JP2011195434A - Refining method and refining apparatus for argon gas - Google Patents

Refining method and refining apparatus for argon gas Download PDF

Info

Publication number
JP2011195434A
JP2011195434A JP2011020725A JP2011020725A JP2011195434A JP 2011195434 A JP2011195434 A JP 2011195434A JP 2011020725 A JP2011020725 A JP 2011020725A JP 2011020725 A JP2011020725 A JP 2011020725A JP 2011195434 A JP2011195434 A JP 2011195434A
Authority
JP
Japan
Prior art keywords
argon gas
oxygen
adsorption
hydrogen
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011020725A
Other languages
Japanese (ja)
Other versions
JP5665120B2 (en
Inventor
Mitsutoshi Nakatani
光利 中谷
Mitsuru Kishii
充 岸井
Junichi Sakamoto
純一 坂本
Nobuyuki Kitagishi
信之 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2011020725A priority Critical patent/JP5665120B2/en
Publication of JP2011195434A publication Critical patent/JP2011195434A/en
Application granted granted Critical
Publication of JP5665120B2 publication Critical patent/JP5665120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0015Chemical processing only
    • C01B23/0021Chemical processing only by oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0015Chemical processing only
    • C01B23/0026Chemical processing only by reduction
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0057Physical processing only by adsorption in solids characterised by the adsorbent
    • C01B23/0063Carbon based materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0078Temperature swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0029Obtaining noble gases
    • C01B2210/0034Argon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0045Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/005Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0053Hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Abstract

PROBLEM TO BE SOLVED: To provide a refining method and a refining device, both being practically usable and capable of purifying an argon gas to a high purity by reducing energy for refining by effectively reducing impurity contents of the argon gas to reduce the loading of a subsequent adsorption treatment.SOLUTION: In the method for purifying an argon gas at least including oxygen, hydrogen, carbon monoxide and nitrogen as impurities, the oxygen mol concentration in the argon gas is set to a value higher than 1/2 of the sum of the carbon monoxide mol concentration and hydrogen mol concentration; then, the oxygen is reacted with the carbon monoxide and hydrogen to generate carbon dioxide and water in such a state that the oxygen remains; then, the moisture content is reduced by dehydrating operation; then, at least the oxygen and carbon dioxide in the impurities are adsorbed by a pressure swing adsorption process using a carbonic adsorbent; and then, at least the nitrogen in the impurities is adsorbed by a thermal swing adsorption process at -10 to -50°C.

Description

本発明は、不純物として少なくとも酸素、水素、一酸化炭素、および窒素を含有するアルゴンガスを精製する方法と装置に関する。   The present invention relates to a method and apparatus for purifying argon gas containing at least oxygen, hydrogen, carbon monoxide, and nitrogen as impurities.

例えば、シリコン単結晶引上げ炉、セラミック焼結炉、製鋼用真空脱ガス設備、太陽電池用シリコンプラズマ溶解装置、多結晶シリコン鋳造炉のような設備においては、アルゴンガスが炉内雰囲気ガス等として使用されている。そのような設備から再利用のため回収されたアルゴンガスは、水素、一酸化炭素、空気などの混入により純度が低下している。そこで、回収されたアルゴンガスの純度を高めるため、混入した不純物を吸着剤に吸着させることが行われている。さらに、そのような不純物の吸着を効率良く行うため、吸着処理の前処理として不純物中の酸素と可燃成分とを反応させることが提案されている(特許文献1、2参照)。   For example, in equipment such as silicon single crystal pulling furnace, ceramic sintering furnace, vacuum degassing equipment for steel making, silicon plasma melting equipment for solar cells, polycrystalline silicon casting furnace, argon gas is used as atmosphere gas in the furnace Has been. The purity of argon gas collected for reuse from such facilities is reduced due to the incorporation of hydrogen, carbon monoxide, air, and the like. Therefore, in order to increase the purity of the recovered argon gas, the admixed impurities are adsorbed on the adsorbent. Furthermore, in order to efficiently adsorb such impurities, it has been proposed to react oxygen in the impurities with combustible components as a pretreatment of the adsorption treatment (see Patent Documents 1 and 2).

特許文献1に開示された方法においては、アルゴンガスにおける酸素の量を、水素、一酸化炭素等の可燃成分を完全燃焼させるのに必要な化学量論量よりも僅かに少なくなるよう調節し、次に、一酸化炭素と酸素との反応よりも水素と酸素との反応を優先させるパラジウムまたは金を触媒として、アルゴンガスにおける酸素を一酸化炭素、水素等と反応させることで、一酸化炭素を残留させた状態で二酸化炭素と水を生成し、次に、アルゴンガスに含有される二酸化炭素と水を常温で吸着剤に吸着させ、しかる後に、アルゴンガスに含有される一酸化炭素と窒素を−10℃〜−50℃の温度で吸着剤に吸着させている。   In the method disclosed in Patent Document 1, the amount of oxygen in the argon gas is adjusted to be slightly less than the stoichiometric amount necessary for complete combustion of combustible components such as hydrogen and carbon monoxide, Next, by using palladium or gold, which gives priority to the reaction of hydrogen and oxygen over the reaction of carbon monoxide and oxygen, oxygen in argon gas is reacted with carbon monoxide, hydrogen, etc. Carbon dioxide and water are produced in the state of remaining, and then carbon dioxide and water contained in argon gas are adsorbed on the adsorbent at room temperature, and then carbon monoxide and nitrogen contained in argon gas are adsorbed. It is made to adsorb | suck to adsorption agent at the temperature of -10 degreeC--50 degreeC.

特許文献2に開示された方法においては、アルゴンガスにおけるの酸素の量を、水素、一酸化炭素等の可燃成分を完全燃焼させるのに十分な量とし、次に、パラジウム系の触媒を用いてアルゴンガスにおける酸素を一酸化炭素、水素等と反応させることで、酸素を残留させた状態で二酸化炭素と水を生成し、次に、アルゴンガスに含有される二酸化炭素と水を常温で吸着剤に吸着させ、しかる後に、アルゴンガスに含有される酸素と窒素を−170℃程度の温度で吸着剤に吸着させている。   In the method disclosed in Patent Document 2, the amount of oxygen in the argon gas is set to an amount sufficient to completely burn combustible components such as hydrogen and carbon monoxide, and then a palladium-based catalyst is used. By reacting oxygen in argon gas with carbon monoxide, hydrogen, etc., carbon dioxide and water are produced with oxygen remaining, and then the carbon dioxide and water contained in argon gas are adsorbed at room temperature. Then, oxygen and nitrogen contained in the argon gas are adsorbed on the adsorbent at a temperature of about -170 ° C.

特許第3496079号公報Japanese Patent No. 3496079 特許第3737900号公報Japanese Patent No. 3737900

特許文献1に記載の方法では、前処理の段階でアルゴンガスにおける酸素の量を水素、一酸化炭素等を完全燃焼させるのに必要な化学量論量よりも少なくし、一酸化炭素と酸素との反応よりも水素と酸素との反応を優先させる触媒を用いることで、一酸化炭素を残留させた状態で二酸化炭素と水を生成している。しかし、未反応の一酸化炭素が水蒸気と水性ガスシフト反応を起こすことで水素が再生成され、水素の低減が要求される場合に対応できないという欠点がある。また、特許文献1に記載の方法では、不純物中の酸素と可燃成分とを反応させた後の吸着処理の段階で、二酸化炭素と水を常温で吸着剤に吸着させた後に、一酸化炭素と窒素を−10℃〜−50℃で吸着剤に吸着させている。そのような低温で一酸化炭素と窒素を吸着した吸着剤を再生する場合、一酸化炭素は窒素に比べて吸着剤から脱離させるのにエネルギーを要することから工業的に不利である。   In the method described in Patent Document 1, the amount of oxygen in the argon gas is less than the stoichiometric amount necessary for complete combustion of hydrogen, carbon monoxide, etc. in the pretreatment stage, and carbon monoxide and oxygen By using a catalyst that gives priority to the reaction of hydrogen and oxygen over the reaction of carbon dioxide, carbon dioxide and water are generated with carbon monoxide remaining. However, unreacted carbon monoxide undergoes a water-gas shift reaction with water vapor, so that hydrogen is regenerated, and there is a drawback that it is not possible to cope with a case where reduction of hydrogen is required. In addition, in the method described in Patent Document 1, carbon dioxide and water are adsorbed at room temperature after adsorbing carbon dioxide and water at the stage of the adsorption treatment after reacting oxygen in the impurities and the combustible component. Nitrogen is adsorbed on the adsorbent at −10 ° C. to −50 ° C. When regenerating an adsorbent that adsorbs carbon monoxide and nitrogen at such a low temperature, carbon monoxide is industrially disadvantageous because it requires more energy to desorb from the adsorbent than nitrogen.

特許文献2に記載の方法では、前処理の段階でアルゴンガスにおけるの酸素の量を水素、一酸化炭素等を完全燃焼させるのに十分な量とすることで、酸素を残留させた状態で二酸化炭素と水を生成している。しかし、酸素を吸着するには吸着時の温度を−170℃程度まで低下させる必要がある。すなわち、吸着処理の前処理で酸素を残留させるため、吸着処理の際の冷却エネルギーが増大し、精製負荷が大きくなるという問題がある。   In the method described in Patent Document 2, the amount of oxygen in the argon gas is set to a sufficient amount for complete combustion of hydrogen, carbon monoxide, etc. in the pretreatment stage, so that oxygen remains in a state where oxygen remains. It produces carbon and water. However, in order to adsorb oxygen, it is necessary to lower the temperature during adsorption to about -170 ° C. That is, since oxygen remains in the pretreatment of the adsorption treatment, there is a problem that the cooling energy during the adsorption treatment increases and the purification load increases.

本発明は、上記のような従来技術の問題を解決できるアルゴンガスの精製方法および精製装置を提供することを目的とする。   An object of the present invention is to provide an argon gas refining method and a refining apparatus that can solve the above-described problems of the prior art.

本発明方法は、少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する方法であって、前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定し、次に、前記アルゴンガスにおける酸素を一酸化炭素および水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成し、次に、前記アルゴンガスにおける水分含有率を脱水操作により低減し、次に、前記アルゴンガスにおける不純物の中の少なくとも酸素および二酸化炭素を、カーボン系吸着剤を用いた圧力スイング吸着法により吸着し、しかる後に、前記アルゴンガスにおける不純物の中の少なくとも窒素を、−10℃〜−50℃でのサーマルスイング吸着法により吸着することを特徴とする。
本発明によれば、アルゴンガスにおける酸素を一酸化炭素および水素と反応させることで、酸素を残留させた状態で二酸化炭素と水を生成し、次に、脱水操作によりアルゴンガスの水分含有率を低減している。これにより、アルゴンガスの主な不純物は酸素、二酸化炭素、および窒素とされるので、圧力スイング吸着法による不純物の吸着に際して水分の吸着が不要になり吸着負荷が軽減され、また、圧力スイング吸着法による吸着剤として酸素の吸着効果が高いカーボン系吸着剤が用いられる。これにより、PSAユニットを用いた圧力スイング吸着法による酸素吸着効果が高められるので、その後のTSAユニットを用いたサーマルスイング吸着法での酸素の吸着を不要にし、サーマルスイング吸着法での不純物の吸着温度を酸素を吸着する場合に比べて高くできる。よって、吸着処理の前処理で酸素を残留させても、冷却エネルギーを増大することなく、アルゴンガスの回収率および純度を高めることができる。
The method of the present invention is a method for purifying an argon gas containing at least oxygen, hydrogen, carbon monoxide, and nitrogen as impurities, wherein the oxygen molar concentration in the argon gas is a carbon monoxide molar concentration and a hydrogen molar concentration. If it is less than or equal to 1/2 of the sum, it is set to a value exceeding 1/2 by adding oxygen, and then oxygen in the argon gas is reacted with carbon monoxide and hydrogen using a catalyst. , Producing carbon dioxide and water in a state in which oxygen remains, and then reducing the moisture content in the argon gas by dehydration, and then removing at least oxygen and carbon dioxide from impurities in the argon gas. Adsorbed by a pressure swing adsorption method using a carbon-based adsorbent, and then at least nitrogen in impurities in the argon gas is −10 Characterized by suction by thermal swing adsorption method at ~-50 ° C..
According to the present invention, by reacting oxygen in argon gas with carbon monoxide and hydrogen, carbon dioxide and water are generated with oxygen remaining, and then the moisture content of the argon gas is reduced by dehydration. Reduced. As a result, the main impurities of argon gas are oxygen, carbon dioxide, and nitrogen, which eliminates the need for moisture adsorption during the adsorption of impurities by the pressure swing adsorption method and reduces the adsorption load. A carbon-based adsorbent having a high oxygen adsorbing effect is used as the adsorbent. As a result, the oxygen adsorption effect by the pressure swing adsorption method using the PSA unit is enhanced, so that the subsequent oxygen swing adsorption by the thermal swing adsorption method using the TSA unit is unnecessary, and the impurity adsorption by the thermal swing adsorption method. The temperature can be made higher than when oxygen is adsorbed. Therefore, even if oxygen remains in the pretreatment of the adsorption treatment, the recovery rate and purity of argon gas can be increased without increasing the cooling energy.

本発明において圧力スイング吸着法による酸素吸着効果を高める上では、前記カーボン系吸着剤がカーボンモレキュラーシーブであるのが好ましい。   In the present invention, in order to enhance the oxygen adsorption effect by the pressure swing adsorption method, the carbon-based adsorbent is preferably a carbon molecular sieve.

本発明装置は、少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する装置であって、前記アルゴンガスが導入される反応器と、前記反応器に導入される前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する濃度調節装置と、前記反応器から流出する前記アルゴンガスの水分含有率を脱水操作を行うことで低減する乾燥機と、前記乾燥機に接続される吸着装置とを備え、前記反応器内で前記アルゴンガスにおける酸素が一酸化炭素および水素と反応することで、酸素が残留した状態で二酸化炭素と水が生成されるように、前記反応器に触媒が充填され、前記吸着装置は、前記アルゴンガスにおける不純物の中の少なくとも酸素および二酸化炭素を、カーボン系吸着剤を用いた圧力スイング吸着法により吸着するPSAユニットと、前記アルゴンガスにおける不純物の中の少なくとも窒素を、−10℃〜−50℃でのサーマルスイング吸着法により吸着するTSAユニットとを有することを特徴とする。
本発明装置によれば本発明方法を実施できる。
The apparatus of the present invention is an apparatus for purifying an argon gas containing at least oxygen, hydrogen, carbon monoxide, and nitrogen as impurities, the reactor into which the argon gas is introduced, and the reactor that is introduced into the reactor When the oxygen molar concentration in the argon gas is ½ or less of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration, the concentration adjusting device is set to a value exceeding 1/2 by adding oxygen; A drier that reduces the moisture content of the argon gas flowing out of the reactor by performing a dehydration operation; and an adsorption device connected to the drier, wherein oxygen in the argon gas is one in the reactor. The reactor is filled with a catalyst so that carbon dioxide and water are generated in a state where oxygen remains by reacting with carbon oxide and hydrogen, and the adsorption device is configured to use the argon gas. A PSA unit that adsorbs at least oxygen and carbon dioxide in impurities in a pressure swing adsorption method using a carbon-based adsorbent, and at least nitrogen in impurities in the argon gas at −10 ° C. to −50 ° C. And a TSA unit adsorbed by the thermal swing adsorption method.
According to the apparatus of the present invention, the method of the present invention can be carried out.

本発明によれば、アルゴンガスの不純物含有率を効果的に低減することで、その後の吸着処理の負荷を低減し、精製に要するエネルギーを少なくしてアルゴンガスを高純度に精製できる実用的な方法と装置を提供できる。   According to the present invention, by effectively reducing the impurity content of argon gas, it is possible to reduce the load of subsequent adsorption treatment, reduce the energy required for purification, and purify argon gas with high purity. Methods and apparatus can be provided.

本発明の実施形態に係るアルゴンガスの精製装置の構成説明図Arrangement explanatory drawing of the purification apparatus of argon gas concerning the embodiment of the present invention 本発明の実施形態に係るアルゴンガスの精製装置における圧力スイング吸着装置の構成説明図Structure explanatory drawing of the pressure swing adsorption | suction apparatus in the refiner | purifier of the argon gas which concerns on embodiment of this invention 本発明の実施形態に係るアルゴンガスの精製装置における温度スイング吸着装置の構成説明図Structure explanatory drawing of the temperature swing adsorption apparatus in the refiner | purifier of the argon gas which concerns on embodiment of this invention

図1に示すアルゴンガスの精製装置αは、例えば多結晶シリコン鋳造炉のようなアルゴンガス供給源1から供給される使用済アルゴンガスを回収して再利用できるように精製するもので、加熱器2、反応器3、濃度調節装置4、乾燥機5、冷却器8、および吸着装置9を備える。   An argon gas refining device α shown in FIG. 1 is for purifying spent argon gas supplied from an argon gas supply source 1 such as a polycrystalline silicon casting furnace so that it can be reused. 2, a reactor 3, a concentration adjusting device 4, a dryer 5, a cooler 8, and an adsorption device 9.

供給源αから供給されるアルゴンガスは、図外フィルター等により除塵され、ブロワ等のガス送り手段(図示省略)を介して加熱器2に導入される。精製対象のアルゴンガスに含有される微量の不純物は少なくとも酸素、水素、一酸化炭素、および窒素とされるが、二酸化炭素、炭化水素、水等の他の不純物を含有していてもよい。精製されるアルゴンガスにおける不純物の濃度は特に限定されず、例えば5モルppm〜40000モルppm程度とされる。加熱器2によるアルゴンガスの加熱温度は、各反応器3、6における反応を完結するためには250℃以上にするのが好ましく、触媒の寿命短縮を防止する観点から450℃以下とするのが好ましい。   The argon gas supplied from the supply source α is dust-removed by a filter (not shown) or the like and introduced into the heater 2 through gas feeding means (not shown) such as a blower. The trace amount of impurities contained in the argon gas to be purified is at least oxygen, hydrogen, carbon monoxide, and nitrogen, but may contain other impurities such as carbon dioxide, hydrocarbons, and water. The concentration of impurities in the argon gas to be purified is not particularly limited, and is, for example, about 5 mol ppm to 40000 mol ppm. The heating temperature of the argon gas by the heater 2 is preferably 250 ° C. or higher in order to complete the reaction in each of the reactors 3 and 6, and 450 ° C. or lower from the viewpoint of preventing shortening of the catalyst life. preferable.

加熱器2により加熱されたアルゴンガスは反応器3に導入される。濃度調節装置4は、反応器3に導入されるアルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する。本実施形態の濃度調節装置4は、濃度測定器4a、酸素供給源4b、酸素量調整器4c、及びコントローラ4dを有する。濃度測定器4aは、反応器3に導入されるアルゴンガスにおける酸素モル濃度、一酸化炭素モル濃度、および水素モル濃度を測定し、その測定信号をコントローラ4dに送る。コントローラ4dは、測定された酸素モル濃度が一酸化炭素モル濃度と水素モル濃度の和の1/2以下である場合は、1/2を超える値にするのに必要な酸素量に対応する制御信号を酸素量調整器4cに送る。酸素量調整器4cは、酸素供給源4bから反応器3へ到る流路を、制御信号に応じた量の酸素が供給されるように開度調整する。これにより、精製対象のアルゴンガスにおける酸素モル濃度は一酸化炭素モル濃度と水素モル濃度との和の1/2を超える値に設定される。   Argon gas heated by the heater 2 is introduced into the reactor 3. When the oxygen molar concentration in the argon gas introduced into the reactor 3 is less than or equal to 1/2 of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration, the concentration adjusting device 4 adds 1 / Set to a value greater than 2. The concentration adjusting device 4 of the present embodiment includes a concentration measuring device 4a, an oxygen supply source 4b, an oxygen amount adjusting device 4c, and a controller 4d. The concentration measuring device 4a measures the oxygen molar concentration, the carbon monoxide molar concentration, and the hydrogen molar concentration in the argon gas introduced into the reactor 3, and sends the measurement signal to the controller 4d. When the measured oxygen molar concentration is ½ or less of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration, the controller 4d performs control corresponding to the amount of oxygen necessary to obtain a value exceeding 1/2. A signal is sent to the oxygen amount adjuster 4c. The oxygen amount adjuster 4c adjusts the opening of the flow path from the oxygen supply source 4b to the reactor 3 so that an amount of oxygen corresponding to the control signal is supplied. Thereby, the oxygen molar concentration in the argon gas to be purified is set to a value exceeding 1/2 of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration.

反応器3に、酸素を水素および一酸化炭素と反応させる触媒が充填される。これにより、反応器3内でアルゴンガスにおける酸素が一酸化炭素および水素と反応することにより、酸素が残留した状態で二酸化炭素と水が生成される。なお、多結晶シリコン鋳造炉等から回収されるアルゴンガスは可燃成分として炭化水素を含むが、そのモル濃度は水素と一酸化炭素の合計モル濃度の通常は1/100以下である。よって、通常は一酸化炭素モル濃度と水素モル濃度との和の1/2を僅かに超えるように酸素モル濃度を設定すれば、酸素が残留した状態で二酸化炭素と水を生成できる。反応器3に充填される触媒は、酸素を一酸化炭素および水素と反応させるものであれば特に限定されず、例えば、白金、白金合金、パラジウム等をアルミナ等に担持した触媒を用いることができる。   Reactor 3 is filled with a catalyst that reacts oxygen with hydrogen and carbon monoxide. As a result, oxygen in the argon gas reacts with carbon monoxide and hydrogen in the reactor 3 to generate carbon dioxide and water with oxygen remaining. In addition, although argon gas collect | recovered from a polycrystalline-silicon casting furnace etc. contains a hydrocarbon as a combustible component, the molar concentration is usually 1/100 or less of the total molar concentration of hydrogen and carbon monoxide. Therefore, normally, if the oxygen molar concentration is set so as to slightly exceed 1/2 of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration, carbon dioxide and water can be generated with oxygen remaining. The catalyst charged in the reactor 3 is not particularly limited as long as it allows oxygen to react with carbon monoxide and hydrogen. For example, a catalyst in which platinum, platinum alloy, palladium or the like is supported on alumina or the like can be used. .

乾燥機5は、反応器3から流出するアルゴンガスの水分含有率を脱水操作を行うことで低減する。乾燥機5としては市販のものを用いればよく、例えばアルゴンガスを加圧して吸着剤により水分を除去し、吸着剤を減圧下で再生させる加圧式脱水装置、アルゴンガスを加圧冷却して凝縮された水分を除去する冷凍式脱水装置、アルゴンガスに含まれる水分を脱水剤により除去し、脱水剤を加熱して再生させる加熱再生式脱水装置等を用いることができ、加熱再生式脱水装置が水分含有率を効果的に低減する上で好ましく、アルゴンガスにおける水分を約99%程度除去できるものがよい。   The dryer 5 reduces the moisture content of the argon gas flowing out from the reactor 3 by performing a dehydration operation. A commercially available one may be used as the dryer 5. For example, a pressurized dehydrator that pressurizes argon gas to remove moisture with an adsorbent and regenerates the adsorbent under reduced pressure. A refrigerating dehydrator that removes the generated moisture, a heat regeneration dehydrator that removes moisture contained in the argon gas with a dehydrating agent, and heats and regenerates the dehydrating agent can be used. It is preferable for effectively reducing the moisture content, and it is preferable to remove about 99% of the moisture in the argon gas.

乾燥機5に冷却器8を介して吸着装置9が接続される。乾燥機5により脱水処理されて水分含有率を低減されたアルゴンガスは、冷却器8によって冷却された後に吸着装置9に導入される。吸着装置9はPSAユニット10とTSAユニット20を有する。PSAユニット10は、アルゴンガスにおける不純物の中の少なくとも酸素および二酸化炭素を、カーボン系吸着剤を用いた常温での圧力スイング吸着法により吸着する。TSAユニット20は、アルゴンガスにおける不純物の中の少なくとも窒素を、−10℃〜−50℃でのサーマルスイング吸着法により吸着する。   An adsorption device 9 is connected to the dryer 5 via a cooler 8. The argon gas dehydrated by the dryer 5 and reduced in water content is introduced into the adsorption device 9 after being cooled by the cooler 8. The adsorption device 9 includes a PSA unit 10 and a TSA unit 20. The PSA unit 10 adsorbs at least oxygen and carbon dioxide among impurities in argon gas by a pressure swing adsorption method at room temperature using a carbon-based adsorbent. The TSA unit 20 adsorbs at least nitrogen in the impurities in the argon gas by a thermal swing adsorption method at −10 ° C. to −50 ° C.

PSAユニット10は公知のものを用いることができる。例えば図2に示すPSAユニット10は4塔式であり、反応器3から流出するアルゴンガスを圧縮する圧縮機12と、4つの第1〜第4吸着塔13を有し、各吸着塔13にカーボン系吸着剤が充填されている。そのカーボン系吸着剤としては、酸素吸着効果を高める上でカーボンモレキュラーシーブが好ましい。
圧縮機12は、各吸着塔13の入口13aに切替バルブ13bを介して接続される。吸着塔13の入口13aそれぞれは、切替バルブ13eおよびサイレンサー13fを介して大気中に接続される。
吸着塔13の出口13kそれぞれは、切替バルブ13lを介して流出配管13mに接続され、切替バルブ13nを介して昇圧配管13oに接続され、切替バルブ13pを介して均圧・洗浄出側配管13qに接続され、切替バルブ13rを介して均圧・洗浄入側配管13sに接続される。
流出配管13mは、圧力調節バルブ13tを介してTSAユニット20に接続され、TSAユニット20に導入されるアルゴンガスの圧力が一定とされる。
昇圧配管13oは、流量制御バルブ13u、流量指示調節計13vを介して流出配管13mに接続され、昇圧配管13oでの流量が一定に調節されることにより、TSAユニット20に導入されるアルゴンガスの流量変動が防止される。
均圧・洗浄出側配管13qと均圧・洗浄入側配管13sは、一対の連結配管13wを介して互いに接続され、各連結配管13wに切替バルブ13xが設けられている。
As the PSA unit 10, a known unit can be used. For example, the PSA unit 10 shown in FIG. 2 is a four-column type, and has a compressor 12 for compressing argon gas flowing out from the reactor 3 and four first to fourth adsorption towers 13. Filled with carbon-based adsorbent. As the carbon-based adsorbent, carbon molecular sieve is preferable for enhancing the oxygen adsorption effect.
The compressor 12 is connected to the inlet 13a of each adsorption tower 13 via the switching valve 13b. Each of the inlets 13a of the adsorption tower 13 is connected to the atmosphere via a switching valve 13e and a silencer 13f.
Each of the outlets 13k of the adsorption tower 13 is connected to the outflow pipe 13m via the switching valve 13l, connected to the boosting pipe 13o via the switching valve 13n, and connected to the pressure equalization / washing outlet side pipe 13q via the switching valve 13p. Connected to the pressure equalization / cleaning inlet side pipe 13s through the switching valve 13r.
The outflow pipe 13m is connected to the TSA unit 20 via the pressure control valve 13t, and the pressure of the argon gas introduced into the TSA unit 20 is constant.
The booster pipe 13o is connected to the outflow pipe 13m via the flow rate control valve 13u and the flow rate indicating controller 13v, and the argon gas introduced into the TSA unit 20 is adjusted by adjusting the flow rate in the booster pipe 13o to be constant. Flow rate fluctuation is prevented.
The pressure equalizing / cleaning outlet side pipe 13q and the pressure equalizing / cleaning inlet side pipe 13s are connected to each other via a pair of connecting pipes 13w, and a switching valve 13x is provided in each connecting pipe 13w.

PSAユニット10の第1〜第4吸着塔13それぞれにおいて、吸着工程、減圧I工程(洗浄ガス出工程)、減圧II工程(均圧ガス出工程)、脱着工程、洗浄工程(洗浄ガス入工程)、昇圧I工程(均圧ガス入工程)、昇圧II工程が順次行われる。
すなわち、第1吸着塔13において切替バルブ13bと切替バルブ13lのみが開かれ、反応器3から供給されるアルゴンガスは圧縮機12から切替バルブ13bを介して第1吸着塔13に導入される。これにより、第1吸着塔13において導入されたアルゴンガス中の少なくとも二酸化炭素および水分が吸着剤に吸着されることで吸着工程が行われ、不純物の含有率が低減されたアルゴンガスが第1吸着塔13から流出配管13mを介してTSAユニット20に送られる。この際、流出配管13mに送られたアルゴンガスの一部は、昇圧配管13o、流量制御バルブ13uを介して別の吸着塔(本実施形態では第2吸着塔13)に送られ、第2吸着塔13において昇圧II工程が行われる。
次に、第1吸着塔13の切替バルブ13b、13lを閉じ、切替バルブ13pを開け、別の吸着塔(本実施形態では第4吸着塔13)の切替バルブ13rを開け、切替バルブ13xの中の1つを開ける。これにより、第1吸着塔13の上部の比較的不純物含有率の少ないアルゴンガスが、均圧・洗浄入側配管13sを介して第4吸着塔13に送られ、第1吸着塔13において減圧I工程が行われる。この際、第4吸着塔13においては切替バルブ13eが開かれ、洗浄工程が行われる。
次に、第1吸着塔13の切替バルブ13pと第4吸着塔13の切替バルブ13rを開けたまま、第4吸着塔13の切替バルブ13eを閉じることで、第1吸着塔13と第4吸着塔13の間において内部圧力が相互に均一、またはほぼ均一になるまで第4吸着塔13にガスの回収を実施する減圧II工程が行われる。この際、切替バルブ13xは場合に応じ2つとも開けてもよい。
次に、第1吸着塔13の切替バルブ13eを開け、切替バルブ13pを閉じることにより、吸着剤から不純物を脱着する脱着工程が行われ、不純物はガスと共にサイレンサー13fを介して大気中に放出される。
次に、第1吸着塔13の切替バルブ13rを開け、吸着工程を終わった状態の第2吸着塔13の切替バルブ13b、13lを閉じ、切替バルブ13pを開ける。これにより、第2吸着塔13の上部の比較的不純物含有率の少ないアルゴンガスが、均圧・洗浄入側配管13sを介して第1吸着塔13に送られ、第1吸着塔13において洗浄工程が行われる。第1吸着塔13において洗浄工程で用いられたガスは、切替バルブ13e、サイレンサー13fを介して大気中に放出される。この際、第2吸着塔13では減圧I工程が行われる。次に第2吸着塔13の切替バルブ13pと第1吸着塔13の切替バルブ13rを開けたまま第1吸着塔の切替バルブ13eを閉じることで昇圧I工程が行われる。この際、切替バルブ13xは場合に応じ2つとも開けてもよい。
しかる後に、第1吸着塔13の切替バルブ13rを閉じて一旦、工程の無い待機状態になる。これは、第4吸着塔13の昇圧II工程が完了するまで持続する。第4吸着塔13の昇圧が完了して、吸着工程が第3吸着塔13から第4吸着塔13に切り替わると、第1吸着塔の切替バルブ13nを開き、吸着工程にある別の吸着塔(本実施形態では第4吸着塔13)から流出配管13mに送られたアルゴンガスの一部が、昇圧配管13o、流量制御バルブ13uを介して第1吸着塔13に送られ、第1吸着塔13において昇圧II工程が行われる。
上記の各工程が第1〜第4吸着塔13それぞれにおいて順次繰り返されることで、不純物含有率を低減されたアルゴンガスがTSAユニット20に連続して送られる。
なお、PSAユニット10は図2に示すものに限定されず、例えば塔数は4以外、例えば2でも3でもよい。
In each of the first to fourth adsorption towers 13 of the PSA unit 10, an adsorption process, a reduced pressure I process (cleaning gas outflow process), a reduced pressure II process (equal pressure gas outflow process), a desorption process, and a cleaning process (cleaning gas input process). The step-up I step (equal pressure gas entering step) and the step-up II step are sequentially performed.
That is, only the switching valve 13b and the switching valve 13l are opened in the first adsorption tower 13, and the argon gas supplied from the reactor 3 is introduced from the compressor 12 to the first adsorption tower 13 through the switching valve 13b. As a result, an adsorption process is performed by adsorbing at least carbon dioxide and moisture in the argon gas introduced in the first adsorption tower 13 to the adsorbent, and the argon gas with reduced impurity content is first adsorbed. It is sent from the tower 13 to the TSA unit 20 through the outflow pipe 13m. At this time, a part of the argon gas sent to the outflow pipe 13m is sent to another adsorption tower (second adsorption tower 13 in the present embodiment) via the boosting pipe 13o and the flow rate control valve 13u, and the second adsorption. In the tower 13, a pressure increase II step is performed.
Next, the switching valves 13b and 13l of the first adsorption tower 13 are closed, the switching valve 13p is opened, the switching valve 13r of another adsorption tower (the fourth adsorption tower 13 in this embodiment) is opened, and the switching valve 13x is opened. Open one of the. As a result, the argon gas having a relatively small impurity content at the upper part of the first adsorption tower 13 is sent to the fourth adsorption tower 13 via the pressure equalization / cleaning inlet side pipe 13s. A process is performed. At this time, in the fourth adsorption tower 13, the switching valve 13e is opened, and a cleaning process is performed.
Next, the switching valve 13e of the fourth adsorption tower 13 is closed while the switching valve 13p of the first adsorption tower 13 and the switching valve 13r of the fourth adsorption tower 13 are opened, so that the first adsorption tower 13 and the fourth adsorption tower 13 are closed. A depressurization II step is performed in which the fourth adsorption tower 13 recovers the gas until the internal pressure becomes uniform or almost uniform between the towers 13. At this time, two switching valves 13x may be opened depending on circumstances.
Next, a desorption process for desorbing impurities from the adsorbent is performed by opening the switching valve 13e of the first adsorption tower 13 and closing the switching valve 13p, and the impurities are released into the atmosphere together with the gas through the silencer 13f. The
Next, the switching valve 13r of the first adsorption tower 13 is opened, the switching valves 13b and 13l of the second adsorption tower 13 in the state where the adsorption process is finished are closed, and the switching valve 13p is opened. As a result, the argon gas having a relatively low impurity content in the upper part of the second adsorption tower 13 is sent to the first adsorption tower 13 via the pressure equalization / washing inlet side pipe 13s, and the first adsorption tower 13 performs the washing step. Is done. The gas used in the cleaning process in the first adsorption tower 13 is released into the atmosphere through the switching valve 13e and the silencer 13f. At this time, a reduced pressure I step is performed in the second adsorption tower 13. Next, the pressure increase I process is performed by closing the switching valve 13e of the first adsorption tower while the switching valve 13p of the second adsorption tower 13 and the switching valve 13r of the first adsorption tower 13 are opened. At this time, two switching valves 13x may be opened depending on circumstances.
After that, the switching valve 13r of the first adsorption tower 13 is closed to temporarily enter a standby state without a process. This continues until the step-up II process of the fourth adsorption tower 13 is completed. When the pressurization of the fourth adsorption tower 13 is completed and the adsorption process is switched from the third adsorption tower 13 to the fourth adsorption tower 13, the switching valve 13n of the first adsorption tower is opened, and another adsorption tower in the adsorption process ( In the present embodiment, a part of the argon gas sent from the fourth adsorption tower 13) to the outflow pipe 13m is sent to the first adsorption tower 13 via the pressure raising pipe 13o and the flow rate control valve 13u, and the first adsorption tower 13 is supplied. The step-up II process is performed in
The above steps are sequentially repeated in each of the first to fourth adsorption towers 13 so that the argon gas with a reduced impurity content is continuously sent to the TSA unit 20.
The PSA unit 10 is not limited to the one shown in FIG. 2, and the number of towers may be other than 4, for example, 2 or 3, for example.

TSAユニット20は公知のものを用いることができる。例えば図3に示すTSAユニット20は2塔式であり、PSAユニット10から送られてくるアルゴンガスを予冷する熱交換型予冷器21と、予冷器21により冷却されたアルゴンガスを更に冷却する熱交換型冷却器22と、第1、第2吸着塔23、各吸着塔23を覆う熱交換部24を有する。熱交換部24は、吸着工程時には冷媒で吸着剤を冷却し、脱着工程時には熱媒で吸着剤を加熱する。各吸着塔23は、吸着剤が充填された多数の内管を有する。その吸着剤としては窒素の吸着に適したものが用いられ、交換イオンが2価の陽イオンであるX型ゼオライトやY型ゼオライトを用いるのが好ましく、例えばカルシウム(Ca)またはリチウム(Li)でイオン交換されたゼオライト系吸着剤を用いることができ、さらに、その2価の陽イオンはマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)の中から選ばれる少なくとも1種であるのがより好ましい。
冷却器22は、各吸着塔23の入口23aに切替バルブ23bを介して接続される。
吸着塔23の入口23aのそれぞれは、切替バルブ23cを介して大気中に通じる。
吸着塔23の出口23eそれぞれは、切替バルブ23fを介して流出配管23gに接続され、切替バルブ23hを介して冷却・昇圧用配管23iに接続され、切替バルブ23jを介して洗浄用配管23kに接続される。
流出配管23gは予冷器21の一部を構成し、流出配管23gから流出する精製されたアルゴンガスによりPSAユニット10から送られてくるアルゴンガスが冷却される。流出配管23gから精製されたアルゴンガスが一次側圧力制御バルブ23lを介し流出される。
冷却・昇圧用配管23i、洗浄用配管23kは、流量計23m、流量制御バルブ23o、切替バルブ23nを介して流出配管23gに接続される。
熱交換部24は多管式とされ、吸着塔23を構成する多数の内管を囲む外管24a、冷媒供給源24b、冷媒用ラジエタ24c、熱媒供給源24d、熱媒用ラジエタ24eで構成される。また、冷媒供給源24bから供給される冷媒を外管24a、冷媒用ラジエタ24cを介して循環させる状態と、熱媒供給源24dから供給される熱媒を外管24a、熱媒用ラジエタ24eを介して循環させる状態とに切り換えるための複数の切替バルブ24fが設けられている。さらに、冷媒用ラジエタ24cから分岐する配管により冷却器22の一部が構成され、冷媒供給源24bから供給される冷媒によりアルゴンガスが冷却器22において冷却され、その冷媒はタンク24gに還流される。
A known TSA unit 20 can be used. For example, the TSA unit 20 shown in FIG. 3 is a two-column type, and a heat exchange type precooler 21 that precools the argon gas sent from the PSA unit 10 and heat that further cools the argon gas cooled by the precooler 21. The heat exchanger 24 that covers the exchange-type cooler 22, the first and second adsorption towers 23, and the respective adsorption towers 23 is provided. The heat exchanging unit 24 cools the adsorbent with a refrigerant during the adsorption process, and heats the adsorbent with a heat medium during the desorption process. Each adsorption tower 23 has a large number of inner tubes filled with an adsorbent. As the adsorbent, those suitable for adsorption of nitrogen are used, and it is preferable to use X-type zeolite or Y-type zeolite whose exchange ion is a divalent cation, such as calcium (Ca) or lithium (Li). An ion-exchanged zeolite adsorbent can be used, and the divalent cation is at least one selected from magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba). It is more preferable that
The cooler 22 is connected to the inlet 23a of each adsorption tower 23 via a switching valve 23b.
Each of the inlets 23a of the adsorption tower 23 communicates with the atmosphere via the switching valve 23c.
Each of the outlets 23e of the adsorption tower 23 is connected to an outflow pipe 23g through a switching valve 23f, connected to a cooling / pressure-increasing pipe 23i through a switching valve 23h, and connected to a cleaning pipe 23k through a switching valve 23j. Is done.
The outflow pipe 23g constitutes a part of the precooler 21, and the argon gas sent from the PSA unit 10 is cooled by the purified argon gas flowing out from the outflow pipe 23g. The purified argon gas flows out from the outflow pipe 23g through the primary pressure control valve 23l.
The cooling / pressurizing piping 23i and the cleaning piping 23k are connected to the outflow piping 23g via a flow meter 23m, a flow control valve 23o, and a switching valve 23n.
The heat exchanging unit 24 is a multi-tube type, and includes an outer tube 24a surrounding a large number of inner tubes constituting the adsorption tower 23, a refrigerant supply source 24b, a refrigerant radiator 24c, a heat medium supply source 24d, and a heat medium radiator 24e. Is done. In addition, the refrigerant supplied from the refrigerant supply source 24b is circulated through the outer pipe 24a and the refrigerant radiator 24c, and the heat medium supplied from the heat medium supply source 24d is supplied to the outer pipe 24a and the heat medium radiator 24e. A plurality of switching valves 24f are provided for switching to a state of circulation through the switching valves 24f. Further, a part of the cooler 22 is constituted by a pipe branched from the refrigerant radiator 24c, and the argon gas is cooled in the cooler 22 by the refrigerant supplied from the refrigerant supply source 24b, and the refrigerant is returned to the tank 24g. .

TSAユニット20の第1、第2吸着塔23それぞれにおいて、吸着工程、脱着工程、洗浄工程、冷却工程、昇圧工程が順次行われる。
すなわち、TSAユニット20において、PSAユニット10から供給されるアルゴンガスは予冷器21、冷却器22において冷却された後に、切替バルブ23bを介して第1吸着塔23に導入される。この際、第1吸着塔23は熱交換機24において冷媒が循環することで−10℃〜−50℃に冷却される状態とされ、切替バルブ23c、23h、23jは閉じられ、切替バルブ23fは開かれ、アルゴンガスに含有される少なくとも窒素は吸着剤に吸着される。これにより、第1吸着塔23において吸着工程が行われ、不純物の含有率が低減された精製アルゴンガスが吸着塔23から一次側圧力制御バルブ23lを介して流出される。
第1吸着塔23において吸着工程が行われている間に、第2吸着塔23において脱着工程、洗浄工程、冷却工程、昇圧工程が進行する。
すなわち第2吸着塔23においては、吸着工程が終了した後、脱着工程を実施するため、切替バルブ23b、23fが閉じられ、切替バルブ23cが開かれる。これにより第2吸着塔23においては、不純物を含んだヘリウムガスが大気中に放出され、圧力がほぼ大気圧まで低下される。この脱着工程においては、第2吸着塔23で吸着工程時に冷媒を循環させていた熱交換部24の切替バルブ24fを閉状態に切り替えて冷媒の循環を停止させ、冷媒を熱交換部24から抜き出して冷媒供給源24bに戻す切替バルブ24fを開状態に切り替える。
次に、第2吸着塔23において洗浄工程を実施するため、第2吸着塔23の切替バルブ23c、23jと洗浄用配管23kの切替バルブ23nが開状態とされ、熱交換型予冷器21における熱交換により加熱された精製アルゴンガスの一部が、洗浄用配管23kを介して第2吸着塔23に導入される。これにより第2吸着塔23においては、吸着剤からの不純物の脱着と精製アルゴンガスによる洗浄が実施され、その洗浄に用いられたアルゴンガスは切替バルブ23cから不純物と共に大気中に放出される。この洗浄工程においては、第2吸着塔23で熱媒を循環させるための熱交換部24の切替バルブ24fを開状態に切り替える。
次に、第2吸着塔23において冷却工程を実施するため、第2吸着塔23の切替バルブ23jと洗浄用配管23kの切替バルブ23nが閉状態とされ、第2吸着塔23の切替バルブ23hと冷却・昇圧用配管23iの切替バルブ23nが開状態とされ、第1吸着塔23から流出する精製アルゴンガスの一部が冷却・昇圧用配管23iを介して第2吸着塔23に導入される。これにより、第2吸着塔23内を冷却した精製アルゴンガスは切替バルブ23cを介して大気中に放出される。この冷却工程においては、熱媒を循環させるための切替バルブ24fを閉じ状態に切り替えて熱媒循環を停止させ、熱媒を熱交換部24から抜き出して熱媒供給源24dに戻す切替バルブ24fを開状態に切り替える。熱媒の抜き出しの終了後に、第2吸着塔23で冷媒を循環させるための熱交換部24の切替バルブ24fを開状態に切り替え、冷媒循環状態とする。この冷媒循環状態は、次の昇圧工程、それに続く吸着工程の終了まで継続する。
次に、第2吸着塔23において昇圧工程を実施するため、第2吸着塔23の切替バルブ23cが閉じられ、第1吸着塔23から流出する精製アルゴンガスの一部が導入されることで第2吸着塔23の内部が昇圧される。この昇圧工程は、第2吸着塔23の内圧が第1吸着塔23の内圧とほぼ等しくなるまで継続される。昇圧工程が終了すれば、第2吸着塔23の切替バルブ23hと冷却・昇圧用配管23iの切替バルブ23nが閉じられ、これによって第2吸着塔23の全ての切替バルブ23b、23c、23f、23h、23jが閉じた状態となり、第2吸着塔23は次の吸着工程まで待機状態になる。
第2吸着塔23の吸着工程は第1吸着塔23の吸着工程と同様に実施される。第2吸着塔23において吸着工程が行われている間に、第1吸着塔23において脱着工程、洗浄工程、冷却工程、昇圧工程が第2吸着塔23におけると同様に進行される。
なお、TSAユニット20は図3に示すものに限定されず、例えば塔数は2以上、例えば3でも4でもよい。
In each of the first and second adsorption towers 23 of the TSA unit 20, an adsorption process, a desorption process, a cleaning process, a cooling process, and a pressure increasing process are sequentially performed.
That is, in the TSA unit 20, the argon gas supplied from the PSA unit 10 is cooled in the precooler 21 and the cooler 22, and then introduced into the first adsorption tower 23 via the switching valve 23b. At this time, the first adsorption tower 23 is cooled to −10 ° C. to −50 ° C. by circulating the refrigerant in the heat exchanger 24, the switching valves 23c, 23h, and 23j are closed, and the switching valve 23f is opened. In addition, at least nitrogen contained in the argon gas is adsorbed by the adsorbent. As a result, an adsorption step is performed in the first adsorption tower 23, and purified argon gas with reduced impurity content flows out from the adsorption tower 23 through the primary pressure control valve 231.
While the adsorption process is performed in the first adsorption tower 23, the desorption process, the cleaning process, the cooling process, and the pressure increasing process are performed in the second adsorption tower 23.
That is, in the second adsorption tower 23, the switching valves 23b and 23f are closed and the switching valve 23c is opened to perform the desorption process after the adsorption process is completed. Thereby, in the second adsorption tower 23, helium gas containing impurities is released into the atmosphere, and the pressure is reduced to almost atmospheric pressure. In this desorption process, the switching valve 24f of the heat exchanging section 24 that has circulated the refrigerant in the second adsorption tower 23 during the adsorption process is switched to the closed state to stop the circulation of the refrigerant, and the refrigerant is extracted from the heat exchanging section 24. The switching valve 24f that returns to the refrigerant supply source 24b is switched to the open state.
Next, in order to carry out the cleaning process in the second adsorption tower 23, the switching valves 23c, 23j of the second adsorption tower 23 and the switching valve 23n of the cleaning pipe 23k are opened, and the heat in the heat exchange type precooler 21 is heated. Part of the purified argon gas heated by the exchange is introduced into the second adsorption tower 23 through the cleaning pipe 23k. Thus, in the second adsorption tower 23, desorption of impurities from the adsorbent and cleaning with purified argon gas are performed, and the argon gas used for the cleaning is released into the atmosphere together with the impurities from the switching valve 23c. In this cleaning step, the switching valve 24f of the heat exchange unit 24 for circulating the heat medium in the second adsorption tower 23 is switched to the open state.
Next, in order to perform the cooling process in the second adsorption tower 23, the switching valve 23j of the second adsorption tower 23 and the switching valve 23n of the cleaning pipe 23k are closed, and the switching valve 23h of the second adsorption tower 23 The switching valve 23n of the cooling / pressurizing pipe 23i is opened, and a part of the purified argon gas flowing out from the first adsorption tower 23 is introduced into the second adsorption tower 23 through the cooling / pressurizing pipe 23i. As a result, the purified argon gas cooled in the second adsorption tower 23 is released into the atmosphere through the switching valve 23c. In this cooling process, the switching valve 24f for circulating the heat medium is switched to the closed state to stop the circulation of the heat medium, and the switching valve 24f that extracts the heat medium from the heat exchange unit 24 and returns it to the heat medium supply source 24d is provided. Switch to the open state. After completion of the extraction of the heat medium, the switching valve 24f of the heat exchanging unit 24 for circulating the refrigerant in the second adsorption tower 23 is switched to the open state to set the refrigerant circulation state. This refrigerant circulation state continues until the end of the next pressurization step and the subsequent adsorption step.
Next, in order to perform the pressure increasing process in the second adsorption tower 23, the switching valve 23c of the second adsorption tower 23 is closed, and a part of the purified argon gas flowing out from the first adsorption tower 23 is introduced. The inside of the two adsorption tower 23 is pressurized. This pressure increasing process is continued until the internal pressure of the second adsorption tower 23 becomes substantially equal to the internal pressure of the first adsorption tower 23. When the pressure increasing process is completed, the switching valve 23h of the second adsorption tower 23 and the switching valve 23n of the cooling / pressure increasing pipe 23i are closed, whereby all the switching valves 23b, 23c, 23f, 23h of the second adsorption tower 23 are closed. , 23j are closed, and the second adsorption tower 23 is in a standby state until the next adsorption step.
The adsorption process of the second adsorption tower 23 is performed in the same manner as the adsorption process of the first adsorption tower 23. While the adsorption process is performed in the second adsorption tower 23, the desorption process, the washing process, the cooling process, and the pressure increasing process are performed in the first adsorption tower 23 in the same manner as in the second adsorption tower 23.
The TSA unit 20 is not limited to the one shown in FIG. 3, and the number of towers may be 2 or more, for example, 3 or 4.

上記精製装置αによれば、少なくとも酸素、水素、一酸化炭素、および窒素を含有するアルゴンガスを精製する際に、そのアルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで一酸化炭素モル濃度と水素モル濃度との和の1/2を超える値に設定した後に、そのアルゴンガスにおける酸素を、一酸化炭素および水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成し、次に、そのアルゴンガスにおける水分含有率を脱水操作により低減している。これにより、アルゴンガスの主な不純物は酸素、二酸化炭素、および窒素とされるので、その後の圧力スイング吸着法による不純物の吸着に際して水分の吸着が不要になり吸着負荷が軽減され、また、圧力スイング吸着法による吸着剤として酸素の吸着効果が高いカーボン系吸着剤が用いられる。これにより、圧力スイング吸着法による酸素吸着効果が高められるので、その後のサーマルスイング吸着法での酸素の吸着を不要にし、サーマルスイング吸着法での不純物の吸着温度を酸素を吸着する場合に比べて高くできる。よって、吸着処理の前処理で酸素を残留させても、冷却エネルギーを増大することなく、アルゴンガスの回収率および純度を高めることができる。   According to the purification apparatus α, when purifying argon gas containing at least oxygen, hydrogen, carbon monoxide, and nitrogen, the oxygen molar concentration in the argon gas is the sum of the carbon monoxide molar concentration and the hydrogen molar concentration. Is set to a value exceeding 1/2 of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration by adding oxygen, oxygen in the argon gas is changed to carbon monoxide. In addition, by reacting with hydrogen and a catalyst, carbon dioxide and water are generated with oxygen remaining, and then the moisture content in the argon gas is reduced by dehydration. As a result, since the main impurities of argon gas are oxygen, carbon dioxide, and nitrogen, the adsorption of moisture becomes unnecessary during the adsorption of impurities by the subsequent pressure swing adsorption method, and the adsorption load is reduced. A carbon-based adsorbent having a high oxygen adsorption effect is used as an adsorbent by the adsorption method. As a result, the oxygen adsorption effect by the pressure swing adsorption method is enhanced, so that the oxygen adsorption in the subsequent thermal swing adsorption method is unnecessary, and the impurity adsorption temperature in the thermal swing adsorption method is compared with the case of adsorbing oxygen. Can be high. Therefore, even if oxygen remains in the pretreatment of the adsorption treatment, the recovery rate and purity of argon gas can be increased without increasing the cooling energy.

上記精製装置αを用いてアルゴンガスの精製を行った。アルゴンガスは不純物として酸素を500モルppm、水素を20モルppm、一酸化炭素を1800モルppm、窒素を1000モルppm、二酸化炭素を20モルppm、水分を20モルppmそれぞれ含有する。このアルゴンガスを標準状態で3.74L/minの流量で反応器3に導入し、さらに、そのアルゴンガスに酸素を標準状態で3.4mL/minの流量で添加した。反応器3に、アルミナ担持のプラチナ触媒を45mL充填し、反応条件は温度300℃、大気圧、空間速度5000/hとした。
反応器3から流出するアルゴンガスを、乾燥機5として冷凍式脱水装置を用いて−35℃まで冷却して水分を除去することで脱水操作を行い、アルゴンガスの水分含有率を低減した。
乾燥機5から流出するアルゴンガスを冷却器8で冷却後に、吸着装置9により不純物の含有率を低減した。PSAユニット10は3塔式とし、各塔に吸着剤として直径2mmの円柱状成形炭のカーボンモレキュラーシーブ(日本エンバイロケミカルズ製3k−172)を1.25L充填し、吸着圧力は0.9MPa、脱着圧力は0.1MPaとした。
PSAユニット10により精製されたアルゴンガスをTSAユニット20に導入した。TSAユニット20は2塔式とし、各塔に吸着剤としてCaX型ゼオライトを1.5L充填し、吸着圧力は0.8MPa、吸着温度は−35℃、脱着圧力は0.1MPa、脱着温度は40℃とした。
TSAユニット20から流出する精製されたアルゴンガスの組成を以下の表1に示す。なお、精製されたアルゴンガスにおける酸素濃度はTeledyne社製微量酸素濃度計型式311により、一酸化炭素および二酸化炭素の濃度は島津製作所製GC-FIDを用いてメタナイザーを介して測定した。水素濃度についてはGLscience 社製GC-PIDを用いて測定した。
Argon gas was purified using the purification apparatus α. Argon gas contains 500 mol ppm of oxygen, 20 mol ppm of hydrogen, 1800 mol ppm of carbon monoxide, 1000 mol ppm of nitrogen, 20 mol ppm of carbon dioxide and 20 mol ppm of water as impurities. This argon gas was introduced into the reactor 3 at a flow rate of 3.74 L / min under standard conditions, and oxygen was added to the argon gas at a flow rate of 3.4 mL / min under standard conditions. The reactor 3 was filled with 45 mL of an alumina-supported platinum catalyst, and the reaction conditions were a temperature of 300 ° C., an atmospheric pressure, and a space velocity of 5000 / h.
The argon gas flowing out from the reactor 3 was cooled to −35 ° C. using a refrigeration dehydrator as the dryer 5 to remove the moisture, thereby performing a dehydration operation, thereby reducing the moisture content of the argon gas.
After the argon gas flowing out from the dryer 5 was cooled by the cooler 8, the impurity content was reduced by the adsorption device 9. The PSA unit 10 is of a three-column type, and each column is filled with 1.25 L of carbon molecular sieve (3k-172, manufactured by Nippon Envirochemicals) of 2 mm in diameter as an adsorbent, and the adsorption pressure is 0.9 MPa. The pressure was 0.1 MPa.
Argon gas purified by the PSA unit 10 was introduced into the TSA unit 20. The TSA unit 20 is of a two-column type, and each column is filled with 1.5 L of CaX type zeolite as an adsorbent, the adsorption pressure is 0.8 MPa, the adsorption temperature is −35 ° C., the desorption pressure is 0.1 MPa, and the desorption temperature is 40 C.
The composition of the purified argon gas flowing out from the TSA unit 20 is shown in Table 1 below. The oxygen concentration in the purified argon gas was measured with a trace oxygen analyzer model 311 manufactured by Teledyne, and the concentrations of carbon monoxide and carbon dioxide were measured with a Shimadzu GC-FID through a methanizer. The hydrogen concentration was measured using GC-PID manufactured by GLscience.

酸素の添加流量を標準状態で5.00mL/minにした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。   Argon gas was purified in the same manner as in Example 1 except that the oxygen addition flow rate was 5.00 mL / min in the standard state. The composition of the purified argon gas is shown in Table 1 below.

TSAユニット20で用いる吸着剤をMgX型ゼオライトにした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。   Argon gas was purified in the same manner as in Example 1 except that the adsorbent used in the TSA unit 20 was MgX type zeolite. The composition of the purified argon gas is shown in Table 1 below.

TSAユニット20での吸着温度を−50℃にした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。   Argon gas was purified in the same manner as in Example 1 except that the adsorption temperature in the TSA unit 20 was set to −50 ° C. The composition of the purified argon gas is shown in Table 1 below.

比較例1Comparative Example 1

酸素の添加流量を標準状態で1mL/minにした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。   Argon gas was purified in the same manner as in Example 1 except that the oxygen addition flow rate was 1 mL / min in the standard state. The composition of the purified argon gas is shown in Table 1 below.

比較例2Comparative Example 2

PSAユニット10で用いる吸着剤をCaA型ゼオライトにした以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。   Argon gas was purified in the same manner as in Example 1 except that the adsorbent used in the PSA unit 10 was CaA-type zeolite. The composition of the purified argon gas is shown in Table 1 below.

比較例3Comparative Example 3

乾燥機による脱水操作を行わなかった以外は実施例1と同様にしてアルゴンガスを精製した。その精製されたアルゴンガスの組成を以下の表1に示す。   Argon gas was purified in the same manner as in Example 1 except that the dehydration operation was not performed using a dryer. The composition of the purified argon gas is shown in Table 1 below.

Figure 2011195434
Figure 2011195434

上記表1から、各実施例によれば各比較例よりもアルゴンガス純度が高く、比較例2、3よりも酸素濃度が低く、比較例1よりも一酸化炭素濃度が低く、比較例1、3よりも水素濃度が低いのを確認できる。   From Table 1 above, according to each example, the argon gas purity is higher than each comparative example, the oxygen concentration is lower than Comparative Examples 2 and 3, the carbon monoxide concentration is lower than Comparative Example 1, It can be confirmed that the hydrogen concentration is lower than 3.

α…精製装置、3…反応器、4…濃度調節装置、5…乾燥機、9…吸着装置、10…PSAユニット、20…TSAユニット α ... Purification device, 3 ... Reactor, 4 ... Concentration control device, 5 ... Dryer, 9 ... Adsorption device, 10 ... PSA unit, 20 ... TSA unit

Claims (3)

少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する方法であって、
前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定し、
次に、前記アルゴンガスにおける酸素を一酸化炭素および水素と触媒を用いて反応させることで、酸素を残留させた状態で二酸化炭素と水を生成し、
次に、前記アルゴンガスにおける水分含有率を脱水操作により低減し、
次に、前記アルゴンガスにおける不純物の中の少なくとも酸素および二酸化炭素を、カーボン系吸着剤を用いた圧力スイング吸着法により吸着し、
しかる後に、前記アルゴンガスにおける不純物の中の少なくとも窒素を、−10℃〜−50℃でのサーマルスイング吸着法により吸着するアルゴンガスの精製方法。
A method for purifying argon gas containing at least oxygen, hydrogen, carbon monoxide, and nitrogen as impurities,
When the oxygen molar concentration in the argon gas is less than or equal to 1/2 of the sum of the carbon monoxide molar concentration and the hydrogen molar concentration, it is set to a value exceeding 1/2 by adding oxygen,
Next, by reacting oxygen in the argon gas with carbon monoxide and hydrogen using a catalyst, carbon dioxide and water are generated with oxygen remaining,
Next, the moisture content in the argon gas is reduced by a dehydration operation,
Next, at least oxygen and carbon dioxide among impurities in the argon gas are adsorbed by a pressure swing adsorption method using a carbon-based adsorbent,
Thereafter, at least nitrogen in the impurities in the argon gas is adsorbed by a thermal swing adsorption method at -10 ° C to -50 ° C.
前記カーボン系吸着剤がカーボンモレキュラーシーブである請求項1に記載のアルゴンガスの精製方法。   The method for purifying argon gas according to claim 1, wherein the carbon-based adsorbent is a carbon molecular sieve. 少なくとも酸素、水素、一酸化炭素、および窒素を不純物として含有するアルゴンガスを精製する装置であって、
前記アルゴンガスが導入される反応器と、
前記反応器に導入される前記アルゴンガスにおける酸素モル濃度が一酸化炭素モル濃度と水素モル濃度との和の1/2以下である場合は、酸素を添加することで1/2を超える値に設定する濃度調節装置と、
前記反応器から流出する前記アルゴンガスの水分含有率を脱水操作を行うことで低減する乾燥機と、
前記乾燥機に接続される吸着装置とを備え、
前記反応器内で前記アルゴンガスにおける酸素が一酸化炭素および水素と反応することで、酸素が残留した状態で二酸化炭素と水が生成されるように、前記反応器に触媒が充填され、
前記吸着装置は、前記アルゴンガスにおける不純物の中の少なくとも酸素および二酸化炭素を、カーボン系吸着剤を用いた圧力スイング吸着法により吸着するPSAユニットと、前記アルゴンガスにおける不純物の中の少なくとも窒素を、−10℃〜−50℃でのサーマルスイング吸着法により吸着するTSAユニットとを有することを特徴とするアルゴンガスの精製装置。
An apparatus for purifying argon gas containing at least oxygen, hydrogen, carbon monoxide, and nitrogen as impurities,
A reactor into which the argon gas is introduced;
When the molar oxygen concentration in the argon gas introduced into the reactor is ½ or less of the sum of the molar concentration of carbon monoxide and the molar hydrogen concentration, it is increased to a value exceeding ½ by adding oxygen. A concentration control device to be set;
A dryer that reduces the moisture content of the argon gas flowing out of the reactor by performing a dehydration operation;
An adsorption device connected to the dryer,
In the reactor, oxygen in the argon gas reacts with carbon monoxide and hydrogen, so that carbon dioxide and water are generated with oxygen remaining, and the reactor is filled with a catalyst.
The adsorption device includes a PSA unit that adsorbs at least oxygen and carbon dioxide in impurities in the argon gas by a pressure swing adsorption method using a carbon-based adsorbent, and at least nitrogen in impurities in the argon gas. And a TSA unit adsorbed by a thermal swing adsorption method at −10 ° C. to −50 ° C.
JP2011020725A 2010-02-25 2011-02-02 Argon gas purification method and purification apparatus Expired - Fee Related JP5665120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020725A JP5665120B2 (en) 2010-02-25 2011-02-02 Argon gas purification method and purification apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010040217 2010-02-25
JP2010040217 2010-02-25
JP2011020725A JP5665120B2 (en) 2010-02-25 2011-02-02 Argon gas purification method and purification apparatus

Publications (2)

Publication Number Publication Date
JP2011195434A true JP2011195434A (en) 2011-10-06
JP5665120B2 JP5665120B2 (en) 2015-02-04

Family

ID=44599295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020725A Expired - Fee Related JP5665120B2 (en) 2010-02-25 2011-02-02 Argon gas purification method and purification apparatus

Country Status (4)

Country Link
JP (1) JP5665120B2 (en)
KR (1) KR101720799B1 (en)
CN (1) CN102190290B (en)
TW (1) TWI478761B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031049A (en) * 2010-07-07 2012-02-16 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
CN115105925A (en) * 2022-05-25 2022-09-27 山西皆利气体科技有限公司 Double-reflux multi-tower vacuum pressure swing adsorption method and adsorption system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743215B2 (en) * 2011-12-13 2015-07-01 住友精化株式会社 Helium gas purification method and purification apparatus
JP5896467B2 (en) * 2012-08-09 2016-03-30 住友精化株式会社 Argon gas purification method and purification apparatus

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon
JPS62119104A (en) * 1985-11-15 1987-05-30 Nippon Sanso Kk Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
JPH02275706A (en) * 1989-04-15 1990-11-09 Nippon Sanso Kk Method for recovering argon
JPH02282682A (en) * 1989-04-21 1990-11-20 Nippon Sanso Kk Argon recoverying method
JPH03164410A (en) * 1990-07-30 1991-07-16 Sumitomo Seika Chem Co Ltd Production of concentrated argon
JPH06298504A (en) * 1993-03-02 1994-10-25 Praxair Technol Inc Refining of coarse argon
JPH07138007A (en) * 1993-11-17 1995-05-30 Nippon Sanso Kk Purification of argon gas and apparatus therefor
JPH107410A (en) * 1996-02-28 1998-01-13 Air Prod And Chem Inc Recovery and purification of impure argon
JP3737900B2 (en) * 1999-02-10 2006-01-25 エア・ウォーター株式会社 Purification method of exhaust gas argon from single crystal production furnace
JP2009234868A (en) * 2008-03-27 2009-10-15 Nippon Steel Corp Apparatus and method for purifying argon gas
JP2011173769A (en) * 2010-02-25 2011-09-08 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6527831B2 (en) * 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
CN1149175C (en) * 2001-09-14 2004-05-12 温州瑞气空分设备有限公司 Process for purifying gas
US7645431B2 (en) * 2007-10-23 2010-01-12 Air Products And Chemicals, Inc. Purification of noble gases using online regeneration of getter beds

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122709A (en) * 1983-12-07 1985-07-01 Hitachi Ltd Method for recovering argon
JPS62119104A (en) * 1985-11-15 1987-05-30 Nippon Sanso Kk Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
JPH02275706A (en) * 1989-04-15 1990-11-09 Nippon Sanso Kk Method for recovering argon
JPH02282682A (en) * 1989-04-21 1990-11-20 Nippon Sanso Kk Argon recoverying method
JPH03164410A (en) * 1990-07-30 1991-07-16 Sumitomo Seika Chem Co Ltd Production of concentrated argon
JPH06298504A (en) * 1993-03-02 1994-10-25 Praxair Technol Inc Refining of coarse argon
JPH07138007A (en) * 1993-11-17 1995-05-30 Nippon Sanso Kk Purification of argon gas and apparatus therefor
JP3496079B2 (en) * 1993-11-17 2004-02-09 日本酸素株式会社 Method and apparatus for purifying argon gas
JPH107410A (en) * 1996-02-28 1998-01-13 Air Prod And Chem Inc Recovery and purification of impure argon
JP3737900B2 (en) * 1999-02-10 2006-01-25 エア・ウォーター株式会社 Purification method of exhaust gas argon from single crystal production furnace
JP2009234868A (en) * 2008-03-27 2009-10-15 Nippon Steel Corp Apparatus and method for purifying argon gas
JP2011173769A (en) * 2010-02-25 2011-09-08 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031049A (en) * 2010-07-07 2012-02-16 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
CN115105925A (en) * 2022-05-25 2022-09-27 山西皆利气体科技有限公司 Double-reflux multi-tower vacuum pressure swing adsorption method and adsorption system
CN115105925B (en) * 2022-05-25 2023-10-31 山西皆利气体科技有限公司 Double-reflux multi-tower vacuum pressure swing adsorption method and adsorption system

Also Published As

Publication number Publication date
KR101720799B1 (en) 2017-03-28
CN102190290B (en) 2014-10-29
CN102190290A (en) 2011-09-21
KR20110097648A (en) 2011-08-31
TWI478761B (en) 2015-04-01
TW201136654A (en) 2011-11-01
JP5665120B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5743215B2 (en) Helium gas purification method and purification apparatus
TW201231639A (en) Methane recycling method and methane recycling apparatus
JP5679433B2 (en) Argon gas purification method and purification apparatus
JP5614808B2 (en) Helium gas purification method and purification apparatus
JP5683390B2 (en) Helium gas purification method and purification apparatus
JP5896467B2 (en) Argon gas purification method and purification apparatus
JP5846641B2 (en) Helium gas purification method and purification apparatus
JP5748272B2 (en) Helium gas purification method and purification apparatus
JP5665120B2 (en) Argon gas purification method and purification apparatus
JP5403685B2 (en) Argon gas purification method and purification apparatus
JP5791113B2 (en) Argon gas purification method and purification apparatus
JP5729765B2 (en) Helium gas purification method and purification apparatus
JP5745434B2 (en) Argon gas purification method and purification apparatus
TWI507352B (en) Purifying method and purifying apparatus for argon gas
KR20120046008A (en) Purifying method and purifying apparatus for argon gas
JP5500650B2 (en) Argon gas purification method and purification apparatus
JP5761751B2 (en) Argon gas purification method and purification apparatus
KR101800031B1 (en) Purifying method and purifying apparatus for argon gas
JP2012082080A (en) Argon refining method and argon refining apparatus
JP2012096932A (en) Method and device for refining argon gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5665120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees