 —CoO, Al 2 O 3 —NiO, TiO 2 —CoO, TiO 2 —NiO, TiO 2 —SiO 2 — Examples thereof include Co 3 O 4 .

さらに、複合酸化物中にNi、Coの酸化物の少なくともいずれかが概ね10重量%以上、好ましくは30重量%以上含まれていると、低温での活性および選択性を向上することができる。   Furthermore, when the composite oxide contains at least one of Ni and Co oxides in an amount of approximately 10% by weight or more, preferably 30% by weight or more, the activity and selectivity at a low temperature can be improved.

このような第2反応器に用いる触媒中の酸化物および/または複合酸化物の含有量は85〜99.5重量%、さらには90〜99重量%の範囲にあることが好ましい。
CO吸着剤
本発明に係る一酸化炭素のメタネーション方法では、前記第2反応器に、CO吸着剤が充填されたCO吸着塔が接続されていることが好ましい。
The content of the oxide and / or composite oxide in the catalyst used in the second reactor is preferably 85 to 99.5% by weight, more preferably 90 to 99% by weight.
CO Adsorbent In the carbon monoxide methanation method according to the present invention, a CO adsorption tower filled with a CO adsorbent is preferably connected to the second reactor.

前記CO吸着剤としては、前記した第2反応器で生成したH2、H2O、CO2等を含む
ガス中のCOを吸着することができれば特に制限はないが、本発明では、前記CO吸着剤が、4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されたゼオライトからなり、該CO吸着剤中の金属の含有量が0.5〜15重量%の範囲にあることが好ましい。
The CO adsorbent is not particularly limited as long as it can adsorb CO in a gas containing H 2 , H 2 O, CO 2 and the like generated in the second reactor, but in the present invention, the CO adsorbent is not limited. The adsorbent is made of zeolite on which one or more metals selected from Group 4B, Group 6A, Group 7A and Group 8 are supported, and the content of metal in the CO adsorbent is 0.5 to 15% by weight. It is preferable to be in the range.

CO吸着剤に用いるゼオライトとしてはZSM−5型ゼオライト、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、βゼオライトから選ばれる1種以上のゼオライトが好適に用いられる。フォージャサイト型ゼオライトを用いる場合は骨格を構成するSiO2とAl23のモル比(SiO2/Al23)が10以上、さらには15以上であることが好ましい。 As the zeolite used for the CO adsorbent, one or more zeolites selected from ZSM-5 type zeolite, mordenite type zeolite, faujasite type zeolite, and β zeolite are preferably used. When faujasite type zeolite is used, the molar ratio of SiO 2 to Al 2 O 3 constituting the framework (SiO 2 / Al 2 O 3 ) is preferably 10 or more, more preferably 15 or more.

このようなゼオライトは、他の無機酸化物あるいは複合酸化物に比べて比表面積が高く、イオン交換法によって金属イオンを担持し、還元処理することにより金属担持ゼオライト触媒が得られる。このとき、担持された活性成分が微細な金属微粒子であるためにCO吸着容量が高く、好適に用いることができる。   Such a zeolite has a higher specific surface area than other inorganic oxides or composite oxides, and a metal-supported zeolite catalyst can be obtained by supporting metal ions by an ion exchange method and performing a reduction treatment. At this time, since the supported active ingredient is fine metal fine particles, the CO adsorption capacity is high and can be suitably used.

ゼオライトに担持される金属成分として、4B族の金属としてはSn、6A族の金属としてはMo、W、7A族の金属としてはMn、Re、8族の金属としてはRu、Pt、Rh、Pd、Fe、Ni、CoおよびIrから選ばれる1種以上の金属が好適に用いられる。   As the metal component supported on the zeolite, Sn as the group 4B metal, Mo, W as the group 6A metal, Mn, Re as the group 7A metal, Ru, Pt, Rh, Pd as the group 8 metal One or more metals selected from Fe, Ni, Co and Ir are preferably used.

このような金属成分の担持量は吸着剤中に金属として0.5〜15重量%、さらには1.0〜10重量%の範囲にあることが好ましい。金属の担持量が少ないと、CO吸着容量が小さく、金属の担持量が多くしてさらにCO吸着容量が増加することもなく、金属の種類によっては担持金属の粒子径が大きくなるためかCO吸着量が減少することがある。   The amount of the metal component supported is preferably in the range of 0.5 to 15% by weight, more preferably 1.0 to 10% by weight as a metal in the adsorbent. If the amount of supported metal is small, the CO adsorption capacity is small, the amount of supported metal is large, and the CO adsorption capacity does not increase further. Depending on the type of metal, the particle size of the supported metal may increase. The amount may decrease.

このようなCO吸着剤が充填されたCO吸着塔が接続されていると、第2反応器で生成したガス中に残存するCOガスを吸着することができるので、COガスを実質的に含まない水素ガスを製造することができ、このような水素ガスを燃料電池に用いると、燃料電池の電極の被毒を抑制することができるので燃料電池を長期にわたって使用することができ
る。
When a CO adsorption tower filled with such a CO adsorbent is connected, the CO gas remaining in the gas generated in the second reactor can be adsorbed, and therefore substantially does not contain CO gas. Hydrogen gas can be produced, and when such hydrogen gas is used in a fuel cell, poisoning of the electrode of the fuel cell can be suppressed, so that the fuel cell can be used for a long time.

なお、第2反応器に接続して用いる吸着塔は複数の吸着塔を並列に接続して用いることもでき、この場合、少なくとも1つの吸着塔は吸着に、他の吸着塔は再生し、繰り返し連続的に使用することができる。このような本発明の反応器の概略図を図1に示す。   The adsorption tower used by connecting to the second reactor can also be used by connecting a plurality of adsorption towers in parallel. In this case, at least one adsorption tower is used for adsorption, and the other adsorption tower is regenerated and repeatedly used. Can be used continuously. A schematic diagram of such a reactor of the present invention is shown in FIG.

さらに第2反応器と吸着塔との間に、水分除去装置を設けてもよい。例えば、第2反応器の出口ガスを、温度が−20℃以下で熱交換し、水分をトラップし、吸着塔への水分の供給を抑制することによって、CO吸着量が増加し、吸着剤を長期にわたって使用することができる。   Further, a water removing device may be provided between the second reactor and the adsorption tower. For example, by exchanging heat at the outlet gas of the second reactor at a temperature of −20 ° C. or less, trapping moisture, and suppressing the supply of moisture to the adsorption tower, the amount of CO adsorption increases, Can be used for a long time.

かかる吸着剤に好適に用いることのできる金属担持ゼオライトは、好適には、以下の製造方法で調製される。
前記したゼオライト粉末に活性成分に用いる金属塩水溶液を、得られる吸着剤中の金属の含有量が前記範囲となるように吸収させ、ついで乾燥し、還元することによって一酸化炭素吸着剤を得ることができる。
The metal-supported zeolite that can be suitably used for such an adsorbent is preferably prepared by the following production method.
A carbon monoxide adsorbent is obtained by absorbing the metal salt aqueous solution used as an active ingredient in the zeolite powder described above so that the metal content in the obtained adsorbent is within the above range, and then drying and reducing. Can do.

また、ゼオライト粉末を水に分散させ、これに、活性成分に用いる金属の塩あるいは金属塩水溶液を添加し、必要に応じて加熱してイオン交換を行ってもよい。このときの金属塩の使用量は、ゼオライトのAl23のモル数を1とした時に、金属塩が0.1〜5モルの範囲とすることが好ましい。金属塩の使用量が0.1モル未満の場合はゼオライトにイオン交換される金属イオンの量が少なく、充分な吸着性能が得られないことがある。金属塩の使用量が5モルを超えてはイオン交換により担持できる金属イオンの量をさらに増やすことは困難で、また、イオン交換されない金属イオン、金属錯イオンが増加することから経済性が低下する問題がある。 Alternatively, the zeolite powder may be dispersed in water, and a metal salt or a metal salt aqueous solution used as an active ingredient may be added to the zeolite powder, followed by heating and ion exchange as necessary. The amount of the metal salt used at this time is preferably in the range of 0.1 to 5 moles of metal salt when the number of moles of Al 2 O 3 in the zeolite is 1. When the amount of metal salt used is less than 0.1 mol, the amount of metal ions ion-exchanged to zeolite is small, and sufficient adsorption performance may not be obtained. If the amount of metal salt used exceeds 5 moles, it is difficult to further increase the amount of metal ions that can be supported by ion exchange, and the economic efficiency decreases because the number of metal ions and metal complex ions that are not ion-exchanged increases. There's a problem.

イオン交換する際の温度は、通常、室温から98℃、時間は0.5時間から12時間の範囲である。
金属塩としては、前記した金属の塩が用いられる。
The temperature at the time of ion exchange is usually from room temperature to 98 ° C., and the time is from 0.5 hours to 12 hours.
As the metal salt, the aforementioned metal salt is used.

金属塩の吸収またはイオン交換後濾過洗浄した後、乾燥し、ついで還元することによって一酸化炭素吸着剤を得ることができる。
乾燥条件は特に制限はないが、通常80〜200℃で乾燥する。乾燥した後、還元ガス雰囲気下、100〜700℃、好ましくは150〜600℃で還元して一酸化炭素メタネーション用触媒を得ることができる。
A carbon monoxide adsorbent can be obtained by absorption after metal salt absorption or ion exchange, filtration, washing, drying, and reduction.
The drying conditions are not particularly limited, but are usually dried at 80 to 200 ° C. After drying, the catalyst for carbon monoxide methanation can be obtained by reducing at 100 to 700 ° C., preferably 150 to 600 ° C. in a reducing gas atmosphere.

還元雰ガスとしては通常、水素ガスあるいは水素ガスと窒素ガス等不活性ガスとの混合ガスが用いられる。
還元温度が低いと、還元が不充分となり、充分な吸着性能が得られないことがある。還元温度が高いと担持金属の粒子径が大きくなりすぎて吸着性能が不充分となったり、金属の焼結が起こり、吸着性能が不充分となることがある。
As the reducing atmosphere gas, hydrogen gas or a mixed gas of hydrogen gas and inert gas such as nitrogen gas is usually used.
If the reduction temperature is low, the reduction is insufficient and sufficient adsorption performance may not be obtained. If the reduction temperature is high, the particle size of the supported metal may be too large, resulting in insufficient adsorption performance, or metal sintering may occur, resulting in insufficient adsorption performance.

還元する際の時間は温度によっても異なるが、通常0.5〜12時間である。
このようにして得られた吸着剤は、そのまま粉体を吸着剤として用いることもできるが、通常、必要に応じて粉砕し、そのまま錠剤成型機等で成型したり、あるいはシリカゾル、アルミナゾル等のバインダーを混合し、必要に応じて成形助剤を混合し、押出成型機にて成型して用いることができる。また、ハニカム基材に吸着剤の層を形成して用いることもできる。
[実施例]
以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例により限
定されるものではない。
[実施例1]
第1反応器用メタネーション触媒(1-1)の調製
硝酸コバルト・6水和物46.6g、硝酸ジルコニル水溶液(ZrO2濃度:25%)
232.0gおよび硝酸ニッケル・6水和物109.0gを水1240.5gに加えて混合水溶液(1-1)を調製した。
水酸化ナトリウム80.5gを水1519.5gに溶解し、撹拌しながらこれに混合水溶液(1-1)を添加してヒドロゲルを調製し、ついで、80℃にて2時間熟成した。
Although the time for reduction varies depending on the temperature, it is usually 0.5 to 12 hours.
The adsorbent thus obtained can be used directly as a powder as an adsorbent, but is usually pulverized if necessary and molded as it is with a tablet molding machine, or a binder such as silica sol or alumina sol. Can be mixed and, if necessary, a molding aid can be mixed and molded by an extrusion molding machine. Further, an adsorbent layer may be formed on the honeycomb substrate.
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited by these Examples.
[Example 1]
Preparation of methanation catalyst (1-1) for the first reactor 46.6 g of cobalt nitrate hexahydrate, aqueous zirconyl nitrate solution (ZrO 2 concentration: 25%)
232.0 g and 109.0 g of nickel nitrate hexahydrate were added to 1240.5 g of water to prepare a mixed aqueous solution (1-1).
80.5 g of sodium hydroxide was dissolved in 1519.5 g of water, and a mixed aqueous solution (1-1) was added thereto while stirring to prepare a hydrogel, followed by aging at 80 ° C. for 2 hours.

熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥した。さらに、その乾燥物に硝酸マグネシウム・6水和物12.7gを48.0gの水に溶解した溶液を吸収させ、120℃で5時間乾燥させた後、550℃で1時間、大気中にて焼成を行い、400℃で水素−窒素混合ガス(H2濃度10vol%)の流通下で1時間還元処理し、ついで、還元処理した複合酸化物粉体を錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整して第1反応器用メタネーション触媒(1-1)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測
定し、結果を表に示す。
第2反応器用メタネーション用触媒(1-2)の調製
硝酸コバルト・6水和物166.9g、硝酸ジルコニル水溶液(ZrO2濃度:25%
)204.0g、硝酸ニッケル・6水和物23.4gを水1421.4gに加えて混合水溶液(1-2)を調製した。水酸化ナトリウム86.51gを水1489.4gに溶解し、撹
拌しながらこれに混合水溶液(1-2)を添加してヒドロゲルを調製し、ついで、80℃にて
2時間熟成した。熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、550℃で1時間、大気中にて焼成を行い、酸化コバルト、酸化ニッケル、および酸化ジルコニウムからなる複合酸化物粉体を得た。
The aged hydrogel was filtered, washed with sufficient warm water, and dried at 120 ° C. overnight. Further, a solution obtained by dissolving 12.7 g of magnesium nitrate hexahydrate in 48.0 g of water was absorbed into the dried product, dried at 120 ° C. for 5 hours, and then at 550 ° C. for 1 hour in the air. Firing is carried out at 400 ° C. under a hydrogen-nitrogen mixed gas (H 2 concentration of 10 vol%) for 1 hour, and then the reduced composite oxide powder is filled into a tablet molding machine, and 50 kg / cm. The first reactor methanation catalyst (1-1) was prepared by press molding at 2 , then pulverizing, and adjusting the particle size to 20 to 42 mesh. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in the table.
Preparation of catalyst for methanation (1-2) for second reactor 166.9 g of cobalt nitrate hexahydrate, zirconyl nitrate aqueous solution (ZrO 2 concentration: 25%)
) 204.0 g and nickel nitrate hexahydrate 23.4 g were added to 1421.4 g of water to prepare a mixed aqueous solution (1-2). A hydrogel was prepared by dissolving 86.51 g of sodium hydroxide in 1489.4 g of water and adding the mixed aqueous solution (1-2) to this while stirring, and then aging at 80 ° C. for 2 hours. The aged hydrogel is filtered, washed with sufficient warm water, dried at 120 ° C. for one day, and then baked in the air at 550 ° C. for 1 hour, from cobalt oxide, nickel oxide, and zirconium oxide. A composite oxide powder was obtained.

得られた複合酸化物粉体を錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整して第2反応器用メタネーション触媒担体を得た。 The obtained complex oxide powder is filled into a tablet molding machine, pressure molded at 50 kg / cm 2 , then pulverized, and the particle size is adjusted to 20 to 42 mesh to obtain a methanation catalyst carrier for the second reactor. It was.

調製した第2反応器用メタネーション触媒担体50gに、塩化ルテニウムを金属濃度が10重量%となるように溶解した含浸用溶液52.6gを吸収させ、1時間静置した後、120℃にて8時間乾燥し、ついで、pHを10〜11に調製した炭酸水素ナトリウム溶液2L中に分散させて攪拌し、その後、十分な温水を掛けて洗浄し、120℃にて5時間乾燥し、550℃で1時間、大気中にて焼成を行い、400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で1時間還元処理して第2反応器用メタネーション触媒(1-2)
を調製した。
50 g of the prepared methanation catalyst support for the second reactor absorbs 52.6 g of the impregnation solution in which ruthenium chloride is dissolved so that the metal concentration becomes 10% by weight, and is allowed to stand for 1 hour. Dry for 2 hours, then disperse in 2 L of sodium bicarbonate solution adjusted to pH 10-11, stir, then wash with sufficient warm water, dry at 120 ° C. for 5 hours, and at 550 ° C. Calcination in the atmosphere for 1 hour, and reduction treatment for 1 hour under the flow of hydrogen-nitrogen mixed gas (H 2 concentration 10Vol%) at 400 ° C for the second reactor methanation catalyst (1-2)
Was prepared.

吸着剤(1)の調製
Y型ゼオライト(SiO2/Al23=5モル比)100gを水1900gに懸濁した
後、60℃に加温し、塩化白金酸水溶液(Pt濃度2%)を攪拌しながら1120.0g添加し、さらに60℃にて2時間保持した。その後、濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、450℃で3時間、大気中にて焼成を行い、400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で1時間還元処理し、ついで、錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整して吸着剤(1)を調製した。
Preparation of adsorbent (1) 100 g of Y-type zeolite (SiO 2 / Al 2 O 3 = 5 molar ratio) was suspended in 1900 g of water, and then heated to 60 ° C. to obtain an aqueous chloroplatinic acid solution (Pt concentration 2%). While stirring, 1120.0 g was added, and further maintained at 60 ° C. for 2 hours. Thereafter, it is filtered, washed with sufficient warm water, dried at 120 ° C. for one day and night, baked in the atmosphere at 450 ° C. for 3 hours, and mixed with hydrogen-nitrogen gas (H 2 concentration 10 Vol% at 400 ° C.). ) Under the flow of 1), then filled into a tablet molding machine, pressure-molded at 50 Kg / cm 2 , then pulverized, adjusted the particle size to 20-42 mesh, and adsorbent (1) Prepared.

反応試験
メタネーション用触媒(1-1)4.2mlを、内径12mmのステンレス製反応管(第1反
応器)に充填し、触媒層温度400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下
で再び1時間還元処理し、ついで、触媒層温度を210℃の反応温度にした後、反応用混合ガス(一酸化炭素0.6Vol%、二酸化炭素20.0Vol%、メタン2.0Vol%、水素5
1.37Vol%、水蒸気33.3Vol%)をSV=2,000h-1となるように流通させ約1時間後の定常状態での生成ガスをガスクロマトグラフィーおよび赤外分光型ガス濃度計で分析し反応管出口CO濃度を測定した結果を表に示す。
Reaction test 4.2 ml of methanation catalyst (1-1) was charged into a stainless steel reaction tube (first reactor) having an inner diameter of 12 mm, and a hydrogen-nitrogen mixed gas (H) at a catalyst layer temperature of 400C. Then, after reducing again for 1 hour under the flow of 2 concentration 10Vol%), the catalyst layer temperature was set to the reaction temperature of 210 ° C, and then the reaction mixed gas (carbon monoxide 0.6Vol%, carbon dioxide 20.0Vol%) , Methane 2.0 vol%, hydrogen 5
1.37 Vol% and water vapor 33.3 Vol%) are distributed so that SV = 2,000 h -1, and the product gas in a steady state after about 1 hour is analyzed by gas chromatography and an infrared spectroscopic gas concentration meter. The results of measuring the reaction tube outlet CO concentration are shown in the table.

さらに、メタネーション触媒(1-2)4.2mlを内径12mmのステンレス製反応管(
第2反応器)に充填し、触媒層温度400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で再び1時間還元処理し、ついで、触媒層温度を130℃の反応温度にした後、第1反応器で生成したガスをSV=2,000h-1となるように流通させ、約1時間後の定常状態での生成ガスをガスクロマトグラフィーおよび赤外分光型ガス濃度計で分析し、反応管出口CO濃度、CO2濃度およびCH4濃度を測定した結果を表に示す。選択性としては、反応ガス中の二酸化炭素20.0Vol%からのCO2の増減を表に示し、CO2の増減
の少ない場合が選択性に優れるとして評価した。
Furthermore, 4.2 ml of methanation catalyst (1-2) was added to a stainless steel reaction tube (inner diameter of 12 mm).
The second reactor is charged and reduced again for 1 hour at a catalyst layer temperature of 400 ° C. under a hydrogen-nitrogen mixed gas (H 2 concentration of 10 Vol%), and then the catalyst layer temperature is set to a reaction temperature of 130 ° C. After that, the gas produced in the first reactor was circulated so that SV = 2,000 h −1, and the produced gas in a steady state after about 1 hour was obtained by gas chromatography and an infrared spectroscopic gas concentration meter. The results of analysis and measurement of the reaction tube outlet CO concentration, CO 2 concentration, and CH 4 concentration are shown in the table. As the selectivity, the increase / decrease in CO 2 from 20.0 Vol% of carbon dioxide in the reaction gas is shown in the table, and the case where the increase / decrease in CO 2 is small is evaluated as being excellent in selectivity.

さらに、吸着剤(1)8.4mlを内径12mmのステンレス製反応管(吸着塔)に充填
し、吸着剤層温度300℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で再び1時間還元処理し、ついで、吸着剤層温度を120℃にした後、第2反応器で生成したガスをSV=1,000h-1となるように流通させ、約1時間後の出口CO濃度を赤外分光型ガス濃度計で分析しCO濃度を測定した結果を表に示す。
[実施例2]
反応試験
実施例1において、第1反応器での反応のSVを4,000h-1とした以外は同様に行い、結果を表に示す。
[実施例3]
実施例1において、第1反応器での反応温度を190℃にて行った以外は同様に行い、結果を表に示す。
[実施例4]
第1反応器用メタネーション触媒(2-1)の調製
硝酸ジルコニル水溶液(ZrO2濃度:25%)204.0gおよび硝酸ニッケル・6
水和物116.8g、硝酸ランタン・6水和物3.56gおよび硝酸鉄・9水和物60.5gを水1300.0gに加えて混合水溶液(2-1)を調製した。
水酸化ナトリウム91.6gを水1621.5gに溶解し、撹拌しながらこれに混合水溶液(4)を添加してヒドロゲルを調製し、ついで、80℃にて2時間熟成した。
Furthermore, 8.4 ml of the adsorbent (1) was filled into a stainless steel reaction tube (adsorption tower) having an inner diameter of 12 mm, and again under a flow of hydrogen-nitrogen mixed gas (H 2 concentration 10 Vol%) at an adsorbent layer temperature of 300 ° C. After reducing for 1 hour, and then setting the adsorbent layer temperature to 120 ° C., the gas produced in the second reactor was circulated so that SV = 1,000 h −1, and the outlet CO concentration after about 1 hour Table 1 shows the results of analyzing the CO concentration with an infrared spectroscopic gas concentration meter and measuring the CO concentration.
[Example 2]
In Reaction Test Example 1, the reaction was performed in the same manner except that the SV of the reaction in the first reactor was 4,000 h −1 , and the results are shown in the table.
[Example 3]
In Example 1, it carried out similarly except having performed the reaction temperature in a 1st reactor at 190 degreeC, and a result is shown to a table | surface.
[Example 4]
Preparation of methanation catalyst (2-1) for first reactor 204.0 g of aqueous zirconyl nitrate solution (ZrO 2 concentration: 25%) and nickel nitrate 6
A mixed aqueous solution (2-1) was prepared by adding 116.8 g of hydrate, 3.56 g of lanthanum nitrate hexahydrate and 60.5 g of iron nitrate nonahydrate to 1300.0 g of water.
A hydrogel was prepared by dissolving 91.6 g of sodium hydroxide in 1621.5 g of water and adding the mixed aqueous solution (4) thereto while stirring, and then aging at 80 ° C. for 2 hours.

熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥した。さらに、その乾燥物に硝酸マグネシウム・6水和物6.4gを49.0gの水に溶解した溶液を吸収させ、120℃で5時間乾燥させた後、550℃で1時間、大気中にて焼成を行い、400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で1時間還元処理し、ついで、還元処理した複合酸化物を 錠剤成型器に充填し、50Kg/cm2で加圧成型
し、ついで粉砕し、粒度を20〜42メッシュに調整して第1反応器用メタネーション触媒(2-1)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積を測定し
、結果を表に示す。
第2反応器用メタネーション用触媒(2-2)の調製
硝酸ジルコニル溶液(ZrO2濃度:25.0%)168.00g、硝酸セリウム・6
水和物50.20g、硝酸コバルト・6水和物100.89gおよび硝酸ニッケル・6水和物46.71gを水2800gに溶解させ、混合水溶液(2-2)を調製した。
The aged hydrogel was filtered, washed with sufficient warm water, and dried at 120 ° C. overnight. Further, a solution obtained by dissolving 6.4 g of magnesium nitrate hexahydrate in 49.0 g of water was absorbed into the dried product, dried at 120 ° C. for 5 hours, and then at 550 ° C. for 1 hour in the air. Calcination is performed, and reduction treatment is performed for 1 hour at 400 ° C. under the flow of a hydrogen-nitrogen mixed gas (H 2 concentration: 10 vol%). Then, the reduced composite oxide is filled in a tablet molding machine at 50 kg / cm 2 . The first reactor methanation catalyst (2-1) was prepared by pressure molding, then pulverizing, and adjusting the particle size to 20 to 42 mesh. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in the table.
Preparation of catalyst for methanation (2-2) for second reactor Zirconyl nitrate solution (ZrO 2 concentration: 25.0%) 168.00 g, cerium nitrate-6
A mixed aqueous solution (2-2) was prepared by dissolving 50.20 g of hydrate, 100.89 g of cobalt nitrate hexahydrate and 46.71 g of nickel nitrate hexahydrate in 2800 g of water.

水酸化ナトリウム86.51gを水3200gに溶解し、攪拌しながらこれに混合水溶液(2-2)を添加してヒドロゲルスラリーを調製し、ついで80℃にて2時間熟成した。
熟成したヒドロゲルを濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、ついで、550℃で1時間、大気中にて焼成を行い複合酸化物粉体を得た。ついで、複合酸化物粉体を錠剤成型器に充填し、50Kg/cm2で加圧成型し、粉砕し、粒度を20〜42メッシュに調整してメタネーション触媒用担体を調製した。
A hydrogel slurry was prepared by dissolving 86.51 g of sodium hydroxide in 3200 g of water and adding the mixed aqueous solution (2-2) thereto while stirring, and then aging at 80 ° C. for 2 hours.
The aged hydrogel was filtered, washed with sufficient warm water, dried at 120 ° C. for 1 day, and then fired at 550 ° C. for 1 hour in the air to obtain a composite oxide powder. Subsequently, the complex oxide powder was filled in a tablet molding machine, pressure-molded at 50 kg / cm 2 , pulverized, and the particle size was adjusted to 20 to 42 mesh to prepare a support for methanation catalyst.

得られたメタネーション触媒用担体50gに、塩化ルテニウムおよび塩化パラジウムを金属重量比がRu:Pd=1:0.4となり、金属濃度が10重量%となるように溶解した含浸用溶液18.13gを吸収させ、1時間静置した後、120℃にて8時間乾燥し、ついで、pHを10〜11に調製した炭酸水素ナトリウム溶液2L中に分散させて攪拌し、その後、十分な温水を掛けて洗浄し、120℃にて5時間乾燥し、550℃で1時間、大気中にて焼成を行い、400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で1時間還元処理して第2反応器用メタネーション触媒(2-2)を調製した。 18.13 g of an impregnation solution in which ruthenium chloride and palladium chloride were dissolved in 50 g of the obtained methanation catalyst so that the metal weight ratio was Ru: Pd = 1: 0.4 and the metal concentration was 10% by weight. The sample was allowed to stand for 1 hour, then dried at 120 ° C. for 8 hours, then dispersed in 2 L of sodium bicarbonate solution adjusted to pH 10 to 11 and stirred, and then sufficiently warm water was applied. Washed at 120 ° C. for 5 hours, fired at 550 ° C. for 1 hour in the atmosphere, and reduced at 400 ° C. for 1 hour under a flow of hydrogen-nitrogen mixed gas (H 2 concentration 10 Vol%). Thus, a methanation catalyst (2-2) for the second reactor was prepared.

活性成分、各担体成分の含有量、比表面積および細孔容積を測定し、結果を表に示す。吸着剤(2)の調製
Y型ゼオライト(SiO2/Al23=5モル比)100gを水1900gに懸濁した
後、60℃に加温し、塩化銅水溶液(Cuとして濃度2重量%)925.0gを添加し、さらに60℃にて2時間撹拌した。その後、濾過し、充分な温水を掛けて洗浄し、120℃で1昼夜乾燥し、450℃で3時間、大気中にて焼成を行い、400℃で水素−窒素混合ガス(H2濃度10Vol%)の流通下で1時間還元処理し、ついで、錠剤成型器に充填し、50Kg/cm2で加圧成型し、ついで粉砕し、粒度を20〜42メッシュに調整して吸着剤(2)を調製した。
反応試験
実施例1において、第1反応器にメタネーション触媒(2-1)、第2反応器にメタネーシ
ョン触媒(2-2)および吸着塔に吸着剤(2)を用いた以外は同様に行い、結果を表に示す。
[実施例5]
実施例4において、第1反応器でのSVを4,000h-1とした以外は同様に行い、結果を表に示す。
[実施例6]
実施例4において、第1反応器での反応温度を180℃とした以外は同様に行い、結果を表に示す。
[実施例7]
第1反応器用メタネーション触媒(3-1)の調製
実施例1と同様にして調製した第1反応器用メタネーション触媒(1-1)50gに、Ru
としての濃度1.0重量%の塩化ルテニウム水溶液25.13gを吸収させ、1時間静置した後、120℃にて8時間乾燥し、ついで、pHを10〜11に調製した炭酸水素ナトリウム溶液2L中に分散させて攪拌し、その後、十分な温水を掛けて洗浄し、120℃にて5時間乾燥した後、400℃にて1.5時間水素気流中にて還元処理を行い、メタネーション触媒(3-1)を調製した。活性成分、各担体成分の含有量、比表面積および細孔容積
を測定し、結果を表に示す。
反応試験
実施例1において、第1反応器にメタネーション触媒(3-1)を用いた以外は同様に行い
、結果を表に示す。
[実施例8]
反応試験
実施例7において、第1反応器での反応温度を190℃とした以外は同様に行い、結果を表に示す。
[比較例1]
実施例1において、第1反応器での反応温度を280℃、第2反応器での反応温度を190℃とした、以外は同様に行った。
[比較例2]
実施例1において、第1反応器での反応温度を150℃、第2反応器での反応温度を190℃とした、以外は同様に行った。
[比較例3]
実施例1において、第2反応器での反応温度を190℃とした、以外は同様に行った。[比較例4]
実施例1において、第1反応器での反応温度を150℃とした、以外は同様に行った。[比較例5]
実施例4において、第1反応器での反応温度を280℃、第2反応器での反応温度を190℃とした、以外は同様に行った。
[比較例6]
実施例4において、第1反応器での反応温度を150℃、第2反応器での反応温度を190℃とした、以外は同様に行った。
The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in the table. Preparation of adsorbent (2) After suspending 100 g of Y-type zeolite (SiO 2 / Al 2 O 3 = 5 mole ratio) in 1900 g of water, the mixture was heated to 60 ° C. to obtain an aqueous copper chloride solution (concentration of 2% by weight as Cu). ) 925.0 g was added and the mixture was further stirred at 60 ° C. for 2 hours. Thereafter, it is filtered, washed with sufficient warm water, dried at 120 ° C. for one day and night, baked in the atmosphere at 450 ° C. for 3 hours, and mixed with hydrogen-nitrogen gas (H 2 concentration 10 Vol% at 400 ° C.). ) Under the flow of 1), then filled into a tablet molding machine, press-molded at 50 kg / cm 2 , then pulverized, adjusted the particle size to 20-42 mesh, and adsorbent (2) Prepared.
In Example 1 of the reaction test , except that the methanation catalyst (2-1) was used in the first reactor, the methanation catalyst (2-2) was used in the second reactor, and the adsorbent (2) was used in the adsorption tower. The results are shown in the table.
[Example 5]
In Example 4, the same procedure was performed except that the SV in the first reactor was 4,000 h −1 , and the results are shown in the table.
[Example 6]
In Example 4, it carried out similarly except having made reaction temperature in a 1st reactor into 180 degreeC, and a result is shown to a table | surface.
[Example 7]
Preparation of first reactor methanation catalyst (3-1 ) 50 g of first reactor methanation catalyst (1-1) prepared in the same manner as in Example 1 was added to Ru.
After absorbing 25.13 g of an aqueous ruthenium chloride solution having a concentration of 1.0% by weight, the mixture was allowed to stand for 1 hour, dried at 120 ° C. for 8 hours, and then 2 L of a sodium hydrogen carbonate solution adjusted to a pH of 10 to 11 After being dispersed in and stirred, washed with sufficient warm water, dried at 120 ° C. for 5 hours and then reduced in a hydrogen stream at 400 ° C. for 1.5 hours to obtain a methanation catalyst. (3-1) was prepared. The active component, the content of each carrier component, the specific surface area and the pore volume were measured, and the results are shown in the table.
In Reaction Test Example 1, the same procedure was performed except that the methanation catalyst (3-1) was used in the first reactor, and the results are shown in the table.
[Example 8]
In Reaction Test Example 7, the reaction was conducted in the same manner except that the reaction temperature in the first reactor was 190 ° C., and the results are shown in the table.
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the reaction temperature in the first reactor was 280 ° C. and the reaction temperature in the second reactor was 190 ° C.
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the reaction temperature in the first reactor was 150 ° C. and the reaction temperature in the second reactor was 190 ° C.
[Comparative Example 3]
The same procedure as in Example 1 was performed except that the reaction temperature in the second reactor was 190 ° C. [Comparative Example 4]
The same procedure as in Example 1 was performed except that the reaction temperature in the first reactor was 150 ° C. [Comparative Example 5]
The same procedure as in Example 4 was performed except that the reaction temperature in the first reactor was 280 ° C., and the reaction temperature in the second reactor was 190 ° C.
[Comparative Example 6]
In Example 4, the reaction was performed in the same manner except that the reaction temperature in the first reactor was 150 ° C. and the reaction temperature in the second reactor was 190 ° C.

結果をあわせて表1に示す。   The results are shown in Table 1.

Figure 2007254177
Figure 2007254177

図1は本発明の反応器の簡単な該略図を示す。FIG. 1 shows a simplified schematic of the reactor of the present invention.

Claims (11)

一酸化炭素メタネーション用触媒と一酸化炭素ガス含有水素ガスと接触させる一酸化炭素のメタネーション方法において、反応器が第1反応器と該第1反応器と接続された第2反応器とからなり、
第1反応器の反応温度(T1)が170〜250℃の範囲にあり、第2反応器の反応温
度(T2)が100〜170℃の範囲にあり、
第2反応器の反応温度(T2)との反応温度差(T1)−(T2)が20〜150℃の範
囲にあることを特徴とする一酸化炭素のメタネーション方法。
In the carbon monoxide methanation method in which the catalyst for carbon monoxide methanation and the hydrogen gas containing carbon monoxide gas are brought into contact, the reactor includes a first reactor and a second reactor connected to the first reactor. Become
The reaction temperature (T 1 ) of the first reactor is in the range of 170 to 250 ° C., the reaction temperature (T 2 ) of the second reactor is in the range of 100 to 170 ° C.,
A carbon monoxide methanation method, wherein a reaction temperature difference (T 1 ) − (T 2 ) with a reaction temperature (T 2 ) of the second reactor is in a range of 20 to 150 ° C.
前記第1反応器に供給される一酸化炭素ガス含有水素ガス中のCO濃度(CFCO)が0.3〜1.0Vol%の範囲にあり、第1反応器の出口ガス中のCO濃度(C1CO)が500
ppm以下の範囲にあり、第2反応器の出口ガス中のCO濃度(C2CO)が10ppm以下であることを特徴とする請求項1に記載の一酸化炭素のメタネーション方法。
The CO concentration (CF CO ) in the carbon monoxide gas-containing hydrogen gas supplied to the first reactor is in the range of 0.3 to 1.0 Vol%, and the CO concentration in the outlet gas of the first reactor ( C1 CO ) is 500
2. The carbon monoxide methanation method according to claim 1, wherein the CO concentration (C 2 CO 2 ) in the outlet gas of the second reactor is 10 ppm or less.
第1反応器に用いる一酸化炭素メタネーション触媒が反応温度(T1)190〜210℃
でCO除去率が最も高くなる触媒であり、第2反応器に用いる一酸化炭素メタネーション触媒が反応温度(T2)120〜140℃でCO除去率が最も高くなる触媒であることを
特徴とする請求項1または2に記載の一酸化炭素のメタネーション方法。
Carbon monoxide methanation catalyst used in the first reactor is reaction temperature (T 1 ) 190-210 ° C
The carbon monoxide methanation catalyst used in the second reactor is the catalyst having the highest CO removal rate at a reaction temperature (T 2 ) of 120 to 140 ° C. The carbon monoxide methanation method according to claim 1 or 2.
前記第1反応器に用いる一酸化炭素メタネーション触媒のCO除去率が95%以上であり、前記第2反応器に用いる一酸化炭素メタネーション触媒のCO除去率が98%以上であることを特徴とする請求項1〜3のいずれかに記載の一酸化炭素のメタネーション方法。 The carbon removal rate of the carbon monoxide methanation catalyst used in the first reactor is 95% or more, and the CO removal rate of the carbon monoxide methanation catalyst used in the second reactor is 98% or more. The method for methanation of carbon monoxide according to any one of claims 1 to 3. 前記第1反応器に用いる一酸化炭素メタネーション用触媒が、ZrO2、CeO2、NiO、CoO、Co34、Fe23、Al23、TiO2、SiO2から選ばれる1種以上の酸化物または複合酸化物からなり、さらにアルカリ金属酸化物、アルカリ土類金属酸化物および希土類金属酸化物の少なくとも1種を含み、必要に応じて、4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されたものであり、
前記第2反応器に用いる一酸化炭素メタネーション用触媒がNiO、CoO、Co34、ZrO2、CeO2、Al23、TiO2、SiO2から選ばれる1種以上の酸化物または複合酸化物担体に4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されていることを特徴とする請求項1〜4のいずれかに記載の一酸化炭素のメタネーション方法。
The carbon monoxide methanation catalyst used in the first reactor is selected from ZrO 2 , CeO 2 , NiO, CoO, Co 3 O 4 , Fe 2 O 3 , Al 2 O 3 , TiO 2 , and SiO 2. It comprises at least one kind of oxide or composite oxide, and further contains at least one kind of alkali metal oxide, alkaline earth metal oxide and rare earth metal oxide, and if necessary, 4B group, 6A group, 7A group and One or more metals selected from Group 8 are supported,
The carbon monoxide methanation catalyst used in the second reactor is one or more oxides selected from NiO, CoO, Co 3 O 4 , ZrO 2 , CeO 2 , Al 2 O 3 , TiO 2 , and SiO 2 , or 5. The carbon monoxide meta compound according to claim 1, wherein at least one metal selected from Group 4B, Group 6A, Group 7A, and Group 8 is supported on the composite oxide support. Nation method.
前記4B族の金属がSnであり、6A族の金属がMo、Wであり、7A族の金属がMn、Reであり、8族の金属がRu、Pt、Pd、Ni、FeおよびCoであることを特徴とする請求項1〜5のいずれかに記載の一酸化炭素のメタネーション方法。 The group 4B metal is Sn, the group 6A metal is Mo, W, the group 7A metal is Mn, Re, and the group 8 metal is Ru, Pt, Pd, Ni, Fe, and Co. The carbon monoxide methanation method according to any one of claims 1 to 5. 前記第2反応器に用いる一酸化炭素メタネーション用触媒中の金属の担持量が0.5〜15重量%の範囲にあることを特徴とする請求項1〜6のいずれかに記載の一酸化炭素メタネーション用触媒。 The amount of metal supported in the catalyst for carbon monoxide methanation used in the second reactor is in the range of 0.5 to 15% by weight. Catalyst for carbon methanation. 前記金属としてRuを含み、担持された金属中のRuの割合が20〜90重量%の範囲に
あることを特徴とする請求項1〜7のいずれかに記載の一酸化炭素のメタネーション方法。
The carbon monoxide methanation method according to any one of claims 1 to 7, wherein Ru is contained as the metal, and a ratio of Ru in the supported metal is in a range of 20 to 90 wt%.
前記第2反応器に、CO吸着剤が充填されたCO吸着塔が接続されていることを特徴とする請求項1〜8のいずれかに記載の一酸化炭素のメタネーション方法。 9. The carbon monoxide methanation method according to claim 1, wherein a CO adsorption tower filled with a CO adsorbent is connected to the second reactor. 前記CO吸着剤が、4B族、6A族、7A族および8族から選ばれる1種以上の金属が担持されたゼオライトからなり、該CO吸着剤中の金属の含有量が0.5〜15重量%の範囲にあることを特徴とする請求項1〜9のいずれかに記載の一酸化炭素のメタネーション方法。 The CO adsorbent is made of zeolite on which one or more metals selected from Group 4B, Group 6A, Group 7A and Group 8 are supported, and the content of metal in the CO adsorbent is 0.5 to 15 wt. The method of carbon monoxide methanation according to any one of claims 1 to 9, wherein the methanation method is in the range of%. 前記ゼオライトがZSM−5型ゼオライト、モルデナイト型ゼオライト、フォージャサイト型ゼオライト、βゼオライトから選ばれる1種以上であることを特徴とする請求項10に記載の一酸化炭素のメタネーション方法。 11. The carbon monoxide methanation method according to claim 10, wherein the zeolite is at least one selected from ZSM-5 type zeolite, mordenite type zeolite, faujasite type zeolite, and β zeolite.
JP2006077605A 2006-03-20 2006-03-20 Carbon monoxide methanation method Active JP4912706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077605A JP4912706B2 (en) 2006-03-20 2006-03-20 Carbon monoxide methanation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077605A JP4912706B2 (en) 2006-03-20 2006-03-20 Carbon monoxide methanation method

Publications (2)

Publication Number Publication Date
JP2007254177A true JP2007254177A (en) 2007-10-04
JP4912706B2 JP4912706B2 (en) 2012-04-11

Family

ID=38628802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077605A Active JP4912706B2 (en) 2006-03-20 2006-03-20 Carbon monoxide methanation method

Country Status (1)

Country Link
JP (1) JP4912706B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
WO2010011415A1 (en) * 2008-07-22 2010-01-28 Uop Llc Apparatus and process for removal of carbon monoxide
WO2018025555A1 (en) * 2016-08-02 2018-02-08 日立造船株式会社 Methanation reaction catalyst, method for producing methanation reaction catalyst, and method for producing methane

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414403A (en) * 1977-07-02 1979-02-02 Metallgesellschaft Ag Production of gas capable of being substituted for natural gas
JPS6117413A (en) * 1984-07-04 1986-01-25 Nippon Kokan Kk <Nkk> Separation of co
JPS634825A (en) * 1986-06-25 1988-01-09 Nippon Kokan Kk <Nkk> Method for separating and recovering carbon monoxide
JP2001261306A (en) * 2000-03-17 2001-09-26 Osaka Gas Co Ltd Method of producing hydrogen
JP2002356310A (en) * 2001-03-29 2002-12-13 Osaka Gas Co Ltd Removal method for carbon monoxide and operation method for fuel cell system using the same
JP2003277013A (en) * 2002-03-27 2003-10-02 Osaka Gas Co Ltd Carbon monoxide removing method and polymer electrolyte fuel cell system
JP2003340280A (en) * 2002-05-29 2003-12-02 Kawasaki Heavy Ind Ltd Co selective oxidation catalyst, manufacturing method therefor, heat exchange type reactor using co selective oxidation catalyst and usage thereof
JP2005174860A (en) * 2003-12-15 2005-06-30 Mitsubishi Electric Corp Fuel cell power generating device
WO2005094988A1 (en) * 2004-04-01 2005-10-13 Aisin Seiki Kabushiki Kaisha Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
JP2006062934A (en) * 2004-08-30 2006-03-09 Toshiba Corp Carbon monoxide selective methanation device, carbon monoxide shift reactor and fuel cell system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414403A (en) * 1977-07-02 1979-02-02 Metallgesellschaft Ag Production of gas capable of being substituted for natural gas
JPS6117413A (en) * 1984-07-04 1986-01-25 Nippon Kokan Kk <Nkk> Separation of co
JPS634825A (en) * 1986-06-25 1988-01-09 Nippon Kokan Kk <Nkk> Method for separating and recovering carbon monoxide
JP2001261306A (en) * 2000-03-17 2001-09-26 Osaka Gas Co Ltd Method of producing hydrogen
JP2002356310A (en) * 2001-03-29 2002-12-13 Osaka Gas Co Ltd Removal method for carbon monoxide and operation method for fuel cell system using the same
JP2003277013A (en) * 2002-03-27 2003-10-02 Osaka Gas Co Ltd Carbon monoxide removing method and polymer electrolyte fuel cell system
JP2003340280A (en) * 2002-05-29 2003-12-02 Kawasaki Heavy Ind Ltd Co selective oxidation catalyst, manufacturing method therefor, heat exchange type reactor using co selective oxidation catalyst and usage thereof
JP2005174860A (en) * 2003-12-15 2005-06-30 Mitsubishi Electric Corp Fuel cell power generating device
WO2005094988A1 (en) * 2004-04-01 2005-10-13 Aisin Seiki Kabushiki Kaisha Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
JP2006062934A (en) * 2004-08-30 2006-03-09 Toshiba Corp Carbon monoxide selective methanation device, carbon monoxide shift reactor and fuel cell system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
WO2010011415A1 (en) * 2008-07-22 2010-01-28 Uop Llc Apparatus and process for removal of carbon monoxide
WO2018025555A1 (en) * 2016-08-02 2018-02-08 日立造船株式会社 Methanation reaction catalyst, method for producing methanation reaction catalyst, and method for producing methane
JP2018020278A (en) * 2016-08-02 2018-02-08 日立造船株式会社 Catalyst for methanation reaction, manufacturing method of catalyst for methanation and manufacturing method of methane
CN109475846A (en) * 2016-08-02 2019-03-15 日立造船株式会社 The preparation method of methanation reaction catalyst, the preparation method of methanation reaction catalyst and methane
EP3495041A4 (en) * 2016-08-02 2020-05-06 Hitachi Zosen Corporation Methanation reaction catalyst, method for producing methanation reaction catalyst, and method for producing methane
TWI755411B (en) * 2016-08-02 2022-02-21 日商日立造船股份有限公司 Catalyst for methanation reaction, method for producing catalyst for methanation reaction, and method for producing methane

Also Published As

Publication number Publication date
JP4912706B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5096712B2 (en) Carbon monoxide methanation method
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
Liu et al. High purity H2 production from sorption enhanced bio-ethanol reforming via sol-gel-derived Ni–CaO–Al2O3 bi-functional materials
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
WO2003092888A1 (en) Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP4864688B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
WO2004022224A1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP4689508B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP4890194B2 (en) Method for producing carbon monoxide removal catalyst
JP4772659B2 (en) Catalyst for removing carbon monoxide and method for producing the same
JP4912706B2 (en) Carbon monoxide methanation method
JP4994686B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
EP1485202B1 (en) Process for the preferential oxidation of carbon monoxide using a catalyst containing ruthenium and zinc oxide
JP2013017913A (en) Steam-reforming catalyst and hydrogen production process using the same
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
JP4961102B2 (en) Method for producing zeolite and adsorbent for removing sulfur compound containing the zeolite
JP2005034682A (en) Co modification catalyst and its production method
JP4339134B2 (en) Desulfurizing agent molded body of gaseous hydrocarbon compound and desulfurization method
JP2004244231A (en) Method for lowering carbon monoxide concentration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120118

R150 Certificate of patent or registration of utility model

Ref document number: 4912706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250