JP6250332B2 - Gas turbine equipment - Google Patents

Gas turbine equipment Download PDF

Info

Publication number
JP6250332B2
JP6250332B2 JP2013175933A JP2013175933A JP6250332B2 JP 6250332 B2 JP6250332 B2 JP 6250332B2 JP 2013175933 A JP2013175933 A JP 2013175933A JP 2013175933 A JP2013175933 A JP 2013175933A JP 6250332 B2 JP6250332 B2 JP 6250332B2
Authority
JP
Japan
Prior art keywords
flow rate
combustor
pipe
working gas
dry working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013175933A
Other languages
Japanese (ja)
Other versions
JP2015045246A (en
JP2015045246A5 (en
Inventor
伊東 正雄
正雄 伊東
信博 沖園
信博 沖園
秀幸 前田
秀幸 前田
岩井 保憲
保憲 岩井
Original Assignee
8 リバーズ キャピタル,エルエルシー
8 リバーズ キャピタル,エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 8 リバーズ キャピタル,エルエルシー, 8 リバーズ キャピタル,エルエルシー filed Critical 8 リバーズ キャピタル,エルエルシー
Priority to JP2013175933A priority Critical patent/JP6250332B2/en
Priority to US14/456,233 priority patent/US9562473B2/en
Priority to PL14181143T priority patent/PL2853716T3/en
Priority to EP17187289.8A priority patent/EP3273029B1/en
Priority to ES17187289T priority patent/ES2804847T3/en
Priority to EP14181143.0A priority patent/EP2853716B1/en
Priority to NO14181143A priority patent/NO2853716T3/no
Priority to PL17187289T priority patent/PL3273029T3/en
Priority to ES14181143.0T priority patent/ES2649153T3/en
Priority to CA2859883A priority patent/CA2859883C/en
Priority to CN201610882461.5A priority patent/CN107100737B/en
Priority to CN201410424280.9A priority patent/CN104420993B/en
Publication of JP2015045246A publication Critical patent/JP2015045246A/en
Publication of JP2015045246A5 publication Critical patent/JP2015045246A5/ja
Priority to US15/391,427 priority patent/US10794274B2/en
Application granted granted Critical
Publication of JP6250332B2 publication Critical patent/JP6250332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/34Gas-turbine plants characterised by the use of combustion products as the working fluid with recycling of part of the working fluid, i.e. semi-closed cycles with combustion products in the closed part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/08Semi-closed cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • F02C7/10Heating air supply before combustion, e.g. by exhaust gases by means of regenerative heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/10Cooling exhaust steam other than by condenser; Rendering exhaust steam invisible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

本発明の実施形態は、ガスタービン設備に関する。   Embodiments described herein relate generally to gas turbine equipment.

発電プラントの高効率化は、二酸化炭素の削減や省資源などの要求から進められている。具体的には、ガスタービンや蒸気タービンの作動流体の高温化、コンバインドサイクル化などが積極的に進められている。また、二酸化炭素の回収技術についても、研究開発が進められている。   Increasing the efficiency of power plants is advancing due to demands such as carbon dioxide reduction and resource saving. Specifically, the working fluids of gas turbines and steam turbines are being actively heated and combined cycles are being promoted. Research and development is also underway for carbon dioxide recovery technology.

図3は、燃焼器において生成した二酸化炭素の一部を作動流体として循環させる、従来のガスタービン設備の系統図である。図3に示すように、空気分離機(図示しない)から分離された酸素は、流量調整弁310によって流量が調整され、燃焼器311に供給される。燃料は、流量調整弁312によって流量が調整され、燃焼器311に供給される。この燃料は、例えば、炭化水素である。   FIG. 3 is a system diagram of a conventional gas turbine facility that circulates a part of carbon dioxide generated in a combustor as a working fluid. As shown in FIG. 3, the flow rate of oxygen separated from an air separator (not shown) is adjusted by a flow rate adjusting valve 310 and supplied to a combustor 311. The flow rate of the fuel is adjusted by the flow rate adjustment valve 312 and supplied to the combustor 311. This fuel is, for example, a hydrocarbon.

燃料および酸素は、燃焼器311内で反応(燃焼)する。燃料が酸素と燃焼すると、燃焼ガスとして二酸化炭素と水蒸気が生成する。燃料および酸素の流量は、それぞれが完全に混合した状態において量論混合比(理論混合比)となるように調整されている。   The fuel and oxygen react (combust) in the combustor 311. When the fuel burns with oxygen, carbon dioxide and water vapor are generated as combustion gases. The flow rates of the fuel and oxygen are adjusted so as to obtain a stoichiometric mixture ratio (theoretical mixture ratio) in a state where they are completely mixed.

燃焼器311で生成した燃焼ガスは、タービン313に導入される。タービン313において膨張仕事をした燃焼ガスは、熱交換器314を通り、さらに、熱交換器315を通る。熱交換器315を通る際、水蒸気が凝縮して水となる。水は、配管316を通り外部に排出される。なお、タービン313には、発電機317が連結されている。   Combustion gas generated by the combustor 311 is introduced into the turbine 313. The combustion gas that has performed expansion work in the turbine 313 passes through the heat exchanger 314 and further passes through the heat exchanger 315. When passing through the heat exchanger 315, the water vapor is condensed into water. Water is discharged outside through the pipe 316. Note that a generator 317 is connected to the turbine 313.

水蒸気と分離されたドライ作動ガス(二酸化炭素)は、圧縮機318で昇圧される。昇圧された二酸化炭素の一部は、流量調整弁319によって流量が調整され、外部に排出される。二酸化炭素の残りは、熱交換器314において加熱され、燃焼器311に供給される。   The dry working gas (carbon dioxide) separated from the water vapor is pressurized by the compressor 318. A part of the boosted carbon dioxide is adjusted in flow rate by the flow rate adjusting valve 319 and discharged to the outside. The remainder of the carbon dioxide is heated in the heat exchanger 314 and supplied to the combustor 311.

ここで、ガスタービン設備においては、全速無負荷(FSNL)から定格までタービン負荷制御が行われる。これによって、タービン313に導入される作動流体の流量は変化する。このガスタービン設備における作動流体の圧力は高圧であり、圧縮機318における作動流体の体積流量は小さい。そのため、圧縮機318として、軸流圧縮機は適さず、遠心圧縮機が使用される。   Here, in the gas turbine equipment, turbine load control is performed from full speed no load (FSNL) to a rating. As a result, the flow rate of the working fluid introduced into the turbine 313 changes. The pressure of the working fluid in this gas turbine equipment is high, and the volume flow rate of the working fluid in the compressor 318 is small. Therefore, an axial compressor is not suitable as the compressor 318, and a centrifugal compressor is used.

燃焼器311に供給される二酸化炭素の一部は、燃料および酸素とともに燃焼領域に導入される。残りの二酸化炭素は、燃焼器311の壁面の冷却、燃焼ガスの希釈に使用される。そして、燃焼器311内に導入された二酸化炭素は、燃焼ガスとともにタービン313に導入される。   A part of the carbon dioxide supplied to the combustor 311 is introduced into the combustion region together with fuel and oxygen. The remaining carbon dioxide is used for cooling the wall surface of the combustor 311 and diluting the combustion gas. The carbon dioxide introduced into the combustor 311 is introduced into the turbine 313 together with the combustion gas.

上記した系統において、燃焼器311において燃料と酸素を燃焼させることで生成した二酸化炭素の生成量に相当する分の二酸化炭素が系統の外部に排出される。系統の外部に排出された二酸化炭素は、例えば、回収装置により回収される。また、例えば、油田の地下造岩から残油を押し出すために、排出された二酸化炭素を利用することもできる。一方、系統内に残された二酸化炭素は、系統内を循環する。   In the system described above, carbon dioxide corresponding to the amount of carbon dioxide generated by burning fuel and oxygen in the combustor 311 is discharged to the outside of the system. The carbon dioxide discharged to the outside of the system is recovered by, for example, a recovery device. Also, for example, the discharged carbon dioxide can be used to push residual oil from underground rock formation in an oil field. On the other hand, carbon dioxide left in the system circulates in the system.

R.J. Allam, et al., High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide, Session 8,第11回温室効果ガス制御技術国際会議(GHGT-11)R.J.Allam, et al., High efficiency and low cost of electricity generation from fossil fuels while reducing atmospheric emissions, including carbon dioxide, Session 8, 11th International Conference on Greenhouse Gas Control Technology (GHGT-11)

上記した従来のガスタービン設備において、燃焼器311内に形成される火炎は、例えば、燃焼器311内へ噴出される二酸化炭素の噴出速度(以下、燃焼器噴出速度Vという。)によって影響を受ける。   In the conventional gas turbine equipment described above, the flame formed in the combustor 311 is affected by, for example, the ejection speed of carbon dioxide ejected into the combustor 311 (hereinafter referred to as combustor ejection speed V). .

この燃焼器噴出速度Vは、次に示す式(1)によって定義される。
V = G×T×R×Z/(P×A) …式(1)
This combustor ejection speed V is defined by the following equation (1).
V = G × T × R × Z / (P × A) (1)

ここで、Gは、燃焼器311に流入する二酸化炭素の体積流量、Tは、燃焼器311に流入する二酸化炭素の温度、Rは、ガス定数、Zは、圧縮係数である。また、Pは、燃焼器311に流入する二酸化炭素の圧力、Aは、燃焼器311に流入した二酸化炭素が通過する開口部の全開口面積である。   Here, G is a volume flow rate of carbon dioxide flowing into the combustor 311, T is a temperature of carbon dioxide flowing into the combustor 311, R is a gas constant, and Z is a compression coefficient. P is the pressure of carbon dioxide flowing into the combustor 311, and A is the total opening area of the opening through which the carbon dioxide flowing into the combustor 311 passes.

上記したように、火炎は、燃焼器噴出速度Vの影響を受けるため、ガスタービン設備においてタービン負荷制御を行う際には、例えば、この燃焼器噴出速度Vを適正な範囲に制御することで、火炎の安定性を図ることが好ましい。   As described above, since the flame is affected by the combustor ejection speed V, when performing turbine load control in the gas turbine equipment, for example, by controlling the combustor ejection speed V to an appropriate range, It is preferable to improve the stability of the flame.

しかしながら、前述した、圧縮機318として使用される遠心圧縮機においては、例えば、軸流圧縮機のような入口案内翼を備えず、広範な流量制御を行うことが困難である。そのため、タービン負荷が変化したときに、燃焼器噴出速度Vを適正な範囲に制御するのは困難である。   However, the above-described centrifugal compressor used as the compressor 318 does not include inlet guide vanes such as an axial flow compressor, and it is difficult to perform a wide range of flow rate control. Therefore, it is difficult to control the combustor ejection speed V within an appropriate range when the turbine load changes.

本発明が解決しようとする課題は、タービン負荷が変化したときにおいても、燃焼器噴出速度を適正な範囲に維持し、火炎安定を図ることができるガスタービン設備を提供するものである。   The problem to be solved by the present invention is to provide gas turbine equipment that can maintain flame combustor speed within an appropriate range and achieve flame stability even when the turbine load changes.

実施形態のガスタービン設備は、燃料と酸化剤を燃焼させる燃焼器と、前記燃焼器から排出された燃焼ガスによって回動されるタービンと、前記タービンから排出された前記燃焼ガスを冷却する熱交換器と、前記熱交換器を通過した前記燃焼ガスから水蒸気を除去してドライ作動ガスに再生する水蒸気除去器とを備える。   A gas turbine facility according to an embodiment includes a combustor that burns fuel and an oxidant, a turbine that is rotated by the combustion gas discharged from the combustor, and a heat exchange that cools the combustion gas discharged from the turbine. And a water vapor remover that removes water vapor from the combustion gas that has passed through the heat exchanger and regenerates it into a dry working gas.

さらに、ガスタービン設備は、前記ドライ作動ガスを超臨界流体となるまで昇圧する圧縮機と、前記圧縮機から排出された超臨界流体の前記ドライ作動ガスの一部を、前記熱交換器を通して前記燃焼器に導く燃焼器導入管と、前記熱交換器よりも上流側の前記燃焼器導入管から分岐し、前記燃焼器導入管を流れる前記ドライ作動ガスの一部を外部に排出する排出管と、前記圧縮機から排出された超臨界流体の前記ドライ作動ガスの残部を、前記タービンの出口と前記熱交換器の入口とを連結する配管内に導入するバイパス管とを備える。   Furthermore, the gas turbine equipment includes a compressor that pressurizes the dry working gas until it becomes a supercritical fluid, and a part of the dry working gas of the supercritical fluid discharged from the compressor through the heat exchanger. A combustor introduction pipe that leads to the combustor, and a discharge pipe that branches from the combustor introduction pipe upstream of the heat exchanger and discharges a part of the dry working gas flowing through the combustor introduction pipe to the outside. And a bypass pipe for introducing the remaining part of the dry working gas of the supercritical fluid discharged from the compressor into a pipe connecting the outlet of the turbine and the inlet of the heat exchanger.

実施の形態のガスタービン設備の系統図である。It is a distribution diagram of gas turbine equipment of an embodiment. 実施の形態のガスタービン設備において、各負荷状態におけるタービンの入口圧力と燃焼器噴出速度Vとの関係を示す図である。It is a figure which shows the relationship between the inlet pressure of the turbine in each load state, and the combustor ejection speed V in the gas turbine equipment of embodiment. 燃焼器において生成した二酸化炭素の一部を作動流体として循環させる、従来のガスタービン設備の系統図である。It is a systematic diagram of the conventional gas turbine equipment which circulates a part of carbon dioxide produced | generated in the combustor as a working fluid.

以下、本発明の実施の形態について図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施の形態のガスタービン設備10の系統図である。図1に示すように、ガスタービン設備10は、燃料と酸化剤を燃焼させる燃焼器20を備えている。燃料を燃焼器20に供給する配管35には、燃料の流量を調整するための流量調整弁15が設けられている。酸化剤を燃焼器20に供給する配管36には、酸化剤の流量を調整するための流量調整弁16が設けられている。なお、流量調整弁16は、酸化剤流量調整弁として機能する。   FIG. 1 is a system diagram of a gas turbine facility 10 according to an embodiment. As shown in FIG. 1, the gas turbine facility 10 includes a combustor 20 that burns fuel and an oxidant. A pipe 35 for supplying fuel to the combustor 20 is provided with a flow rate adjusting valve 15 for adjusting the flow rate of the fuel. The pipe 36 for supplying the oxidant to the combustor 20 is provided with a flow rate adjusting valve 16 for adjusting the flow rate of the oxidant. The flow rate adjustment valve 16 functions as an oxidant flow rate adjustment valve.

ここで、燃料としては、例えば、天然ガス、メタンなどの炭化水素や、石炭ガス化ガスなどが使用される。酸化剤としては、酸素が使用される。この酸素は、例えば、空気分離装置(図示しない)によって大気から分離することで得られる。   Here, for example, natural gas, hydrocarbons such as methane, coal gasification gas, or the like is used as the fuel. Oxygen is used as the oxidizing agent. This oxygen is obtained, for example, by being separated from the atmosphere by an air separation device (not shown).

燃焼器20から排出された燃焼ガスは、タービン21に導かれる。このタービン21は、燃焼ガスによって回動される。タービン21には、例えば、発電機22が連結されている。なお、ここでいう、燃焼器20から排出される燃焼ガスは、燃料と酸化剤とが燃焼することで生成された燃焼生成物と、燃焼器20に供給されて燃焼生成物とともに燃焼器20から排出される、後述するドライ作動ガス(二酸化炭素)とを含んだものである。   The combustion gas discharged from the combustor 20 is guided to the turbine 21. The turbine 21 is rotated by the combustion gas. For example, a generator 22 is connected to the turbine 21. Note that the combustion gas discharged from the combustor 20 here is a combustion product generated by combustion of fuel and oxidant, and is supplied to the combustor 20 from the combustor 20 together with the combustion product. It contains exhaust gas (carbon dioxide) to be discharged, which will be described later.

タービン21から排出された燃焼ガスは、配管40に介在する熱交換器23を通過することによって冷却される。熱交換器23を通過した燃焼ガスは、さらに配管40に介在する熱交換器24を通過する。燃焼ガスは、この熱交換器24を通過することで、燃焼ガス中に含まれる水蒸気が除去され、ドライ作動ガスに再生される。ここで、水蒸気は、熱交換器24を通過することで、凝縮して水となる。この水は、例えば配管41を通り外部に排出される。なお、熱交換器24は、水蒸気を除去する水蒸気除去器として機能する。   The combustion gas discharged from the turbine 21 is cooled by passing through the heat exchanger 23 interposed in the pipe 40. The combustion gas that has passed through the heat exchanger 23 further passes through the heat exchanger 24 interposed in the pipe 40. When the combustion gas passes through the heat exchanger 24, water vapor contained in the combustion gas is removed and regenerated into a dry working gas. Here, the water vapor condenses into water by passing through the heat exchanger 24. This water is discharged to the outside through the pipe 41, for example. The heat exchanger 24 functions as a water vapor remover that removes water vapor.

燃焼器20から排出される燃焼ガスには、余剰の酸化剤(酸素)や燃料が残存しないことが好ましい。そこで、燃焼器20に供給する燃料および酸素の流量を量論混合比(当量比1)になるように調整している。そのため、ドライ作動ガスの成分は、ほぼ二酸化炭素である。なお、ドライ作動ガスには、例えば、微量の一酸化炭素などが混在する場合も含まれる。   It is preferable that no surplus oxidant (oxygen) and fuel remain in the combustion gas discharged from the combustor 20. Therefore, the flow rates of the fuel and oxygen supplied to the combustor 20 are adjusted to be a stoichiometric mixture ratio (equivalence ratio 1). Therefore, the component of the dry working gas is almost carbon dioxide. The dry working gas includes, for example, a case where a small amount of carbon monoxide is mixed.

ドライ作動ガスは、配管40によって圧縮機25に導かれる。ドライ作動ガスは、超臨界流体となるまで圧縮機25によって昇圧される。圧縮機25の出口において、ドライ作動ガスの圧力は、例えば、8MPa〜9MPa、ドライ作動ガスの温度は、例えば、35〜45℃となる。なお、超臨界流体とは、臨界点以上の温度および圧力下における状態をいう。   The dry working gas is guided to the compressor 25 by the pipe 40. The dry working gas is pressurized by the compressor 25 until it becomes a supercritical fluid. At the outlet of the compressor 25, the pressure of the dry working gas is, for example, 8 MPa to 9 MPa, and the temperature of the dry working gas is, for example, 35 to 45 ° C. The supercritical fluid refers to a state under temperature and pressure above the critical point.

ここで、圧縮機25としては、例えば、遠心圧縮機が使用される。圧縮機25は、例えば、タービン21のオーバスピードを防止するため、タービン21と同軸で連結されている。この場合、圧縮機25は、タービン21が定格のときには、タービン21の定格回転数で一定で回転する。遠心圧縮機は、圧力比の上昇に対してサージマージンが少ないため、回転数が一定の場合、体積流量および圧力比を一定で運転することが好ましい。   Here, as the compressor 25, for example, a centrifugal compressor is used. For example, the compressor 25 is coaxially connected to the turbine 21 in order to prevent overspeed of the turbine 21. In this case, the compressor 25 rotates at a constant rotational speed of the turbine 21 when the turbine 21 is rated. Since the centrifugal compressor has a small surge margin with respect to an increase in pressure ratio, it is preferable to operate at a constant volume flow rate and pressure ratio when the rotation speed is constant.

また、圧縮機25の出口における圧力を、例えば、一定の超臨界圧力に維持するには、圧縮機25の入口における圧力も一定の値となる。圧縮機25の入口における圧力が一定であることは、タービン21の出口における圧力が一定となるため、タービン21のシール特性や熱交換器23、24の安定使用の観点から好ましい。なお、圧縮機25の出口における圧力を一定に維持するには、後述する配管45に流れるドライ作動ガスの流量を調整することが必要となる。   In order to maintain the pressure at the outlet of the compressor 25 at, for example, a constant supercritical pressure, the pressure at the inlet of the compressor 25 also has a constant value. A constant pressure at the inlet of the compressor 25 is preferable from the viewpoint of sealing characteristics of the turbine 21 and stable use of the heat exchangers 23 and 24 because the pressure at the outlet of the turbine 21 is constant. In order to keep the pressure at the outlet of the compressor 25 constant, it is necessary to adjust the flow rate of the dry working gas flowing in the pipe 45 described later.

圧縮機25から排出された超臨界流体のドライ作動ガスの一部は、配管42を通り燃焼器20に導かれる。この配管42は、燃焼器導入管として機能する。配管42には、超臨界流体のドライ作動ガスを冷却するための冷却器26が介在している。超臨界流体のドライ作動ガスは、冷却器26を通過することで、臨界点の圧力以上の圧力を維持しつつ、臨界点の温度よりも低い温度となる。そのため、冷却器26を通過した後には、ドライ作動ガスは、超臨界流体の状態を脱し、液体となる。   A part of the supercritical fluid dry working gas discharged from the compressor 25 is led to the combustor 20 through the pipe 42. This pipe 42 functions as a combustor introduction pipe. A cooler 26 for cooling the supercritical fluid dry working gas is interposed in the pipe 42. The dry working gas of the supercritical fluid passes through the cooler 26 and becomes a temperature lower than the critical point temperature while maintaining a pressure higher than the critical point pressure. Therefore, after passing through the cooler 26, the dry working gas leaves the supercritical fluid state and becomes liquid.

冷却器26の下流側の配管42には、液体となったドライ作動ガスを昇圧するポンプ27が介在している。ポンプ27は、例えば、タービン負荷に応じて、液体となったドライ作動ガスを昇圧する。ポンプ27は、例えば、インバータモータによって回転数制御される。液体となったドライ作動ガスは、ポンプ27によって昇圧されるともに、温度も臨界点の温度以上になる。そのため、液体となったドライ作動ガスは、ポンプ27を通過することで、再び超臨界流体のドライ作動ガスとなる。   A pump 27 that pressurizes the dry working gas that has become liquid is interposed in the pipe 42 on the downstream side of the cooler 26. The pump 27 boosts the dry working gas that has become liquid, for example, according to the turbine load. The rotation speed of the pump 27 is controlled by, for example, an inverter motor. The dry working gas that has become liquid is boosted by the pump 27, and the temperature also exceeds the critical point temperature. Therefore, the dry working gas that has become liquid passes through the pump 27 and becomes the dry working gas of the supercritical fluid again.

ポンプ27においては、例えば、所定の流量および圧力のドライ作動ガスを燃焼器20へ供給するため、例えば、所定の流量および圧力の設定点を通るようにインバータによって回転数制御がなされる。   In the pump 27, for example, in order to supply a dry working gas having a predetermined flow rate and pressure to the combustor 20, the rotational speed control is performed by an inverter so as to pass through a set point of the predetermined flow rate and pressure, for example.

ここで、冷却器26を通過したドライ作動ガスを、臨界点の圧力以上の圧力を維持しつつ液体とするのは、例えば、臨界点以下の条件のように気体と液体が共存できる条件下において、気液混合の二層流がポンプ27に入った際に生じるキャビテーションによる損傷を回避するためである。また、液体とすることで、凝縮熱が奪われることなく、サイクル効率を維持しながら運転することができる。   Here, the dry working gas that has passed through the cooler 26 is made liquid while maintaining a pressure higher than the critical point pressure, for example, under conditions where gas and liquid can coexist, such as under the critical point condition. This is to avoid damage due to cavitation that occurs when a two-layer flow of gas-liquid mixing enters the pump 27. Further, by using a liquid, it is possible to operate while maintaining cycle efficiency without taking heat of condensation.

また、タービン負荷制御によって、ポンプ27から排出されるドライ作動ガスの流量およびポンプ27の出口圧力は、広範に変化する。タービン21において燃焼ガスがチョーク流れとなることから、Swallowing Capacity(SWC)が一定となるため、次の式(2)を満たす。
SWC = G×(T1/2/P = 一定 …式(2)
Moreover, the flow rate of the dry working gas discharged from the pump 27 and the outlet pressure of the pump 27 vary widely by the turbine load control. Since combustion gas becomes a choke flow in the turbine 21, the Swallowing Capacity (SWC) is constant, and therefore, the following equation (2) is satisfied.
SWC = G t × (T t ) 1/2 / P t = Constant ... Formula (2)

ここで、Gは、タービン21の入口における燃焼ガスの体積流量、Tは、タービン21の入口における燃焼ガスの温度、Pは、タービン21の入口における燃焼ガスの圧力である。 Here, G t is the volume flow rate of the combustion gas at the inlet of the turbine 21, T t is the temperature of the combustion gas at the inlet of the turbine 21, and P t is the pressure of the combustion gas at the inlet of the turbine 21.

例えば、タービン21に供給する燃焼ガスの圧力を上昇させるためには、燃焼ガスの流量が決まっている場合、燃料流量および酸化剤流量を増加して、燃焼ガスの温度を上げる。しかしながら、ポンプ27を備えない場合、圧縮機25である遠心圧縮機のサージ圧力マージンがほとんどないため、その圧力上昇に耐えることができない。そこで、ポンプ27を備えることで、上記した圧力上昇に耐えるシステムが実現される。   For example, in order to increase the pressure of the combustion gas supplied to the turbine 21, when the flow rate of the combustion gas is determined, the fuel flow rate and the oxidant flow rate are increased to raise the temperature of the combustion gas. However, when the pump 27 is not provided, there is almost no surge pressure margin of the centrifugal compressor which is the compressor 25, so that the pressure rise cannot be endured. Therefore, by providing the pump 27, a system that can withstand the above-described pressure rise is realized.

ポンプ27と熱交換器23との間の配管42からは、配管42を流れるドライ作動ガスの一部を外部に排出する配管44が分岐している。この配管44は、排出管として機能する。配管44には、排出するドライ作動ガスの流量を調整するための流量調整弁29が設けられている。なお、流量調整弁29は、排出流量調整弁として機能する。   From the pipe 42 between the pump 27 and the heat exchanger 23, a pipe 44 for discharging a part of the dry working gas flowing through the pipe 42 to the outside is branched. This pipe 44 functions as a discharge pipe. The pipe 44 is provided with a flow rate adjustment valve 29 for adjusting the flow rate of the dry working gas to be discharged. The flow rate adjustment valve 29 functions as a discharge flow rate adjustment valve.

配管44から排出されたドライ作動ガスは、例えば、回収装置により回収される。また、例えば、油田の地下造岩から残油を押し出すために、排出されたドライ作動ガスを利用することもできる。例えば、燃焼器20において燃料と酸素を燃焼させることで生成した二酸化炭素の生成量に相当する分の二酸化炭素が配管44から排出される。なお、配管44から排出されたドライ作動ガス以外は、燃焼器20に導入され、系統内を循環する。   The dry working gas discharged from the pipe 44 is recovered by, for example, a recovery device. Also, for example, the discharged dry working gas can be used to push residual oil out of the oil field underground rock formation. For example, carbon dioxide corresponding to the amount of carbon dioxide generated by burning fuel and oxygen in the combustor 20 is discharged from the pipe 44. The dry working gas discharged from the pipe 44 is introduced into the combustor 20 and circulated in the system.

配管44の分岐部よりも下流において配管42は、熱交換器23を通り燃焼器20に連通している。配管42を流れる超臨界流体のドライ作動ガスは、熱交換器23において、タービン21から排出された燃焼ガスからの熱量を得て加熱される。配管42を通り、燃焼器20に導入されたドライ作動ガスは、例えば、燃焼器20の上流側から燃料や酸化剤とともに燃焼領域に噴出されたり、燃焼器ライナの冷却後に希釈孔などから燃焼器ライナ内の燃焼領域の下流側に噴出される。   Downstream of the branch portion of the pipe 44, the pipe 42 passes through the heat exchanger 23 and communicates with the combustor 20. The supercritical fluid dry working gas flowing through the pipe 42 is heated in the heat exchanger 23 by obtaining heat from the combustion gas discharged from the turbine 21. The dry working gas introduced into the combustor 20 through the pipe 42 is ejected from the upstream side of the combustor 20 into the combustion region together with fuel and oxidant, or from the dilution hole or the like after the combustor liner is cooled. Injected downstream of the combustion region in the liner.

ここで、配管42を介して燃焼器20に導かれたドライ作動ガスの燃焼器20への噴出速度は、タービン負荷によらずほぼ一定であることが好ましい。噴出速度は、前述した式(1)で定義される燃焼器噴出速度Vである。この燃焼器噴出速度Vは、火炎安定に寄与する再循環領域が、燃焼領域の適正な範囲に形成されるように設定される。燃焼器噴出速度Vがほぼ一定とは、例えば、各タービン負荷における平均燃焼器噴出速度を中心として±10%の範囲をいう。   Here, it is preferable that the ejection speed of the dry working gas guided to the combustor 20 via the pipe 42 to the combustor 20 is substantially constant regardless of the turbine load. The ejection speed is the combustor ejection speed V defined by the above-described equation (1). This combustor ejection speed V is set so that the recirculation region contributing to flame stability is formed within an appropriate range of the combustion region. The combustor ejection speed V being substantially constant means, for example, a range of ± 10% around the average combustor ejection speed at each turbine load.

燃焼器20に流入したドライ作動ガス(二酸化炭素)が通過する開口部の全開口面積Aは一定であるため、燃焼器噴出速度Vをタービン負荷によらずほぼ一定に設定すれば、タービン負荷によって、燃焼器に供給されるドライ作動ガスの質量流量は変化するが、体積流量はタービン負荷によらずほぼ一定となる。   Since the total opening area A of the opening through which the dry working gas (carbon dioxide) flowing into the combustor 20 passes is constant, if the combustor ejection speed V is set to be almost constant regardless of the turbine load, The mass flow rate of the dry working gas supplied to the combustor varies, but the volume flow rate becomes substantially constant regardless of the turbine load.

圧縮機25から排出された超臨界流体のドライ作動ガスの残部は、配管45を通り、タービン21の出口と熱交換器23の入口とを連結する配管40内に導入される。配管45は、バイパス管として機能する。配管45には、配管40に導入される超臨界流体のドライ作動ガスの流量を調整するための流量調整弁30が設けられている。圧縮機25の回転数が一定で、圧縮機25の出口における圧力を一定に維持するためには、圧縮機25の入口における圧力を一定にする必要がある。そのため、バイパスするドライ作動ガスの流量が流量調整弁30によって調整される。なお、流量調整弁30は、バイパス流量調整弁として機能する。   The remainder of the supercritical fluid dry working gas discharged from the compressor 25 passes through the pipe 45 and is introduced into the pipe 40 that connects the outlet of the turbine 21 and the inlet of the heat exchanger 23. The pipe 45 functions as a bypass pipe. The pipe 45 is provided with a flow rate adjusting valve 30 for adjusting the flow rate of the dry working gas of the supercritical fluid introduced into the pipe 40. In order to keep the rotation speed of the compressor 25 constant and the pressure at the outlet of the compressor 25 constant, the pressure at the inlet of the compressor 25 needs to be constant. Therefore, the flow rate of the dry working gas to be bypassed is adjusted by the flow rate adjustment valve 30. The flow rate adjustment valve 30 functions as a bypass flow rate adjustment valve.

また、ガスタービン設備10は、配管35を流れる燃料の流量を検知する流量検知部50、配管36を流れる酸化剤の流量を検知する流量検知部51、配管42を流れるドライ作動ガスの流量を検知する流量検知部52、配管44を流れるドライ作動ガスの流量を検知する流量検知部53、配管45を流れるドライ作動ガスの流量を検知する流量検知部54を備えている。各流量検知部は、例えば、ベンチュリ式やコリオリ式などの流量計で構成される。   Further, the gas turbine equipment 10 detects the flow rate of the fuel flowing through the pipe 35, the flow rate detection unit 51 detecting the flow rate of the oxidant flowing through the pipe 36, and the flow rate of the dry working gas flowing through the pipe 42. A flow rate detection unit 52 that detects the flow rate of the dry working gas that flows through the pipe 45, and a flow rate detection unit that detects the flow rate of the dry working gas that flows through the pipe 45. Each flow rate detection unit is configured by a flow meter such as a venturi type or a Coriolis type, for example.

ここで、流量検知部50は、燃料流量検知部として、流量検知部51は、酸化剤流量検知部として、流量検知部52は、燃焼器導入流量検知部として、流量検知部53は、排出流量検知部として、流量検知部54は、バイパス流量検知部として機能する。   Here, the flow rate detection unit 50 is a fuel flow rate detection unit, the flow rate detection unit 51 is an oxidant flow rate detection unit, the flow rate detection unit 52 is a combustor introduction flow rate detection unit, and the flow rate detection unit 53 is an exhaust flow rate. As a detection unit, the flow rate detection unit 54 functions as a bypass flow rate detection unit.

ガスタービン設備10は、上記した各流量検知部50、51、52、53、54からの検知信号に基づいて、各流量調整弁16、29、30の開度を制御する制御部60を備えている。この制御部60は、例えば、演算装置(CPU)、読み出し専用メモリ(ROM)やランダムアクセスメモリ(RAM)などの記憶手段、出入力手段などを主に備えている。CPUでは、例えば、記憶手段に格納されたプログラムやデータなどを用いて各種の演算処理を実行する。   The gas turbine equipment 10 includes a control unit 60 that controls the opening degree of each flow rate adjustment valve 16, 29, 30 based on the detection signal from each flow rate detection unit 50, 51, 52, 53, 54 described above. Yes. The control unit 60 mainly includes, for example, an arithmetic unit (CPU), storage means such as a read only memory (ROM) and random access memory (RAM), input / output means, and the like. In the CPU, for example, various arithmetic processes are executed using a program or data stored in the storage means.

出入力手段は、外部機器から電気信号を入力したり、外部機器に電気信号を出力する。具体的には、出入力手段は、例えば、各流量検知部50、51、52、53、54、各流量調整弁15、16、29、30などと各種信号の出入力が可能に接続されている。この制御部60が実行する処理は、例えばコンピュータ装置などで実現される。   The input / output means inputs an electric signal from an external device or outputs an electric signal to the external device. Specifically, the input / output means is connected to, for example, each flow rate detection unit 50, 51, 52, 53, 54, each flow rate adjustment valve 15, 16, 29, 30 or the like so as to be able to input and output various signals. Yes. The processing executed by the control unit 60 is realized by a computer device, for example.

次に、燃焼器20に供給される、燃料、酸素およびドライ作動ガス(二酸化炭素)の流量調整に係る動作について、図1を参照して説明する。   Next, the operation | movement which concerns on flow volume adjustment of the fuel, oxygen, and dry working gas (carbon dioxide) supplied to the combustor 20 is demonstrated with reference to FIG.

ガスタービン設備10の運転時において、制御部60は、流量検知部50からの出力信号を出入力手段を介して入力する。入力した出力信号に基づいて、記憶手段に格納されたプログラムやデータなどを用いて演算装置において、当量比を1とするために必要な酸素流量を算出する。なお、燃料流量は、例えば、要求されるガスタービン出力に基づいて、流量調整弁15の弁開度を調整することで制御される。   During operation of the gas turbine equipment 10, the control unit 60 inputs an output signal from the flow rate detection unit 50 through the input / output means. Based on the input output signal, an oxygen flow rate necessary for setting the equivalence ratio to 1 is calculated in the arithmetic unit using a program or data stored in the storage means. The fuel flow rate is controlled, for example, by adjusting the valve opening degree of the flow rate adjustment valve 15 based on the required gas turbine output.

続いて、制御部60は、出入力手段から入力された流量検知部51からの出力信号に基づいて、算出した酸素流量が配管36に流れるように、弁開度を調整するための出力信号を出入力手段から流量調整弁16に出力する。   Subsequently, the control unit 60 outputs an output signal for adjusting the valve opening so that the calculated oxygen flow rate flows into the pipe 36 based on the output signal from the flow rate detection unit 51 input from the input / output means. Output from the input / output means to the flow rate adjustment valve 16.

続いて、制御部60の演算装置において、出入力手段から入力された流量検知部50からの出力信号に基づいて、燃焼器20に導入する超臨界流体のドライ作動ガス(二酸化炭素)の流量、配管44から排出する超臨界流体のドライ作動ガスの流量および配管45を介してバイパスする超臨界流体のドライ作動ガスの流量を算出する。なお、この流量の算出は、上記した酸素流量の算出と同時に行われてもよい。また、ドライ作動ガスの流量を、流量検知部51からの出力信号に基づいて算出することもできる。   Subsequently, in the arithmetic unit of the control unit 60, based on the output signal from the flow rate detection unit 50 inputted from the input / output means, the flow rate of the dry working gas (carbon dioxide) of the supercritical fluid introduced into the combustor 20, The flow rate of the dry working gas of the supercritical fluid discharged from the pipe 44 and the flow rate of the dry working gas of the supercritical fluid bypassed through the pipe 45 are calculated. The calculation of the flow rate may be performed simultaneously with the calculation of the oxygen flow rate described above. Also, the flow rate of the dry working gas can be calculated based on the output signal from the flow rate detection unit 51.

ここで、燃焼器20に導入するドライ作動ガス(二酸化炭素)の流量は、燃焼器噴出速度Vが設定値となるように算出される。なお、配管44から排出するドライ作動ガスの流量は、前述したように、燃焼器20において燃料と酸素を燃焼させることで生成した二酸化炭素の生成量に相当する分である。例えば、燃料流量が減少した場合には、配管45を介してバイパスされるドライ作動ガスの流量は増加する。一方、燃料流量が増加した場合には、配管45を介してバイパスされるドライ作動ガスの流量は減少する。   Here, the flow rate of the dry working gas (carbon dioxide) introduced into the combustor 20 is calculated so that the combustor ejection speed V becomes a set value. Note that the flow rate of the dry working gas discharged from the pipe 44 is equivalent to the amount of carbon dioxide generated by burning the fuel and oxygen in the combustor 20 as described above. For example, when the fuel flow rate decreases, the flow rate of the dry working gas that is bypassed through the pipe 45 increases. On the other hand, when the fuel flow rate increases, the flow rate of the dry working gas that is bypassed through the pipe 45 decreases.

なお、圧縮機25は、タービン21と同軸で連結されているため、タービン21が定格のときには、タービン21の定格回転数で一定に回転する。また、圧縮機25の入口における圧力が一定で、圧縮機25の出口におけるドライ作動ガスの圧力が一定の超臨界圧力であるため、圧縮機25から排出されるドライ作動ガスの流量は一定となる。   In addition, since the compressor 25 is coaxially connected with the turbine 21, when the turbine 21 is rated, the compressor 25 rotates at a constant rotational speed of the turbine 21. Further, since the pressure at the inlet of the compressor 25 is constant and the pressure of the dry working gas at the outlet of the compressor 25 is a constant supercritical pressure, the flow rate of the dry working gas discharged from the compressor 25 is constant. .

続いて、制御部60は、出入力手段から入力された流量検知部52、53、54からの出力信号に基づいて、それぞれ算出したドライ作動ガスの流量が、各配管42、44、45に流れるように、弁開度を調整するための出力信号を出入力手段から流量調整弁29、30に出力する。なお、図1に示された構成では、流量検知部52で検知されるのは、燃焼器20に導入するドライ作動ガスおよび配管44から排出するドライ作動ガスの流量である。   Subsequently, the control unit 60 calculates the flow rate of the dry working gas, which is calculated based on the output signals from the flow rate detection units 52, 53, and 54 input from the input / output means, to the respective pipes 42, 44, and 45. As described above, an output signal for adjusting the valve opening is output from the input / output means to the flow rate adjusting valves 29 and 30. In the configuration shown in FIG. 1, the flow rate detection unit 52 detects the flow rate of the dry working gas introduced into the combustor 20 and the dry working gas discharged from the pipe 44.

ここで、ポンプ27は、制御部60によって、燃焼器20に導入するドライ作動ガスおよび配管44から排出するドライ作動ガスの流量を引き込める回転数に制御される。また、ポンプ27の出口におけるドライ作動ガスの圧力は、燃焼器20の入口、換言するとタービン21の入口において要求される圧力となる。   Here, the pump 27 is controlled by the control unit 60 to a rotational speed at which the flow rates of the dry working gas introduced into the combustor 20 and the dry working gas discharged from the pipe 44 can be drawn. Further, the pressure of the dry working gas at the outlet of the pump 27 is a pressure required at the inlet of the combustor 20, in other words, at the inlet of the turbine 21.

ここで、例えば、燃焼器20に導入するドライ作動ガスの流量を減少する場合には、制御部60は、例えば、流量調整弁30を制御する。   Here, for example, when the flow rate of the dry working gas introduced into the combustor 20 is decreased, the control unit 60 controls the flow rate adjustment valve 30, for example.

そして、配管44に分岐後の配管42を流れるドライ作動ガスは、熱交換器23を通り燃焼器20に導入される。   Then, the dry working gas flowing in the pipe 42 branched to the pipe 44 is introduced into the combustor 20 through the heat exchanger 23.

上記したような制御を行うことで、タービン負荷が変化したときにおいても、燃焼器噴出速度Vを適正な範囲でほぼ一定に維持することができる。これによって、再循環領域が燃焼領域の適正な範囲に形成され、燃焼器20における火炎安定を図ることができる。   By performing the control as described above, the combustor ejection speed V can be maintained substantially constant within an appropriate range even when the turbine load changes. Thus, the recirculation region is formed in an appropriate range of the combustion region, and flame stabilization in the combustor 20 can be achieved.

ここで、図2は、実施の形態のガスタービン設備10において、各負荷状態におけるタービン21の入口圧力と燃焼器噴出速度Vとの関係を示す図である。なお、例示におけるタービン21の出口圧力は、3MPaである。また、図2において、例えば、FSNLは、全速無負荷状態であり、25%はタービン負荷が25%であることを示している。   Here, FIG. 2 is a diagram illustrating a relationship between the inlet pressure of the turbine 21 and the combustor ejection speed V in each load state in the gas turbine equipment 10 of the embodiment. Note that the outlet pressure of the turbine 21 in the example is 3 MPa. In FIG. 2, for example, FSNL is a full-speed no-load state, and 25% indicates that the turbine load is 25%.

図2に示すように、タービン負荷が変化したときにおいても、燃焼器噴出速度Vは、ほぼ一定に維持されている。   As shown in FIG. 2, even when the turbine load changes, the combustor ejection speed V is maintained substantially constant.

上記したように、実施の形態のガスタービン設備10によれば、圧縮機25の出口におけるドライ作動ガスの圧力を一定の超臨界圧力とし、配管42にはポンプ27が設けられ、ドライ作動ガスの一部を配管40にバイパスする配管45が設けられている。これによって、タービン負荷が変化したときにおいても、燃焼器噴出速度Vを適正な範囲でほぼ一定に維持し、燃焼器20における火炎安定を図ることができる。   As described above, according to the gas turbine equipment 10 of the embodiment, the pressure of the dry working gas at the outlet of the compressor 25 is set to a constant supercritical pressure, the pipe 42 is provided with the pump 27, and the dry working gas A pipe 45 that bypasses a part of the pipe 40 is provided. Thus, even when the turbine load changes, the combustor ejection speed V can be maintained substantially constant within an appropriate range, and flame stabilization in the combustor 20 can be achieved.

以上説明した実施形態によれば、タービン負荷が変化したときにおいても、燃焼器噴出速度を適正な範囲に維持し、火炎安定を図ることが可能となる。   According to the embodiment described above, even when the turbine load changes, it is possible to maintain the combustor ejection speed within an appropriate range and achieve flame stability.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…ガスタービン設備、15,16,29,30…流量調整弁、20…燃焼器、21…タービン、22…発電機、23,24…熱交換器、25…圧縮機、26…冷却器、27…ポンプ、35,36,40,41,42,44,45…配管、50,51,52,53,54…流量検知部、60…制御部。   DESCRIPTION OF SYMBOLS 10 ... Gas turbine equipment, 15, 16, 29, 30 ... Flow control valve, 20 ... Combustor, 21 ... Turbine, 22 ... Generator, 23, 24 ... Heat exchanger, 25 ... Compressor, 26 ... Cooler, 27 ... Pump, 35, 36, 40, 41, 42, 44, 45 ... Piping, 50, 51, 52, 53, 54 ... Flow rate detection unit, 60 ... Control unit.

Claims (10)

ガスタービン設備であって、
燃料および酸化剤を燃焼させるように構成された燃焼器と、
前記燃焼器から排出された燃焼ガスによって回動されるように構成されたタービンと、
前記タービンから排出された燃焼ガスを冷却するように構成された熱交換器と、
前記熱交換器を通過した燃焼ガスから水蒸気を除去してドライ作動ガスに再生するように構成された水蒸気除去器と、
前記ドライ作動ガスを超臨界流体となるまで昇圧するように構成された圧縮機と、
前記圧縮機から排出された超臨界流体のドライ作動ガスの一部を、前記熱交換器を通して前記燃焼器に導くように構成された燃焼器導入管と、
前記熱交換器の上流側にある燃焼器導入管から分岐され、前記燃焼器導入管を流れるドライ作動ガスの一部を外部に排出するように構成された排出管と、
前記圧縮機から排出された超臨界流体のドライ作動ガスの残部を、前記タービンの出口および前記熱交換器の入口を連結する配管内に導入するように構成されたバイパス管と、
を具備する、ガスタービン設備。
Gas turbine equipment,
A combustor configured to burn fuel and oxidant;
A turbine configured to be rotated by combustion gas discharged from the combustor;
A heat exchanger configured to cool the combustion gas discharged from the turbine;
A water vapor remover configured to remove water vapor from the combustion gas that has passed through the heat exchanger and regenerate it into a dry working gas;
A compressor configured to pressurize the dry working gas to a supercritical fluid;
A combustor inlet tube configured to direct a portion of the supercritical fluid dry working gas discharged from the compressor through the heat exchanger to the combustor;
A discharge pipe branched from a combustor introduction pipe on the upstream side of the heat exchanger and configured to discharge a part of the dry working gas flowing through the combustor introduction pipe to the outside;
A bypass pipe configured to introduce the remainder of the supercritical fluid dry working gas discharged from the compressor into a pipe connecting an outlet of the turbine and an inlet of the heat exchanger;
A gas turbine facility comprising:
前記圧縮機が、遠心圧縮機からなりかつ前記タービンと同軸で連結される、請求項1に記載のガスタービン設備。   The gas turbine equipment according to claim 1, wherein the compressor is a centrifugal compressor and is coaxially connected to the turbine. 前記排出管の分岐部の上流側にある燃焼器導入管内に配置され、前記燃焼器導入管を流れる超臨界流体のドライ作動ガスを冷却するように構成された冷却器をさらに具備する、請求項1または2に記載のガスタービン設備。   The apparatus further comprises a cooler disposed in a combustor introduction pipe upstream of the branch of the exhaust pipe and configured to cool a dry working gas of a supercritical fluid flowing through the combustor introduction pipe. The gas turbine equipment according to 1 or 2. 前記ガスタービン設備が、前記ドライ作動ガスを昇圧するように構成されたポンプをさらに具備し、前記ポンプの回転数が、前記熱交換器に向けられるドライ作動ガスの流量および圧力を変化させるように、前記タービンの回転数とは独立して制御される、請求項1に記載のガスタービン設備。   The gas turbine equipment further comprises a pump configured to boost the dry working gas, such that the rotational speed of the pump changes the flow rate and pressure of the dry working gas directed to the heat exchanger. The gas turbine equipment according to claim 1, wherein the gas turbine equipment is controlled independently of a rotational speed of the turbine. 前記ポンプが、前記排出管の分岐部と前記冷却器との間にある燃焼器導入管内に配置され、タービン負荷に応じて、前記燃焼器導入管を流れるドライ作動ガスの圧力を増加させる、請求項4に記載のガスタービン設備。   The pump is disposed in a combustor introduction pipe between the branch of the exhaust pipe and the cooler, and increases the pressure of the dry working gas flowing through the combustor introduction pipe according to a turbine load. Item 5. The gas turbine equipment according to Item 4. 前記燃焼器導入管を介して前記燃焼器に導かれたドライ作動ガスの前記燃焼器への噴出速度が一定に維持される、請求項1乃至5のいずれか1項に記載のガスタービン設備。   The gas turbine equipment according to any one of claims 1 to 5, wherein an ejection speed of the dry working gas guided to the combustor through the combustor introduction pipe is maintained constant. 前記ドライ作動ガスが二酸化炭素である、請求項1乃至6のいずれか1項に記載のガスタービン設備。   The gas turbine equipment according to any one of claims 1 to 6, wherein the dry working gas is carbon dioxide. 前記燃焼器に供給される燃料が流れる配管内に配置され、前記燃料の流量を検知するように構成された燃料流量検知部と、
前記燃焼器に供給される酸化剤が流れる配管内に配置され、前記酸化剤の流量を検知するように構成された酸化剤流量検知部と、
前記酸化剤が流れる配管内に設けられ、前記酸化剤の流量を調整するように構成された酸化剤流量調整弁と、
前記燃焼器導入管内に配置され、前記燃焼器導入管を流れる超臨界流体のドライ作動ガスの流量を検知するように構成された燃焼器導入流量検知部と、
前記排出管内に配置され、前記排出管を流れる超臨界流体のドライ作動ガスの流量を検知するように構成された排出流量検知部と、
前記排出管内に設けられ、前記排出管を流れる超臨界流体のドライ作動ガスの流量を調整するように構成された排出流量調整弁と、
前記バイパス管内に配置され、前記バイパス管を流れる超臨界流体のドライ作動ガスの流量を検知するように構成されたバイパス流量検知部と、
前記バイパス管内に設けられ、前記バイパス管を流れる超臨界流体のドライ作動ガスの流量を調整するように構成されたバイパス流量調整弁と、
前記燃料流量検知部、前記酸化剤流量検知部、前記燃焼器導入流量検知部、前記排出流量検知部、および前記バイパス流量検知部からの検知信号に基づいて、前記酸化剤流量調整弁、前記排出流量調整弁、および前記バイパス流量調整弁の開度を制御するように構成された制御部と、
をさらに具備する、請求項1乃至7のいずれか1項に記載のガスタービン設備。
A fuel flow rate detector arranged in a pipe through which the fuel supplied to the combustor flows and configured to detect the flow rate of the fuel;
An oxidant flow rate detection unit arranged in a pipe through which the oxidant supplied to the combustor flows and configured to detect the flow rate of the oxidant;
An oxidant flow rate adjusting valve provided in a pipe through which the oxidant flows and configured to adjust the flow rate of the oxidant;
A combustor introduction flow rate detector arranged in the combustor introduction tube and configured to detect a flow rate of a dry working gas of a supercritical fluid flowing through the combustor introduction tube;
An exhaust flow rate detector arranged in the exhaust pipe and configured to detect the flow rate of the dry working gas of the supercritical fluid flowing through the exhaust pipe;
An exhaust flow rate adjusting valve provided in the exhaust pipe and configured to adjust the flow rate of the dry working gas of the supercritical fluid flowing through the exhaust pipe;
A bypass flow rate detector arranged in the bypass pipe and configured to detect the flow rate of the dry working gas of the supercritical fluid flowing through the bypass pipe;
A bypass flow rate adjusting valve provided in the bypass pipe and configured to adjust the flow rate of the dry working gas of the supercritical fluid flowing through the bypass pipe;
Based on detection signals from the fuel flow rate detection unit, the oxidant flow rate detection unit, the combustor introduction flow rate detection unit, the exhaust flow rate detection unit, and the bypass flow rate detection unit, the oxidant flow rate adjustment valve, the discharge A flow rate adjusting valve, and a control unit configured to control the opening degree of the bypass flow rate adjusting valve;
The gas turbine equipment according to any one of claims 1 to 7, further comprising:
前記バイパス管内に設けられ、前記バイパス管を流れる超臨界流体のドライ作動ガスの流量を調整するように構成されたバイパス流量調整弁をさらに具備する、請求項1に記載のガスタービン設備。   2. The gas turbine equipment according to claim 1, further comprising a bypass flow rate adjusting valve provided in the bypass pipe and configured to adjust a flow rate of a dry working gas of a supercritical fluid flowing through the bypass pipe. 前記バイパス流量調整弁が、一定の容積流量の前記ドライ作動ガスを前記圧縮機に提供するように構成される、請求項9に記載のガスタービン設備。   The gas turbine installation of claim 9, wherein the bypass flow regulating valve is configured to provide a constant volume flow of the dry working gas to the compressor.
JP2013175933A 2013-08-27 2013-08-27 Gas turbine equipment Active JP6250332B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2013175933A JP6250332B2 (en) 2013-08-27 2013-08-27 Gas turbine equipment
US14/456,233 US9562473B2 (en) 2013-08-27 2014-08-11 Gas turbine facility
ES14181143.0T ES2649153T3 (en) 2013-08-27 2014-08-15 Gas turbine installation
EP17187289.8A EP3273029B1 (en) 2013-08-27 2014-08-15 Gas turbine facility
ES17187289T ES2804847T3 (en) 2013-08-27 2014-08-15 Gas turbine installation
EP14181143.0A EP2853716B1 (en) 2013-08-27 2014-08-15 Gas turbine facility
NO14181143A NO2853716T3 (en) 2013-08-27 2014-08-15
PL17187289T PL3273029T3 (en) 2013-08-27 2014-08-15 Gas turbine facility
PL14181143T PL2853716T3 (en) 2013-08-27 2014-08-15 Gas turbine facility
CA2859883A CA2859883C (en) 2013-08-27 2014-08-20 Gas turbine facility
CN201610882461.5A CN107100737B (en) 2013-08-27 2014-08-26 Gas-turbine plant
CN201410424280.9A CN104420993B (en) 2013-08-27 2014-08-26 Gas turbine facility
US15/391,427 US10794274B2 (en) 2013-08-27 2016-12-27 Gas turbine facility with supercritical fluid “CO2” recirculation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013175933A JP6250332B2 (en) 2013-08-27 2013-08-27 Gas turbine equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017224501A Division JP6636002B2 (en) 2017-11-22 2017-11-22 Gas turbine equipment

Publications (3)

Publication Number Publication Date
JP2015045246A JP2015045246A (en) 2015-03-12
JP2015045246A5 JP2015045246A5 (en) 2016-11-17
JP6250332B2 true JP6250332B2 (en) 2017-12-20

Family

ID=51399510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013175933A Active JP6250332B2 (en) 2013-08-27 2013-08-27 Gas turbine equipment

Country Status (8)

Country Link
US (2) US9562473B2 (en)
EP (2) EP2853716B1 (en)
JP (1) JP6250332B2 (en)
CN (2) CN104420993B (en)
CA (1) CA2859883C (en)
ES (2) ES2804847T3 (en)
NO (1) NO2853716T3 (en)
PL (2) PL2853716T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048646A (en) * 2017-11-22 2018-03-29 8 リバーズ キャピタル,エルエルシー Gas turbine installation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014146861A1 (en) * 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Power generation system and method to operate
JP6250332B2 (en) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー Gas turbine equipment
MA40950A (en) 2014-11-12 2017-09-19 8 Rivers Capital Llc SUITABLE CONTROL SYSTEMS AND PROCEDURES FOR USE WITH POWER GENERATION SYSTEMS AND PROCESSES
US11686258B2 (en) 2014-11-12 2023-06-27 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
MX2018010310A (en) 2016-02-26 2019-05-02 8 Rivers Capital Llc Systems and methods for controlling a power plant.
FR3052684A1 (en) * 2016-06-16 2017-12-22 L'air Liquide Sa Pour L'etude Et L'exploitation Des Procedes Georges Claude APPARATUS AND METHOD FOR LOW TEMPERATURE CO2 SEPARATION COMPRISING A PERMEATION SEPARATION STEP
CN114901925A (en) 2019-10-22 2022-08-12 八河流资产有限责任公司 Control scheme and method for thermal management of power generation systems
CN113266441B (en) * 2021-04-16 2023-03-24 上海齐耀动力技术有限公司 Method and system for controlling starting operation of supercritical carbon dioxide recompression power generation system
JP2023001633A (en) * 2021-06-21 2023-01-06 東芝エネルギーシステムズ株式会社 Operation method of gas turbine combustor
CN113669160B (en) * 2021-08-06 2022-05-20 西北工业大学 Turbine gas water spray cooling device of underwater vehicle

Family Cites Families (230)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376706A (en) 1965-06-28 1968-04-09 Angelino Gianfranco Method for obtaining mechanical energy from a thermal gas cycle with liquid phase compression
US3369361A (en) 1966-03-07 1968-02-20 Gale M. Craig Gas turbine power plant with sub-atmospheric spray-cooled turbine discharge into exhaust compressor
US3430451A (en) * 1967-07-10 1969-03-04 Chemical Construction Corp Compression of gaseous streams containing carbon monoxide
CH476208A (en) 1967-07-27 1969-07-31 Sulzer Ag Gas turbine system with CO2 as the working medium
US3532467A (en) * 1967-09-01 1970-10-06 Chevron Res Hydrogen manufacture with integrated steam usage
US3576603A (en) * 1967-09-01 1971-04-27 Chevron Res Hydrogen manufacture using gas turbine driven centrifugal compressors
US3544291A (en) 1968-04-22 1970-12-01 Texaco Inc Coal gasification process
US3736745A (en) 1971-06-09 1973-06-05 H Karig Supercritical thermal power system using combustion gases for working fluid
US3816595A (en) 1971-11-15 1974-06-11 Aqua Chem Inc Method and apparatus for removing nitrogen oxides from a gas stream
US3868817A (en) 1973-12-27 1975-03-04 Texaco Inc Gas turbine process utilizing purified fuel gas
US3971211A (en) 1974-04-02 1976-07-27 Mcdonnell Douglas Corporation Thermodynamic cycles with supercritical CO2 cycle topping
US3976443A (en) 1974-12-18 1976-08-24 Texaco Inc. Synthesis gas from solid carbonaceous fuel
US4132065A (en) 1977-03-28 1979-01-02 Texaco Inc. Production of H2 and co-containing gas stream and power
US4191500A (en) 1977-07-27 1980-03-04 Rockwell International Corporation Dense-phase feeder method
US4147024A (en) 1977-09-15 1979-04-03 Avco Corporation Dual cycle gas turbine engine system
US4154581A (en) 1978-01-12 1979-05-15 Battelle Development Corporation Two-zone fluid bed combustion or gasification process
US4206610A (en) 1978-04-14 1980-06-10 Arthur D. Little, Inc. Method and apparatus for transporting coal as a coal/liquid carbon dioxide slurry
US4193259A (en) 1979-05-24 1980-03-18 Texaco Inc. Process for the generation of power from carbonaceous fuels with minimal atmospheric pollution
JPS57146028A (en) 1981-03-04 1982-09-09 Hitachi Ltd Regenerative cycle type gas turbine
US4702747A (en) 1981-03-24 1987-10-27 Carbon Fuels Corporation Coal derived/carbon dioxide fuel slurry and method of manufacture
US4434613A (en) 1981-09-02 1984-03-06 General Electric Company Closed cycle gas turbine for gaseous production
US4522628A (en) 1981-12-16 1985-06-11 Mobil Oil Corporation Method for removing ash mineral matter of coal with liquid carbon dioxide and water
US4498289A (en) 1982-12-27 1985-02-12 Ian Osgerby Carbon dioxide power cycle
US4602483A (en) 1985-03-08 1986-07-29 Southwestern Public Service Company Coal slurry system
US4765781A (en) 1985-03-08 1988-08-23 Southwestern Public Service Company Coal slurry system
DE3600432A1 (en) 1985-05-21 1987-02-05 Gutehoffnungshuette Man METHOD FOR GASIFYING A CARBONATED FUEL, IN PARTICULAR COAL
US4721420A (en) 1985-09-03 1988-01-26 Arthur D. Little, Inc. Pipeline transportation of coarse coal-liquid carbon dioxide slurry
US4735052A (en) 1985-09-30 1988-04-05 Kabushiki Kaisha Toshiba Gas turbine apparatus
GB2196016B (en) 1986-08-29 1991-05-15 Humphreys & Glasgow Ltd Clean electric power generation process
US4999995A (en) 1986-08-29 1991-03-19 Enserch International Investments Ltd. Clean electric power generation apparatus
US4765143A (en) 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
JPH0626362Y2 (en) 1988-02-05 1994-07-20 三菱重工業株式会社 Electric dust collector pulse power supply
US4839030A (en) 1988-05-27 1989-06-13 Hri, Inc. Coal liquefaction process utilizing coal/CO2 slurry feedstream
US4957515A (en) 1988-11-03 1990-09-18 Air Products And Chemicals, Inc. Process for sulfur removal and recovery from fuel gas using physical solvent
JP2664984B2 (en) 1989-02-28 1997-10-22 三菱重工業株式会社 Flame retardant low calorific value gas combustion device
US5175995A (en) 1989-10-25 1993-01-05 Pyong-Sik Pak Power generation plant and power generation method without emission of carbon dioxide
US5247791A (en) 1989-10-25 1993-09-28 Pyong S. Pak Power generation plant and power generation method without emission of carbon dioxide
JP2954972B2 (en) 1990-04-18 1999-09-27 三菱重工業株式会社 Gasification gas combustion gas turbine power plant
US5353721A (en) 1991-07-15 1994-10-11 Manufacturing And Technology Conversion International Pulse combusted acoustic agglomeration apparatus and process
JP3110114B2 (en) 1991-11-01 2000-11-20 丙植 朴 CO2 recovery power plant
US5421166A (en) 1992-02-18 1995-06-06 Air Products And Chemicals, Inc. Integrated air separation plant-integrated gasification combined cycle power generator
US5507141A (en) 1992-05-29 1996-04-16 Kvaerner Pulping Technologies Ab Process for recovering energy from a combustible gas
US5295350A (en) 1992-06-26 1994-03-22 Texaco Inc. Combined power cycle with liquefied natural gas (LNG) and synthesis or fuel gas
NL9201179A (en) 1992-07-02 1994-02-01 Tno PROCESS FOR THE REGENERATIVE REMOVAL OF CARBON DIOXIDE FROM GAS FLOWS.
JPH0626362A (en) 1992-07-09 1994-02-01 Mitsubishi Heavy Ind Ltd Co2 gas turbine cycle
SE9202155L (en) 1992-07-13 1993-08-16 Bal Ab COMBINED COMBUSTION COMBUSTION AND EXHAUST WAS
US6289666B1 (en) 1992-10-27 2001-09-18 Ginter Vast Corporation High efficiency low pollution hybrid Brayton cycle combustor
US5937652A (en) 1992-11-16 1999-08-17 Abdelmalek; Fawzy T. Process for coal or biomass fuel gasification by carbon dioxide extracted from a boiler flue gas stream
DE4303174A1 (en) 1993-02-04 1994-08-18 Joachim Dipl Ing Schwieger Method for the generation of electrical energy
US5415673A (en) 1993-10-15 1995-05-16 Texaco Inc. Energy efficient filtration of syngas cooling and scrubbing water
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
US5417052A (en) 1993-11-05 1995-05-23 Midwest Research Institute Hybrid solar central receiver for combined cycle power plant
JP3454372B2 (en) 1994-02-04 2003-10-06 石川島播磨重工業株式会社 Combustion method and apparatus for closed cycle gas turbine
DE4407619C1 (en) 1994-03-08 1995-06-08 Entec Recycling Und Industriea Fossil fuel power station process
IL114123A (en) * 1994-06-14 2004-07-25 Ormat Ind Ltd Gas turbine system with heat recovery cycle and method for using the same
EP0828929B1 (en) 1994-08-25 2004-09-22 Clean Energy Systems, Inc. Reduced pollution power generation system and gas generator therefore
GB9425691D0 (en) 1994-12-20 1995-02-22 Boc Group Plc A combustion apparatus
US5595059A (en) 1995-03-02 1997-01-21 Westingthouse Electric Corporation Combined cycle power plant with thermochemical recuperation and flue gas recirculation
US6170264B1 (en) 1997-09-22 2001-01-09 Clean Energy Systems, Inc. Hydrocarbon combustion power generation system with CO2 sequestration
US5724805A (en) 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US5906806A (en) 1996-10-16 1999-05-25 Clark; Steve L. Reduced emission combustion process with resource conservation and recovery options "ZEROS" zero-emission energy recycling oxidation system
US5775091A (en) * 1996-10-21 1998-07-07 Westinghouse Electric Corporation Hydrogen fueled power plant
EP0859136A1 (en) 1997-02-17 1998-08-19 N.V. Kema Gas turbine with energy recovering
EP0859135A1 (en) 1997-02-17 1998-08-19 N.V. Kema Gas turbine with energy recovering
NO308400B1 (en) 1997-06-06 2000-09-11 Norsk Hydro As Power generation process comprising a combustion process
DE59811106D1 (en) 1998-02-25 2004-05-06 Alstom Technology Ltd Baden Power plant and method for operating a power plant with a CO2 process
DE69931548T2 (en) 1998-04-07 2007-05-10 Mitsubishi Heavy Industries, Ltd. turbine plant
DE59810673D1 (en) * 1998-04-28 2004-03-04 Asea Brown Boveri Power plant with a CO2 process
US6148602A (en) 1998-08-12 2000-11-21 Norther Research & Engineering Corporation Solid-fueled power generation system with carbon dioxide sequestration and method therefor
JP2000080927A (en) 1998-09-04 2000-03-21 Toshiba Corp Gas turbine system
JP2000120447A (en) 1998-10-12 2000-04-25 Toshiba Corp Thermal power plant
US6199364B1 (en) 1999-01-22 2001-03-13 Alzeta Corporation Burner and process for operating gas turbines with minimal NOx emissions
US6212871B1 (en) * 1999-03-11 2001-04-10 Alm Development, Inc. Method of operation of a gas turbine engine and a gas turbine engine
US6209307B1 (en) 1999-05-05 2001-04-03 Fpl Energy, Inc. Thermodynamic process for generating work using absorption and regeneration
JP2000337107A (en) 1999-05-27 2000-12-05 Mitsubishi Heavy Ind Ltd Closed gas turbine plant
US6202574B1 (en) 1999-07-09 2001-03-20 Abb Alstom Power Inc. Combustion method and apparatus for producing a carbon dioxide end product
JP4094185B2 (en) 1999-08-24 2008-06-04 三井造船株式会社 Cold power generation system
JP4146052B2 (en) 1999-12-03 2008-09-03 三菱重工業株式会社 Power generation system
NL1013804C2 (en) 1999-12-09 2001-06-12 Wouter Willem Van De Waal Environmentally friendly method for generating energy from natural gas.
US6196000B1 (en) 2000-01-14 2001-03-06 Thermo Energy Power Systems, Llc Power system with enhanced thermodynamic efficiency and pollution control
DE10016079A1 (en) 2000-03-31 2001-10-04 Alstom Power Nv Method for removing carbon dioxide from the exhaust gas of a gas turbine system and device for carrying out the method
AU2001276823A1 (en) 2000-05-12 2001-12-03 Clean Energy Systems, Inc. Semi-closed brayton cycle gas turbine power systems
SE518487C2 (en) 2000-05-31 2002-10-15 Norsk Hydro As Method of operating a combustion plant and a combustion plant
US6333015B1 (en) 2000-08-08 2001-12-25 Arlin C. Lewis Synthesis gas production and power generation with zero emissions
US6513318B1 (en) 2000-11-29 2003-02-04 Hybrid Power Generation Systems Llc Low emissions gas turbine engine with inlet air heating
DE10064270A1 (en) 2000-12-22 2002-07-11 Alstom Switzerland Ltd Method for operating a gas turbine system and a related gas turbine system
FR2819583B1 (en) 2001-01-12 2003-03-07 Air Liquide INTEGRATED AIR SEPARATION AND ENERGY GENERATION PROCESS AND INSTALLATION FOR CARRYING OUT SUCH A PROCESS
FR2819584B1 (en) 2001-01-12 2003-03-07 Air Liquide INTEGRATED AIR SEPARATION AND ENERGY GENERATION PROCESS AND INSTALLATION FOR CARRYING OUT SUCH A PROCESS
US6532743B1 (en) 2001-04-30 2003-03-18 Pratt & Whitney Canada Corp. Ultra low NOx emissions combustion system for gas turbine engines
US20030221409A1 (en) 2002-05-29 2003-12-04 Mcgowan Thomas F. Pollution reduction fuel efficient combustion turbine
EP1432889B1 (en) 2001-10-01 2006-07-12 Alstom Technology Ltd Method and device for the starting of emission-free gas turbine power stations
WO2003049122A2 (en) 2001-12-03 2003-06-12 Clean Energy Systems, Inc. Coal and syngas fueled power generation systems featuring zero atmospheric emissions
JP3814206B2 (en) 2002-01-31 2006-08-23 三菱重工業株式会社 Waste heat utilization method of carbon dioxide recovery process
US7284362B2 (en) 2002-02-11 2007-10-23 L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Étude et l'Exploitation des Procedes Georges Claude Integrated air separation and oxygen fired power generation system
US6871502B2 (en) 2002-02-15 2005-03-29 America Air Liquide, Inc. Optimized power generation system comprising an oxygen-fired combustor integrated with an air separation unit
CN1231660C (en) 2002-03-22 2005-12-14 中国科学院工程热物理研究所 Gas turbine generating system and flow by cooling liquefied natural gas to separate carbon dioxide
US6532745B1 (en) 2002-04-10 2003-03-18 David L. Neary Partially-open gas turbine cycle providing high thermal efficiencies and ultra-low emissions
JP3684208B2 (en) 2002-05-20 2005-08-17 株式会社東芝 Gas turbine control device
NO20023050L (en) 2002-06-21 2003-12-22 Fleischer & Co Process and facilities for carrying out the process
US20040011057A1 (en) 2002-07-16 2004-01-22 Siemens Westinghouse Power Corporation Ultra-low emission power plant
US6820689B2 (en) 2002-07-18 2004-11-23 Production Resources, Inc. Method and apparatus for generating pollution free electrical energy from hydrocarbons
US6775987B2 (en) 2002-09-12 2004-08-17 The Boeing Company Low-emission, staged-combustion power generation
US6802178B2 (en) 2002-09-12 2004-10-12 The Boeing Company Fluid injection and injection method
AU2003260832A1 (en) 2002-09-17 2004-04-08 Foster Wheeler Energy Corporation Advanced hybrid coal gasification cycle utilizing a recycled working fluid
US7303597B2 (en) 2002-10-15 2007-12-04 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for continuously feeding and pressurizing a solid material into a high pressure system
AU2003298266A1 (en) 2002-11-08 2004-06-07 Alstom Technology Ltd Gas turbine power plant and method of operating the same
US7191587B2 (en) 2002-11-13 2007-03-20 American Air Liquide, Inc. Hybrid oxygen-fired power generation system
US6945029B2 (en) 2002-11-15 2005-09-20 Clean Energy Systems, Inc. Low pollution power generation system with ion transfer membrane air separation
US7007474B1 (en) 2002-12-04 2006-03-07 The United States Of America As Represented By The United States Department Of Energy Energy recovery during expansion of compressed gas using power plant low-quality heat sources
US6898936B1 (en) 2002-12-04 2005-05-31 The United States Of America As Represented By The United States Department Of Energy Compression stripping of flue gas with energy recovery
EP1429000A1 (en) 2002-12-09 2004-06-16 Siemens Aktiengesellschaft Method and device for operating a gas turbine comprising a fossile fuel combustion chamber
US6993912B2 (en) 2003-01-23 2006-02-07 Pratt & Whitney Canada Corp. Ultra low Nox emissions combustion system for gas turbine engines
WO2004081479A2 (en) 2003-03-10 2004-09-23 Clean Energy Systems, Inc. Reheat heat exchanger power generation systems
US7074033B2 (en) 2003-03-22 2006-07-11 David Lloyd Neary Partially-open fired heater cycle providing high thermal efficiencies and ultra-low emissions
US7007486B2 (en) 2003-03-26 2006-03-07 The Boeing Company Apparatus and method for selecting a flow mixture
GB2401403B (en) 2003-05-08 2006-05-31 Rolls Royce Plc Carbon dioxide recirculation
US7192569B2 (en) 2003-06-30 2007-03-20 Pratt & Whitney Hydrogen generation with efficient byproduct recycle
JP4241239B2 (en) 2003-07-07 2009-03-18 株式会社Ihi gas turbine
WO2005031136A1 (en) 2003-09-30 2005-04-07 Bhp Billiton Innovation Pty Ltd Power generation
US7017329B2 (en) 2003-10-10 2006-03-28 United Technologies Corporation Method and apparatus for mixing substances
US7469544B2 (en) 2003-10-10 2008-12-30 Pratt & Whitney Rocketdyne Method and apparatus for injecting a fuel into a combustor assembly
US7124589B2 (en) 2003-12-22 2006-10-24 David Neary Power cogeneration system and apparatus means for improved high thermal efficiencies and ultra-low emissions
DE10360951A1 (en) 2003-12-23 2005-07-28 Alstom Technology Ltd Thermal power plant with sequential combustion and reduced CO2 emissions and method of operating such a plant
US7111463B2 (en) 2004-01-23 2006-09-26 Pratt & Whitney Rocketdyne Inc. Combustion wave ignition for combustors
FR2867463B1 (en) 2004-03-15 2007-05-11 Commissariat Energie Atomique SOLID POWER SUPPLY OF VARIABLE GRANULOMETRY OF A DEVICE UNDER PRESSURE
US20050241311A1 (en) 2004-04-16 2005-11-03 Pronske Keith L Zero emissions closed rankine cycle power system
EP2278222A1 (en) 2004-05-19 2011-01-26 Innovative Energy, Inc. Combustion Method and Apparatus
US7360639B2 (en) 2004-06-16 2008-04-22 Pratt & Whitney Rocketdyne, Inc. Hot rotary screw pump
US7547419B2 (en) 2004-06-16 2009-06-16 United Technologies Corporation Two phase injector for fluidized bed reactor
DE102004039164A1 (en) 2004-08-11 2006-03-02 Alstom Technology Ltd Method for generating energy in a gas turbine comprehensive power generation plant and power generation plant for performing the method
US7459131B2 (en) 2004-08-16 2008-12-02 United Technologies Corporation Reduced temperature regernerating/calcining apparatus for hydrogen generation
US7402188B2 (en) 2004-08-31 2008-07-22 Pratt & Whitney Rocketdyne, Inc. Method and apparatus for coal gasifier
JP2006125767A (en) 2004-10-29 2006-05-18 Tokyo Institute Of Technology Heat exchanger
US7736599B2 (en) 2004-11-12 2010-06-15 Applied Materials, Inc. Reactor design to reduce particle deposition during process abatement
EP1657409A1 (en) 2004-11-15 2006-05-17 Elsam A/S A method of and an apparatus for producing electrical power
EP1669572A1 (en) 2004-12-08 2006-06-14 Vrije Universiteit Brussel Process and installation for producing electric power
EP1828410A2 (en) 2004-12-13 2007-09-05 F. Hoffmann-Roche AG Single nucleotide polymorphism (snp) associated to type ii diabetes
JP3110114U (en) 2005-01-31 2005-06-16 旭文 廖 Waterproof LED light emitting device
US7269952B2 (en) 2005-03-02 2007-09-18 General Electric Company Method and apparatus for gas turbine dry low NOx combustor corrected parameter control
US7547423B2 (en) 2005-03-16 2009-06-16 Pratt & Whitney Rocketdyne Compact high efficiency gasifier
US20090025390A1 (en) 2005-04-05 2009-01-29 Sargas As Low CO2 Thermal Powerplant
US7717046B2 (en) 2005-04-29 2010-05-18 Pratt & Whitney Rocketdyne, Inc. High pressure dry coal slurry extrusion pump
US8196848B2 (en) 2005-04-29 2012-06-12 Pratt & Whitney Rocketdyne, Inc. Gasifier injector
US7827794B1 (en) 2005-11-04 2010-11-09 Clean Energy Systems, Inc. Ultra low emissions fast starting power plant
NO332159B1 (en) 2006-01-13 2012-07-09 Nebb Technology As Process and facilities for energy efficient capture and separation of CO2 from a gas phase
US7950243B2 (en) 2006-01-16 2011-05-31 Gurin Michael H Carbon dioxide as fuel for power generation and sequestration system
US8075646B2 (en) 2006-02-09 2011-12-13 Siemens Energy, Inc. Advanced ASU and HRSG integration for improved integrated gasification combined cycle efficiency
DE102006010138A1 (en) * 2006-03-06 2007-09-13 Gebr. Becker Gmbh Method for operating a coupled power / heat process for supplying a building heating and gas turbine building heating system
US7665291B2 (en) 2006-04-04 2010-02-23 General Electric Company Method and system for heat recovery from dirty gaseous fuel in gasification power plants
US7827797B2 (en) 2006-09-05 2010-11-09 General Electric Company Injection assembly for a combustor
US7387197B2 (en) 2006-09-13 2008-06-17 Pratt & Whitney Rocketdyne, Inc. Linear tractor dry coal extrusion pump
JP2008082247A (en) 2006-09-27 2008-04-10 Mitsubishi Heavy Ind Ltd Gas turbine
US7722690B2 (en) 2006-09-29 2010-05-25 Kellogg Brown & Root Llc Methods for producing synthesis gas
US7827778B2 (en) 2006-11-07 2010-11-09 General Electric Company Power plants that utilize gas turbines for power generation and processes for lowering CO2 emissions
US20080115500A1 (en) 2006-11-15 2008-05-22 Scott Macadam Combustion of water borne fuels in an oxy-combustion gas generator
US7966829B2 (en) 2006-12-11 2011-06-28 General Electric Company Method and system for reducing CO2 emissions in a combustion stream
CN102637886B (en) 2006-12-16 2014-10-15 克里斯多佛·J·帕皮雷 Methods and/or systems for removing carbon dioxide and/or generating power
US7740671B2 (en) 2006-12-18 2010-06-22 Pratt & Whitney Rocketdyne, Inc. Dump cooled gasifier
US7934383B2 (en) 2007-01-04 2011-05-03 Siemens Energy, Inc. Power generation system incorporating multiple Rankine cycles
US7553463B2 (en) 2007-01-05 2009-06-30 Bert Zauderer Technical and economic optimization of combustion, nitrogen oxides, sulfur dioxide, mercury, carbon dioxide, coal ash and slag and coal slurry use in coal fired furnaces/boilers
AT504863B1 (en) 2007-01-15 2012-07-15 Siemens Vai Metals Tech Gmbh METHOD AND APPARATUS FOR GENERATING ELECTRICAL ENERGY IN A GAS AND STEAM TURBINE (GUD) POWER PLANT
US7819951B2 (en) * 2007-01-23 2010-10-26 Air Products And Chemicals, Inc. Purification of carbon dioxide
US8088196B2 (en) 2007-01-23 2012-01-03 Air Products And Chemicals, Inc. Purification of carbon dioxide
US7731783B2 (en) 2007-01-24 2010-06-08 Pratt & Whitney Rocketdyne, Inc. Continuous pressure letdown system
US8771604B2 (en) 2007-02-06 2014-07-08 Aerojet Rocketdyne Of De, Inc. Gasifier liner
US20080190214A1 (en) 2007-02-08 2008-08-14 Pratt & Whitney Rocketdyne, Inc. Cut-back flow straightener
US7826054B2 (en) 2007-05-04 2010-11-02 Pratt & Whitney Rocketdyne, Inc. Fuel cell instrumentation system
US7874140B2 (en) 2007-06-08 2011-01-25 Foster Wheeler North America Corp. Method of and power plant for generating power by oxyfuel combustion
US8850789B2 (en) 2007-06-13 2014-10-07 General Electric Company Systems and methods for power generation with exhaust gas recirculation
WO2008155242A1 (en) 2007-06-19 2008-12-24 Alstom Technology Ltd Gas turbine system having exhaust gas recirculation
JP4120699B2 (en) 2007-07-06 2008-07-16 株式会社日立製作所 Gas turbine power generation equipment and air humidifier
CA2700135C (en) 2007-09-18 2015-05-12 Vast Power Portfolio, Llc Heavy oil recovery with fluid water and carbon dioxide
CN101802366A (en) 2007-09-28 2010-08-11 财团法人电力中央研究所 Turbine facility and power generating apparatus
US8051654B2 (en) 2008-01-31 2011-11-08 General Electric Company Reheat gas and exhaust gas regenerator system for a combined cycle power plant
US20090260585A1 (en) 2008-04-22 2009-10-22 Foster Wheeler Energy Corporation Oxyfuel Combusting Boiler System and a Method of Generating Power By Using the Boiler System
US8397482B2 (en) 2008-05-15 2013-03-19 General Electric Company Dry 3-way catalytic reduction of gas turbine NOx
US20090301054A1 (en) 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
US20100018218A1 (en) 2008-07-25 2010-01-28 Riley Horace E Power plant with emissions recovery
US20100024433A1 (en) 2008-07-30 2010-02-04 John Frederick Ackermann System and method of operating a gas turbine engine with an alternative working fluid
US8806849B2 (en) 2008-07-30 2014-08-19 The University Of Wyoming System and method of operating a power generation system with an alternative working fluid
US20100024378A1 (en) 2008-07-30 2010-02-04 John Frederick Ackermann System and method of operating a gas turbine engine with an alternative working fluid
US9297306B2 (en) 2008-09-11 2016-03-29 General Electric Company Exhaust gas recirculation system, turbomachine system having the exhaust gas recirculation system and exhaust gas recirculation control method
BRPI0920139A2 (en) 2008-10-14 2015-12-22 Exxonmobil Upstream Res Co combustion system, combustion control method, and combustion system.
CH699804A1 (en) 2008-10-29 2010-04-30 Alstom Technology Ltd Gas turbine plant with exhaust gas recirculation and method for operating such a plant.
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9068743B2 (en) 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US8596075B2 (en) * 2009-02-26 2013-12-03 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
EP2411736B1 (en) 2009-02-26 2019-06-05 8 Rivers Capital, LLC Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US20100326084A1 (en) 2009-03-04 2010-12-30 Anderson Roger E Methods of oxy-combustion power generation using low heating value fuel
US20100229525A1 (en) 2009-03-14 2010-09-16 Robin Mackay Turbine combustion air system
BRPI1007723A2 (en) 2009-05-12 2018-03-06 Icr Turbine Engine Corp gas turbine storage and conversion system
US8695514B2 (en) 2009-05-14 2014-04-15 Alstom Technology Ltd. Gas leakage reduction system
EP2442047A1 (en) 2009-06-09 2012-04-18 Mitsubishi Heavy Industries, Ltd. Solar heat receiver
JP2010285965A (en) 2009-06-15 2010-12-24 Mitsubishi Heavy Ind Ltd Solar thermal gas turbine power plant
JP2011007111A (en) 2009-06-26 2011-01-13 Hitachi Ltd Regeneration cycle gas turbine system and method for operating the same
US7973705B2 (en) 2009-07-17 2011-07-05 Garmin Switzerland Gmbh Marine bump map display
US8685120B2 (en) 2009-08-11 2014-04-01 General Electric Company Method and apparatus to produce synthetic gas
JP2011052620A (en) 2009-09-03 2011-03-17 Mitsubishi Heavy Industries Compressor Corp Leak gas recovery device from dry gas seal
JP5075900B2 (en) 2009-09-30 2012-11-21 株式会社日立製作所 Hydrogen-containing fuel compatible combustor and its low NOx operation method
US8327641B2 (en) 2009-12-01 2012-12-11 General Electric Company System for generation of power using solar energy
SG10201505209UA (en) * 2010-07-02 2015-08-28 Exxonmobil Upstream Res Co Low emission power generation systems and methods
US9732673B2 (en) * 2010-07-02 2017-08-15 Exxonmobil Upstream Research Company Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
US20120000204A1 (en) 2010-07-02 2012-01-05 Icr Turbine Engine Corporation Multi-spool intercooled recuperated gas turbine
JP5906555B2 (en) * 2010-07-02 2016-04-20 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion of rich air by exhaust gas recirculation system
US8220248B2 (en) 2010-09-13 2012-07-17 Membrane Technology And Research, Inc Power generation process with partial recycle of carbon dioxide
US20120067054A1 (en) 2010-09-21 2012-03-22 Palmer Labs, Llc High efficiency power production methods, assemblies, and systems
US9410481B2 (en) 2010-09-21 2016-08-09 8 Rivers Capital, Llc System and method for high efficiency power generation using a nitrogen gas working fluid
DE102011115364A1 (en) 2010-10-19 2012-04-19 Alstom Technology Ltd. power plant
EP2444631A1 (en) 2010-10-19 2012-04-25 Alstom Technology Ltd Power plant and method for its operation
US8739510B2 (en) * 2010-10-28 2014-06-03 General Electric Company Heat exchanger for a combined cycle power plant
US20120102996A1 (en) 2010-10-29 2012-05-03 General Electric Company Rankine cycle integrated with absorption chiller
JP5599743B2 (en) 2011-02-28 2014-10-01 一般財団法人電力中央研究所 Closed-cycle gas turbine power plant for CO2 recovery gasification gas power generation
US9546814B2 (en) 2011-03-16 2017-01-17 8 Rivers Capital, Llc Cryogenic air separation method and system
TWI564474B (en) 2011-03-22 2017-01-01 艾克頌美孚上游研究公司 Integrated systems for controlling stoichiometric combustion in turbine systems and methods of generating power using the same
TWI563166B (en) 2011-03-22 2016-12-21 Exxonmobil Upstream Res Co Integrated generation systems and methods for generating power
EP2530278A1 (en) 2011-06-01 2012-12-05 Alstom Technology Ltd Flue gas recirculation system and method
US20120023954A1 (en) 2011-08-25 2012-02-02 General Electric Company Power plant and method of operation
US8347600B2 (en) * 2011-08-25 2013-01-08 General Electric Company Power plant and method of operation
AU2012332494B2 (en) * 2011-11-02 2016-07-07 8 Rivers Capital, Llc Power generating system and corresponding method
US20130118145A1 (en) * 2011-11-11 2013-05-16 8 River Capital, LLC Hybrid fossil fuel and solar heated supercritical carbon dioxide power generating system and method
JP5183795B1 (en) 2011-12-05 2013-04-17 川崎重工業株式会社 Lean fuel intake gas turbine
US20130145773A1 (en) 2011-12-13 2013-06-13 General Electric Company Method and system for separating co2 from n2 and o2 in a turbine engine system
EA028822B1 (en) 2012-02-11 2018-01-31 Палмер Лэбс, Ллк Partial oxidation reaction with closed cycle quench
JP5894815B2 (en) 2012-02-24 2016-03-30 京セラクリスタルデバイス株式会社 Method for manufacturing piezoelectric element
WO2014036258A1 (en) * 2012-08-30 2014-03-06 Enhanced Energy Group LLC Cycle turbine engine power system
JP6220586B2 (en) 2013-07-22 2017-10-25 8 リバーズ キャピタル,エルエルシー Gas turbine equipment
US10066884B2 (en) * 2013-07-25 2018-09-04 Denbury Resources Inc. Method and apparatus for dampening flow variations and pressurizing carbon dioxide
JP6220589B2 (en) 2013-07-26 2017-10-25 8 リバーズ キャピタル,エルエルシー Gas turbine equipment
JP6250332B2 (en) 2013-08-27 2017-12-20 8 リバーズ キャピタル,エルエルシー Gas turbine equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048646A (en) * 2017-11-22 2018-03-29 8 リバーズ キャピタル,エルエルシー Gas turbine installation

Also Published As

Publication number Publication date
EP2853716B1 (en) 2017-10-11
ES2804847T3 (en) 2021-02-09
CN104420993A (en) 2015-03-18
CN107100737B (en) 2019-01-01
US20170107904A1 (en) 2017-04-20
CA2859883A1 (en) 2015-02-27
CN104420993B (en) 2017-04-26
ES2649153T3 (en) 2018-01-10
JP2015045246A (en) 2015-03-12
US9562473B2 (en) 2017-02-07
US20150059313A1 (en) 2015-03-05
EP3273029B1 (en) 2020-04-22
NO2853716T3 (en) 2018-03-10
CA2859883C (en) 2017-03-07
EP2853716A1 (en) 2015-04-01
CN107100737A (en) 2017-08-29
EP3273029A1 (en) 2018-01-24
PL2853716T3 (en) 2018-01-31
US10794274B2 (en) 2020-10-06
PL3273029T3 (en) 2020-09-07

Similar Documents

Publication Publication Date Title
JP6250332B2 (en) Gas turbine equipment
JP6662638B2 (en) Gas turbine load control system
CN107605599B (en) Gas turbine plant
JP6220589B2 (en) Gas turbine equipment
US9638065B2 (en) Methods for reducing wear on components of a heat engine system at startup
US20190186748A1 (en) System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
AU2013337667B2 (en) System and method for diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system
JP5489254B2 (en) Oxyfuel combustion system and operating method thereof
AU2009259589B2 (en) Method and device for operating a steam power station comprising a steam turbine and a process steam consumer
BR112013008661B1 (en) energy production system and method
JP2009138748A (en) Combined cycle power plant for recirculating exhaust gas and separating co2 and operation method of such a combined cycle power plant
JP2018507341A (en) System and method for responding to grid frequency excess events for a stoichiometric exhaust gas recirculation gas turbine
JP2018503337A (en) Control system and control method suitable for use in power generation system and power generation method
JP6384916B2 (en) Gas turbine equipment
JP6636002B2 (en) Gas turbine equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6250332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250