JPS634825A - Method for separating and recovering carbon monoxide - Google Patents

Method for separating and recovering carbon monoxide

Info

Publication number
JPS634825A
JPS634825A JP61148622A JP14862286A JPS634825A JP S634825 A JPS634825 A JP S634825A JP 61148622 A JP61148622 A JP 61148622A JP 14862286 A JP14862286 A JP 14862286A JP S634825 A JPS634825 A JP S634825A
Authority
JP
Japan
Prior art keywords
carbon monoxide
adsorption
gas
pressure
purge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61148622A
Other languages
Japanese (ja)
Other versions
JPH0360523B2 (en
Inventor
Kazuo Tajima
一夫 田島
Hiroshi Osada
長田 容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61148622A priority Critical patent/JPS634825A/en
Publication of JPS634825A publication Critical patent/JPS634825A/en
Publication of JPH0360523B2 publication Critical patent/JPH0360523B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently carry out purging by using only the raw gaseous mixture in the pressure increasing stage, compressing and heating the gaseous product by adiabatic compression in the purging stage, and supplying the gaseous product to an adsorption tower. CONSTITUTION:A gaseous mixture contg. CO, CO2, and N2 is introduced into the tower D wherein the desorption and recovery stage is finished, and compressed to the atmospheric pressure. The mixture then enters into the adsorption stage, adsorption is continued until the breakthrough of N2 and CO2 occurs, the outlet gas from a tower C after being purged is introduced into the tower D to carry out preliminary purging, then the outlet of the tower D is closed, and the tower D is pressurized by the gas after purging. The gaseous product is then compressed and heated by the adiabatic compression at that time, and introduced into the tower D to carry out purging. The pressure is then turned off to the atmospheric pressure, and the adsorbed CO is desorbed and recovered through a vacuum pump. The cycle is repeated, and the towers A-D are successively used.

Description

【発明の詳細な説明】 (産業上の利用方法) 本発明は、一酸化炭素選択吸着剤を使用して、圧力スイ
ング吸着法(以下PSA法と略称する)により混合ガス
から一酸化炭素を分離回収する方法に関する。
Detailed Description of the Invention (Industrial Application Method) The present invention uses a carbon monoxide selective adsorbent to separate carbon monoxide from a mixed gas by a pressure swing adsorption method (hereinafter abbreviated as PSA method). Regarding the method of collection.

(従来技術及びその問題点) 近時、転炉ガス、電気炉ガス、高炉ガス等に含まれる一
酸化炭素を有効に利用するために、これらのガスから一
酸化炭素をPSAで分離する方法が、数多く研究されて
いる。
(Prior art and its problems) Recently, in order to effectively utilize carbon monoxide contained in converter gas, electric furnace gas, blast furnace gas, etc., a method of separating carbon monoxide from these gases using PSA has been developed. , has been extensively studied.

例えば、特開昭59−22625号等には、−般のゼオ
ライト系吸着剤を用い、転炉ガス等からPSAによって
一酸化炭素を濃縮する方法が提案されている。しかしこ
の方法で使用する吸着剤は一酸化炭素と共存する二酸化
炭素の吸着量が一酸化炭素よりも多い。このため、この
方法では前段で二酸化炭素を除去するCO2−PSA等
の前処理装置を必要とし、工程が複雑となり、しかも、
装置コストがかさむという欠点がある。またこの方法で
は、一酸化炭素濃度を向上させようとすると、バージ農
が増し、回収率が著しく低下すること、またGo−PS
Aにおいては、−般のゼオライト系吸着剤を用いるため
に、窒素の共吸着が大きくなり、窒素濃度を十分に低下
することが困難になるという欠点がある。
For example, Japanese Patent Laid-Open No. 59-22625 proposes a method of concentrating carbon monoxide from converter gas or the like by PSA using a general zeolite adsorbent. However, the adsorbent used in this method adsorbs more carbon dioxide, which coexists with carbon monoxide, than carbon monoxide. For this reason, this method requires a pre-treatment device such as CO2-PSA to remove carbon dioxide in the first stage, making the process complicated.
The disadvantage is that the equipment cost is high. In addition, with this method, if you try to improve the carbon monoxide concentration, barge farming will increase and the recovery rate will decrease significantly, and Go-PS
In A, since a general zeolite adsorbent is used, the co-adsorption of nitrogen becomes large, making it difficult to reduce the nitrogen concentration sufficiently.

また特開昭61−21906号及び特開昭61−265
06号は、一酸化炭素を選択的に吸着する吸着剤を用い
てPSAにて一酸化炭素を分離する方法を開示している
。ここでは吸着剤として一酸化炭素と共存する他のガス
成分、例えば窒素。
Also, JP-A-61-21906 and JP-A-61-265
No. 06 discloses a method for separating carbon monoxide in a PSA using an adsorbent that selectively adsorbs carbon monoxide. Here other gaseous components, such as nitrogen, coexist with carbon monoxide as adsorbents.

二酸化炭素、水素、酸素に対して一酸化炭素を選択的に
吸着するものを用い、これら成分を有する原料混合ガス
を一方の吸着塔に流通し、昇圧、吸着の各工程を経て、
真空脱着工程の終了した他塔と連結させ並流減圧工程を
行った後、真空脱着工程により一酸化炭素を回収する方
法が開示され、またさらに純度を向上するために、並流
減圧工程の後、製品加圧工程と減圧排気工程を加える方
法が示されている。しかし、この公報に記載された実施
例によると、原料混合ガス濃度が、C090,0%、N
29.2%、CO20,8%に対して、製品ガス濃度は
C096,2%、 N22.7%、CO21,10%と
なり、製品純度は、それほど向上していない。ましてC
O21度は原料混合ガスよりも増加している。従ってこ
の方法ではガスのパージが不十分といえる。
Using a device that selectively adsorbs carbon monoxide with respect to carbon dioxide, hydrogen, and oxygen, the raw material mixed gas containing these components is passed through one adsorption tower, and goes through the steps of pressurization and adsorption.
A method is disclosed in which carbon monoxide is recovered by a vacuum desorption process after the co-current depressurization process is performed by connecting it with another column that has completed the vacuum desorption process. , a method of adding a product pressurization process and a depressurization exhaust process is shown. However, according to the example described in this publication, the raw material mixed gas concentration is C090.0%, N
29.2% and CO20.8%, the product gas concentration is CO96.2%, N22.7%, and CO21.10%, and the product purity has not improved much. Much less C
The O21 degree is higher than that of the raw material mixed gas. Therefore, it can be said that gas purging is insufficient in this method.

さらに特公昭54−3822には、混合ガスから吸着し
やすい成分を高純度で分離する方法のために、脱着する
前に、製品ガスで吸着時と同一圧力下でパージする方法
が示されている。また特公昭54−3823には、混合
ガスから難吸着成分 ・と易吸着成分をそれぞれ高純度
で連続的に分離回収するために、混合ガスの供給前にテ
イルガスによる昇圧工程と、脱着工程前に製品ガスで吸
着時と同一圧力下でパージする方法が記載されている。
Furthermore, Japanese Patent Publication No. 54-3822 describes a method of purging with product gas under the same pressure as during adsorption before desorption, in order to separate easily adsorbable components from a mixed gas with high purity. . In addition, in Japanese Patent Publication No. 54-3823, in order to continuously separate and recover poorly adsorbed components and easily adsorbed components from a mixed gas with high purity, a pressure raising process using tail gas is carried out before the mixed gas is supplied, and a desorption process is carried out before the desorption process. A method of purging with product gas under the same pressure as during adsorption is described.

しかし製品ガスによるパージは、吸着時と同一圧力で行
う必然性はなく、またテイルガスによる昇圧は、−見回
収率の向上に役立つように思えるが、実際は、二番目に
易吸着性である成分の共吸着が多くなるために、かえっ
てパージ操作が困難になるという欠点がある。
However, purging with product gas does not necessarily have to be carried out at the same pressure as during adsorption, and although increasing the pressure with tail gas seems to be useful for improving the recovery rate, in reality it is not necessary to perform purge with the same pressure as during adsorption, and although it seems that increasing the pressure with tail gas is useful for improving the recovery rate, in reality, it is not necessary to perform purge with the same pressure as during adsorption. The disadvantage is that the increased amount of adsorption makes purging operations more difficult.

(発明が解決しようとする技術的課題)本発明は、一酸
化炭素とともに二酸化炭素や窒素等を含む混合ガスから
、−段で一酸化炭素を高純度かつ高回収率で分離回収す
ることができる一酸化炭素の分離回収方法を提供するこ
とを目的とする。
(Technical problem to be solved by the invention) The present invention can separate and recover carbon monoxide with high purity and high recovery rate from a mixed gas containing carbon monoxide, carbon dioxide, nitrogen, etc. The purpose of the present invention is to provide a method for separating and recovering carbon monoxide.

(技術的課題を解決する手段) この発明は、一酸化炭素を主成分のひとつとし、少なく
とも二酸化炭素及び/又は窒素を含有する混合ガスを一
酸化炭素選択吸臂剤を入れた塔に通して、一酸化炭素を
選択的に吸着せしめた後悦看する一酸化炭素の分離回収
方法において、一酸化炭素の脱着回収が終了した塔に上
記混合ガスを供給し、少なくとも大気圧まで昇圧する昇
圧工程と、 昇圧工程の終了した塔に大気圧以上の圧力の混合ガスを
、一酸化炭素に次いで吸着量の多い成分が少なくともブ
レークスルーし始めるまで流通せしめる吸着工程と、 吸着工程が終了した塔に、パージ工程の出口ガスを放圧
しながら供給して、一酸化炭素及び一酸化炭素に次いで
吸@】の多い成分を除いた他の吸着成分をパージする予
備パージ工程と、予備パージ工程が終了した塔の出口端
を閉じてパージ工程の出口ガスを回収するパージ後ガス
回収工程と、 1q着回収後の製品ガスを吸着工程における吸着圧力を
超える圧力に昇圧し、その断熱圧縮熱で昇温し、これを
パージ後ガス回収工程の終了した塔の入口端に供給し同
時に出口端を開けて、一酸化炭素に次いで吸着量の多い
吸着成分をパージするパージ工程と、 パージ工程終了後の塔を減圧して、濃縮した一酸化炭素
を回収する脱着回収工程とを、順次繰返して行う一酸化
炭素の分離回収方法である。
(Means for Solving Technical Problems) This invention involves passing a mixed gas containing carbon monoxide as one of the main components and containing at least carbon dioxide and/or nitrogen through a column containing a carbon monoxide selective absorbent. In a method for separating and recovering carbon monoxide in which carbon monoxide is selectively adsorbed and then recovered, a pressurization step of supplying the above-mentioned mixed gas to a tower where desorption and recovery of carbon monoxide has been completed and increasing the pressure to at least atmospheric pressure. and an adsorption step in which a mixed gas at a pressure higher than atmospheric pressure is passed through the tower where the pressure increasing step has been completed until at least the component with the highest amount of adsorption next to carbon monoxide begins to break through, and into the tower where the adsorption step has been completed. A preliminary purge process in which the outlet gas of the purge process is supplied while depressurizing to purge carbon monoxide and other adsorbed components other than the component with the second highest adsorption rate after carbon monoxide, and a column where the preliminary purge process has been completed. A post-purging gas recovery step in which the outlet end of the gas is closed to recover the outlet gas from the purge step, and the product gas after the 1q arrival is pressurized to a pressure higher than the adsorption pressure in the adsorption step, and the temperature is raised by the adiabatic compression heat. This is supplied to the inlet end of the tower where the post-purging gas recovery process has been completed, and at the same time the outlet end is opened to purge the adsorbed components that have the second largest adsorption amount after carbon monoxide, and the tower is depressurized after the purge process is completed. This is a carbon monoxide separation and recovery method in which a desorption and recovery step of recovering concentrated carbon monoxide is sequentially repeated.

(発明の詳細な説明) 一酸化炭素とともに二酸化炭素および窒素等を含む混合
ガスから1段のPSAにて易吸着成分(ここでは一酸化
炭素)を純度よく分離回収するには共存する混合ガスの
成分の中で、一酸化炭素を最も吸着する吸着剤を用いる
ことが必須であり、また共吸着する他成分く二酸化炭素
、窒素等)を製品ガス(一酸化炭素)の還流で置換吸着
させる操作、すなわちパージ操作をいかに効率よく行わ
せしめるかが最も重要なポイントである。
(Detailed Description of the Invention) In order to separate and recover easily adsorbable components (here, carbon monoxide) with high purity from a mixed gas containing carbon monoxide, carbon dioxide, nitrogen, etc., in one stage PSA, the coexisting mixed gas must be It is essential to use an adsorbent that adsorbs carbon monoxide the most among the components, and it is also necessary to replace and adsorb other components that co-adsorb (carbon dioxide, nitrogen, etc.) with reflux of the product gas (carbon monoxide). In other words, the most important point is how efficiently the purge operation can be performed.

本発明者等は、すでに特開昭61−17413号などに
おいて、このような吸着剤の作成方法と優れた吸着性能
について開示した。即ちこの吸着剤は、シリカ/アルミ
ナ比10以下のゼオライトに、Ni 、Mn 、Rh 
、Cu  (1)、A(J及びこれらの混合物から選択
された1または2以上の金属を担持せしめたものであり
、この吸着剤の製造方法は、ゼオライトに第1段階でイ
オン交換法により、第2段階で含浸法により金属を担持
する方法である。そして、本発明者は更にこれら一酸化
炭素選択吸着剤のブレークスルー、パージ特性に□つい
て検討を重ねた結果、パージ工程を効率よく行うために
は以下の2点が重要であることを見出した。
The present inventors have already disclosed a method for producing such an adsorbent and excellent adsorption performance in Japanese Patent Application Laid-Open No. 17413/1983. That is, this adsorbent contains Ni, Mn, Rh, on zeolite with a silica/alumina ratio of 10 or less.
, Cu(1), A(J, and mixtures thereof), and the method for manufacturing this adsorbent is to zeolite in the first step by ion exchange method. This is a method in which the metal is supported by an impregnation method in the second step.As a result of further studies on the breakthrough and purge characteristics of these carbon monoxide selective adsorbents, the inventors have found that the purge process can be carried out efficiently. We have found that the following two points are important for this purpose.

1) パージ温度を上げること。1) Raise the purge temperature.

2) パージガス量を増やすこと。2) Increase the amount of purge gas.

すなわち、置換吸着が行われる温度が高いほど、本吸着
剤の一酸化炭素の選択吸着能が増加するうえ、物質移動
速度が大となるので速やかにパージできる。またパージ
圧力を上げると、脱看量が増すので一酸化炭素の回収量
を変えずにパージ量を増加させることができる。さらに
パージガスを昇圧することで断熱圧縮熱でパージガスを
昇温できるという相乗効果も得られることがわかった。
That is, the higher the temperature at which displacement adsorption is performed, the more the selective adsorption ability of carbon monoxide of this adsorbent increases, and the mass transfer rate increases, so that purging can be performed quickly. Furthermore, when the purge pressure is increased, the amount of carbon monoxide removed increases, so the amount of purge can be increased without changing the amount of carbon monoxide recovered. Furthermore, it was found that by increasing the pressure of the purge gas, a synergistic effect could be obtained in that the temperature of the purge gas could be increased by the heat of adiabatic compression.

そして本発明者はこれらの特性を効率的にPSAシステ
ムに反映し、一酸化炭素の純度さらには回収率を向上す
ることのできる工程として本発明を完成するに到った。
The inventors have completed the present invention as a process that can efficiently reflect these characteristics in the PSA system and improve the purity and recovery rate of carbon monoxide.

表1及び第1図は本発明方法の1例を示す。ここでは4
塔の吸着塔A−Dを使用して、昇圧、@看、予備パージ
、パージ後ガス回収パージ、脱着回収の各工程を8ステ
ツプで1類するサイクルに組んである。少なくとも4塔
の吸着塔を使用することにより、原料混合ガスの供給、
パージガスの供給及び製品ガスの回収を連続して操作す
ることができる。なおここでは、工程をわかりやすく説
明するために、基本的な操作のみ示すが、これに限定さ
れるものではない。また原料混合ガスとして転炉ガス(
0080%、CO210%、N29%、N21%)を想
定している。
Table 1 and FIG. 1 show one example of the method of the present invention. here 4
Using the adsorption towers A to D, each process of pressurization, @contamination, preliminary purge, post-purging gas recovery purge, and desorption/recovery is set up in a cycle of 8 steps. By using at least four adsorption towers, supply of the raw material mixed gas,
Supply of purge gas and recovery of product gas can be operated continuously. Here, in order to explain the process in an easy-to-understand manner, only basic operations are shown, but the present invention is not limited thereto. In addition, converter gas (
0080%, CO2 10%, N29%, N21%).

まずD塔に着目して説明する。First, let's focus on Tower D and explain it.

ステップ1は昇圧工程を示す。この工程のD塔は脱着回
収工程が終了し、塔内が真空状態であり、このD塔の入
口端から原料混合ガスを送風機で流入する。この工程で
の終点は、退屈圧力が大気圧乃至送Jllll圧力程度
となった時である。この工程で直接原料混合ガスを送風
し、テイルガス(後述する)を供給しないのは、テイル
ガスは、原料混合ガスよりも一酸化炭素濃度が低いため
、このテイルガスで昇圧すると、この工程以後に行う共
吸着成分のパージが困難になるためである。
Step 1 shows a pressure increase step. The D column in this step has completed the desorption and recovery step and is in a vacuum state, and the raw material mixed gas is introduced from the inlet end of the D column using a blower. The end point of this process is when the boring pressure reaches about atmospheric pressure to the feed pressure. The reason why the raw material mixed gas is directly blown in this process and the tail gas (described later) is not supplied is that the tail gas has a lower carbon monoxide concentration than the raw material mixed gas, so if the pressure is increased with this tail gas, the This is because it becomes difficult to purge the adsorbed components.

ステップ2のD塔は吸着工程を示す。この工程では出口
端を開け、原料混合ガスを送mRにて流通する。原料混
合ガスの圧力は送inで昇圧される程度の圧力で十分で
あり、0〜0.5Ky/cdGでよい。この工程により
、吸着能の小さい水素。
Step 2, column D, represents the adsorption step. In this step, the outlet end is opened and the raw material mixed gas is passed through at mR. It is sufficient for the pressure of the raw material mixed gas to be raised by feeding, and may be 0 to 0.5 Ky/cdG. This process allows hydrogen to be absorbed with low adsorption capacity.

酵素は容易にブレイクスルーされる。この工程の終点は
少なくとも窒素がブレイクスルーされ、二酸化炭素のブ
レイクスルーが始まるまで行う。この点がステップ2の
終点となる。なお二酸化炭素のブレイクスルー終了後も
吸着を続けると一酸化炭素の回収率が低下する。吸着圧
力を低くするのは、一酸化炭素以外の成分の共吸看をな
るべく少なくするためである。また、原料混合ガスの供
給に昇圧機は不要となり、送風機程度のものですむとい
う利点もある。
Enzymes are easily breakthroughs. The end point of this process is at least until nitrogen has broken through and carbon dioxide has begun to break through. This point is the end point of step 2. Note that if adsorption continues even after carbon dioxide breakthrough ends, the recovery rate of carbon monoxide will decrease. The reason for lowering the adsorption pressure is to minimize the co-adsorption of components other than carbon monoxide. Another advantage is that a booster is not required to supply the raw material mixed gas, and only a blower is required.

ステップ3のD塔は、予備パージ工程を示す。Step 3, Column D, represents a preliminary purge step.

この工程では入口端からC塔出口のパージ後の出口ガス
を流入する。吸着工程終了後の浴出口側はブレイクスル
ーが完結していないので、浴出口端を開けることによっ
て窒素および二酸化炭素の濃度の高いテイルガスが排気
される。この工程は、少なくとも共吸着した二酸化炭素
の置換脱着が始まる点、すなわちパージが開始する点ま
で行われる。なお、二酸化炭素のパージ開始点を超えて
この工程を続けると一酸化炭素の回収率が低下するため
、好ましくない。
In this step, the purged outlet gas from the C tower outlet is introduced from the inlet end. Since breakthrough has not been completed on the bath outlet side after the adsorption process is completed, the tail gas with a high concentration of nitrogen and carbon dioxide is exhausted by opening the bath outlet end. This step is carried out at least up to the point at which displacement desorption of the co-adsorbed carbon dioxide begins, ie, the point at which purge begins. Note that it is not preferable to continue this step beyond the carbon dioxide purge starting point because the recovery rate of carbon monoxide will decrease.

ステップ4のD塔は、パージ後ガス回収工程を示す。こ
こでは出口端を閉じ、C塔出口のパージ後ガスを回収し
つつ昇圧する。塔内には、パージ後ガスといえども一酸
化炭素濃度が高いので、この工程によって回収率は改善
される。また窒素および二酸化炭素の吸着帯は出口端に
移動するので次のパージ工程が容易になる。
Step 4, Column D, represents a post-purging gas recovery step. Here, the outlet end is closed and the purged gas at the outlet of the C column is recovered and pressurized. Since the carbon monoxide concentration in the column is high even in the gas after purging, this step improves the recovery rate. Additionally, the nitrogen and carbon dioxide adsorption zones move to the outlet end, facilitating the next purge step.

ステップ5のD塔は、パージ工程を示す。この工程では
塔入口から昇圧機を介して加圧された製品ガス(脱着回
収された一酸化炭素を主成分としたガス)を流入する。
Step 5, Column D, represents a purge step. In this step, pressurized product gas (gas mainly composed of desorbed and recovered carbon monoxide) is introduced from the tower inlet via a booster.

出口端からのパージ後のガスはA塔の入口端に入る。パ
ージガスの圧力は少なくとも吸着圧力より高<5Kt/
ct!G以下、好ましくは吸着圧力より高<2Kg1c
dG以下とし、製品ガスの純度に応じて任意に設定する
。パージガスは昇圧にともなう断熱圧縮熱で加熱されて
おり、パージ効率が向上する。
The purged gas from the outlet end enters the inlet end of the A column. The purge gas pressure is at least higher than the adsorption pressure <5Kt/
ct! G or less, preferably higher than the adsorption pressure <2Kg1c
dG or less, and set arbitrarily according to the purity of the product gas. The purge gas is heated by the heat of adiabatic compression accompanying pressure increase, improving purge efficiency.

ステップ6のD塔は、テップ5と同様に加圧された製品
ガスによるパージ工程を示す。この工程では、A浴出口
端は閉じられるので、D塔内は昇圧されつつパージが行
われる。このパージ工程(ステップ5.6)で使用する
製品ガスは、多いほど純度は改善されるが、多すぎると
処理量が低下するので脱着回収工程で得られる製品ガス
の多くとも80%以下、好ましくは60%以下とするの
がよい。
Column D in step 6 shows a purge step with pressurized product gas similar to step 5. In this step, since the outlet end of bath A is closed, purging is performed while the pressure inside column D is increased. The purity of the product gas used in this purge step (step 5.6) improves as the amount increases, but if the amount is too large, the throughput decreases, so it is preferably 80% or less of the product gas obtained in the desorption and recovery step. is preferably 60% or less.

ステップ7はパージ工程が終了した直後の塔を示す。こ
こではパージ工程の圧力から大気圧、あるいは大気圧付
近の圧力まで放圧する。さらに大気圧、あるいは大気圧
付近の圧力まで達したら輿空ポンプを介して減圧脱着す
る。
Step 7 shows the column just after the purge step is completed. Here, the pressure in the purge step is released to atmospheric pressure or a pressure near atmospheric pressure. Furthermore, when the pressure reaches atmospheric pressure or near atmospheric pressure, it is depressurized and desorbed via an air pump.

ステップ8では、引き続き真空ポンプを介して減圧脱着
する。吸着剤の一酸化炭素吸着能が大気圧以下で大きい
ため、ここでの真空度は低い程好ましく、少なくとも1
50Torr以下、好ましくは100Torr以下とす
る。
In step 8, desorption is then performed under reduced pressure via a vacuum pump. Since the carbon monoxide adsorption capacity of the adsorbent is high below atmospheric pressure, the degree of vacuum here is preferably as low as possible, and at least 1
It is 50 Torr or less, preferably 100 Torr or less.

図示する具体例では、上述したステップ1〜8を順次お
こなう塔を4塔A−D備えている。8塔では、表1に示
すようにステップ1〜8をずらして、一酸化炭素の分離
回収を連続的に行なえるようにしている。各ステップに
おける8塔の接続は、第1図に示す通りである。8塔を
連続的に操業するための構造は第2図に示す通りであり
、図示する機器はコンピューターにより制御されている
In the illustrated example, four columns A to D are provided, each of which sequentially performs steps 1 to 8 described above. In the 8 towers, steps 1 to 8 are shifted as shown in Table 1 so that carbon monoxide can be separated and recovered continuously. The connections of the eight columns in each step are as shown in FIG. The structure for continuously operating eight towers is shown in Figure 2, and the equipment shown is controlled by a computer.

符号1は送ll1mを示し、原料混合ガスFを塔A〜D
に順次送るものである。また真空ポンプ2は塔A−Dを
順次減圧する。昇圧n3はガスホルダー4内の製品ガス
Rの一部を塔A−Dに順次送る。
The code 1 indicates a feed of 11 m, and the raw material mixed gas F is sent to the towers A to D.
It will be sent sequentially to Also, the vacuum pump 2 sequentially reduces the pressure in the columns A to D. Pressurization n3 sequentially sends a part of the product gas R in the gas holder 4 to columns AD.

図中5〜8は流量調整弁、9〜29は切換弁を示す。■
はテイルガスを示す。
In the figure, numerals 5 to 8 indicate flow rate adjustment valves, and numerals 9 to 29 indicate switching valves. ■
indicates tail gas.

なお本発明が応用できる原料混合ガスは、吸着工程およ
びパージ工程での温度、圧力2時間の条件下で、−m化
炭素の吸着量が最も多い吸着剤を用いる限り、どのよう
な成分を含んでいてもよい。
Note that the raw material mixed gas to which the present invention can be applied can contain any component as long as an adsorbent that adsorbs the largest amount of -m carbon is used under the conditions of temperature and pressure for 2 hours in the adsorption step and purge step. It's okay to stay.

ただし吸着剤の一酸化炭素吸着能を低下させる不純物は
この限りでない。このような原料混合ガスには転炉、高
炉、N気炉などから発生するオフガスがあるが、これら
に限定されない。
However, this does not apply to impurities that reduce the carbon monoxide adsorption ability of the adsorbent. Such raw material mixed gas includes off-gas generated from converters, blast furnaces, N-air furnaces, etc., but is not limited thereto.

また本発明で使用する吸着剤は一酸化炭素を他の成分に
対して選択的に吸着するものであれば、いかなるもので
もよい。
Further, the adsorbent used in the present invention may be any adsorbent as long as it selectively adsorbs carbon monoxide relative to other components.

本発明において、原料混合ガスの供給、パージガスの供
給、製品ガスの回収を連続して操作するためには少なく
とも4塔の吸着塔を必要とする。
In the present invention, at least four adsorption towers are required to continuously operate the supply of raw material mixed gas, supply of purge gas, and recovery of product gas.

以下、実施例を示す。Examples are shown below.

実施例1 CuCJ12の1N溶液を作成し、100J11!丸底
フラスコにN a−Y型ゼオライト(1,5mφ。
Example 1 A 1N solution of CuCJ12 was prepared and 100J11! Na-Y type zeolite (1.5 mφ) was placed in a round bottom flask.

5 tan Lペレット、バインダ20%含む)10g
と、1NCLICJ12溶液50mを加え、丸底フラス
コにコンデンサーを取付けてマントルヒータで100℃
で加熱還流を2時間行なった。静置后、デカンテーショ
ンにより上澄みを回収し、更にINCtlCfz溶液5
0dを加え、同様に還流を行なった。還流操作は合計5
回行ない、ゼオライトは純水で十分水洗し、110℃で
乾燥后、電気炉で550℃2時間焼成して吸着剤を作成
した。
5 tan L pellets (including 20% binder) 10g
Add 50ml of 1NCLICJ12 solution, attach a condenser to the round bottom flask, and heat to 100°C with a mantle heater.
The mixture was heated under reflux for 2 hours. After standing still, the supernatant was collected by decantation, and further added with INCtlCfz solution 5.
0d was added and refluxed in the same manner. A total of 5 reflux operations
The zeolite was thoroughly washed with pure water, dried at 110°C, and then calcined in an electric furnace at 550°C for 2 hours to prepare an adsorbent.

尚、回収した上澄み液とる液を混合し、発光分析で放出
したNamを求めてイオン交換率を測定した結果、86
.5%であり、単位吸着剤当りの担持Cujfiは、8
.87wt%であった。
In addition, as a result of mixing the recovered supernatant liquid and measuring the ion exchange rate by determining the Nam released by luminescence analysis, it was found that 86
.. 5%, and the loading Cujfi per unit adsorbent is 8
.. It was 87wt%.

このCu  (n)−Y型ゼオライト(1,5mφ、5
 mtm hペレット)を1(l秤量し、100−のナ
ス型フラスコに入れ、ロータリバキュームエバポレータ
にセットし、95℃以上で真空脱気する。
This Cu (n)-Y type zeolite (1.5 mφ, 5
Weigh 1 (l) of mtm h pellets, place them in a 100-sized eggplant-shaped flask, set in a rotary vacuum evaporator, and vacuum degas at 95°C or higher.

脱気後、真空にしながら試料を室温まで冷却する。After degassing, the sample is cooled to room temperature while applying a vacuum.

−方、Cu C1,2・2H208,39を嘗14の水
に溶解させ20mとする。これは、はぼCuCJ12の
飽和溶液となる。
- On the other hand, Cu C1,2.2H208,39 was dissolved in 14 times of water to make it 20m. This becomes a saturated solution of CuCJ12.

ロータリバキュームエバポレータのリークコックにキャ
ピラリを取付け、ナス型フラスコ内を真空に保持させな
がら、上記溶液を、2〜3滴ずつ吸着剤に滴下含浸させ
る。
A capillary is attached to the leak cock of a rotary vacuum evaporator, and while the inside of the eggplant-shaped flask is maintained in a vacuum, the above solution is dropped 2 to 3 drops at a time to impregnate the adsorbent.

吸着剤が一様に漏れた時点で滴下をやめフラスコ内を常
圧に戻す。さらに金網をつけた吸引濾過器を含浸させた
試料を移し、残りの溶液を試料上に注ぎ、約30分間吸
引濾過した後、磁性口上に広げて一昼夜風乾させる。風
乾後の試料を真空乾燥器内で110℃で3時M真空乾燥
させて、本発明の吸着剤を得た。当吸着剤の担持Cuf
itは、15.96wt%であった。
When the adsorbent leaks out evenly, stop dropping and return the inside of the flask to normal pressure. Further, the impregnated sample is transferred to a suction filter equipped with a wire mesh, the remaining solution is poured onto the sample, and after suction filtration for about 30 minutes, it is spread on a magnetic mouth and air-dried overnight. The air-dried sample was vacuum-dried at 110° C. for 3 hours in a vacuum dryer to obtain an adsorbent of the present invention. Supported Cuf of this adsorbent
It was 15.96 wt%.

このようにして得られたCu(n)Y−CUCLz 、
CLI含有率15wt%、1.5#1IIIφ。
Cu(n)Y-CUCLz obtained in this way,
CLI content 15wt%, 1.5#1IIIφ.

5 ma Lベレットを内径50Mφ、高さ800an
の吸着塔に1000g(dry )充てんし、99.9
%以上の純度のCoガスを250℃で2時間、約1Nf
/minで流通し、Cu Z 十ヲCu ” kZiJ
1元した。FJ、 COガスを供給しながら、塔内をほ
ぼ大気圧に保ちつつ60℃に降温し、保持した。該Co
ガスの供給を止め、真空ポンプを接続し、5分間真空排
気した。5分後の塔内圧力は80Torrであった。
5ma L pellet with inner diameter of 50Mφ and height of 800an
1000g (dry) was filled into the adsorption tower, and the
% or higher purity Co gas at 250°C for 2 hours, about 1Nf
/min distribution, Cu Z 10 Cu ” kZiJ
It cost 1 yuan. While supplying FJ and CO gas, the temperature inside the column was lowered to 60° C. and maintained at approximately atmospheric pressure. The Co
The gas supply was stopped, a vacuum pump was connected, and the mixture was evacuated for 5 minutes. The pressure inside the column after 5 minutes was 80 Torr.

減圧状態にある吸着塔内に入口端から転炉ガスを想定し
た標準ガス(Go  80.0容量%。
Standard gas (Go 80.0% by volume) assumed to be converter gas from the inlet end into the adsorption tower under reduced pressure.

CO210,51山%、H21,0盲嚢%。CO210, 51 mountain%, H21,0 caecum%.

N28.5容量%)を1.4Nf/1nで流入し、0.
3KI/aiGに達した後、出口端を開け、非分散型赤
外線吸収法のCo/CO2ガス分析計で塔出口のCo、
CO2濃度を連続測定した。出口ガス濃度が入口ガス濃
度とほぼ一致したら、標準ガスの流通を止め、99.9
%upのCoガスを、同じ< 1.4Ni/1n 、0
.3Ky/dGで流通し、出口ガス濃度を測定した。
N28.5% by volume) was injected at 1.4Nf/1n, and 0.
After reaching 3KI/aiG, the outlet end was opened and a Co/CO2 gas analyzer using non-dispersive infrared absorption method was used to measure the Co,
CO2 concentration was measured continuously. When the outlet gas concentration almost matches the inlet gas concentration, the standard gas flow is stopped and the temperature reaches 99.9.
%up of Co gas, same < 1.4Ni/1n, 0
.. The outlet gas concentration was measured by flowing at 3 Ky/dG.

同様に塔内を70℃に設定してブレイクスルー、パージ
測定を実施した。第3図に60℃と70’Cのパージ測
定の結果を示す。H2、N2のパージ特性はほぼ同じだ
が、CO2は70’Cの法が吸着帯の幅が小さく、高温
はどCO2の置換吸着が容易であることがわかる。
Breakthrough and purge measurements were similarly conducted with the inside of the tower set at 70°C. Figure 3 shows the results of purge measurements at 60°C and 70'C. It can be seen that the purge characteristics of H2 and N2 are almost the same, but for CO2, the width of the adsorption zone is smaller in the 70'C method, and the displacement adsorption of CO2 is easier at high temperatures.

実施例2〜7 実施例1に示す方法で作製したCu(II)Y−CUC
JL2.Ctl含有率16W【%、1.5mφ。
Examples 2 to 7 Cu(II)Y-CUC produced by the method shown in Example 1
JL2. Ctl content 16W%, 1.5mφ.

5mLペレットを内径50mφ、高さBOOmの吸着塔
4本に、各10009 (dry )充てんし、第2図
に示す装置に設置した。吸着剤を活性化するために純水
素ガスを120℃で2時間、INf/winで流通し、
Cu ” ” ヲcLI ” ニ還元した。
Four adsorption towers each having an inner diameter of 50 mφ and a height of BOOm were each filled with 5 mL pellets (10,009 dry) and installed in the apparatus shown in FIG. 2. Pure hydrogen gas was passed through INf/win at 120°C for 2 hours to activate the adsorbent.
Cu ” ” wocLI ” was reduced.

塔内温度を所定の操作温度に設定した後、除塵。After setting the temperature inside the tower to the specified operating temperature, dust is removed.

除湿した転炉ガス(Co  78〜82容量%。Dehumidified converter gas (Co) 78-82% by volume.

CO29〜11容量%、N27〜10容量%。CO29-11% by volume, N27-10% by volume.

H20,8〜2容量%、020.05容量%以下。H20, 8-2% by volume, 020.05% by volume or less.

水分露点0℃以下)を本発明方法に示すシステムでPS
Aを行い、COを分離した。
PS with the system shown in the method of the present invention
A was performed to separate CO.

サイクルタイムはいずれも20分、ステップ1は2分、
ステップ2は3分とした。各実験は20サイクル以上運
転し、流1.a度ともに安定してから各部の流層と濃度
を測定した。実施例2)〜7)の結果を表2に示す。
Cycle time is 20 minutes for each step, 2 minutes for step 1,
Step 2 was 3 minutes. Each experiment was run over 20 cycles, with flow 1. After the temperature was stabilized, the flow layer and concentration at each part were measured. The results of Examples 2) to 7) are shown in Table 2.

なお本実験装置の処理量では、パージガスの断熱圧縮に
よる温度の上昇はわずかで影響は認められなかったが、
結果は良好であった。
Note that with the throughput of this experimental equipment, the temperature increase due to adiabatic compression of the purge gas was small and no effect was observed.
The results were good.

(発明の効果) この発明によれば、昇圧工程でテイルガスを使用せず、
すべて原料混合ガスを用いており、またパージ工程で製
品ガスは断熱圧縮により昇圧、昇温されているため、吸
着剤の一酸化炭素選択吸着能が増加し、しかも物質移動
速度が大となり、パージ工程を効率よくおこなうことが
できる。
(Effect of the invention) According to this invention, no tail gas is used in the pressure increasing step,
All use a mixed raw material gas, and the product gas is pressurized and heated through adiabatic compression in the purge process, which increases the adsorbent's selective adsorption capacity for carbon monoxide and increases the mass transfer rate. Processes can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分離回収方法における各ガスの流れの
1側を説明する図、第2図は本発明の分離回収方法を実
施するための4塔式PSA@置を示す図、第3図は吸着
が終了した塔にCOパージガスを流通して、出口CoI
2度の変化を求めた図である。 1・・・送風機、2・・・真空ポンプ、4・・・昇圧灘
、4・・・ガスホルダー、5〜8・・・流量調節弁、9
〜29・・・切換弁、A−D・・・吸着基、F・・・原
料混合ガス、P・・・パージガス、■・・・テイルガス
、De・・・l112着ガス。 ステップ ステップ 1図
Fig. 1 is a diagram explaining one side of the flow of each gas in the separation and recovery method of the present invention, Fig. 2 is a diagram showing a four-column PSA @ installation for implementing the separation and recovery method of the present invention, and Fig. 3 The figure shows CO purge gas flowing through the tower after adsorption and exiting CoI.
It is a figure which calculated|required the change of 2 degrees. 1... Blower, 2... Vacuum pump, 4... Boosting nada, 4... Gas holder, 5-8... Flow rate control valve, 9
~29...Switching valve, A-D...Adsorption group, F...Mixed raw material gas, P...Purge gas, ■...Tail gas, De...1112 destination gas. Step step 1 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)一酸化炭素を主成分のひとつとし、少なくとも二
酸化炭素及び/または、窒素を含有する混合ガスを一酸
化炭素選択吸着剤を入れた塔に通して、一酸化炭素を選
択的に吸着せしめた後脱着する一酸化炭素の分離回収方
法において、 一酸化炭素の脱着回収が終了した塔に上記混合ガスを供
給し、少なくとも大気圧まで昇圧する昇圧工程と、 昇圧工程の終了した塔に大気圧以上の圧力の混合ガスを
、一酸化炭素に次いで吸着量の多い成分が少なくともブ
レークスルーし始めるまで流通せしめる吸着工程と、 吸着工程が終了した塔に、パージ工程の出口ガスを放圧
しながら供給して、一酸化炭素及び一酸化炭素に次いで
吸着量の多い成分を除いた他の吸着成分をパージする予
備パージ工程と、 予備パージ工程が終了した塔の出口端を閉じてパージ工
程の出口ガスを回収するパージ後ガス回収工程と、 脱着回収後の製品ガスを吸着工程における吸着圧力を超
える圧力に昇圧し、その断熱圧縮熱で昇温し、これをパ
ージ後ガス回収工程の終了した塔の入口端に供給し同時
に出口端を開けて、一酸化炭素に次いで吸着量の多い吸
着成分をパージするパージ工程と、 パージ工程終了後の塔を減圧して、濃縮した一酸化炭素
を回収する脱着回収工程とを、順次繰返して行う一酸化
炭素の分離回収方法。
(1) A mixed gas containing carbon monoxide as one of the main components and at least carbon dioxide and/or nitrogen is passed through a column containing a carbon monoxide selective adsorbent to selectively adsorb carbon monoxide. In the separation and recovery method for carbon monoxide, which is desorbed after carbon monoxide has been desorbed, there is a pressurization step in which the above-mentioned mixed gas is supplied to the tower where desorption and recovery of carbon monoxide has been completed, and the pressure is increased to at least atmospheric pressure; The adsorption process involves flowing the mixed gas at the above pressure until at least the component with the highest amount of adsorption after carbon monoxide begins to break through, and the outlet gas from the purge process is supplied to the tower after the adsorption process while releasing the pressure. Then, there is a preliminary purge step in which carbon monoxide and other adsorbed components are purged except for the component with the second largest amount of adsorption after carbon monoxide, and the outlet end of the column after the preliminary purge step is closed and the outlet gas from the purge step is removed. The product gas after desorption and recovery is pressurized to a pressure higher than the adsorption pressure in the adsorption step, and the temperature is raised by the heat of adiabatic compression. There is a purge process in which the gas is supplied to the end and at the same time the outlet end is opened to purge the adsorbed components that have the second largest amount of adsorption after carbon monoxide, and a desorption recovery process in which the column is depressurized after the purge process is completed to recover concentrated carbon monoxide. A carbon monoxide separation and recovery method in which the steps are repeated in sequence.
(2)一酸化炭素選択吸着剤は、シリカ/アルミナ比1
0以下のゼオライトに、Ni、Mn、Rh、Cu(I)
、Ag及びこれらの混合物から選択された1又は2以上
の金属を担持せしめたものである特許請求の範囲第1項
記載の一酸化炭素分離回収方法。
(2) The carbon monoxide selective adsorbent has a silica/alumina ratio of 1
0 or less zeolite, Ni, Mn, Rh, Cu(I)
2. The carbon monoxide separation and recovery method according to claim 1, wherein one or more metals selected from Ag, Ag, and mixtures thereof are supported.
JP61148622A 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide Granted JPS634825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148622A JPS634825A (en) 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148622A JPS634825A (en) 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide

Publications (2)

Publication Number Publication Date
JPS634825A true JPS634825A (en) 1988-01-09
JPH0360523B2 JPH0360523B2 (en) 1991-09-17

Family

ID=15456902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148622A Granted JPS634825A (en) 1986-06-25 1986-06-25 Method for separating and recovering carbon monoxide

Country Status (1)

Country Link
JP (1) JPS634825A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2007254177A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Methanation process of carbon monoxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252989A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2007254177A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Methanation process of carbon monoxide

Also Published As

Publication number Publication date
JPH0360523B2 (en) 1991-09-17

Similar Documents

Publication Publication Date Title
AU646704B2 (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
JP2988625B2 (en) Temperature swing adsorption method
US5735938A (en) Method for production of nitrogen using oxygen selective adsorbents
JP4315666B2 (en) Syngas purification method
CA1050901A (en) Adsorption process
JPS6325809B2 (en)
JP2006239692A (en) Pressure swing adsorption process and apparatus
JPH01297119A (en) Improved pressure swing adsorbing method and apparatus for gas separation
JPS6137968B2 (en)
JP3464766B2 (en) PSA method using simultaneous evacuation of top and bottom of adsorbent bed
JPH0244569B2 (en)
KR20110115534A (en) Recovery of nf3 from adsorption operation
CA2731185C (en) Method for the removal of moisture in a gas stream
KR20220057442A (en) Removal of hydrogen impurity from gas streams
TWI569864B (en) Purifying method and purifying apparatus for argon gas
US6589493B2 (en) Gas purification-treating agents and gas purifying apparatuses
CA2311848A1 (en) Gas processing agent and manufacturing method therefor, gas purification method, gas purifier and gas purification apparatus
JP5683390B2 (en) Helium gas purification method and purification apparatus
JPS634825A (en) Method for separating and recovering carbon monoxide
JP2011195434A (en) Refining method and refining apparatus for argon gas
JPH0360524B2 (en)
JP3782288B2 (en) Gas purification agent, production method thereof, gas purification method, gas purifier and gas purification apparatus
JPS59227701A (en) Method for selective concentration and separative purification of hydrogen gas
JPH10194708A (en) Oxygen enricher
JPS621767B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees