JP2009234868A - Apparatus and method for purifying argon gas - Google Patents

Apparatus and method for purifying argon gas Download PDF

Info

Publication number
JP2009234868A
JP2009234868A JP2008084208A JP2008084208A JP2009234868A JP 2009234868 A JP2009234868 A JP 2009234868A JP 2008084208 A JP2008084208 A JP 2008084208A JP 2008084208 A JP2008084208 A JP 2008084208A JP 2009234868 A JP2009234868 A JP 2009234868A
Authority
JP
Japan
Prior art keywords
argon gas
reactor
hydrogen
crude argon
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008084208A
Other languages
Japanese (ja)
Inventor
Hiroshi Izukawa
大士 伊豆川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008084208A priority Critical patent/JP2009234868A/en
Publication of JP2009234868A publication Critical patent/JP2009234868A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04793Rectification, e.g. columns; Reboiler-condenser
    • F25J3/048Argon recovery
    • F25J3/04806High purity argon purification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04733Producing pure argon, e.g. recovered from a crude argon column using a hybrid system, e.g. using adsorption, permeation or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for purifying argon gas in which even when the oxygen concentration in crude argon gas rises temporarily, recirculation gas and a recycle blower for keeping the internal temperature of a reactor at an upper limit or below are unnecessary. <P>SOLUTION: The apparatus for purifying argon gas in a cryogenic air separation plant includes a plurality of serially-arranged reactors in which hydrogen is added to crude argon gas and burned to remove oxygen. Hydrogen is added in an amount kept at an upper limit or below in each reactor, and by repetitive burning, ultimately hydrogen and oxygen are burned in just proportion, whereby purified argon gas can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルゴンガスの精製装置およびその精製方法に関する。   The present invention relates to an argon gas purification apparatus and a purification method thereof.

深冷空気分離設備におけるアルゴンガスの精製方法としては、深冷空気分離設備の粗アルゴン塔から導出された粗アルゴンガスに水素を添加し、触媒を用いて粗アルゴンガス中の酸素を水素とともに燃焼させて水を生成し、それを乾燥させて酸素を取り除く方法が一般的に行われている。その際、設備の損傷を防ぐと同時に、触媒が壊れてしまうのを防ぐ観点から、水素を添加し、燃焼させて粗アルゴンガス中の酸素を取り除く反応器の温度を、所定の温度以下に抑える必要がある。一方、水素量が十分な場合は、反応器内の温度は粗アルゴンガス中の酸素濃度および粗アルゴンガス流量によって決定される。即ち、酸素濃度の高い祖アルゴンガスが流入した場合、その酸素濃度に比例した水素を添加すると、反応器での燃焼温度が上限値以上に上がってしまう恐れがある。   As a purification method of argon gas in the cryogenic air separation facility, hydrogen is added to the crude argon gas derived from the crude argon tower of the cryogenic air separation facility, and oxygen in the crude argon gas is combusted with hydrogen using a catalyst. In general, a method of generating water and drying it to remove oxygen is used. At that time, from the viewpoint of preventing damage to the equipment and at the same time preventing the catalyst from being broken, the temperature of the reactor in which hydrogen is added and burned to remove oxygen in the crude argon gas is kept below a predetermined temperature. There is a need. On the other hand, when the amount of hydrogen is sufficient, the temperature in the reactor is determined by the oxygen concentration in the crude argon gas and the crude argon gas flow rate. In other words, when progenitor argon gas having a high oxygen concentration flows in, if hydrogen proportional to the oxygen concentration is added, the combustion temperature in the reactor may rise above the upper limit.

上記問題点を防ぎ、反応器に流入する粗アルゴンガスの酸素濃度を下げるために、従来は、反応器において酸素が取り除かれ精製された、酸素濃度の低い粗アルゴンガスを再循環ガスとして反応器入口より再度流入させ、反応器に流入する粗アルゴンガスの酸素濃度を下げるという方法がとられていた(特許文献1参照)。その際、粗アルゴンガスを再循環させるためにリサイクルブロワーを設置する必要があった。前記従来のアルゴンガス精製装置の基本構成を図1に概略的に示す。   In order to prevent the above problems and to reduce the oxygen concentration of the crude argon gas flowing into the reactor, conventionally, the reactor was treated by using crude argon gas having a low oxygen concentration, which was purified by removing oxygen in the reactor as a recirculation gas. A method has been used in which the oxygen concentration of the crude argon gas flowing into the reactor is lowered by flowing again from the inlet (see Patent Document 1). At that time, it was necessary to install a recycle blower in order to recirculate the crude argon gas. A basic configuration of the conventional argon gas purification apparatus is schematically shown in FIG.

深冷空気分離設備の粗アルゴン塔1より導出され、アルゴンガス精製装置2に流入した粗アルゴンガスは、流量計30および弁31を備えた流量コントローラー3を通って反応器4へと流入する。このとき、反応器4に流入する粗アルゴンガスの酸素濃度は酸素濃度計5により測定され、その測定値が水素流量コントローラー6に入力される。そして、流入粗アルゴン量及び該粗アルゴンガス中の酸素濃度から算出される流入酸素量に見合った量の水素が、水素添加機構7より反応器4へ添加される。そして、反応器4において酸素と水素が燃焼反応し、粗アルゴンガス中の酸素が水となる。そして、冷却器8で冷却され、乾燥機9にて水分を除去されて、精製アルゴンガスとなり、残留酸素および水素濃度を酸素・水素濃度計10によって測定した後、アルゴンガス精製装置2より生産物として、系外に出される。 The crude argon gas derived from the crude argon tower 1 of the cryogenic air separation facility and flowing into the argon gas purification device 2 flows into the reactor 4 through the flow rate controller 3 having the flow meter 30 and the valve 31. At this time, the oxygen concentration of the crude argon gas flowing into the reactor 4 is measured by the oxygen concentration meter 5, and the measured value is input to the hydrogen flow rate controller 6. Then, an amount of hydrogen corresponding to the inflowing oxygen amount calculated from the inflowing crude argon amount and the oxygen concentration in the crude argon gas is added to the reactor 4 from the hydrogen addition mechanism 7. Then, oxygen and hydrogen undergo a combustion reaction in the reactor 4, and oxygen in the crude argon gas becomes water. Then, it is cooled by a cooler 8, moisture is removed by a dryer 9, and purified argon gas is obtained. After the residual oxygen and hydrogen concentration are measured by an oxygen / hydrogen concentration meter 10, the product is obtained from the argon gas purification device 2. As out of the system.

しかし、設備または燃焼反応に用いる触媒の損傷を防ぐために、反応器4には設備上の運転温度に上限値があり、運転中の温度がその上限値を超える前に、運転を自動的に止めるように、上限トリップ温度が設定されており、処理能力を超える、酸素濃度の高い粗アルゴンガスが短時間に多量に流入した場合、アルゴンガス精製装置2のトリップが働き、設備運転停止を引き起こす恐れがある。そこで、反応器4に流入する粗アルゴンの酸素濃度が高い場合を想定して、リサイクルブロワー11と流量コントローラー3によって構成される粗アルゴンガス再循環機構12を設け、反応器4を通過後の粗アルゴンガスの一部を反応器4へ再循環させ、反応器中の酸素濃度を下げることとしている。
特開2004−345881号公報
However, in order to prevent damage to the equipment or the catalyst used in the combustion reaction, the reactor 4 has an upper limit on the operating temperature on the equipment, and the operation is automatically stopped before the operating temperature exceeds the upper limit. Thus, when the upper limit trip temperature is set and a large amount of crude argon gas having a high oxygen concentration exceeding the processing capacity flows in a short time, the trip of the argon gas purification device 2 may work and cause the facility operation to stop. There is. Therefore, assuming that the oxygen concentration of the crude argon flowing into the reactor 4 is high, a crude argon gas recirculation mechanism 12 constituted by the recycle blower 11 and the flow rate controller 3 is provided, and the crude argon after passing through the reactor 4 is provided. A part of the argon gas is recycled to the reactor 4 to reduce the oxygen concentration in the reactor.
JP 2004-345881 A

このように、従来のアルゴンガス精製装置では、粗アルゴンガスを再循環させるためのリサイクルブロワー11を設置することが必要であった。しかしながら、回転機器であるリサイクルブロワー11は故障等のトラブルを発生させる懸念があり、定期的なメンテナンスも行わなければならなかった。また、リサイクルブロワー11のトラブル時や停止時には、再循環ガスの反応器4への供給がなくなってしまうため、反応器4内の温度が上限値を上回り、その結果、アルゴンガス精製装置2のトリップが発生してしまう恐れがある。また、その際、再循環ガスの反応器への供給がなくなった状態で反応器の温度を上限値以下に保つためには、粗アルゴン塔から流す粗アルゴンの流量を減少させることが必要となる。その結果、精製アルゴンガスの減産を招いてしまうという問題点があった。 Thus, in the conventional argon gas purification apparatus, it was necessary to install the recycle blower 11 for recirculating the crude argon gas. However, the recycle blower 11 which is a rotating device has a concern of causing troubles such as a failure, and it has been necessary to perform regular maintenance. Further, when the recycle blower 11 is in trouble or stopped, the recirculation gas is not supplied to the reactor 4, so that the temperature in the reactor 4 exceeds the upper limit value, and as a result, the argon gas purifier 2 trips. May occur. At that time, in order to keep the temperature of the reactor below the upper limit in a state where the supply of the recirculation gas to the reactor is lost, it is necessary to reduce the flow rate of the crude argon flowing from the crude argon tower. . As a result, there was a problem that the production of purified argon gas was reduced.

そこで、本発明は上記問題点に鑑み、再循環ガスおよびリサイクルブロワーを用いずに反応器内の温度を上限値以下に保つことができるアルゴンガスの精製装置およびその精製方法を提供することを目的とする。   Accordingly, in view of the above problems, the present invention has an object to provide an argon gas purification device and a purification method thereof capable of maintaining the temperature in the reactor at an upper limit value or less without using a recirculation gas and a recycle blower. And

本発明によれば、深冷空気分離設備におけるアルゴンガスの精製装置であって、粗アルゴンガスに水素を添加して燃焼させて酸素を取り除く反応器を直列に複数配置したことを特徴とする、アルゴンガスの精製装置が提供される。   According to the present invention, an apparatus for purifying argon gas in a cryogenic air separation facility, wherein a plurality of reactors for removing oxygen by adding hydrogen to a crude argon gas and burning it are arranged in series. An apparatus for purifying argon gas is provided.

また、各反応器の入口に酸素濃度計を設けてもよい。   An oxygen concentration meter may be provided at the inlet of each reactor.

さらに、各反応器の入口に、前記酸素濃度計の測定値に基いて制御される水素流量コントローラーを備えた水素添加機構を設けてもよい。   Furthermore, you may provide the hydrogenation mechanism provided with the hydrogen flow rate controller controlled based on the measured value of the said oxygen concentration meter in the inlet_port | entrance of each reactor.

また、本発明の別の観点によれば、深冷空気分離設備におけるアルゴンガスの精製方法であって、直列に複数配置された反応器に粗アルゴンガスを順に流し、少なくとも2以上の反応器において水素を添加して燃焼させることで粗アルゴンガスから酸素を取り除くことを特徴とする、アルゴンガスの精製方法が提供される。   Further, according to another aspect of the present invention, there is provided a method for purifying argon gas in a cryogenic air separation facility, in which crude argon gas is sequentially flowed to a plurality of reactors arranged in series, and at least in two or more reactors. Provided is a method for purifying argon gas, characterized in that oxygen is removed from crude argon gas by adding and burning hydrogen.

前記直列に複数配置された反応器において、最後に燃焼させる反応器では粗アルゴンガスに含まれる酸素を全て燃焼させるために必要な量の水素を添加して燃焼させることとしてもよい。   In the plurality of reactors arranged in series, the reactor to be finally burned may be burned by adding an amount of hydrogen necessary for burning all the oxygen contained in the crude argon gas.

本発明によれば、反応器内の温度を設備上限値以下に保つために、各反応器に添加する水素量を制限する一方で、粗アルゴンガスを複数の反応器において繰り返し燃焼させていくことで、最終的には過不足なく水素と酸素を燃焼反応させることが可能となる。各反応器には、所定の量以下の水素しか添加しないため、各反応器において許容範囲以上に温度が上がることを防止できる。また、粗アルゴンガスの再循環は必要なく、故障等の恐れのあるリサイクルブロワーの設置も不必要になる。また、添加する水素量が所定の量以下であるため、粗アルゴンガスの流量の制御も不必要となる。   According to the present invention, in order to keep the temperature in the reactor below the equipment upper limit value, the amount of hydrogen added to each reactor is limited, while the crude argon gas is repeatedly burned in a plurality of reactors. In the end, it becomes possible to carry out the combustion reaction of hydrogen and oxygen without excess or deficiency. Since only a predetermined amount or less of hydrogen is added to each reactor, it is possible to prevent the temperature from rising beyond an allowable range in each reactor. Further, it is not necessary to recirculate the crude argon gas, and it is not necessary to install a recycle blower that may cause a failure or the like. Further, since the amount of hydrogen to be added is less than or equal to a predetermined amount, it is not necessary to control the flow rate of the crude argon gas.

以下、本発明の実施の形態を、図面を参照にして説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

図2は本発明の実施の形態にかかるアルゴンガス精製装置20の基本構成を模式的に表したものである。深冷空気分離設備の粗アルゴン塔1から供給された粗アルゴンガスを流す流路25に、複数の反応器4が直列に配置されている。なお、以下の実施の形態においては、反応器4が3つ設けられている場合を例として示す。   FIG. 2 schematically shows a basic configuration of the argon gas purification apparatus 20 according to the embodiment of the present invention. A plurality of reactors 4 are arranged in series in a flow path 25 through which the crude argon gas supplied from the crude argon tower 1 of the cryogenic air separation facility flows. In the following embodiment, a case where three reactors 4 are provided is shown as an example.

各反応器4の入口側には、各反応器4に入る粗アルゴンガスの酸素濃度aを測定する酸素濃度計5および各反応器4に水素を添加する水素添加機構7がそれぞれ設けられている。各反応器4の入口側において、酸素濃度計5で粗アルゴンガスの酸素濃度aが測定され、その測定値aが水素流量コントローラー6に入力される。そして、水素添加機構7に備えられた弁31の開閉が調整されることによって水素添加機構7から添加される水素量bが制御される構成となっている。   An oxygen concentration meter 5 that measures the oxygen concentration a of the crude argon gas entering each reactor 4 and a hydrogen addition mechanism 7 that adds hydrogen to each reactor 4 are provided on the inlet side of each reactor 4. . On the inlet side of each reactor 4, the oxygen concentration a of the crude argon gas is measured by the oxygen concentration meter 5, and the measured value a is input to the hydrogen flow rate controller 6. The amount of hydrogen added from the hydrogen addition mechanism 7 is controlled by adjusting the opening and closing of the valve 31 provided in the hydrogen addition mechanism 7.

この場合、水素添加機構7によって各反応器4に添加される水素量bの制御は、反応器4に入る粗アルゴンガスの酸素濃度aと、各反応器4について設定されている上限温度cに基いて、次のようにして行われる。即ち、反応器4に入る粗アルゴンの酸素濃度aが測定されると、当該酸素濃度aで粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’を添加して反応器4内で燃焼反応させた場合に、その燃焼温度tが、反応器4の上限温度cを超えてしまうかどうかが判定される。   In this case, the hydrogen amount b added to each reactor 4 by the hydrogen addition mechanism 7 is controlled by the oxygen concentration a of the crude argon gas entering the reactor 4 and the upper limit temperature c set for each reactor 4. Based on this, it is performed as follows. That is, when the oxygen concentration a of the crude argon entering the reactor 4 is measured, the amount of hydrogen b ′ necessary for burning all the oxygen contained in the crude argon gas at the oxygen concentration a is added. When the combustion reaction is performed in the reactor 4, it is determined whether or not the combustion temperature t exceeds the upper limit temperature c of the reactor 4.

ここで、当該酸素濃度aで粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’を添加しても、燃焼温度tが上限温度cを超えてしまわない場合は(c≧tとなる場合は)、当該酸素濃度aで粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’が添加される。即ち、水素量bは粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’に等しくなるように制御される。   Here, even when the hydrogen amount b ′ necessary for burning all the oxygen contained in the crude argon gas at the oxygen concentration a is added, the combustion temperature t does not exceed the upper limit temperature c. (When c ≧ t), an amount of hydrogen b ′ necessary to burn all oxygen contained in the crude argon gas at the oxygen concentration a is added. That is, the hydrogen amount b is controlled to be equal to the hydrogen amount b 'required for burning all the oxygen contained in the crude argon gas.

一方、当該酸素濃度aで粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’を添加すると、燃焼温度tが上限温度cを超えてしまう場合は(c<tとなる場合は)、そのまま水素量b’で水素を添加して反応器4で燃焼反応させてしまうと、上限温度cを超えることにより、反応器4の破損を生じてしまう。そこで、粗アルゴンガス中の酸素全部を燃焼させると、燃焼温度tが上限温度cを超えてしまう場合は(c<tとなる場合は)、水素量bは、粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’よりも少ない水素量に制御される。この場合の水素量bは、粗アルゴンガス中に含まれている酸素の一部のみを燃焼させることにより、燃焼温度tが、反応器4の上限温度cを超えないような範囲内に設定される。このように粗アルゴンガス中に含まれている酸素の一部のみを燃焼させる水素量bは、燃焼温度tが、反応器4の上限温度cを超えない範囲内で最大値に設定しても良いが、安全性等を考慮して、反応器4の上限温度cを超えない範囲内で最大値よりも小さく設定しても良い。   On the other hand, when the amount of hydrogen b ′ necessary for burning all the oxygen contained in the crude argon gas at the oxygen concentration a is added, the combustion temperature t exceeds the upper limit temperature c (c <t If the hydrogen amount b ′ is added as it is and a combustion reaction is caused in the reactor 4, the reactor 4 is damaged by exceeding the upper limit temperature c. Therefore, when all the oxygen in the crude argon gas is burned, when the combustion temperature t exceeds the upper limit temperature c (when c <t), the hydrogen amount b is included in the crude argon gas. The amount of hydrogen is controlled to be less than the amount of hydrogen b ′ required to burn all the oxygen present. The hydrogen amount b in this case is set within a range in which the combustion temperature t does not exceed the upper limit temperature c of the reactor 4 by burning only a part of oxygen contained in the crude argon gas. The Thus, the hydrogen amount b for burning only a part of the oxygen contained in the crude argon gas is set to the maximum value within a range where the combustion temperature t does not exceed the upper limit temperature c of the reactor 4. However, in consideration of safety and the like, it may be set smaller than the maximum value within a range not exceeding the upper limit temperature c of the reactor 4.

各反応器4の出口側には冷却器8が設けられ、燃焼後のガスが冷却される。また、流路25の最下流には乾燥機9および酸素・水素濃度計10が設けられている。   A cooler 8 is provided at the outlet side of each reactor 4 to cool the gas after combustion. Further, a dryer 9 and an oxygen / hydrogen concentration meter 10 are provided on the most downstream side of the flow path 25.

以上のように構成されたアルゴンガスの精製装置20において、粗アルゴン塔1から供給された粗アルゴンガスが、流路25を通って1番目の反応器4、2番目の反応器4、3番目の反応器4を順次流れる。そして、各反応器4において、粗アルゴンガス中の酸素は、流入直前に添加された水素とともに燃焼反応し、その結果、粗アルゴンガス中の酸素が除去されることとなる。   In the argon gas purification apparatus 20 configured as described above, the crude argon gas supplied from the crude argon tower 1 passes through the flow path 25 to the first reactor 4, the second reactor 4, and the third. Sequentially flow through the reactor 4. In each reactor 4, oxygen in the crude argon gas undergoes a combustion reaction with hydrogen added immediately before inflow, and as a result, oxygen in the crude argon gas is removed.

ここで、一例として、上記3つの反応器4を備えたアルゴンガス精製装置20において、1番目の反応器4と2番目の反応器4においては、粗アルゴンガスの酸素濃度aがまだ高く、粗アルゴンガス中の酸素全部を燃焼させてしまうと反応器4の上限温度cを超えてしまうため、これら1番目の反応器4と2番目の反応器4では、水素添加機構7から添加される水素量bが反応器4の上限温度cを超えない範囲内に制御され、一方、3番目の反応器4においては、すでに1番目の反応器4と2番目の反応器4で酸素が燃焼に消費されたことにより、粗アルゴンガスの酸素濃度aが十分に低くなっており、粗アルゴンガス中の酸素全部を燃焼させても反応器4の上限温度cを超えないため、3番目の反応器4では、水素添加機構7から添加される水素量bが粗アルゴンガス中に含まれる酸素全部を燃焼させるのに必要な水素量b’に等しくなるように制御される場合を説明する。   Here, as an example, in the argon gas purification apparatus 20 including the three reactors 4 described above, in the first reactor 4 and the second reactor 4, the oxygen concentration a of the crude argon gas is still high, If all the oxygen in the argon gas is combusted, the upper limit temperature c of the reactor 4 will be exceeded, so in these first reactor 4 and second reactor 4, the hydrogen added from the hydrogen addition mechanism 7 The amount b is controlled within a range that does not exceed the upper limit temperature c of the reactor 4, while in the third reactor 4, oxygen is already consumed for combustion in the first reactor 4 and the second reactor 4. As a result, the oxygen concentration a of the crude argon gas is sufficiently low, and even if all the oxygen in the crude argon gas is combusted, the upper limit temperature c of the reactor 4 is not exceeded, so the third reactor 4 Then, it is added from the hydrogenation mechanism 7 It describes a case which is controlled to be equal to the amount of hydrogen b 'required to burn all oxygen hydrogen amount b is contained in the crude argon gas.

先ず、粗アルゴンガスが1番目の反応器4に流入する。その際、1番目の反応器4に流入する粗アルゴンガスの酸素濃度aが酸素濃度計5で測定され、水素流量コントローラー6に入力される。この場合、1番目の反応器4に流入する時点では、まだ粗アルゴンガスの酸素濃度aが高い状態であり、粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’を添加すると、1番目の反応器4での燃焼温度tが上限温度cを超えてしまう(c<t)。そこで、1番目の反応器4では、水素流量コントローラー6により弁31の開度を小さくするように制御され、水素添加機構7から添加される水素量bは、粗アルゴンガス中に含まれる酸素全部を燃焼させるのに必要な水素量b’よりも小さく、反応器4の上限温度cを超えない範囲内に設定される。こうして、所定の水素量bに設定された水素が粗アルゴンガスと一緒に反応器4内に流入されて、1番目の反応器4内において、粗アルゴンガス中に含まれている酸素の一部と水素が燃焼反応を行う。その結果、1番目の反応器4における燃焼反応の燃焼温度tは、上限温度cを超えない範囲内の温度に抑えられる。   First, crude argon gas flows into the first reactor 4. At that time, the oxygen concentration a of the crude argon gas flowing into the first reactor 4 is measured by the oxygen concentration meter 5 and input to the hydrogen flow rate controller 6. In this case, when flowing into the first reactor 4, the oxygen concentration a of the crude argon gas is still high, and the amount of hydrogen b required to burn all the oxygen contained in the crude argon gas When 'is added, the combustion temperature t in the first reactor 4 exceeds the upper limit temperature c (c <t). Therefore, in the first reactor 4, the opening amount of the valve 31 is controlled by the hydrogen flow controller 6 so that the hydrogen amount b added from the hydrogen addition mechanism 7 is the total oxygen contained in the crude argon gas. It is set within a range that is smaller than the amount of hydrogen b ′ required for burning the fuel and does not exceed the upper limit temperature c of the reactor 4. Thus, hydrogen set to a predetermined hydrogen amount b flows into the reactor 4 together with the crude argon gas, and a part of the oxygen contained in the crude argon gas in the first reactor 4 And hydrogen undergo a combustion reaction. As a result, the combustion temperature t of the combustion reaction in the first reactor 4 is suppressed to a temperature that does not exceed the upper limit temperature c.

こうして、1番目の反応器4における燃焼反応を経た粗アルゴンガスは、冷却器8において冷却された後、次に、2番目の反応器4に流入する。その際、同様に、2番目の反応器4に流入する粗アルゴンガスの酸素濃度aが酸素濃度計5で測定され、水素流量コントローラー6に入力される。この場合、2番目の反応器4に流入する時点においても、まだ粗アルゴンガスの酸素濃度aが高い状態であり、粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’を添加すると、2番目の反応器4での燃焼温度tが上限温度cを超えてしまう(c<t)。そこで、2番目の反応器4でも、水素流量コントローラー6により弁31の開度を小さくするように制御され、水素添加機構7から添加される水素量bは、粗アルゴンガス中に含まれる酸素全部を燃焼させるのに必要な水素量b’よりも小さく、反応器4の上限温度cを超えない範囲内に設定される。こうして、所定の水素量bに設定された水素が粗アルゴンガスと一緒に反応器4内に流入されて、2番目の反応器4内において、粗アルゴンガス中に含まれている酸素の一部と水素が燃焼反応を行う。その結果、2番目の反応器4における燃焼反応の燃焼温度tも、上限温度cを超えない範囲内の温度に抑えられる。   Thus, the crude argon gas that has undergone the combustion reaction in the first reactor 4 is cooled in the cooler 8 and then flows into the second reactor 4. At that time, similarly, the oxygen concentration a of the crude argon gas flowing into the second reactor 4 is measured by the oxygen concentration meter 5 and input to the hydrogen flow rate controller 6. In this case, even when flowing into the second reactor 4, the oxygen concentration a of the crude argon gas is still high, and the amount of hydrogen necessary for burning all the oxygen contained in the crude argon gas When b ′ is added, the combustion temperature t in the second reactor 4 exceeds the upper limit temperature c (c <t). Therefore, in the second reactor 4 as well, the hydrogen flow rate controller 6 controls the opening of the valve 31 so that the hydrogen amount b added from the hydrogen addition mechanism 7 is the total oxygen contained in the crude argon gas. It is set within a range that is smaller than the amount of hydrogen b ′ required for burning the fuel and does not exceed the upper limit temperature c of the reactor 4. In this way, hydrogen set to a predetermined hydrogen amount b flows into the reactor 4 together with the crude argon gas, and a part of oxygen contained in the crude argon gas in the second reactor 4. And hydrogen undergo a combustion reaction. As a result, the combustion temperature t of the combustion reaction in the second reactor 4 is also suppressed to a temperature that does not exceed the upper limit temperature c.

こうして、1番目の反応器4および2番目の反応器4における燃焼反応を経た粗アルゴンガスは、冷却器8において冷却された後、次に、3番目の反応器4に流入する。その際、同様に、3番目の反応器4に流入する粗アルゴンガスの酸素濃度aが酸素濃度計5で測定され、水素流量コントローラー6に入力される。この場合、既に1番目の反応器4および2番目の反応器4における燃焼反応を経ていることにより、3番目の反応器4に流入する時点においては、既に粗アルゴンガスの酸素濃度aが十分に低くなっており、粗アルゴンガス中に含まれている酸素全部を燃焼させるのに必要な水素量b’を添加しても、3番目の反応器4での燃焼温度tは上限温度cを超えることがない状態になっている(c≧t)。そこで、3番目の反応器4においては、水素流量コントローラー6により弁31の開度を大きくするように制御され、水素添加機構7から添加される水素量bは、粗アルゴンガス中に含まれる酸素全部を燃焼させるのに必要な水素量b’と等しく設定される。こうして、所定の水素量bに設定された水素が粗アルゴンガスと一緒に反応器4内に流入され、3番目の反応器4内において、粗アルゴンガス中に残っていた酸素の全部と水素が燃焼反応を行う。この場合、既に粗アルゴンガスの酸素濃度aが十分に低くなっているので、3番目の反応器4における燃焼反応の燃焼温度tも、上限温度cを超えない範囲内の温度に抑えられる。   Thus, the crude argon gas that has undergone the combustion reaction in the first reactor 4 and the second reactor 4 is cooled in the cooler 8 and then flows into the third reactor 4. At that time, similarly, the oxygen concentration a of the crude argon gas flowing into the third reactor 4 is measured by the oxygen concentration meter 5 and inputted to the hydrogen flow rate controller 6. In this case, since the combustion reaction in the first reactor 4 and the second reactor 4 has already been performed, the oxygen concentration a of the crude argon gas is already sufficiently high when flowing into the third reactor 4. The combustion temperature t in the third reactor 4 exceeds the upper limit temperature c even if the amount of hydrogen b ′ required to burn all the oxygen contained in the crude argon gas is low. There is no state (c ≧ t). Therefore, in the third reactor 4, the hydrogen flow rate controller 6 is controlled to increase the opening of the valve 31, and the amount of hydrogen b added from the hydrogen addition mechanism 7 is oxygen contained in the crude argon gas. It is set equal to the amount of hydrogen b ′ required to burn all. Thus, hydrogen set to a predetermined hydrogen amount b flows into the reactor 4 together with the crude argon gas, and in the third reactor 4, all of the oxygen remaining in the crude argon gas and hydrogen are removed. Perform a combustion reaction. In this case, since the oxygen concentration a of the crude argon gas has already been sufficiently low, the combustion temperature t of the combustion reaction in the third reactor 4 is also suppressed to a temperature that does not exceed the upper limit temperature c.

こうして、粗アルゴンガスは、最終的に3番目の反応器4で残りの酸素の全部が水素と燃焼反応され、冷却器8において冷却された後、乾燥機9において水分を取り除かれ、酸素・水素濃度計10での最終チェックを経た後、精製アルゴンガスとなって、生産物として系外に出される。   Thus, the crude argon gas is finally subjected to the combustion reaction of all of the remaining oxygen with hydrogen in the third reactor 4, cooled in the cooler 8, then dehydrated in the dryer 9, and oxygen / hydrogen After a final check with the densitometer 10, it becomes purified argon gas and is discharged out of the system as a product.

以上のように、このアルゴンガス精製装置20にあっては、3つの反応器4において粗アルゴンガス中の酸素を繰り返し燃焼反応させていくことで、最終的には、粗アルゴンガス中の酸素を全部燃焼反応させて除去することが可能となる。また、各反応器4には、水素流量コントローラー6の制御によって燃焼温度tが上限温度cを超えない範囲内でしか水素しか添加しないため、各反応器4において許容範囲以上に温度が上がることを防止できる。また、従来のように粗アルゴンガスの再循環は必要なく、故障等の恐れのあるリサイクルブロワーの設置も不必要になる。さらに、各反応器4に対する粗アルゴンガスの流量制御も不必要となる。その結果、設備の故障等による減産を回避できるアルゴンガス精製装置20が実現されることとなり、安定して精製アルゴンを得ることができる。   As described above, in the argon gas purification device 20, the oxygen in the crude argon gas is repeatedly subjected to the combustion reaction in the three reactors 4 to finally convert the oxygen in the crude argon gas. All of them can be removed by combustion reaction. Further, since only hydrogen is added to each reactor 4 within the range where the combustion temperature t does not exceed the upper limit temperature c by the control of the hydrogen flow rate controller 6, the temperature rises beyond the allowable range in each reactor 4. Can be prevented. Further, unlike the prior art, it is not necessary to recirculate the crude argon gas, and it is not necessary to install a recycle blower that may cause a failure or the like. Furthermore, it is not necessary to control the flow rate of the crude argon gas to each reactor 4. As a result, the argon gas purification device 20 that can avoid a reduction in production due to equipment failure or the like is realized, and purified argon can be obtained stably.

以上、本発明の好ましい実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に相到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although an example of preferable embodiment of this invention was demonstrated, this invention is not limited to the form of illustration. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the ideas described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば、上記実施の形態では、3つの反応器4を設けた例を示したが、反応器4の数は2つでもよく、あるいは4つ以上でも良い。反応器4の数は、アルゴンガス精製装置20に投入される粗アルゴンガスの酸素濃度の変動範囲、増減等に応じて適宜決定することが好ましい。また、各反応器4に添加される水素量bは、例えば上流側に位置する反応器4では相対的に多くし、下流側に位置する反応器4では相対的に少なくしても良い。あるいは、各反応器4に添加される水素量bは、例えば上流側に位置する反応器4では相対的に少なくし、下流側に位置する反応器4では相対的に多くしても良い。また、各反応器4に添加される水素量bは、例えば均等に設定しても良い。   For example, in the above embodiment, an example in which three reactors 4 are provided has been described, but the number of reactors 4 may be two, or four or more. The number of reactors 4 is preferably appropriately determined according to the variation range, increase / decrease, etc., of the oxygen concentration of the crude argon gas charged into the argon gas purification device 20. Further, the amount of hydrogen b added to each reactor 4 may be relatively increased, for example, in the reactor 4 located on the upstream side, and relatively small in the reactor 4 located on the downstream side. Alternatively, the amount of hydrogen b added to each reactor 4 may be relatively small, for example, in the reactor 4 located on the upstream side, and relatively large in the reactor 4 located on the downstream side. Further, the amount of hydrogen b added to each reactor 4 may be set evenly, for example.

また、例えば、水素を取り除くための機構等をアルゴン精製装置20内に設けてもよい。また、上記の実施の形態では深冷空気分離設備における粗アルゴン塔から流入した粗アルゴンガスを精製するための装置として本発明を適応したが、半導体製造設備等から排出される不純アルゴンガス等の精製を行う際にも本発明は適応可能である。   Further, for example, a mechanism for removing hydrogen may be provided in the argon purification apparatus 20. In the above embodiment, the present invention is applied as an apparatus for purifying the crude argon gas flowing from the crude argon tower in the cryogenic air separation facility. However, the impure argon gas and the like discharged from the semiconductor manufacturing facility etc. The present invention can also be applied to purification.

従来例として、図1に示される従来のアルゴンガス精製装置に、酸素を3.5vol%以下の割合で含む粗アルゴンガスを粗アルゴン塔から1500Nm/hの一定の流量で流入させた。反応器の設計温度および、反応器内部の燃焼触媒を壊さないための温度として、反応器内の燃焼における上限トリップ温度は530℃に設定した。そのため、反応器内での粗アルゴンガスの酸素濃度が2.0vol%以下程度となるように、酸素濃度の低い粗アルゴンガスをリサイクルブロワーによって反応器に流入させた。この従来例では、リサイクルブロワーを停止させると、反応器内の燃焼温度は530℃を超えてしまい、トリップが発生してしまうので、やむなく粗アルゴン塔から流入させる粗アルゴンガスの流入量を約850Nm/hまで抑制させる必要が生じた。その結果、精製アルゴンガスの生産量が減少してしまった。 As a conventional example, crude argon gas containing oxygen at a ratio of 3.5 vol% or less was flowed from a crude argon tower at a constant flow rate of 1500 Nm 3 / h into the conventional argon gas purification apparatus shown in FIG. The upper limit trip temperature in the combustion in the reactor was set to 530 ° C. as the design temperature of the reactor and the temperature not to destroy the combustion catalyst inside the reactor. Therefore, crude argon gas having a low oxygen concentration was caused to flow into the reactor by a recycle blower so that the oxygen concentration of the crude argon gas in the reactor was about 2.0 vol% or less. In this conventional example, when the recycle blower is stopped, the combustion temperature in the reactor exceeds 530 ° C., and a trip occurs. Therefore, the inflow amount of the crude argon gas unavoidably flowing from the crude argon tower is about 850 Nm. The necessity of suppressing to 3 / h occurred. As a result, the production amount of purified argon gas has decreased.

一方、本発明例として、図2で説明したアルゴンガス精製装置に、酸素を3.5vol%以下の割合で含む粗アルゴンガスを粗アルゴン塔から1500Nm/hの一定の流量で流入させた。反応器の設計温度および、反応器内部の燃焼触媒を壊さないための温度として、反応器内の燃焼における上限トリップ温度は上記同様530℃に設定した。そして複数設けた各反応器には、燃焼温度が上限温度を超えないように、粗アルゴンガス中の酸素濃度約1.0vol%程度の場合に粗アルゴンガス中の酸素を全部燃焼させることができる水素量に相当する量で、水素添加機構から水素を添加した。粗アルゴンガス中の酸素を取り除くために複数設ける反応器を本実施例では3つとした。 On the other hand, as an example of the present invention, a crude argon gas containing oxygen at a ratio of 3.5 vol% or less was introduced from the crude argon tower at a constant flow rate of 1500 Nm 3 / h into the argon gas purification apparatus described in FIG. The upper limit trip temperature in the combustion in the reactor was set to 530 ° C. as described above as the design temperature of the reactor and the temperature not to destroy the combustion catalyst in the reactor. In each of the plurality of reactors, all oxygen in the crude argon gas can be combusted when the oxygen concentration in the crude argon gas is about 1.0 vol% so that the combustion temperature does not exceed the upper limit temperature. Hydrogen was added from the hydrogenation mechanism in an amount corresponding to the amount of hydrogen. In this embodiment, three reactors are provided in order to remove oxygen in the crude argon gas.

その結果、本発明例では、酸素および水素濃度計において、実用上十分に酸素が取り除かれたと判断しうる、酸素および水素濃度の低い精製アルゴンガスを得ることができた。また、各反応器内の燃焼温度も上限温度(530℃)以下に維持できた。さらに、本発明例では、粗アルゴンガス再循環機構(リサイクルブロワー)を省略でき、また、粗アルゴンガスの流入量を抑制する必要も生じなかった。   As a result, in the example of the present invention, it was possible to obtain purified argon gas having a low oxygen and hydrogen concentration that can be judged to have been sufficiently removed in practice in the oxygen and hydrogen concentration meter. Moreover, the combustion temperature in each reactor could also be maintained below the upper limit temperature (530 ° C.). Furthermore, in the present invention example, the crude argon gas recirculation mechanism (recycle blower) can be omitted, and it is not necessary to suppress the inflow amount of the crude argon gas.

本発明は、粗アルゴン塔から流入した粗アルゴンガスや半導体製造設備等から排出される不純アルゴンガス等の精製に適用できる。   The present invention can be applied to purification of crude argon gas flowing from a crude argon tower, impure argon gas discharged from a semiconductor manufacturing facility, and the like.

従来のアルゴンガス精製装置の概略図である。It is the schematic of the conventional argon gas refinement | purification apparatus. 本発明の実施の形態にかかるアルゴンガス精製装置の概略図である。It is the schematic of the argon gas refinement | purification apparatus concerning embodiment of this invention.

符号の説明Explanation of symbols

1…粗アルゴン塔
2…従来のアルゴン精製装置
3…流量コントローラー
4…反応器
5…酸素濃度計
6…水素流量コントローラー
7…水素添加機構
8…冷却器
9…乾燥器
10…酸素・水素濃度計
11…リサイクルブロワー
12…粗アルゴン再循環機構
20…アルゴン精製装置
25…流路
30…流量計
31…弁
DESCRIPTION OF SYMBOLS 1 ... Crude argon tower 2 ... Conventional argon purification apparatus 3 ... Flow rate controller 4 ... Reactor 5 ... Oxygen concentration meter 6 ... Hydrogen flow rate controller 7 ... Hydrogen addition mechanism 8 ... Cooler 9 ... Dryer 10 ... Oxygen and hydrogen concentration meter DESCRIPTION OF SYMBOLS 11 ... Recycle blower 12 ... Coarse argon recirculation mechanism 20 ... Argon refiner 25 ... Flow path 30 ... Flow meter 31 ... Valve

Claims (5)

深冷空気分離設備におけるアルゴンガスの精製装置であって、粗アルゴンガスに水素を添加して燃焼させて酸素を取り除く反応器を直列に複数配置したことを特徴とする、アルゴンガスの精製装置。 An apparatus for purifying argon gas in a cryogenic air separation facility, wherein a plurality of reactors for removing oxygen by adding hydrogen to a crude argon gas and burning it are arranged in series. 各反応器の入口に酸素濃度計を設けたことを特徴とする、請求項1に記載のアルゴンガスの精製装置。 The apparatus for purifying argon gas according to claim 1, wherein an oxygen concentration meter is provided at the inlet of each reactor. 各反応器の入口に、前記酸素濃度計の測定値に基いて制御される水素流量コントローラーを備えた水素添加機構を設けたことを特徴とする、請求項2に記載のアルゴンガスの精製装置。 The apparatus for purifying argon gas according to claim 2, wherein a hydrogen addition mechanism having a hydrogen flow rate controller controlled based on a measured value of the oximeter is provided at an inlet of each reactor. 深冷空気分離設備におけるアルゴンガスの精製方法であって、直列に複数配置された反応器に粗アルゴンガスを順に流し、少なくとも2以上の反応器において水素を添加して燃焼させることで粗アルゴンガスから酸素を取り除くことを特徴とする、アルゴンガスの精製方法。 A method for purifying argon gas in a cryogenic air separation facility, in which crude argon gas is sequentially flowed to a plurality of reactors arranged in series, and hydrogen is added to and burned in at least two or more reactors. A method for purifying argon gas, characterized in that oxygen is removed from the gas. 前記直列に複数配置された反応器において、最後に燃焼させる反応器では粗アルゴンガスに含まれる酸素を全て燃焼させるために必要な量の水素を添加して燃焼させることを特徴とする、請求項4に記載のアルゴンガスの精製方法。 The plurality of reactors arranged in series, wherein the last burned reactor adds and burns an amount of hydrogen necessary to burn all oxygen contained in the crude argon gas. 4. The method for purifying argon gas according to 4.
JP2008084208A 2008-03-27 2008-03-27 Apparatus and method for purifying argon gas Withdrawn JP2009234868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084208A JP2009234868A (en) 2008-03-27 2008-03-27 Apparatus and method for purifying argon gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084208A JP2009234868A (en) 2008-03-27 2008-03-27 Apparatus and method for purifying argon gas

Publications (1)

Publication Number Publication Date
JP2009234868A true JP2009234868A (en) 2009-10-15

Family

ID=41249303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084208A Withdrawn JP2009234868A (en) 2008-03-27 2008-03-27 Apparatus and method for purifying argon gas

Country Status (1)

Country Link
JP (1) JP2009234868A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184287A (en) * 2010-02-10 2011-09-22 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2011195434A (en) * 2010-02-25 2011-10-06 Sumitomo Seika Chem Co Ltd Refining method and refining apparatus for argon gas
JP2014034493A (en) * 2012-08-09 2014-02-24 Sumitomo Seika Chem Co Ltd Purifying method and purifying apparatus of an argon gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184287A (en) * 2010-02-10 2011-09-22 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying argon gas
JP2011195434A (en) * 2010-02-25 2011-10-06 Sumitomo Seika Chem Co Ltd Refining method and refining apparatus for argon gas
JP2014034493A (en) * 2012-08-09 2014-02-24 Sumitomo Seika Chem Co Ltd Purifying method and purifying apparatus of an argon gas

Similar Documents

Publication Publication Date Title
JP5027836B2 (en) Method for catalytic recombination of hydrogen and oxygen carried together in a gas stream and a recombination system for carrying out this method
JP5460040B2 (en) Combined cycle power plant for exhaust gas recirculation and CO2 separation and method of operating such combined cycle power plant
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
CN102913919B (en) Method for purifying high-concentration organic waste gas
KR101274286B1 (en) Method of operating a gas engine plant and fuel feeding system of a gas engine
JP6250332B2 (en) Gas turbine equipment
CN102913918A (en) Catalytic combustion processing method of high-concentration organic exhaust gas
EP2939726A1 (en) Carbon dioxide capturing system and method of operating same
JP2009234868A (en) Apparatus and method for purifying argon gas
JP5781368B2 (en) CO shift reactor and coal gasification combined cycle power generation system equipped with the same
JP2011184287A (en) Method and apparatus for purifying argon gas
JP2015158334A (en) Exhaust gas recirculation system, ship boiler equipped with the same, and exhaust gas recirculation method
CN110655932A (en) Method for effectively reducing burning loss rate of large-scale dry quenching coke
JP5812740B2 (en) Oxyfuel combustion system and operating method thereof
RU2564308C1 (en) Method of operating industrial plant for producing urea, comprising multiple systems
JP2011196963A (en) Gaseous waste treatment system and method of operating the same
CN108751131B (en) Method for detecting and processing faults in natural gas reforming hydrogen production system
JP2012025642A (en) Apparatus for separating and recovering co2 of coal gasification gas
JP2007269550A (en) Operating method of contact type sulfuric acid plant
US9573107B2 (en) Process for operating a fuel fired reactor
KR101414496B1 (en) Apparatus and method for processing hot spot activated carbon of sinter flue gas fefining machine
JP2014200774A (en) Carbon dioxide recovery system and method of operating the same
CN211716594U (en) Fan coal mill pulverizing system of 600MW grade boiler without cold smoke blower
JP2006501989A (en) Gas flow treatment method and gas purification device
JP2005331192A (en) Combustion equipment and combustion control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607